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Project 

5-10 minutes presentation 
6 pages report 



Regularization 

•  Many problems
 have multiple
 solutions. 

•  Or there is
 insufficient data 

We need to constraint
 the solutions 



Input 

Possible  
interpretations 

Likelihood 
Prior 
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http://vision.psych.umn.edu/users/kersten/kersten-lab/Mutual_illumination/BlojKerstenHurlbertDemo99.pdf 
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http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/MatteOrShiny.html 



Example: motion estimation 



Example: motion estimation 

Aperture problem 

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html  

T=1 T=2 T=3 



Example: motion estimation 

Aperture problem 

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html  

T=1 T=2 T=3 
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Super-resolution 
•  Image:  low resolution image 
•  Scene:  high resolution image 

im
ag

e 
sc

en
e 

ultimate goal... 

Observation model 
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Polygon-based
 graphics images
 are resolution
 independent 

Pixel-based images are
 not resolution

 independent 

Pixel replication 

Cubic spline Cubic spline,
 sharpened 

Training-based super
-resolution 
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3 approaches to perceptual 
sharpening 

(1)  Sharpening;  boost existing high 
frequencies. 

(2)  Use multiple frames to obtain 
higher sampling rate in a still frame. 

(3)  Estimate high frequencies not 
present in image, although implicitly 
defined. 

Here, we focus on (3), which we’ll
 call “super-resolution”. 

spatial frequency 
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Super-resolution: other approaches 

•   Schultz and Stevenson, 1994 
•   Pentland and Horowitz, 1993 
•  fractal image compression (Polvere, 1998; 

Iterated Systems) 
•  astronomical image processing (eg. Gull and 

Daniell, 1978;  “pixons” http://
casswww.ucsd.edu/puetter.html) 
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Training images, ~100,000 image/scene patch pairs 
Images from two Corel database categories:  “giraffes” and “urban skyline”. 
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Do a first interpolation 

Zoomed low-resolution 

Low-resolution 
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Zoomed low-resolution 

Low-resolution 

Full frequency original 
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Full freq. original 
Representation Zoomed low-freq. 
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True high freqs Low-band input 
(contrast

 normalized, PCA
 fitted) 

Full freq. original 
Representation Zoomed low-freq. 

(to minimize the complexity of the relationships we have to learn, 
we remove the lowest frequencies from the input image,  

and normalize the local contrast level). 

a b 

b-a 



21 

Training data samples (magnified) 

... ... 

Gather ~100,000 patches 

low freqs. 

high freqs. 
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True high freqs. Input low freqs. 

Training data samples (magnified) 

... ... 

Nearest neighbor estimate 

low freqs. 

high freqs. 

Estimated high
 freqs. 

Look for the 
nearest neighbor 
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Input low freqs. 

Training data samples (magnified) 

... ... 

Nearest neighbor estimate 

low freqs. 

high freqs. 

Estimated high
 freqs. 
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But why to use only one match? 
There are many candidates 

Input patch 

Closest image 
patches from database 

Corresponding 
high-resolution 

patches from database 
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We can add an additional constraint 
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Scene-scene compatibility function, 
Ψ(xi, xj)  

Assume overlapped regions, d, of hi-res. 
patches differ by Gaussian observation noise: 

d 

Uniqueness constraint, 
not smoothness. 
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Image-scene compatibility 
function, Φ(xi, yi) 

 Assume Gaussian noise takes you from 
observed image patch to synthetic sample: 

y 

x 
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 Markov network 

image patches 

Φ(xi, yi) 

Ψ(xi, xj) 
scene 

patches 
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Iter. 3 

Iter. 1 

Belief Propagation 
Input 

Iter. 0 

After a few iterations of belief propagation,
 the algorithm selects spatially consistent

 high resolution interpretations for each
 low-resolution patch of the input image. 



