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6.869  Advances in Computer Vision 
Spring 2010 

 
Problem set 2 

 
Due date: Wednesday, March 10, 2010 
 
You need to submit a report with descriptions of what you did. Insert images showing your results 
as well as Matlab plots that you find useful. You should also include pieces of your Matlab code.  
 
Each part of the problem set is independent. 
 
Each person should submit a separate report (pdf). For the filename use: familyname.pdf  
Write in the report the names of the people you discussed with.  
 
This problem uses pyramid image processing. Download and install the 
matlabPyrTools from http://www.cns.nyu.edu/~eero/software.html. When forming 
pyramid decompositions for these problems, you may always use the default 
decomposition filters. For this problem submit your MATLAB code and include a 
printout. 
 
1 – Image blending   
 
1.1- Build a Laplacian pyramid of one image and show you can reconstruct back 
the original image. Code for the Laplacian pyramid is available in the pyramid 
image processing toolbox. 
 
1.2 – Blend two images of your favorite pets, friends or objects using the 
Laplacian pyramid and the method described in class. Include in your report the 
original images, their Laplacian pyramids, the blending mask, and the resulting 
blended image. 
 
 
2 – Image pyramids 
 
Subjectively, our visual world appears to us to be high resolution everywhere. 
However, we have much higher spatial resolution in the center of our field of view 
than in the periphery. In this problem, we will synthesize an image approximating 
our visual resolution as a function of eccentricity. 
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Figure 1: (a) Measures of acuity. (b) Plots of eccentricity versus accuity. 
 
Figure 1 shows a plot of the minimum angle resolvable as a function of the visual 
eccentricity. The visual eccentricity is measured in degrees away from the center 
of fixation. (From Rodieck, "The First Steps in Seeing", Sinauer, 1998). 
 
Approximate acuity, a, in minutes of arc (60 minutes to a degree) as a function of 
eccentricity, e, in degrees, by the expression, 
 

a = 0.23e + 0.7   (1) 
 
We will create an image with the effective spacing of the pixels equal to the 
angular size of the acuity limit. In the figure, that limit is defined as the white 
space between two ends of a circle. Adjacent black, white, black pixels could 
approximately represent that circle opening if the pixel spacing were equal to the 
angular size of the acuity limit. 
 
Assume that the image (or monitor) is square, and that you view it from a 
distance of two times the length of one side of the image. Where convenient, you 
may assume angles are small enough so that tan(θ) ~ θ. 
 
(a) How many evenly spaced pixels per side does the image need to have in 
order that the highest resolution part of the image has one pixel per length of 
finest acuity? CORRECTION: forget this hint: Assume that the highest resolution 
image point lies at half the maximum acuity, where maximum acuity is as 
specified by (1).  The correct clarification is: acuity is defined at the left of figure 
2(a), as the space of that opening in the circle that's visible.  So you should 
equated the acuity value with the spacing between pixels, because a 
black/white/black pixel sequence could approximately represent that gap in the 
circle.  So one pixel would be equivalent to that gap in the circle that defines the 
acuity. 
 
(b) Let the upper left corner of the image be (0,0), and the right and bottom 
edges of the picture be at a distance 1 from this corner. Assume that the upper 
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left corner is the center of fixation. What effective pixel spacing, as a function of 
these units, causes the pixel spacing to equal the spatial acuity for the 
corresponding eccentricity? 
 
(c) We can approximate images of this resolution by using a Gaussian pyramid, 
which generates images at different numbers of pixel samples, dividing the 
number of pixels by two at each level of the Gaussian pyramid. Start from an 
image at the full resolution of part (a). Each pyramid level increases the effective 
size of its pixels by a factor of two in each dimension. As a function of the 
coordinate system used in (b), by how many factors of two should the resolution 
of the original image be reduced as a function of position in the image in order to 
simulate the human visual acuity, assuming the viewer stares at the upper left 
corner of the image? 
 
(d) The expression in (c) involves fractional pyramid levels. We can visually 
approximate images at those intermediate resolution levels by linearly 
interpolating between our Gaussian pyramid levels. On the class web site is a 
2000x2000 image (prob2.jpg), which should be more than enough pixels for you. 
Crop that image to the desired resolution such that the upper left corner will be at 
half the maximum visual acuity, when viewed from 2 picture lengths away. Use 
the Gaussian pyramid to create an image that simulates the fall-off in visual 
acuity, assume the fixation point is at the upper left corner. At any given pixel, 
determine the coefficients for interpolating between images by linearly 
interpolating the corresponding pixel dimensions. 
 
Hint: You will want to use the upBlur function to transform the Gaussian pyramid 
levels to all have the same number of pixels. Assume that a pyramid level after 
upBlur has effectively the same number of pixels (in terms of picture content) as 
the original pyramid band before the upBlur operation. That is a reasonable 
approximation (take 6.341 for the details that we're glossing over here). 
 
3. Steerable filters 
 
Let 

€ 

G0(x,y) be some 2-d filter, a function of the cartesian coordinates x and y. 
Let 

€ 

Gθ (x,y)  be a rotation of 

€ 

G0(x,y) by q radians about the origin in the 
counterclockwise direction, i.e.,  
 

€ 

Gθ (x,y) =Gθ (rcosΦ,rsinΦ) =G0(rcosΦ−θ,rsinΦ−θ) 
 

 
where 

€ 

r = x 2 + y 2  and 

€ 

tanθ = y / x . In this problem, you may give your answers 
in cartesian or polar coordinates, whichever is more convenient. 
 
