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6.869 Advances in Computer Vision

Spring 2010

Overview

Advanced topics in computer vision with a focus on the use of machine learning techniques and applications in graphics and human-computer interface. Topics include
image representations, texture models, structure-from-motion algorithms, Bayesian techniques, object and scene recognition, tracking, shape modeling, and image
databases. Applications may include face recognition, multimodal interaction, interactive systems, cinematic special effects. and photorealistic rendering. Covers topics
complementary to 6.801/6.866: these subjects may be taken in sequence.

General information

Lecture: Mondays/Wednesdays 1:00-2:30pm
Room: 2-139 (where is this?)

Instructor: Antonio Torralba
E -mail: trrlb@mt.d (fill the missing vowels)
Office: D432
T.A.: Joseph Lim
Material:
« Textbook: new book by Rick Szeliski (not published yet. but a draft is available online)
« Textbook: Computer vision: a modern approach. by Forsyth and Ponce. Prentice Hall, 2002.
« The class will make use of MATLAB.
Grading:
« problem sets: 1/3

« 2 take-home exams: 1/3
« final project: 1/3

Announcements

First class, Wednesday Feb 3rd

Schedule
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The structure of ambient light




Edge like structures
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What are we tuned to?

The visual system is tuned to process structures
typically found in the world.



The visual system seems to be tuned to a set of images:

Demo inspired from D. Field



What is a natural image?



What is a natural image?




What is a natural image?

The visual system seems to be tuned to a set of images:



What is a natural image?

The visual system seems to be tuned to a set of images:

Did you saw this image?



6 images

Not all these images are the result of sampling a real-world plenoptic function



* Proposition 1. The primary task of early vision is to deliver a small set of useful
measurements about each observable location in the plenoptic function.

* Proposition 2. The elemental operations of early vision involve the measurement
of local change along various directions within the plenoptic function.

» Goal: to transform the image into other representations (rather than pixel values)
that makes scene information more explicit
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What we think we see What we really see

Cavanagh, Perception 95



What are “visual features”?

H L Shape, color, texture, etc



The image as a “surface”




Filtering

g [m.n] f[m,n]

We want to remove unwanted sources of variation, and keep the
information relevant for whatever task we need to solve




Linear filtering

g [m,n] f[m,n]
N >

For a linear system, each output is a linear combination of all the input values:

flm.nl ="y h[m.n.k.lg[k.I]
k,l

In matrix form:
F=HG




Linear filtering

g [m,n] f [m,n]
> >

In vision, many times, we are interested in operations that are spatially invariant.
For a linear spatially invariant system:

flmnl=1®g="Y hlm-k.n-1glk.I]
k,l




Linear filtering
flmn)=1®g="Y him-k.n-lglk.I]

Linear system: 2 Input; 2 12 12 12
g PUt g [m)
h [m] 0 ‘1 ‘1 ‘1 0
O O—0 . I l L
2
T
Output?
flm=0]=" h[-k]g[k] h[-k] — [o §—9—o—0=  f[m=0]=-2
¢ 1 |-1
2
flm=11= Y hll - klglk] h [1-K]
k 0

flm=2]=" h[2-klglk]
k



Linear filtering

g [m,n] f[m,n]
> >

For a linear spatially invariant system

flmnl=1®g="Y hlm-k.n-1glk.I]
k,l o |

m=0 1 2 ...
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Borders

ZE€ro

blurred: zero normalized zero

From Rick’s book



A taxonomy of useful filters

Impulse, Shifts,

Blur
— Rectangular blur (see artifacts)
— Gaussian
— Bilateral exponetial
—  Asymmetrical filter: motion blur
Edges

- [11]

—  Derivative filter

—  Derivative of a gaussian

Oriented filters

Gabor filter

Quadrature filters: phase and magnitude. Iris code.

Elongated edges: filling gaps...



Impulse

flmnl=1® g ="y hlm—k.n - glk.I]
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h[m,n]

a[m.n] flm,n]



Shifts
flmnl=1®g="Y hlm—k.n - glk.I]
k,l

2pixels
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h[m,n]

a[m.n] flm,n]



Image rotation

- h[m,n]

g[m,n]

It is linear, but not a spatially invariant operation. There is not convolution.




Rectangular filter




Rectangular filter

h[m,n]

flm,n]




Rectangular filter




Integral image




Sharpening

2.0

Sharpened

original .
original



Sharpening example

coefficient

original

filter

1.7

result
11.2
8
1 I I
-0.25
Sharpened

(differences are
accentuated; constant
areas are left untouched).



