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80 million tiny images: a large dataset for
non-parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman

Abstract— With the advent of the Internet, billions of images
are now freely available online and constitute a dense sampling
of the visual world. Using a variety of non-parametric methods,
we explore this world with the aid of a large dataset of 79,302,017
images collected from the Internet.

Motivated by psychophysical results showing the remarkable

L
tolerance of the human visual system to degradations in image
resolution, the images in the dataset are stored as 3% 32
color images. Each image is loosely labeled with one of the
75,062 non-abstract nouns in English, as listed in the Wordnet

lexical database. Hence the image database gives a comprehgasi
coverage of all object categories and scenes. The semanti
information from Wordnet can be used in conjunction with
nearest-neighbor methods to perform object classification over
a range of semantic levels minimizing the effects of labeling
noise. For certain classes that are particularly prevalent in ¥
the dataset, such as people, we are able to demonstrate a
recognition performance comparable to class-specific Viola-Jones
style detectors. We also demonstrate a range of other applicatisn
of this very large dataset including automatic image colorization
and picture orientation determination.

Index Terms— Object recognition, tiny images, large datasets,
Internet images, nearest-neighbor methods.

. INTRODUCTION Fig. 1. 15'& 3™ columns: Eight32 x 32 resolution color images. Despite

With overwhelming amounts of data, many problems can Iéeir low resolution, it is still possible to recognize mosttbe quects and

lved without the need for sophisticated algorithms scenes. These are samples_ from a large dz_ataslamgof_sz X 32 images we
SO V_e s p " g - O(E'E. collected from the web which spans all visual object clasg88 & 4t
ple in the textual domain is Google’s “Did you mean?” tool @i columns: Collages showing the nearest neighbors within the dataset to each
corrects errors in search queries, not through a complesinar lngi in the adjacent hCO|!Jmn- INOtz thbe_ CO"?'Stean_ly betW'té_I;nﬁ'@lbOFS

. s ] -.and the query image, having related objects in similar spati@ngements.

of the query_ but by memorizing billions of query answer_ palrThe power of the approach comes from the copious amount of datser
and suggesting the one closest to the users query. In thexr,pagan sophisticated matching methods.
we explore a visual analog to this tool by using a large datase

of 79 million images and nearest-neighbor matching schemes

When very many images are available, simple image indexingThe key question that we address in this paper is: How big
techniques can be used to retrieve images with object afangoes the image dataset need to be to robustly perform reemyni
ments to the query image. If we have a big enough databagging simple nearest-neighbor schemes? In fact, it is anttet
then we can find, with high probability, images visually @osthe size of the dataset required is at all practical sinceethee an
similar to a query image, containing similar scenes withilsim effectively infinite number of possible images the visuasteyn
objects arranged in similar spatial configurations. If tiiages in can be confronted with. What gives us hope is that the visual
the retrieval set are partially labeled, then we can profat#e world is very regular in that real world pictures occupy ordy
labels to the query image, so performing classification. relatively small portion of the space of possible images.

Nearest-neighbor methods have been used in a variety of comsyydying the space occupied by natural images is hard due to
puter vision problems, primarily for interest point matehi[S], the high dimensionality of the images. One way of simplifyin
[17], [27]. They have also been used for global image matehifs task is by lowering the resolution of the images. When we
(e.g. estimation of human pose [36]), character recogmif&], ook at the images in Fig. 1, we can recognize the scene and its
and object recognition [S], [35]. A number of recent papeaséh constituent objects. Interestingly though, these pistirave only
used large datasets of images in conjunction with purely-nogy . 32 color pixels (the entire image is just a vector 2172
parametric methods for computer vision and graphics apitios  dimensions withs bits per dimension), yet at this resolution, the
[20], [39]. images already seem to contain most of the relevant inféomat

The authors are with the Computer Science and Artificial ligiehce Lab neede.d to support reh.able recognltlor.]. . . . .
(CSAIL) at the Massachusetts Institute of Technology. An important benefit of working with tiny images is that it

Email: {torralba,fergus,bilf @csail.mit.edu becomes practical to store and manipulate datasets orders o



256x256

100 1

90
L 0.95
© 80
5 70 £ 09
> 60 Lo.ss5
§ 50 % |
“8 40 8_ 08. L K . - i waiting area dining room dining r
o) [0) ndow plant . I\ghéoms
g 30 : B 2 075 égplion des , orj,'cmre
O 4 —— Color image = hehaR ]

— Grayscale 0.7 5 . .
10 : Y; : c) Segmentation of 32x32 images
N N N : : . P bedside Shoes painti chair lamp lant _monitor center piece
03 16 a2 64 256 0°%0002 006 01 0.18 oo ".g. r "] D
Image resolution False positive rate u &
a) Scene recognition b) Car detection d) Cropped objects

Fig. 2. a) Human performance on scene recognition as a funofieesolution. The green and black curves show the performanccolor and grayscale
images respectively. For col®2 x 32 images the performance only drops B relative to full resolution, despite having 1/64th of thegls. b) Car
detection task on the PASCAL 2006 test dataset. The colootsl show the performance of four human subjects classifyimg tersions of the test data.
The ROC curves of the best vision algorithms (running on fafialution images) are shown for comparison. All lie below tkefgrmance of humans on
the tiny images, which rely on none of the high-resolutionsceeploited by the computer vision algorithms. ¢) Humans carecty recognize and segment
objects at very low resolutions, even when the objects itafsm can not be recognized (d).

magnitude bigger than those typically used in computerowisi that 32«32 color image’s contain enough information for scene

Correspondingly, we introduce, and make available to rebeas, recognition, object detection and segmentation (even when

a dataset of9 million unique 32 x 32 color images gathered from objects occupy just a few pixels in the image). As we will see

the Internet. Each image is loosely labeled with one of 75,06n Fig. 2, a significant drop in performance is observed when

