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Project presentations

May 5 1pm - 2:30pm
2:30pm —4pm



Presentations

5 Min + 2 min questions

Jon Brookchire
Daniel Jonathan McDuff
Matt Miller

Julian Hernandez Munoz*

Nick Loomis

Geoff Gorman *
Roarke Horstmeyer
Kevin Chiu

Michael Rubinstein
Haitham Hassanieh
Michael Kuo

Derya Akkaynay

Nicholas Edelman*
Adam Kraft

Matt Hirsch
Jianxiong Xiao
Huan Liu*

Jenny Liu

Haitham Hassanieh
Guy-Richard Kayombya
Lawson Wong*
Hao-Yu Wu

Phillip Isola

Jeff Kaeli

Gershon Dublon**



How to give a talk

http://www.cs.berkeley.edu/~messer/Bad talk.html

http://www-psych.stanford.edu/~lera/talk.html




First, some bad news

The more you work on a talk, the better it
gets: if you work on it for 3 hours, the
talk you give will be better than if you
had only worked on it for 2 hours. If you
work on it for 5 hours, it will be better
still. 7 hours, better yet...



All talks are important

There are no unimportant talks.
There are no big or small audiences.

Prepare each talk with the same
enthusiasm.



How to give a talk

Delivering:
Look at the audience! Try not to talk to your laptop

or to the screen. Instead, look at the other
humans in the room.

You have to believe in what you present, be
confident... even if it only lasts for the time of
your presentation.

Do not be afraid to acknowledge limitations of
whatever you are presenting. Limitations are
good. They leave job for the people to come.
Trying to hide the problems in your work will
make the preparation of the talk a lot harder and
your self confidence will be hurt.



Let the audience see your
personality

They want to see you enjoy yourself.

They want to see what you love about the
work.

People really respond to the human parts
of a talk. Those parts help the audience
with their difficult task of listening to an
hour-long talk on a technical subject.
What was easy, what was fun, what was
hard about the work?

Don’t be afraid to be yourself and to be
quirky.



The different kinds of talks you'll have to
give as a researcher

e 2-5 minute talks
« 20 -30 minute conference presentations
« 30-60 minute colloquia



How to give a talk

Talk organization: here there are as many theories as there are talks.
Here there are some extreme advices:

—_—

. Go into details / only big picture
. Go in depth on a single topic / cover as many things as you can

Be serious (never make jokes, maybe only one) / be funny (it is just
another form of theater)

w N

Corollary: ask people for advice, but at the end, if will be just you and
the audience. Chose what fits best your style.

What everybody agree on is that you have to practice in advance (the
less your experience, the more you have to practice). Do it with an
audience or without, but practice.

The best advice | got came from Yair Weiss while preparing my job talk:

“just give a good talk”



How to give the project class talk

Initial conditions:
* | started with a great idea
* |t did not work

* The day before the presentation | found 40
papers that already did this work

 Then | also realized that the idea was not
SO great

How do | present?
 Just give a good talk



Sources on writing technical papers

How to Get Your SIGGRAPH Paper Rejected, Jim Kajiya,

SIGGRAPH 1993 Papers Chair, http://www.siggraph.org/publications/
instructions/rejected.html

Ted Adelson's Informal guidelines for writing a paper, 1991. htip://
www.al.mit.edu/courses/6.899/papers/ted.htm

Notes on technical writing, Don Knuth, 1989.

http://www.ai.mit.edu/courses/6.899/papers/knuthAll.pdf

What's wrong with these equations, David Mermin, Physics
Today, Oct., 1989. http://www.ai.mit.edu/courses/6.899/papers/mermin.pdf

Ten Simple Rules for Mathematical Writing, Dimitr1 P. Bertsekas
http://www.mit.edu:8001/people/dimitrib/Ten Rules.html




Knuth

24. The opening paragraph should be yvour best paragraph, and its first sentence should
be your best sentence. Il a paper starts badly, the reader will wince and be resigned to
a difficult job of fighting with your prose. Conversely. if the beginning flows smoothly,
the reader will be hooked and won't notice occasional lapses in the later parts.
Probably the worst way to start is with a sentence of the form “An @ is »." For
example,

Bad: An important method for internal sorting is quicksort.
Good: Quicksort is an important method for internal sorting, because . ..
Bad: A commonly used data structure is the priority queue.
Good: Priority queues are significant components of the data structures needed
for many different applications.



Knuth on equations

13, Many readers will skim over l[ormulas on their first reading of your exposition. There-
fore, your sentences should flow smoothly when all but the simplest formulas are
replaced by “blal™ or some other grunting noise,



The paper 1impact curve

Lots of
impact

Paper impact

nothing

Paper quality

So-so Ok Pretty good Creative,
original and
good.