Sharpening

before after



Gaussian filter




Some desirable properties for a
blur kernel

e Positivity: h(m)>=0

e Symmetry: h(m)=h(-m)

* Unimodality: h(m) >=h(m+1) form>=0
e Normalized: X h(m)=1

e Equal contribution: 2 h(2m) =X h(2m+1)

Some kernels that verify this are:
[72 %]
[Ya V2 Y]



Global to Local Analysis




Linear image transformations

* |n analyzing images, it’s often useful to
make a change of basis.

transformed image

—_ —_
F — l [{ «——— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform



Self-inverting transforms

Same basis functions are used for the inverse transform

f=U'F

=U"F

|

U transpose and complex conjugate



An example of such a transform:
the Discrete Fourier transform

Forward transform

flmni= MEWS f [k,l]e'm(f‘Tﬁ)

Inverse transform

1 M -IN-1 .(bn ln)

Flk,1] = - EEF[m,n]em’ kon In

M N
k=01=0



To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---
as a function of x,y for some
fixed u, v. We get a function
that is constant when (u

x+vy) 1s constant. The
magnitude of the vector (u,
v) gives a frequency, and its
direction gives an
orientation. The function is a
sinusoid with this frequency
along the direction, and
constant perpendicular to the
direction-

v
—m'(ux +Vy )

e

u

m’(ux+vy)







m’(ux+v




How to interpret a Fourier Spectrum

Vertical orientation

fx in cycles/image

| Horizontal
« | orientation

Low spatial frequencies

spatial
frequencies

Log power spectrum
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#1: Range [0, 1] #2: Range [0.000109, 0.0267]
Dims [256, 256] Dims [256, 256]
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#1: Range [0, 1]

Dims [256, 256]

#2: Range [4.79e-007, 0.503]
Dims [256, 256]
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#1: Range [0, 1] #2: Range [8.5e-006, 1.7]
Dims [256, 256] Dims [256, 256]
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#1: Range [0, 1] #2: Range [3.85e-007, 2.21]
Dims [256, 256) Dims [256, 256]



136

136

#1: Range [0, 1] #2: Range [8.25e-0086, 3.48]
Dims [256, 256) Dims [256, 256]
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#1: Range [0, 1] #2: Range [1.39e-005, 5.88]
Dims [256, 256] Dims [256, 256]
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538

#1: Range [0, 1] #2: Range [6.17e-006, 8.4]
Dims [256, 256] Dims [256, 256]



1088

#1: Range [0, 1] #2: Range [9.99e-005, 15]
Dims [256, 256] Dims [256, 256)



#1: Range [0, 1] #2: Range [8.7e-005, 19]
Dims [256, 256] Dims [256, 256]



4052.

#1: Range [0, 1] #2: Range [0.000556, 37.7]
Dims [256, 256) Dims [256, 256]



3056.

#1: Range [0, 1] #2: Range [0.00032, 64.5]
Dims [256, 256] Dims [256, 256]



#1: Range [0, 1] #2: Range [0.000231, 91.1]
Dims [256, 256] Dims [2586, 256]
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#1: Range [0, 1] #2: Range [0.00109, 146]
Dims [256, 256] Dims [256, 256]
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65536.

65536.

#1: Range [0.5, 1.5] #2: Range [4.43e-015, 255]
Dims [256, 256] Dims [256, 256]
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& Figure 5 _lo w
File Edit Wew Insert Tools Desktop Window Help N

DedE& h RQAN® € 0B 50

#1: Range [0, 1] #2: Range [0.237, 0.545]
Dims [256, 256] Dims [256, 256)

Now, an analogous sequence of images, but selecting Fourier
components in descending order of magnitude.
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Figure 6 =)&)
File Edit Wew Insert Tools Desktop Window Help ~

DedE& h RQAN® € 0B 50

#1: Range [0, 1] #2: Range [0.106, 0.676]
Dims [256, 256] Dims [256, 256]
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Figure 7 M=%
File Edit Wew Insert Tools Desktop Window Help N

DedE& h RQAN® € 0B 50

#1: Range [0, 1] #2: Range [5.04e-008, 0.788]
Dims [256, 256] Dims [256, 256]
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Figure 8 M=
File Edit Wew Insert Tools Desktop Window Help N

D& h RQAN® € 0E 50

#1: Range [0, 1] #2: Range [2.62e-005, 0.934]
Dims [256, 256] Dims [256, 256]
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Figure 9 =JaEd
File Edit Wew Insert Tools Desktop Window Help 7 N

D& h RQAN® € 0E 50

#1: Range [0, 1] #2: Range [5.05e-005, 1.09]
Dims [256, 256] Dims [256, 256]




‘ Figure 10

File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

mE)
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#2: Range [3.78e-008, 1.27]
Dims [256, 256]
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Figure 1
File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