Zooming 2 octaves 

85 x 51 input 

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204 

We apply the super-resolution
 algorithm recursively,

 zooming up 2 powers of 2, or
 a factor of 4 in each

 dimension. 
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True 
200x232 

Original 
50x58 

(cubic spline implies
 thin plate prior) 

Now we examine the effect of the
 prior assumptions made about
 images on the high resolution

 reconstruction. 
First, cubic spline interpolation. 
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Cubic spline 
True 

200x232 

Original 
50x58 

(cubic spline implies
 thin plate prior) 
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True 

Original 
50x58 

Training images 

Next, train the Markov network
 algorithm on a world of random

 noise images. 
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Markov 
network True 

Original 
50x58 

The algorithm learns that, in such
 a world, we add random noise

 when zoom to a higher resolution. 

Training images 
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True 

Original 
50x58 

Training images 

Next, train on a world of vertically
 oriented rectangles. 
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Markov 
network True 

Original 
50x58 

The Markov network algorithm
 hallucinates those vertical

 rectangles that it was trained on. 

Training images 
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True 

Original 
50x58 

Training images 

Now train on a generic collection
 of images. 
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Markov 
network True 

Original 
50x58 

The algorithm makes a reasonable
 guess at the high resolution
 image, based on its training

 images. 

Training images 
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Generic training images 
Next, train on a
 generic set of

 training images. 
 Using the same

 camera as for the
 test image, but a

 random collection
 of photographs. 
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Cubic
 Spline 

Original 
70x70 

Markov 
net,

training: 
generic 

True 
280x2
80 
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Kodak Imaging Science Technology Lab test. 

3 test images, 640x480, to be 
zoomed up by 4 in each dimension. 

8 judges, making 2-alternative,
 forced-choice comparisons. 
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Algorithms compared 

•  Bicubic Interpolation 
•  Mitra's Directional Filter 
•  Fuzzy Logic Filter 
•  Vector Quantization 
•  VISTA 
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Bicubic spline Altamira VISTA 
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Bicubic spline Altamira VISTA 
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Training images 
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Training image 
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Processed image 



set of      nodes  

edges             connecting  
nodes   

Graphical Models 
Pairwise Markov Random Fields 

Nodes             are associated with hidden variables 

Potential functions may depend on observations 



Directed graphical models 
•  An arc from A to B can be informally interpreted as indicating that A

 causes" B.1 Hence directed cycles are disallowedA directed, acyclic
 graph. 

•  Nodes are random variables.  Can be scalars or vectors, continuous or
 discrete. 

•  The direction of the edge tells the parent-child-relation: 

•  With every node i is associated a conditional pdf defined by all the
 parent nodes      of node i.  That conditional probability is 

•  The joint distribution depicted by the graph is the product of all those
 conditional probabilities: 

parent child 

€ 

π i

€ 

Pxi |xπ i

€ 

Px1 ...xn = Pxi |xπ i
i=1

n

∏



Undirected graphical models 
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•  A set of nodes joined by undirected edges. 
•  The graph makes conditional independencies explicit:  If two

 nodes are not linked, and we condition on every other node in the
 graph, then those two nodes are conditionally independent. 

Conditionally independent, because 
are not connected by a line in the 
undirected graphical model 



Undirected graphical models:  cliques 
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•  Clique:  a fully connected set of nodes 

•  A maximal clique is a clique that can’t include more nodes of the
 graph w/o losing the clique property. 

Maximal clique 

not a clique 

Non-maximal clique 

clique 



Undirected graphical models: 
 probability factorization 
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•  Hammersley-Clifford theorem addresses the pdf factorization
 implied by a graph:  A distribution has the Markov structure
 implied by an undirected graph iff it can be represented in the
 factored form 

€ 

Px =
1
Z

Ψxc
c∈ξ
∏

set of maximal cliques 

Potential functions 
of states of 
variables in 
maximal clique 

Normalizing constant 



set of      nodes  

edges             connecting  
nodes   

Graphical Models 
Pairwise Markov Random Fields 

Nodes             are associated with hidden variables 

Potential functions may depend on observations 
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Making probability distributions modular, and 
therefore tractable: 

Probabilistic graphical models 

Vision is a problem involving the interactions of many variables:  things 
can seem hopelessly complex.  Everything is made tractable, or at least, 
simpler, if we modularize the problem.  That’s what probabilistic graphical 
models do, and let’s examine that. 

