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Project

5-10 minutes presentation
6 pages report



Regularization

* Many problems
have multiple
solutions.

e Or there 1s
insufficient data

We need to constraint
the solutions



Bayesian models of object perception
Daniel Kersten™ and Alan Yuille'

object
descriptions, S

g Possible
= é interpretations

image, |

P(s)=p4
p(s)=p, is biggest
VA p(S):p2 74 : '
@ p(s)=pz3 —»
image data, | X
In put likelihood, p(lIS), narrows selection

consistent with projection

Likelihood
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(@ 3D wire objects (b) s S
O Bicycle View
2D line drawing Image measurements
I
Basic Bayes Discounting
J
~
() or or not
S
Relative depth Target object(s) Occ|u3|on object(s)
Shadow Stereo Image measurements Auxnllary image measurements
displacement disparity
4 I
Cue integration
J
Perceptual "Explaining Away"
-

O Need to estimate
accurately

. Measurement

Q

estimate accurately

Don't need to () Auxiliary measurement

Bayesian models of object perception Kersten and Yuille
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Perception of three-dimensional
shape influences colour

perception through mutual
illumination

M. G. Bloj*, D. Kerstent & A. C. Hurlbert*

* Physiological Sciences, Medical School, Newcastle upon Tyne, NE2 4HH, UK

T Psychology Department, University of Minnesota, 75 East River Road,
Minneapolis, Minnesota 55455, USA
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A Trapezoidal Chromatic Mach Card

3D shape perception influences T T~
colour perception via mutual L]
illumination. Bloj, M. Kersten, D. &
Hurlbert, A.C. Nature, 1999.

Stimulus preparation. 1. Cut out one of the
two figures on the right with a scissors. 2.
Fold it in half along the mid-line (A) so that
the red panel faces the white panel. 3. Fold
again (lines B and B') so that the two black
panels face outward.

P

Demonstration. Set the folded card on a flat
surface as shown below. Orient the card so
that the red panel reflects a little pinkish
light onto the white panel. You may have to
pinch crease A to make the angle between
the red and white sides small enough. View
the card steadily with one eye until the
card's geometry appears to change and
crease A goes from appearing concave to
convex. At this point, you may also see that
the white panel appears to be made of
pinkish material.

3t

\

http://vision.psych.umn.edu/users/kersten/kersten-lab/Mutual_illumination/BlojKerstenHurlbertDemo99.pdf
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http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/MatteOrShiny.html



Example: motion estimation

Frame 1 Frame 2



Example: motion estimation

Aperture problem

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html



Example: motion estimation

Aperture problem

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html



scene

Super-resolution

* Image: low resolution image

* Scene: high resolution image

ultimate goal...

Observation model

/?\QUU

0




Pixel-based images are
not resolution
independent

Polygon-based
graphics images
are resolution

independent

Pixel replication

Cubic spline,
sharpened

Training-based super
-resolution

13



3 approaches to perceptual

sharpening
(1) Sharpening; boost existing high N

fl'equenCIGS . spatial frequency

amplitude

(2) Use multiple frames to obtain
higher sampling rate in a still frame. E

(3) Estimate high frequencies not
present 1n 1image, although implicitly
defined.

Here, we focus on (3), which we’ll \ \

spatial frequency

call “super-resolution”. .

amplitu




Super-resolution: other approaches

e Schultz and Stevenson, 1994
* Pentland and Horowitz, 1993

 fractal image compression (Polvere, 1998;
Iterated Systems)

* astronomical 1image processing (eg. Gull and
Daniell, 1978; “pixons” http://
casswww.ucsd.edu/puetter.html)
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Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories: “giraffes” and “urban skyline”.




Low-resolution

Do a first interpolation

17



- -

Zoomed low-resolution Full frequency original

Low-resolution

18



Representation

Zoomed low-freq.

Full freq. original

19



Representation

Zoomed low-freq.