1

129

#2: Range [4.79-005, 1.27]
Dims [256, 256]
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File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

1

257

#2: Range [4.2e-005, 1.28]
Dims [258, 256]
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Figure 13
File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

513

#2: Range [1.76e-005, 1.26]
Dims [256, 256]
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Figure 14
File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

1

#2: Range [2.24e-005, 1.28]
Dims [256, 256]
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Figure 15
File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

1

#2: Range [0.000347, 1.27]
Dims [258, 256]




4097

Figure 16
File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

1

#2: Range [0.000592, 1.23]
Dims [258, 256]
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Figure 17
File Edit Wew Insert Tools Desktop Window Help

DEE&E h RAO® ¥ 0EH

#1: Range [0, 1]
Dims [256, 256]

1

#2: Range [0.00296, 1.17]
Dims [258, 256]
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Figure 18
File Edit

DEEE h RAMS® E

View

#1: Range [0, 1]
Dims [256, 256]

Insert Tools Desktop Window Help

O E

=Joks

= O

#2: Range [0.000365, 1.1]
Dims [258, 256]
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Figure 19

File Edit

DEEE h RAMS® E

View

#1° Range [0, 1]
Dims [256, 256]

Insert Tools Desktop Window Help

O =&

#2: Range [0.0246, 1.03]
Dims [258, 256]




65536

f Figure 20

File Edit View Insert Tools Desktop Window Help

D& h RAN® € 08 50

#1: Range [0.5, 1.5] #2
Dims [256, 256]

- Range [0.028, 1]
Dims [256, 256)




Fourier transform magnitude




Masking out the fundamental
and harmonics from periodic
pillars

0000000000000000000
Dims [256, 256]



Fourier Transform

Magnitude Phase

* Fourier transform of a
real function is complex
— difficult to plot, visualize
— instead, we can think of the
phase and magnitude of
the transform
 Phase is the phase of the

complex transform

* Magnitude is the
magnitude of the complex
transform

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth



Phase and Magnitude

e Curious fact
— all natural images have about the same magnitude transform
— hence, phase seems to matter, but magnitude largely doesn’t

e Demonstration

— Take two pictures, swap the phase transforms, compute the
inverse - what does the result look like?






This is the
magnitude
transform
of the
cheetah pic
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This is the
phase
transform
of the
cheetah pic
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This is the

magnitude
transform
of the
zebra pic
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Reconstruction
with cheetah
phase, zebra
magnitude




Phase and Magnitude

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth

Image with cheetah phase
(and zebra magnitude)

Image with zebra phase
(and cheetah magnitude)



Randomizing the phase
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Fourier Characteristics of Natural Images

Power spectra
fall off as 1/f?

Low spatial frequencies

Spectra

High
X spatial
frequencies
Vertical
fy
\ , Horizontal
fx \High SF
Low SF

D. J. Field, "Relations between the statistics of natural images and Torralba and Oliva, Statistics of Natural Image Categories. Network:
the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379- (1987) Computation in Neural Systems 14 (2003) 391-412.



Power Spectrum of Images

fy
Spectra .
Field (87)
Natural scenes Natural scenes
(6000 images) spectral signature

Man-made scenes
(6000 images) spectral signature

Man-made scenes

Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neural Systems 14 (2003) 391-412.
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Observation: Sparse filter response
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Reconstruction from derivatives

F=HG

If we have multiple filter outputs:

i)

If the transformation H is not invertible, we can compute the pseudo-inverse:

G = (HH)" HTF



Reconstruction




Editing the edge image
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Intrinsic images

=

{b} DISTANCE {c} REFLECTANCE

{s) ORIGINAL SCENE

(d} ORIENTATION {(VECTOR) (o) ILLUMINATION



RECOVERING INTRINSIC
SCENE CHARACTERISTICS
FROM IMAGES

Technical Note 157

April 1978

By: Harry G. Barrow
J. Martin Tenenbaum
Artificial Intelligence Center

The research reported herein was supported by the National Science Foundation, under
NSF Grant No. ENG76-01272.

To appear in Computer Vision Systems, A. Hanson and E. Riseman, eds.. (Academic
Press, New York, in press).
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Figure 10

SEGMENTATION

INTERPRETATION

Organization of a visual system




Forming an Image

@ llluminate the surface to get:

Surface (Height Map) Shading Image

The shading image is the interaction of the shape
of the surface and the illumination

Slide: Marshal Tappen



@ Painting the Surface

Scene Image

Add a reflectance pattern to the surface.
Points inside the squares should reflect
less light



Goal

I»mage Shading Image Réflectance
Image

105
Slide: Marshal Tappen



Retinex

E.H. Land, J.J. McCANN - Journal of the Optical society of America, 1971

Journal of the

OPTICAL SOCIETY
of AMERICA

VoLuME 61, NUMBER 1 JaNvuary 1971

Lightness and Retinex Theory

Epwin H. Laxp* anp Joun J. McCann
Polaroid Corporation, Cambridge, Massachuseils 02139
(Received 8 September 1970)

The reflectance tends to be constant across space except for abrupt changes at the
transitions between objects or pigments. Thus a reflectance change shows itself as
step edge in an image, while illuminance changes gradually over space. By this
argument one can separate reflectance change from illuminance change by taking
spatial derivatives: High derivatives are due to reflectance and low ones are due to
illuminance.



