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Solving “impossible” problems 

Image Shading Image 
Reflectance Image 
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Bayesian methods 

http://research.microsoft.com/~cmbishop/PRML/Bishop-PRML-sample.pdf 
Chapter 8:  Graphical models.      (see also chapter 1 for nice introduction) 
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Simple, prototypical vision problem 

•  Observe some product of two numbers, say 1.0. 
•  What were those two numbers? 
•  Ie, 1 = ab.  Find a and b. 

•  Compare this with the prototypical graphics 
problem: here are two numbers;  what is their 
product? 
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Bayes rule 

P(x|y) = P(y|x) P(x) / P(y) 
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Bayesian approach 

•  Want to calculate P(a, b | y = 1). 
•  Use P(a, b | y = 1) = k P(y=1|a, b) P(a, b). 

Likelihood function 

Prior probability 

Posterior probability 
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Likelihood function, P(obs|params) 

•  The forward model, or rendering model, 
taking into account observation noise. 

•  Example:  assume Gaussian observation 
noise.  Then for this problem: 
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A common criticism of Bayesian 
methods 

•  “You need to make all those assumptions 
about prior probabilities”. 

•  Response…? 
•  “Everyone makes assumptions. Bayesians 

put their assumptions out in the open, 
clearly stated, where they belong.” 
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Prior probability 

•  In this case, we’ll assume P(a,b)=P(a)P(b), 
and P(a) = P(b) = const., 0<a, b<4. 

0 4 
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Posterior probability 

•  Posterior = k likelihood  prior 

for 0 < a,b<4, 
0 elsewhere 
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Ab = 1 problem 

D. H. Brainard and W.
 T. Freeman,
 Bayesian Color
 Constancy, Journal
 of the Optical
 Society of America,
 A, 14(7), pp.
 1393-1411, July, 1997 

for 0 < a,b<4, 
0 elsewhere 



13 

Loss functions 

How important is each error? 
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Bayesian decision theory 

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal
 of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997 

Note: if L(z,z’) has the form L(z-z’) then the expected loss is a convolution 

€ 

R(z | y) = P(z | y)⊗ L(z)



16 D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal
 of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997 

Minimum mean-squared-error (MMSE) 
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Ab = 1 problem 

* = € 

R(z | y)

€ 

P(z | y)⊗ L(z)
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Ab = 1 problem 

* = € 

R(z | y)

€ 

P(z | y)⊗ L(z)

And the solution to ab = 1 is …. 
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The minimum of the squared error loss is the center 
of probability mass 

€ 

Let Pz (z) be the posterior probability.
The minimum of the expected loss will satisfy
∂
∂ˆ z 

Pz(z) (z − ˆ z )2 dz = 0∫
Differentiating, we have

Pz(z) (z − ˆ z ) dz =∫ 0

Pz(z) z dz =∫  ˆ z 
This is E(z) 



21 D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal
 of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997 

Any deviation from the 
truth is equally bad 
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal
 of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997 

* = 
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal
 of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997 

* = 

And the solution is? 
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Local mass loss function may be 
useful model for perceptual tasks 

http://sportsillustrated.cnn.com/baseball/college/2000/college_world_series/news/2000/06/15/cws_notebook_ap/t1_borchard_ap_01.jpg 



26 D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal
 of the Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997 

0 

-1 

Maximum local mass (MLM) 
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Ab = 1 problem 

* = 

Maximum local mass (MLM) estimator 
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Ab = 1 problem 

* = 

And the solution is 

Maximum local mass (MLM) estimator 

a=b=1 
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Regularization vs Bayesian 
interpretations 

Regularization: 
minimize 

Bayes:  
maximize 

likelihood prior 
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Bayesian interpretation of 
regularization approach 

•  For this example: 
– Assumes Gaussian random noise added before 

observation 
– Assumes a particular prior probability on a, b. 
– Uses MAP estimator (assumes delta fn loss). 
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Why the difference matters 

•  Know what the things mean 
•  Speak with other modalities in language of 

probability 
•  Loss function 
•  Bayes also offers principled ways to choose 

between different models. 



Generic view assumption 

Image 

3D world 

3D world 

3D world 

Generic view assumption: the observer should not assume that he has a special 
position in the world… The most generic interpretation is to see a vertical line as a  
vertical line in 3D. 

Freeman, 93 
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Example image 
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Multiple shape+illumination 
explanations 

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545,
 April 7, 1994. 

Image 
? 
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Generic shape interpretations render to 
the image over a range of light directions 

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545,
 April 7, 1994. 
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W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545,
 April 7, 1994. 

Loss function 
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Shape probabilities 

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545,
 April 7, 1994. 
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Comparison of shape explanations 

•  Lighting 
“genericity” of 
the shape 
explanation: 

3.8                    0.48                   
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When is Bayesian decision theory most useful? 