Full freq. original

Low-band input \ True high freqgs
(contrast L : . :
- (to minimize the complexity of the relationships we have to learn,
normalized, PCA . ) .
fitted) we remove the lowest frequencies from the input image,

and normalize the local contrast level).



Gather ~100,000 patches

i ® @ W F B B B N highfregs.

"'.I.E.. .....lowfreqs "

Training data samples (magnified)

21



Nearest neighbor estimate

Input low fregs.

Estimated high

freqs.
Look for'the

nearest neighbor

W @ W ®E B B B N highfregs.

'". “.. R EE N e

Training data samples (magnified) 2



Nearest ne

Input low fregs.

ghbor estimate

Estimated high
freqs.

m @ W E B B B N highfregs.

'". [... AR E N e

Training data samples (magnified)
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But why to use only one match?
There are many candidates

Input patch

#1: Range [-2.67, 2.88]
Dims [7, 7]

-
CloseSt Image #3: Range [-1.68,2.28]  #10: Range [-1.99, 266] #11: Range [-1.92, 1.95] #12: Range [-2.07,2.41] #13: Range [-2.26, 3.22]  #14: Range [-1 4 3.12] #15: Hange [-239 295] #16: nange [-2.08,1.31]

Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, Dims [7, 7] Dims [7, 7]

patches from database E E F E = 5

#7: Range [-2.03,1.82] #18: Range [-1.87,3.14] #19: Range [-2.15,1.9]  #20: Hange [-2.46,2.26] #21: Range [-2.26,2.25] #22: Range [-2.13,1.96] #23: Range [-2.17,2.13] #24: Range [-1.6, 2.36]
Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7,

Corresponding .‘ - : 5 = E

- L]
h Ig h r S Iutl n #25: Hangl[ |EI7 238] #26: hnge[ SEI 48] #27: ﬁange[ 333 343] #28: ﬁang![ 47 439] #29: Rangl[ 45 458] #30: Range[ 415 S5.74] #31: Hange[ 348 5.89] #32: Hangl[ 455 451]

patches from database = = - = N A
e Pk

#33; ﬂange[ 329 438] #34: nange[ 403 628 #35: Range[ 72 645 #36: Hange[ 537 585] #37: Range[ 253 306] 43 Fange [ 523 332) 430: Fange [ 324 2411 M0: Fange 292, 256]
Dims 5, 5] . 5] ims [5, 5]

24



Image patch

NN SN Underlying candidate

‘ ‘ scene patches. Each

‘ ‘ renders to the image
h

NN NN et

We can add an additional constraint

25



Scene-scene compatibility function,
' .  meonm
W(x, xj) —l
Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

o _|d._d‘|2 20.2
\I/(ZC?;,ZUJ‘) = exp i—d; 1°/

Uniqueness constraint,

k not smoothness.
d



Image-scene compatibility Ey

function, P(x, y,) |
e

Assume Gaussian noise takes you from
observed 1mage patch to synthetic sample:

B(i, i) = exp™ U@ /27

27



Markov network

patches




Bel ief P ro pag atio n After a few iterations of belief propagation,

the algorithm selects spatially consistent
high resolution interpretations for each
low-resolution patch of the input image.

A “ Vs

- S

Iter. 0




Zooming 2 octaves

We apply the super-resolution
algorithm recursively,
zooming up 2 powers of 2, or
a factor of 4 in each
dimension.

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204



Now we examine the effect of the
prior assumptions made about
images on the high resolution
reconstruction.

First, cubic spline interpolation.

Original
50x58

(cubic spline implies
thin plate prior)

True
200x232

31




Original
50x58

Cubic spline

(cubic spline implies
thin plate prior)

True
200x232

32



Next, train the Markov network
algorithm on a world of random
noise images.

Original
50x58

True

33




The algorithm learns that, in such
a world, we add random noise
when zoom to a higher resolution.

Original
50x58

Markov

T
network rue

34



Next, train on a world of vertically
oriented rectangles.

Original
50x58

Training images

True

35



The Markov network algorithm
hallucinates those vertical
rectangles that it was trained on.