Retinex

Again, we are trying to solve an ill-posed problem:
24 = ?7x7?

From M. Tappen, PhD



Log Image Intensity
» § & 8 § 8 9 8 9

f L 1 L 1 L 1 L f
0 100 1% 200 =0 200 20 400 0 =0

Image Column

(a) One column from the ob-
served image.

Retinex

!

8
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Log Image Intensity
8
Log Image Intensity
B8

L f L 1 L 1
=0 100 N ) 200 =0 40 e =00 ° = 100 120 200 =0 200 220 00 40 =0

Image Column Image Column
(b) The derivative of the plot  (¢) The estimate of the log
from (a). shading From M. Tappen, PhD
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From M. Tappen, PhD









Craik-O'Brien-Cornsweet effect
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This illusion highlights
the importance of
scene interpretation.

<«— The effect is gone

<— and it comes back when
the gradient is not explained
by the shape.




A more general approach

1. Compute the x and y image derivatives

2. Classify each derivative as being caused by
either shading or a reflectance change

3. Set derivatives with the wrong label to zero.

4. Recover the intrinsic images by finding the
least-squares solution of the derivatives.

.. L Classify each derivative
Original x derivative image (White is reflectance)

Slide: Marshal Tappen



What edges are important?




Differential Geometry Descriptors




Differential Geometry Descriptors

If we think of the image as a continuous function
. 9(x.y)

/| SOLID SHAPE
KOENDERINK ’

Image gradient: ﬁ ‘7.:} —
Vo[ 280ny) d8(x.y) LN
ox  dy
Directional gradient:
0 dg(x,
u=1. u' Vg=cos(a) §(x,y) + sin(ct) 8(x.y)
0X oy

Laplacian:

’g(x,y) 9°g(x,y)
2 ’ ’
Vig= x> ¥ (?yz




dg(x,y) ® h(x,y)
ox

[
o9
0
b
<
| —
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x? +y2 N

_oh(x,y)  -x
0x 20

2
eZa

h,(x,y)

The smoothed directional gradient is a linear combination of two kernels
u'Vg® h= (cos(a)hx(x,y) + sin(a)hy (x,y)) ® g(x,y) =

Any orientation can be computed as a linear combination of two filtered images
= cos(a)h, (x,y) ® g(x,y) + sin(a)h, (x,y) ® g(x,y) =

Steereability of gaussian derivatives, Freeman & Adelson 92



Laplacian

V2g®h=(a g(x,)’) 0') g(x,y)

" ¥ )®h(xy)

V2g®h=g®vzh

x2 + o) 5
e =( - 2)h(x,y)
7 0]







A “summary” of visual features

“IT”

retina




Comparing Human and Machine

Structure

World

Optics

Photoreceptor
Array

LGN Cells

\
~ — ’I Primary Visual Cortical
/ Neurons:
b Simple & Complex
e /

FIGURE 1

Operations

I (YytA)

Low-pass spatial filtering

Sampling, more low-pass
filtering, temporal low/bandpass
filtering, A filtering, gain control,
response compression

Spatiotemporal bandpass
filtering, A filtering, multiple
parallel representations

Simple cells: orientation,
phase, motion, binocular
disparity, & A filtering

Complex cells: no phase
filtering (contrast energy
detection)

2D

Perception

Fourier Plane

Schematic overview of the processing done by the early visual system. On the left, are some of the major

structures to be discussed; in the middle, are some of the major operations done at the associated structure; in the right,
are the 2-D Fourier representations of the world, retinal image, and sensitivities typical of a ganglion and cortical cell.



Contrast Sensitivity Function

A demo of human contrast sensitivity as a function of spatial frequency. Frequency rises from left to right at a constant rate. Contrast drops from
bottom to top at a constant rate. The bars are visible further up for middle frequencies, showing these are more salient to the human visual
system.



Contrast sensitivity

Contrast Sensitivity Function
Blackmore & Campbell (1969)

Maximum sensitivity
~ 6 cycles / degree of visual angle

0.1 1 10
Low Spatial frequency (cycles/degree)

High

100