•  Priors and loss functions are most useful in 
vision (and other fields) in cases where the 
observations don’t completely specify the 
answer. 

•  For example: 
– Human motion priors useful for human body 

tracking 
–  Image priors useful for noise removal and super-

resolution. 
– Object category priors useful for object recognition. 
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Some notes on fitting models 

Slides by B. Freeman and A. Blake 
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The simplest data to model: 
a set of 1–d samples 

N independent samples 
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Fit this distribution with a Gaussian 
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How find the parameters of the best-
fitting Gaussian? 

Posterior probability Likelihood function Prior probability 

Evidence 

By Bayes rule 

mean 
std. dev. 

data points 
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How find the parameters of the best-
fitting Gaussian? 

Posterior probability Likelihood function Prior probability 

Evidence 

Maximum likelihood parameter estimation: 

mean 
std. dev. 

data points 
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Derivation of MLE for Gaussians 

Observation density 

Log likelihood 

Maximisation 

Assuming all the 
samples are 
independent 

N 

N 

N 
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Basic Maximum Likelihood Estimate 
(MLE) of a Gaussian distribution 

Mean 

Variance 

Covariance Matrix 
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Basic Maximum Likelihood Estimate 
(MLE) of a Gaussian distribution 

Mean 

Variance 

For vector-valued 
data, 
we have the 
Covariance Matrix 
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Model fitting example 2:   
Fit a line to observed data 

x 

y 
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Maximum likelihood estimation for the 
slope of a single line 

Maximum likelihood estimate: 

where 

gives regression formula 

Data likelihood for point n: 



50 

Model fitting example 3: 
Fitting two lines to observed data 

x 

y 
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MLE for fitting a line pair 

(a form of mixture dist. for      ) 
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Fitting two lines:  on the one hand… 

x 

y 

If we knew 
which points 
went with 
which lines, 
we’d be back 
at the single 
line-fitting 
problem, 
twice. 

Line 1 

Line 2 
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Fitting two lines, on the other hand… 

x 

y 

We could figure 
out the 
probability that 
any point came 
from either line if 
we just knew the 
two equations 
for the two lines. 
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Expectation Maximization (EM):  a solution to 
chicken-and-egg problems 
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MLE with hidden/latent variables: 
Expectation Maximisation 

General problem: 

data parameters hidden variables 

For MLE, want to maximise the log likelihood 

The sum over z 
inside the log gives 
a complicated 
expression for the 
ML solution. 



56 

Maximizing the log likelihood of the data 

€ 

ˆ θ = argmaxθ δ(zn =1)log p(yn | zn =1,θ)
n
∑ + δ(zn = 2)log p(yn | zn = 2,θ)

if you knew the zn labels for each sample n: 
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Maximizing the log likelihood of the data 

€ 

ˆ θ = argmaxθ δ(zn =1)log p(yn | zn =1,θ)
n
∑ + δ(zn = 2)log p(yn | zn = 2,θ)

if you knew the zn labels for each sample n: 

In the EM algorithm, we replace those known labels with their 
expectation under the current algorithm parameters.  So 

€ 

E[δ(zn = i)] = p(zn = i | y,θold )

€ 

=α i(n)Call that quantity 

€ 

∝ p(y | zn = i,θold )∝e
−(yn−ai xn )

2 / 2



58 

Maximizing gives 

and maximising that gives 

€ 

ˆ a i =
α i(n)yn xnn

∑
α i(n)xn

2
n∑

And then for the estimate of the line parameters, we have 

€ 

ˆ θ = argminθ α1(n)
n
∑ (yn − a1xn )2 +α2(n)(yn − a2xn )2
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EM fitting to two lines 

with 

and 

Regression becomes: 

“E-step” 

“M-step” 

repeat 

€ 

α i(n)∝e
−(yn−ai xn )

2 / 2

€ 

α1(n) +α2(n) =1

€ 

ˆ a i =
α i(n)yn xnn

∑
α i(n)xn

2
n∑
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Experiments: EM fitting to two lines 

Iteration 1 2 3 

Line weights 

line 1 

line 2 

(from a tutorial by Yair Weiss, http://www.cs.huji.ac.il/~yweiss/tutorials.html) 



Taking a picture… 

What the camera give us… How do we correct this? 

Slides R. Fergus 



Close-up 

Original Naïve Sharpening Our algorithm  

Slides R. Fergus 



Why does picture appear blurry? 



Let’s take a photo 

Blurry result 

Slides R. Fergus 



Slow-motion replay 

Slides R. Fergus 



Slow-motion replay 

Motion of camera 

Slides R. Fergus 



Image formation process 

= ⊗ 

Blurry image Sharp image 

Blur  
kernel 

Input to algorithm Desired output 
Convolution 

operator Model is approximation 



Why is this hard? 