Original
50x58 |
Training images
Markov
True
network

36




Now train on a generic collection

Original
50x58

1-@,&
ning images

True

37



The algorithm makes a reasonable
guess at the high resolution
image, based on its training

images.

Original
50x58

Markov
network

38



Generic training 1images
MW Next, train on a
generic set of
training images.
Using the same
camera as for the
test image, but a
random collection
of photographs.

39



Original .
Cubic
70x70 Spline
Markov
t
net, True
training: gy ggmz
generic

40




3 test images, 640x480, to be
zoomed up by 4 in each dimension.

8 judges, making 2-alternative,
forced-choice comparisons.




Algorithms compared

* Bicubic Interpolation

* Mitra's Directional Filter
* Fuzzy Logic Filter

* Vector Quantization

* VISTA

42



Altamira




Bicubic spline Altamira VISTA

44









Super-resolution Zoom

D7

Source image patches

e

Bandpass filtered and
contrast nomalized

i

Trug high rascluticon pooals

=
-

High resclution pizels chosen
by super-resolution

Bandpass hiltersed and contrast
normahized best match palches

fram traming data

Best makch patches from
training data

il



Training 1mage

ANLI I LU ENigsU - o
anelvacatedarul ingbythefe
Jztem, andsent i tdowntoanew
Finedastandardforweighing
zraproduct-bundl ingdecisi
zot tzaysthatthenewteature:
andperzonal identification:
azoft ' sview, butuszersandth
adedw i thoonsumer innovatiol
~ePCindustryislookingforw.
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Processed image




Graphical Models

Pairwise Markov Random Fields

@ @ @ })) — setof N

(7,7) connecting

T3 Ts g_>nodes 1,7 €V
Nodes : € VV are associated with Z;
Potential functions may depend on Y




Directed graphical models

An arc from A to B can be informally interpreted as indicating that A
causes" B.1 Hence directed cycles are disallowedA directed, acyclic
graph.

Nodes are random variables. Can be scalars or vectors, continuous or
discrete.

The direction of the edge tells the parent-child-relation:

parentQ—’ Q child

With every node 1 is associated a conditional pdf defined by all the
parent nodesJT ; of node i. That conditional probability is P, x.

i

The joint distribution depicted by the graph 1s the product of all those
conditional probabilities:

n
le...xn = | |Pxi|xﬂ.
1

i=1



Undirected graphical models

A set of nodes joined by undirected edges.

The graph makes conditional independencies explicit: If two
nodes are not linked, and we condition on every other node in the
graph, then those two nodes are conditionally independent.

Conditionally independent, because
are not connected by a line in the
undirected graphlcal model

AA EA
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Undirected graphical models: cliques

* Clique: a fully connected set of nodes

not a clique
clique

A maximal clique is a clique that can’t include more nodes of the
graph w/o losing the clique property.

Non-maximal clique
Maximal clique

53



Undirected graphical models:
probability factorization

 Hammersley-Clifford theorem addresses the pdf factorization
implied by a graph: A distribution has the Markov structure
implied by an undirected graph iff it can be represented in the

factored form 1
P.=— | ‘IIJX
Z c

cEE

Normalizing constant
set of maximal cliques

Potential functions
of states of
variables in
maximal clique

54



Graphical Models

Pairwise Markov Random Fields

@ @ @ })) — setof N

(7,7) connecting

T3 Ts g_>nodes 1,7 €V
Nodes : € VV are associated with Z;
p(z|y)ox || ij(ziz) [ vilzi,v)
(i,5)€€ i€V

— — — |

) ~
OmO=0=0=0 '

0—0—0—0 <I>~<I>H%:H%:H:% R @
O—O—O0—0dbdbdbdbdbdbdbds



Probabilistic graphical models

Vision is a problem involving the interactions of many variables: things

can seem hopelessly complex. Everything is made tractable, or at least,
simpler, if we modularize the problem. That’s what probabilistic graphical
models do, and let’s examine that.