Tracking



Overview

For a nice overview, check David Fleet’s page:

http://www.cs.toronto.edu/~fleet/research/Talks/humaneva07.pdf

Also this tutorial:

http://www.cs.toronto.edu/~Is/iccv2009tutorial/



Jepson, Fleet, and El-Maraghi tracker

IEEE Conference on Computer Vision and and Pattern Recognition, Kauai, 2001, Vol. I, pp. 415422

Robust Online Appearance Models for Visual Tracking

Allan D. Jepson® David J. Fleet’ Thomas F. EI-Maraghi*

* Department of Computer Science, University of Toronto, Toronto, M5S 1A4
" Xerox Palo Alto Research Center, 3333 Coyote Hill Rd, Palo Alto, CA 94304

18



Wandering, Stable, and Lost appearance model

 Introduce 3 competing models to explain the
appearance of the tracked region:

— A stable model—QGaussian with some mean and
covariance.

— A 2-frame motion tracker appearance model, to rebuild
the stable model when it gets lost

— An outlier model—uniform probability over all
appearances.

* Introduce 3 competing processes to explain the
observations

19



The motion tracker

Motion prior prefers slow velocities and small
accelerations.

The WSL appearance model gives a likelihood for
each possible new position, orientation, and scale
of the tracked region.

They combine that with the motion prior to find
the most probable position, orientation, and scale
of the tracked region in the next frame.

Gives state-of-the-art tracking results.

20



Figure 4. The adaptation of the model during tracking. (top) The target region in selected frames 200, 300, 480. {(bottom) The stable
component’s mixing probability (left) and mean (right) for the selected frames.

21



Jepson, Fleet, and El-Maraghi tracker
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Figure 3. Each row shows, from left to right, the tracking region, the stable component’s mixing probability sre. (X, ), mean g (x, 1),
and ownership probability o. (x. f). The rows correspond to frames 244, 259, 274, and 289, top to bottom. Note the model persistence

and the drop in data ownership within the occluded region.



) Contour tracking by stochastic propagation of conditional density - Mozilla Firefox Q@@
File Edit VYew Go Bookmarks Tools Help @

<§J v jr ) ~ é,:] @ :u http:/fresearch.microsoft.comfusers/misardfabstractsfeccv96.isard.html Vt @ Go @,

’ Getting Started l:v‘ Latest Headlines

Contowr tracking by stochastic propagation of conditional density

Michael Isard and Andrew Blake

Proc. European Conference on Computer Vision, vol. 1, pp. 343--356, Cambridge UL,
(1996).

Abstract

The problem of tracking curves in dense wisual clutter 15 a challenging one. Trackers based on Kalman filters are of lirnited use;
because they are based on Gaussian densities which are unimodal, they cannot represent simultaneous alternative hypotheses.
Extensions to the Kalman filter to handle multiple data associations work satisfactorily in the simple case of poimnt targets, but
do not extend naturally to continuous curves. A new, stochastic algonthm is proposed here, the Condensation algonthm ---
Conditional Density Propagation over time. It uses 'factored sampling', a method previously applied to mterpretation of static
images, in which the distribution of possible interpretations 1s represented by a randomly generated set of representatives. The
Condensation algorithm combines factored sampling with learned dynamical models to propagate an entire probability
distribution for object position and shape, over time. The result 1s highly robust tracking of agile motion i clutter, markedly
superior to what has previously been attamnable from Kalman filtering. Notwithstanding the use of stochastic methods, the
algorithm runs in near real-time.

Click here for a compressed postscript wersion

Back to

Michael Isard's home page

Done
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The Condensation Algorithm

Background

. Tracking objects through highly cluttered scenes 15 difficult. We believe that for tracking to be robust when following agile
moving objects, in the presence of dense background clutter, probabilistic algonthms are essential. Previous algorithms, for

& example the Kalman filter, have been limited in the range of probability distributions they represent. We have developed a new
algonthm, the Condensation algonthm {Conditional Density Propagation) which allows quite general representations of
probability. Expenimental results show that this increased generality does indeed lead to a marked improvement in tracking
performance. In addition to permitting high-quality tracking in clutter, the simplicity of the Condensation algorthm also allows
the use of non-linear motion models more complex than those commonly used in Kalman filters. We have implemented a mixed
discrete/continuous tracker in the Condensation framework which switches between multiple continuous Auto-Regressive
Process motion models according to a discrete transition matriz. Also, by using the statistical technique of imporiance
sampling it 1s possible to build a Condensation tracker which runs in real time, and we have implemented a real-time hand-tracker on a low-end SGI
workstation. Iy D Phil. thesis gives a thorough description of the algorithm and some applications.