(a) Suppose 

€ 

G0(x,y) = −2xe−(x
2 +y 2 ). Find 

€ 

Gθ (x,y)  
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(b) Show that: 

€ 

Gθ (x,y) = cos(θ)G0(x,y) + sin(θ)Gπ / 2(x,y) 
 

and that the output image 

€ 

F(x,y) = I(x,y)∗Gθ (x,y)  is equal to: 

€ 

cos(θ) I(x,y)∗G0(x,y){ } + sin(θ) I(x,y)∗Gπ / 2(x,y){ } 
where * denotes convolution. 
 
(c) Find the direction and magnitude of maximum response at a point (x, y) of the 
image I(x, y) to the steerable filter 

€ 

Gθ (x,y) . The direction of maximum response 
is the q, such that 

€ 

Fθ (x,y)  has the biggest magnitude. Give your answer in terms 
of the image I(x, y) and the responses 

€ 

F 0(x,y), 

€ 

F π / 2(x,y) to the two steerable 
basis filters 

€ 

G0(x,y), 

€ 

Gπ / 2(x,y). Note that other steerable filters could require 
more basis filters than two. 
 
 
4. Texture Synthesis 
 
In this problem you will implement the Efros and Leung algorithm for texture 
synthesis discussed in Section 9.3 of Forsyth and Ponce. In addition to reading 
the textbook you may also find it helpful to visit Efros' texture synthesis website: 
http://www.cs.berkeley.edu/~efros/research/synthesis.html, from which many of 
the implementation details described below can be found. 
 
As discussed in class, the Efros and Leung algorithm synthesizes a new texture 
by performing an exhaustive search of a source texture for each synthesized 
pixel in the target image, in which sum-of-squared differences (SSD) is used to 
associate similar image patches in the source image with that of the target. The 
algorithm is initialized by randomly selecting a 3x3 patch from the source texture 
and placing it in the center of the target texture. The boundaries of this patch are 
then recursively filled until all pixels in the target image have been considered.  
 
Implement the Efros and Leung algorithm as the following MATLAB function: 
 

synthIm = SynthTexture(sample, w, s) 
 
where sample is the source texture image, w is the width of the search window, 
and s=[ht wt] specifies the height and width of the target image synthIm. As 
described above, this algorithm will create a new target texture image, initialized 
with a 3x3 patch from the source image. It will then grow this patch to fill the 
entire image. As discussed in the textbook, when growing the image un-filled 
pixels along the boundary of the block of synthesized values are considered at 
each iteration of the algorithm. A useful technique for recovering the location of 
these pixels in MATLAB is using dilation, a morphological operation that expands 
image regions (it performs the opposite function of the erode operation from the 
previous problem set). Use MATLAB's imdilate and find routines to recover the 



  5 

un-filled pixel locations along the boundary of the synthesized block in the target 
image.  
 
In addition to the above function we ask you to write a subroutine that for a given 
pixel in the target image, returns a list of possible candidate matches in the 
source texture along with their corresponding SSD errors. We ask this function to 
have the following syntax: 
 

[bestMatches, errors] = FindMatches(template, sample, G) 
 
where bestMatches is the list of possible candidate matches with corresponding 
SSD errors specified by errors. template is the w x w image template associated 
with a pixel of the target image, sample is the source texture image, and G is a 
2D Gaussian mask discussed below. This routine is called by SynthTexture and 
a pixel value is randomly selected from bestMatches to synthesize a pixel of the 
target image. To form bestMatches accept all pixel locations whose SSD error 
values are less than the minimum SSD value times (1+ε). To avoid randomly 
selecting a match with unusually large error, also check that the error of the 
randomly selected match is below a threshold δ. Efros and Leung use threshold 
values of ε = 0.1 and δ = 0.3. 
 
Note template can have values that have not yet been filled in by the image 
growing routine. Mask the template image such that these values are not 
considered when computing SSD. Efros and Leung suggest using the following 
image mask: 
 

Mask = G .* validMask 
 
where validMask is a square mask of width w that is 1 where template is filled, 0 
otherwise and G is a 2D zero-mean Gaussian with variance σ = w/6.4 sampled 
on a w x w grid centered about its mean. G can be pre-computed using 
MATLAB's fspecial routine. The purpose of the Gaussian is to down weight pixels 
that are farther from the center of the template. Also, make sure to normalize the 
mask such that its elements sum to 1.  
 
Test and run your implementation using the grayscale source texture image 
rings.jpg, with window widths of w = 5, 7, 13, s=[100 100] and an initial starting 
seed of (x, y) = (4, 32). Explain the algorithms performance with respect to 
window size. For a given window size, if you re-run the algorithm with the same 
starting seed do you get the same result? Why or why not? Is this true for all 
window sizes? 
 
Please include the synthesized textures that correspond to each window size 
along with answers to the above questions and a printout of your code in your 
writeup. Also, submit the files synthtexture-[last name].m and findmatch es-[last 
name].m. 
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