Readings: Jordan and Weiss intro article—fantastic!

Kevin Murphy web page—comprehensive and with
pointers to many advanced topics

56



A toy example

Suppose we have a system of 5 interacting variables, perhaps some
are observed and some are not. There’'s some probabilistic
relationship between the 5 variables, described by their joint
probability,

P(x1, x2, x3, x4, x5).

If we want to find out what the likely state of variable x1 is (say, the
position of the hand of some person we are observing), what can we
do?

Two reasonable choices are: (a) find the value of x1 (and of all the
other variables) that gives the maximum of P(x1, x2, x3, x4, x5);
that’'s the MAP solution.

Or (b) marginalize over all the other variables and then take the
mean or the maximum of the other variables. Marginalizing, then
taking the mean, is equivalent to finding the MMSE solution.
Marginalizing, then taking the mayx, is called the max marginal

solution and sometimes a useful thing to do. ¥



To find the marginal probability at x1, we have to take this sum:
EP(XI,XZ,X3,X4,X5)

X2 ,X3,X4,X5

If the system really is high dimensional, that will quickly become
intractable. But if there is some modularity in P(x,,x,,x;,x,,Xx;)
then things become tractable again.

Suppose the variables form a Markov chain: x1 causes x2
which causes x3, etc. We might draw out this relationship as

follows:

58



P(a,b) = P(bla) P(a)
By the chain rule, for any probability distribution, we have:

P(x,, %y, %5, X,,X5) = P(x)P(x,,%x5,X,, X5 | X,)

= P(x)P(x, | x,)P(x5,x,, X5 | X;,X,)
=P(x1)P(xz |x1)P(x3 |x1:x2)P(x4:x5 |xl,x2,x3)

= P(x)P(x, | x,)P(xy | xp,0,)P(xy | X, %5, 5) P (x5 | X, %5, %5, )

But if we exploit the assumed modularity of the probability
distribution over the 5 variables (in this case, the assumed
Markov chain structure), then that expression simplifies:

Now our marginalization summations distribute through those
terms:

Ep(xloxzvxpxwxs) = P(XI)EP(XZ |x1)EP(x3 |x2)EP(x4 |x3)EP(x55LX4)

Xy ,X3,X4,X5

= P(x,)P(x, [ x))P(x5 | x,)P(x, | x;)P(x5 | x,)

X5



Belief propagation

Performing the marginalization by doing the partial sums is
called “belief propagation”.

EP(xl,xz,x3,x4,x5)= P(xl)EP(xz |x1)EP(x3 ‘xz)EP(M |x3)EP(x5 | x,)

X25X35%4 X5

In this example, it has saved us a lot of computation. Suppose
each variable has 10 discrete states. Then, not knowing the
special structure of P, we would have to perform 10000 additions
(1074) to marginalize over the four variables.

But doing the partial sums on the right hand side, we only need
40 additions (10*4) to perform the same marginalization!

60



Another modular probabilistic structure, more common in
vision problems, is an undirected graph:

The joint probability for this graph is given by:
Pxy, %y, X5, Xy, X5) = Pxp, X, )P(x,, X3 )P (x5, %, )Py, X5)

Where ®(x,,x,) is called a “compatibility function”. We
can define compatibility functions we result in the same joint
probability as for the directed graph described in the

previous slides; for that example, we could use either form. 61



Markov Random Fields

* Allows rich probabilistic models for
1mages.

* But built in a local, modular way. Learn
local relationships, get global effects out.

bl

62



MRF nodes as pixels

d
Winkler, 1995, p. 32

e

Fig. 2.3. Smoothing
with the wrong prior. (a)
Original, (b) degraded
image, (c) MAP esti-
mate 3 = 1, (d) MAP
estimate 8 = 0.3, (e)
median filter

63



MRF nodes as patches

image patches




Network joint probability

P(x,) =—;Hq;(x, %[0 1)

scene Scene-scene Image-scene
image compatibility compatibility
function function
neighboring local

scene nodes observations

65



In order to use MRFs:

* (G1ven observations y, and the parameters of
the MRF, how infer the hidden variables, x?