Sample Code
Download source code of a simple implementation of the Condensation algorithm.
Results

Here 15 an MPEG (2. 3b) showing the Condensation algorithm tracking a leaf blowing in the wind, aganst a background of

1 1

J Find: I} Next % Previous [] Match case

Done




Contour tracking

25
[Isard 1998]



Head tracking

Picture of the states The mean state 26
represented by the top [Isard 1998]
weighted particles



Leaf tracking

27
[Isard 1998]



Gesture recognition



Real-time hand gesture recognition
~ by orientation histograms

training
set

signature

vector '/:\

.

compare T




Orientation measurements (bottom) are more
robust to lighting changes than are pixel
intensities (top)




Orientation measurements (bottom) are more
robust to lighting changes than are pixel
intensities (top)




C Simple illustration of an orienta-
tion histogram. (1) An image of a
horizontal edge has only one orien-
tation at a sufficiently high con-
trast. (2) Thus the raw orientation
histogram has counts at only one
orientation value. (3) To allow

neighboring orientations to sense
each other, we blurred the raw
histogram. (4) The same informa-
tion, plotted in polar coordinates.
We define the orientation to be the
direction of the intensity gradient,
plus90degrees.

-

(1) Image

Frequency
of occuUrence

Orientation angle

(2) Raw histogram

Fregquency
of occurence

(3) Blurred

(4) Polar plot

Orientation angle




Images, orientation images, and
orientation histograms for training set




Test image, and distances from each of the training
set orientation histograms (categorized correctly).




Image moments give a very
coarse image summary.




Hand images and equivalent rectangles
having the same image moments




Artificial Retina chip for detection
and low-level image processing.
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Artificial Retina chip

[VSPC: Variable Sensitivity Photodetection Cell J
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Artificial Retina functions

Image Detection Edge Extraction

|

Output —

Projection
(2D->1D
compression)




Model-based hand tracking with texture,
shading and self-occlusions

De |la Gorce, M., Paragos, N. and Fleet, D.J.




Biologically inspired computer vision



Diagram of thg visual system
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a) b)

Figure 1.2: a) Schema of the horizontal cell layer of the retina. b)) RC analog network.

http://www.iee.et.tu-dresden.de/iee/analog/papers/mirror/visionchips/vision_chips/mahowald_mead.html






modified from (Ungerleider and Haxby 1994)

Modified by T. Serre from Ungerleider and Haxby, and then shamelessly copied by me.




Modified by T. Serre from Ungerleider and Haxby, and then copied by me.




modified from (Ungerleider and Haxby 1994)

~‘On’ area

—

6
1 Bar stimulus 2 Spot stimulus
Light Light

|

Modified by T. Serre from Ungerleider and Haxby, and then copied by me.



modified from (Ungerleider and Haxby 1994)

posterior IT

Modified by T. Serre from Ungerleider and Haxby, and then copied by me.



modified from (Ungerleider and Haxby 1994)

Modified by T. Serre from Ungerleider and Haxby, and then copied by me.



IT readout

(Hung Kreiman Poggio DiCarlo 2005)

Slide by Serre
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ldentifying natural images from human
brain activity

Response
oS

Voxel number

Measured voxel
activity pattern

Kay, K.N., Naselaris, T., Prenger, R.]., & Gallant, J.L. (2008). Identifying natural images
from human brain activity. Nature, 452, 352-355.



(1) Measure brain activity for an image

W

Voxel number

Measured voxel
activity pattern

Response

Image

(2) Predict brain activity for a set of images using receptive-field models

VeV

- BEEA-® - -\

Voxel number

*

vy

Set of Receptive-field models Predicted voxel
images for multiple voxels activity patterns

(3) Select the image (¥ ) whose predicted brain activity is most similar to
the measured brain activity



Voxel Activity Model

Goal: to predict the image seen by the observer out of a large
collection of possible images. And to do this for new images:

this requires predicting fMRI activity for unseen images.
Estimate a receptive-field model for each voxel

- I
/BTN | B

> — 0.1 = 13,;

§ / 0.5
Images . :|—> x| =1 Responses
N

Receptive-field model for one voxel

Kay, K.N., Naselaris, T., Prenger, R.]J., & Gallant, J.L. (2008). Identifying natural images
from human brain activity. Nature, 452, 352-355.
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- Add Response
Image DC offset

— Sum
—» x | —1
Weight
Project Combine
onto quadrature
wavelets pairs

Supplementary Figure 3. Gabor wavelet pyramid model. Each image is projected onto the
individual Gabor wavelets comprising the Gabor wavelet pyramid (see Supplementary Fig. 2).
The projections for each quadrature pair of wavelets are squared, summed, and square-rooted,
yielding a measure of contrast energy. The contrast energies for different quadrature wavelet
pairs are weighted and then summed. Finally, a DC offset is added. The weights are determined
by gradient descent with early stopping (see Supplementary Methods 6).