Readings:  Jordan and Weiss intro article—fantastic! 
                  Kevin Murphy web page—comprehensive and with      

   pointers to many advanced topics 
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A toy example 
Suppose we have a system of 5 interacting variables, perhaps some 
are observed and some are not.  There’s some probabilistic 
relationship between the 5 variables, described by their joint 
probability, 
P(x1, x2, x3, x4, x5). 

If we want to find out what the likely state of variable x1 is (say, the 
position of the hand of some person we are observing), what can we 
do? 

Two reasonable choices are:  (a) find the value of x1  (and of all the 
other variables) that gives the maximum of P(x1, x2, x3, x4, x5);  
that’s the MAP solution. 
Or (b) marginalize over all the other variables and then take the 
mean or the maximum of the other variables.  Marginalizing, then 
taking the mean, is equivalent to finding the MMSE solution.  
Marginalizing, then taking the max, is called the max marginal 
solution and sometimes a useful thing to do. 
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To find the marginal probability at x1, we have to take this sum: 

If the system really is high dimensional, that will quickly become 
intractable.  But if there is some modularity in 
then things become tractable again. 

Suppose the variables form a Markov chain:  x1 causes x2 
which causes x3, etc.   We might draw out this relationship as 
follows: 



59 

By the chain rule, for any probability distribution, we have: 

Now our marginalization summations distribute through those 
terms: 

P(a,b) = P(b|a) P(a) 

But if we exploit the assumed modularity of the probability 
distribution over the 5 variables (in this case, the assumed 
Markov chain structure), then that expression simplifies: 
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Belief propagation 
Performing the marginalization by doing the partial sums is 
called “belief propagation”. 

In this example, it has saved us a lot of computation.  Suppose 
each variable has 10 discrete states.  Then, not knowing the 
special structure of P, we would have to perform 10000 additions 
(10^4) to marginalize over the four variables. 
But doing the partial sums on the right hand side, we only need 
40 additions (10*4) to perform the same marginalization! 
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Another modular probabilistic structure, more common in 
vision problems, is an undirected graph: 

The joint probability for this graph is given by: 

Where                          is called a “compatibility function”.  We 
can define compatibility functions we result in the same joint 
probability as for the directed graph described in the 
previous slides;  for that example, we could use either form. 
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Markov Random Fields 

•  Allows rich probabilistic models for 
images. 

•  But built in a local, modular way.  Learn 
local relationships, get global effects out. 
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MRF nodes as pixels 

Winkler, 1995, p. 32 
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MRF nodes as patches 

image patches 

Φ(xi, yi) 

Ψ(xi, xj) 

image 

scene 

scene 
patches 
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Network joint probability 

scene 

image 
Scene-scene 
compatibility 

function 

neighboring 
scene nodes 

local  
observations 

Image-scene 
compatibility 

function 

∏ ∏ Φ Ψ = 

i 
i i 

j i 
j i y x x x 

Z 
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In order to use MRFs: 

•  Given observations y, and the parameters of 
the MRF, how infer the hidden variables, x? 

•  How learn the parameters of the MRF? 



Belief Propagation 
BELIEFS:  Approximate posterior marginal distributions 

neighborhood of node i 

MESSAGES:  Approximate sufficient statistics 

 I. Belief Update (Message Product) 

II. Message Propagation 
(Convolution) 
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y1 

Derivation of belief propagation 

x1 

y2 

x2 

y3 

x3 

minimum mean square error (MMSE) 
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The posterior factorizes 

y1 

x1 

y2 

x2 

y3 

x3 
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Propagation rules 

y1 

x1 

y2 

x2 

y3 

x3 
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Propagation rules 

y1 

x1 

y2 

x2 

y3 

x3 
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Propagation rules 

y1 

x1 

y2 

x2 

y3 

x3 



•  Gives exact marginals for trees 

•  For general graphs, loopy BP has excellent  
empirical performance in many applications 

•  Recent theory provides some guarantees: 

•  Statisical physics:  variational method 
(Yedidia, Freeman, & Weiss) 