Simple analogy: 
  11 is the product of two numbers. 
  What are they? 

No unique solution:  
  11 = 1 x 11 
  11 = 2 x 5.5 
  11 = 3 x 3.667  

 etc….. 

Need more information !!!! 
Slides R. Fergus 



Multiple possible solutions 

= ⊗ 

Blurry image 

Sharp image Blur kernel 

= ⊗ 

= ⊗ 



Natural image statistics 

Histogram of image gradients 
Characteristic distribution with heavy tails 

Slides R. Fergus 



Blury images have different statistics 

Histogram of image gradients 

Slides R. Fergus 



Parametric distribution 

Histogram of image gradients 

Use parametric model of sharp image statistics 
Slides R. Fergus 



Uses of natural image statistics 

• Denoising [Roth and Black 2005] 

•  Superresolution [Tappen et al. 2005] 

•  Intrinsic images [Weiss 2001] 

•  Inpainting [Levin et al. 2003] 

• Reflections [Levin and Weiss 2004] 

• Video matting [Apostoloff & Fitzgibbon 2005] 

Corruption process assumed known 

Slides R. Fergus 



Existing work on image deblurring 

Software algorithms: 
– Extensive literature in signal processing community 

–  Mainly Fourier and/or Wavelet based 

–  Strong assumptions about blur  
   not true for camera shake 

–  Image constraints are frequency-domain power-laws 

Assumed forms of blur kernels 

Slides R. Fergus 



Hardware approaches 

Our approach can be combined with these hardware methods 

Existing work on image deblurring 

Ben-Ezra and 
 Nayar 2004 

Raskar et al. 
SIGGRAPH 2006 

Dual cameras Coded shutter Image stabilizers 



Three sources of information 
1. Reconstruction constraint: 

= ⊗ 

Input blurry image Estimated sharp image 
Estimated 
blur kernel 

2. Image prior: 3. Blur prior: 
Positive 

& 
Sparse 

Distribution 
of gradients 





78 
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How do we use this information? 

Obvious thing to do: 

– Combine 3 terms into an objective function   

– Run conjugate gradient descent  

– This is Maximum a-Posteriori (MAP)  



Results from MAP estimation 

Maximum a-Posteriori (MAP) Our method: Variational Bayes 

Input blurry 
image 



Variational Bayesian method 

Based on work of Miskin & Mackay 2000 

Keeps track of uncertainty in estimates of image and blur by
 using a distribution instead of a single estimate 

Helps avoid local maxima and over-fitting 



Overview of algorithm 

Input image 

1.  Pre-processing 

2.  Kernel estimation 
-  Multi-scale approach 

3.  Image reconstruction 
-  Standard non-blind deconvolution routine 



Preprocessing 

Convert to 
grayscale 

Input image 

Remove gamma 
correction 

User selects patch 
 from image 

    Bayesian inference
 too slow to run on
 whole image 

    Infer kernel  
    from this patch 



Initialization 
Input image 

Initialize 3x3  
blur kernel 

Initial blur kernel Blurry patch Initial image estimate 

Convert to 
grayscale 

Remove gamma 
correction 

User selects patch 
 from image 



Inferring the kernel: multiscale method 
Input image 

Loop over scales 

Variational 
Bayes 

Upsample 
estimates 

Use multi-scale approach to avoid local minima: 

Initialize 3x3  
blur kernel 

Convert to 
grayscale 

Remove gamma 
correction 

User selects patch 
 from image 



Image Reconstruction 
Input image 

Full resolution 
blur estimate 

Non-blind deconvolution 
(Richardson-Lucy) Deblurred 

 image 

Loop over scales 

Variational 
Bayes 

Upsample 
estimates 

Initialize 3x3  
blur kernel 

Convert to 
grayscale 

Remove gamma 
correction 

User selects patch 
 from image 



Results on real images 

Submitted by people from their own photo collections 

Type of camera unknown  

Output does contain artifacts 

–  Increased noise 

–  Ringing 

Compares well to existing methods 



Original photograph 



Blur kernel Our output 



Original photograph Matlab’s deconvblind 



Original 

Our output 

Close-up of garland 

Matlab’s 
deconvblind 



Original photograph 



Matlab’s deconvblind 



Photoshop sharpen more 



Our output 





Original photograph 



Our output 



Original photograph 



Our output 



Matlab’s deconvblind 



Original photograph 



Our output 

Blur kernel 



Close-up of bird 

Original Unsharp mask Our output 



Original photograph 



output 

Blur kernel 



Image artifacts & estimated kernels 

Blur kernels 

Image patterns 

Note: blur kernels were inferred from large image patches, 
           NOT the image patterns shown 