* How learn the parameters of the MRF?

66



Belief Propagation

BELIEFS: Approximate posterior marginal distributions

Y
I/‘ p(x;i | y) < ¥z, y) ] mui(xs)
O—— —O kel (4)
N

Ly
\ (i) —— neighborhood of node i

MESSAGES: Approximate sufficient statistics
m; ;i () OC/x.le,i(wj,iUi)%(ﬂ%y) I mgi(z) dey

kel (i)\Jj

Y
() /L/‘ l. Belief Update (Message Product)
O—== O
zj

—__II. Message Propagation
N (Convolution)

Lg



Derivation of belief propagation

» ®» ®

D(x,,y,) D(x,,y,) D(x3,¥5)

W(x,,x,) W(x,,x;)

minimum mean square error (MMSE)

X, sy = MeEan sum sum P(x,, X,, X5, ,,V,, V3)

X X9 X3

68



The posterior factorizes

X, sy = MEan sum sum P(x,, X,, X5, Y, V5, V3)

X %) X3

.= mean sum sum P(x,, y,)

D(xy,y,) W(x;,x,)
(I)(x39y3) qj(xzax3)

W(x,,x,) W(x,,x;)
69



Propagation rules

X,y sy = MEaN sum sum P(x,, X,, X5, Y, V5, V3)

X X9 X3

X, ysp = Mean sum sum P(x,, y,)

D(xy,y,) W(x;,x,)

(I)(x39y3) qj(xzax3)
X, usp = Mmean @(x,, y,)

) ®»® ® ®

Sli.m ¢(XZ ’ y2 ) ql(xl ) X2 ) D(x,,,) D(x,,y,) D(x5,y5)
2

sum P(x;,y,) Y(x,,x;) @m)@ m<x2,x3>®
X3
70



Propagation rules

Xy mse = mean ©(x,, y,)

X1

SUm D(x,,»,) P(x;,x,)

SUTI D(x;, ;) W(x,,x3)

Mlz(x1)=sgm Y(x,,x,) P(x,,y,) Mg(xz)

®»® ® ®

D(x,,y,) D(x,,,) D(x3,¥3)

W(x,,x,) W(x,,x;)
71



Propagation rules

Xy mse = mean ©(x,, y,)

X1

SUm D(x,,»,) P(x;,x,)

SUTI D(x;, ;) W(x,,x3)

Mlz(x1)=sgm Y(x,,x,) P(x,,y,) Mg(xz)

®»® ® ®

D(x,,y,) D(x,,,) D(x3,¥3)

W(x,,x,) W(x,,x;)
72



Justifications for BP

~

AN

« Gives exact marginals for trees /< .

VANARNASIVAN

(JOV\J\J\/O\/OQOC(/CO\)

* For general graphs, has excellent [ T 11
empirical performance in many applications L L L 4

— |

* Recent theory provides some guarantees:

« Statisical physics:
(Yedidia, Freeman, & Weiss)

« BP as reparameterization:
(Wainwright, Jaakkola, & Willsky)

* Many others...



Belief propagation: the nosey
neighbor rule

“Given everything that I know, here’s what I
think you should think™

(G1ven the probabilities of my being in
different states, and how my states relate to
your states, here’s what I think the
probabilities of your states should be)

74



Optimal solution in a chain or tree:
Beliet Propagation

* “Do the right thing” Bayesian algorithm.

e For Gaussian random variables over time:
Kalman filter.

 For hidden Markov models: forward/
backward algorithm (and MAP variant 1s
Viterbi).

75



No factorization with loops!