•  BP as reparameterization:  error bounds 
(Wainwright, Jaakkola, & Willsky) 

•  Many others… 

Justifications for BP 

Optimal estimates 
Confidence measures 
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Belief propagation:  the nosey 
neighbor rule 

“Given everything that I know, here’s what I 
think you should think” 

(Given the probabilities of my being in 
different states, and how my states relate to 
your states, here’s what I think the 
probabilities of your states should be) 
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Optimal solution in a chain or tree: 
Belief Propagation 

•  “Do the right thing” Bayesian algorithm. 
•  For Gaussian random variables over time:  

Kalman filter. 
•  For hidden Markov models: forward/

backward algorithm (and MAP variant is 
Viterbi). 
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No factorization with loops! 

y1 

x1 

y2 

x2 
y3 

x3 

3 1 ) , ( x x Ψ 
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References on BP and GBP 
•  J. Pearl, 1985 

–  classic 
•  Y. Weiss, NIPS 1998 

–  Inspires application of BP to vision 
•  W. Freeman et al learning low-level vision, IJCV 1999 

–  Applications in super-resolution, motion, shading/paint 
discrimination 

•  H. Shum et al, ECCV 2002 
–  Application to stereo 

•  M. Wainwright, T. Jaakkola, A. Willsky 
–  Reparameterization version 

•  J. Yedidia, AAAI 2000 
–  The clearest place to read about BP and GBP. 
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Vision applications of MRF’s  

•  Stereo 
•  Motion estimation 
•  Labelling shading and reflectance 
•  Many others… 
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Vision applications of MRF’s  

•  Stereo 
•  Motion estimation 
•  Labelling shading and reflectance 
•  Segmentation 
•  Many more… 
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Vision applications of MRF’s  

•  Stereo 
•  Motion estimation 
•  Labelling shading and reflectance 
•  Segmentation 
•  Many others… 



Random Fields for segmentation 

I = Image pixels (observed) 
h = foreground/background labels (hidden) – one label per pixel 
θ = Parameters 

Prior Likelihood Posterior Joint 

1. Generative approach models joint  
 Markov random field (MRF) 

2. Discriminative approach models posterior directly 
   Conditional random field (CRF) 



I (pixels) 
Image Plane 

i 

j 

h (labels) 
∈{foreground
,background} 

hi 

hj Unary Potential 
  φi(I|hi,θi) 

Pairwise Potential (MRF) 
  ψij(hi, hj|θij) 

MRF Prior Likelihood 

 Generative Markov Random Field  

Prior has no 
dependency on I 



Conditional Random Field 
Lafferty, McCallum and Pereira 2001 

Pairwise Unary 

•  Dependency on I allows introduction 
of pairwise terms that make use of 
image. 

•  For example, neighboring labels  
should be similar only if pixel colors 
are  
similar  Contrast term 

Discriminative approach 

I (pixels) 
Image Plane 

i 

j 

hi 

hj 

e.g Kumar and Hebert 
2003 



I (pixels) 
Image Plane 

i 

j 

hi 

hj 

Figure from 
Kumar et al., 

CVPR 2005 

OBJCUT 

Ω (shape parameter) 

Kumar, Torr & Zisserman 2005 

Pairwise Unary 

•  Ω is a shape prior on the labels from a  
Layered Pictorial Structure (LPS) model 

•  Segmentation by: 

- Match LPS model to image (get 
number of samples, each with a 
different pose 

- Marginalize over the samples 
 using a single graph cut  
[Boykov & Jolly, 2001] 

Label 
smoothness 

Contrast Distance 
from Ω  

Color 
Likelihood   



OBJCUT: 
Shape prior - Ω - Layered Pictorial Structures (LPS) 

•  Generative model 
•  Composition of parts + spatial layout 

Layer 2 

Layer 1 

Parts in Layer 2 can occlude parts in Layer 1 

Spatial Layout 
(Pairwise Configuration) 

Kumar, et al. 2004, 2005 



In the absence of a clear boundary between object and background 

Segmentation Image 

OBJCUT: Results 
Using LPS Model for Cow 