Kay, K.N., Naselaris, T., Prenger, R.]., & Gallant, J.L. (2008). Identifying natural images
from human brain activity. Nature, 452, 352-355.
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Neocognitron

Fukushima (1980). Hierarchical multilayered neural network
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S-cells work as feature-extracting cells. They resemble simple cells of the
primary visual cortex in their response.

C-cells, which resembles complex cells in the visual cortex, are inserted in the
network to allow for positional errors in the features of the stimulus. The input
connections of C-cells, which come from S-cells of the preceding layer, are fixed
and invariable. Each C-cell receives excitatory input connections from a group
of S-cells that extract the same feature, but from slightly different positions. The
C-cell responds if at least one of these S-cells yield an output.



Neocognitron
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Learning is done greedily for each layer



Convolutional Neural Network

INPUT feature maps feature maps feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

Le Cun et al, 98

The output neurons share all the
iIntermediate levels



Hierarchical models of object recognition in
cortex

view-tuned cells

-"/'V'» | -::- \\ “/ \ -
(/) e \ / ) "complex composite” cells (C2)
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weighted sum
=== MAX

Hierarchical extension of the classical paradigm of building complex cells from simple cells.
Uses same notation than Fukushima: “S” units performing template matching, solid lines and
“C” units performing non-linear operations ( “MAX” operation, dashed lines)

Riesenhuber, M. and Poggio, T. 99



Slide by T. Serre Model RF sizes
layers
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Cortex : classification

7 units

PIT AIT
AlT.36.35

(cmo—e s

|2 s

0.9%4.4°
11%3.0°
06%24°
S 200 S 0.4% 1.6°

000 QO Bt e
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2 key learning stages:

Related to
Edelman &
Poggio

(see

Fredman Riesenhuber Poggio Miller, 2001,

2003) Related to

Ullman’s visual
features of

* Large dictionary of reusable ; intermediate
features: complexity
e “unbound” features |

* Different levels of invariance Gabor filters
and complexity
e Unsupervised learning from
natural images
~developmental-like learning
stage

Slide by T. Serre




»

/ \\ - ggg?al bar classif.

grating

/
[\

4 Gabor filters

* Parameters fit toV | data (Serre & Riesenhuber 2004)

® |7 spatial frequencies (=scales)

® 4 orientations




classif.

CI| units

Increase in tolerance to
(and in RF size)

c1(=)
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classif.
units

CI| units

Increase in tolerance to




classif.
units

S2 units

4 Features of moderate complexity
(n~1,000 types)

4 Combination of V-like complex
units at different orientations

® Synaptic weights
W learned from @2//7
natural images

® 5.]10 subunits Q\
chosen at
random from all %

. ‘ ~— stronger
possible afferents suppression

(~100-1,000)

stronger
facilitation




classif.

C2 units

4 Same selectivity as S2 units
but increased tolerance to
position and size of
preferred stimulus

4 Local pooling over S2 units
with same selectivity but
slightly different positions
and scales

4 S2 units inV2 and C2 inV4?

(Hubel & Wiesel 1959)




classif.
units

Beyond C2 units

4 Units increasingly complex and invariant

<4 S3/C3 units:

® Combination of V4-like units with different selectivities

®Dictionary of ~1,000 features = num. columns in IT (Fujita 1992)

4 S4 units:

®View-tuned units (imprinted with part of the training set, e.g. animal and non-animal
images but still unsupervised)

® Tuning and invariance properties agrees with IT data (Logothetis, Pauls & Poggio 1995)




Learning a Compositional Hierarchy of Object Structure
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Figure 8. (a) Examples of Layer 3 parts, (b) variances of positions of the surrounding subparts

The architecture

Learned parts

Fidler & Leonardis, CVPR’07; Fidler, Boben & Leonardis, CVPR 2008



Learning a Compositional Hierarchy of Object Structure

Figure 4. Mean reconstructions of the learned parts (spatial flexibility also modeled by the parts is omitted due to lack of space). 1st row:
Lo, L3 (the first 186 of all 499 parts are shown), 2nd row: £, parts for faces, cars, and mugs, 3rd row: L5 parts for faces, cars (obtained
on 3 different scales), and mugs.

Fidler & Leonardis, CVPR’07; Fidler, Boben & Leonardis, CVPR 2008



Learning a Compositional Hierarchy of Object Structure

 Fidler & Leonardis, CVPR’07
 Fidler, Boben & Leonardis, CVPR 2008

car motorcycle dog person

ol . Wmi%

Layer 4 7314

Layer 3

Layer 2

Layer 1

hierarchical library

* Hierarchical compositional architecture
» Features are shared at each layer

* Learning is done on natural images
* Indexing and matching detection scheme

Learned L1 -L3

Layer 2

Learned hierarchical
vocabulary Detections

Layer 1