X MMSE = mfan D(x,, )

1

SUm D(x,,»,) P(x;,x,)

sgm D(x;, ;) Y(x,,x;) W(x,x)

@®®
O ©

76



References on BP and GBP

J. Pearl, 1985

— classic

Y. Weiss, NIPS 1998

— Inspires application of BP to vision

W. Freeman et al learning low-level vision, IJCV 1999

— Applications in super-resolution, motion, shading/paint
discrimination

H. Shum et al, ECCV 2002

— Application to stereo

M. Wainwright, T. Jaakkola, A. Willsky

— Reparameterization version

J. Yedidia, AAAT 2000
— The clearest place to read about BP and GBP.
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Vision applications of MRF’s

Stereo
Motion estimation
Labelling shading and reflectance

Many others...

78



Vision applications of MRF’s

e Motion estimation

79



Interpreting 1images by propagating
Bayesian beliefs

Yair Weiss
Dept. of Brain and Cognitive Sciences
Massachusetts Institute of Technology
E10-120. Cambridge. MA 02139, USA

[n this paper we show that an architecture in which Bayestan Be-
licfs about lmage properties are propagated between neighboring
units yields convergence times which are several orders of magni-
tude faster than traditional methods and avoids local minima. In
particular our architecture is non-iterative in the sense of Marr [5]:

at every time step. the local estimates at a given location are op-
timal given the information which has already been propagated to

that location. We illustrate the algorithin’s performance on real
lmages and compare it to several existing methods.
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J(Y) = wilm
;‘.

Vi) A (i vin)?

100
.
me ——
'
'
B oef
'
'
'
'I
“row -- B&P
“ wee MFA
‘A — Relax-iael
wb 0
"y - -~ Rolax-Gradient
-
O
'
OfF se'vermcccc e e

o £ W0 10 W0 SO N0 WO 400 E0 0
berations

a. b.

c. d.

Figure 4: a. Local estimate of DOF along the contour. b. Performance of Hop
field.gradient descent. relaxation labeling and BBP as a function of time. BBP is the
only method that converges to the global minimum. c¢. DOF estimate of Hopfield net
after convergence. d. DOF estimate of BBP after convergence.



Vision applications of MRF’s

* Segmentation

82



Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
0 = Parameters

p(h|1,0)

Posterior

1. Generative approach models joint
-> Markov random field (MRF)

2. Discriminative approach models posterior directly
- Conditional random field (CRF)



Generative Markov Random Field
p(h.110)=p(I|h.6)p(h|6) |
1

= % H¢z(1 | hiagi)E[wg(hiahj | HU)

~

N
MRF Prior

h (labels) Pair\év;‘se:i)(;e)rltial (MRF)
&{foreground wij A L
,background}

- Prior has no

Image Plane dependency on I

I (pixels)




Conditional Random Field

Discriminative approach Lafferty, McCallum and Pereira 2001

PO = Hmh,,fwﬂwl](hl,h@ey)

N _

Unary Pairwise

* Dependency on | allows introduction
of pairwise terms that make use of
image.

* For example, neighboring labels
should be similar only ifpixel colors
are

similar = Contrast term

e.g Kumar and Hebert _
2003 I (pixels)

Image Plane




OB J CUT Kumar, Torr & Zisserman 2005
Unary Pairwise
N AN
4 A a I
p(h1.1.0)= [ [9/U 1h.6)9 (1D ] [wiCh b 16) v Ik.h.6,)

O — l]_'

Q (shape parameter)

Distance Label
from Q smoothness

* Q is a shape prior on the labels from a
Layered Pictorial Structure (LPS) model

« Segmentation by:

- Match LPS model to image (get
number of samples, each with a
different pose

-Marginalize over the samples
using a single graph cut

[Boykov & Jolly, 2001] I (pixels)

Figure from
Kumar et al.,

Image Plane CVPR 2005




OBJCUT:

Shape prior - € - Layered Pictorial Structures (LPS)

 (Generative model

« Composition of parts + spatial layout

Layer 2 <

Layer 1 <

Spatial Layout
(Pairwise Configuration)

.

Parts in Layer 2 can occlude parts in Layer 1

Kumar, et al. 2004, 2005



OBJCUT: Results
Using LPS Model for Cow

In the absence of a clear boundary between object and background

Image Segmentation