English nouns, so the dataset covers all visual objectetadsis the resolution drops below 3%ixels. Note that this problem is

is in contrast to existing datasets which provide a spareeten distinct from studies investigating scene recognitiomgsvery

of object classes. short presentation times [11], [30], [33], [34]. Here, weear
The paper is divided in three parts. In Section 2 we invetgigainterested in characterizing the amount of informatiorilatée in

the limits of human recognition, establishing the minimasa- the image as a function of the image resolution (with no cairst

lution required for scene and object recognition. In Setgi®@ on presentation time).

and 4 we introduce our dataset of million images and explore  |n cognitive psychology, theist of the scene [30], [44] refers

some of its properties. In Section 5 we attempt scene anddbjgy a short summary of the scene (the scene category, and a

recognition using a variety of nearest-neighbor method® Wescription of a few objects that compose the scene). In atenp

measure performance at a number of semantic levels, obtginjision, the termgist is used to refer to a low dimensional

impressive results for certain object classes. representation of the entire image. Low dimensional glabalge
representation have been used to for scene recognition[RA]
Il. LOW DIMENSIONAL IMAGE REPRESENTATIONS [22], for providing context for object detection [38], [40fepth

. ) estimation [41] and image retrieval for computer graphi28][
Non-parametric approaches must cover the input space, 4A%his section, we show that this low dimensional represibon

our sch.eme relies on the dataset?@fmllllon images densely can rely on very low-resolution information and, therefocan

populating the manifold of natural images. We seek a compebcé computed very efficiently.

image representation in which the intrinsic dimensiogadit the

manifold is a low as possible, since that makes the manifold

easy to cover, while preserving the semantic content. One of

the simplest mechanisms to reduce the dimensionality of

image is by lowering its resolution. A second benefit of

low resolution representation is that the images can bexetle

efficiently and provide the storage savings essential falidg

with very large datasets. However, it is important that toe |

dimensional representation not loses important imagermétion.

In this section we study the minimal image resolution whith s

retains useful information about the visual world. In order

do this, we perform a series of human experiments on (i) sc

recognition and (ii) object recognition. Studies on facecpption

[1], [19] have shown that only6 x 16 pixels are needed for robust

face reCOQnItIQ.n' This remarkable performance is also doinna 132x32 is very very small. For reference, typical thumbnail sizes: a

scene recognition task [31]. Google images130 x 100), Flikr (180 x 150), default Windows thumbnails
In this section we provide experimental evidence showingo x 90).

n .
2. Scene recognition

We evaluate the scene recognition performance of humans as
the image resolution is decreased. We used a datagétsifenes
was taken from [12], [22], [32]. Each image was shown at one
of 5 possible resolutionsst, 162, 322, 642 and 2562 pixels)
and the participant task was to assign the low-resolutiatupe

}9 one of the 15 different scene categories (bedroom, saburb
ene” - . L : S .
industrial, kitchen, living room, coast, forest, highwayside city,



3000

mountain, open country, street, tall buildings, office, aate¥.
Fig. 2(a) shows human performance on this task when prasente Total, unique,

with grayscale and color imageof varying resolution. For & 2% no%ugggr(r; ;mages:
grayscale images, humans need aroee 64 pixels. When the B

images are in color, humans need oBfyx 32 pixels. Below this
resolution the performance rapidly decreases. Therefarmans
need around 3000 dimensions of either color or grayscake tat
perform this task. In the next section we show tBatx 32 color
images also preserve a great amount of local informationtiaaid 3 '
many objects can still be recognized even when they occugly ju

a few pixels. 500

altavista
ask
cydral
flickr
google
picsearch
webshots

N
o
o
o

Total number of words:
75,062

1500

Precision

Mean # images per word:
1,056

mber of keyword
N

50 2000 3000 0 _ 100 200 300
Number of images per keyword Recall (image rank)

B. Object recognition ’o 7000
Recently, the PASCAL object recognition challenge evadat
a large number of algorithms in a detection task for seveb@a Fig 3. statistics of the tiny images database. a) A histogoArmages
categories [10]. Fig. 2(b) shows the performances (ROCex)rof per keyword collected. Around 0 of keywords have very few images. b)
the best performing algorithms in the car classificatiork {i. Performance of the various engines (evaluated on handeldlgzbund truth).
is there a car present in the image?). These algorithms rmqlﬁgggt-le and Altavista are the best performing while Cydral &tidkr the
access to relatively high resolution images. We studiedathikty
of human participants to perform the same detection taskising
very low-resolution images. Human participants were showecognition tasks. One important advantage of very low!ggm
color images from the test set scaled to ha2epixels on the images is that it becomes practical to work with millions of
smallest axis, preserving their aspect ratio. Fig. 2(bshsome images. In this section we will describe a datasetiof tiny
examples of tiny PASCAL images. Each participant classifidchages.
between200 and 400 images selected randomly. Fig. 2(b) shows Current experiments in object recognition typically usé-10*
the performances of four human observers that particip@tied images spread over a few different classes; the largestablai
the experiment. Although around %Oof cars are missed, the dataset being one with 256 classes from the Caltech visionpgr
performance is still very good, significantly outperformithe [18]. Other fields, such as speech, routinely usé data points
computer vision algorithms using full resolution imagesisT for training, since they have found that large training setsvital
shows that even though the images are very small, they eontér achieving low errors rates in testing. As the visual wloi$
sufficient information for accurate recognition. far more complex than the aural one, it would seem naturasé u
Fig. 2(c) shows some representatB#? images segmented by very large set of training images. Motivated by this, andahiity
human subjects. It is important to note that taking objeats oof humans to recognize objects and scene82rx 32 images,
of their context drastically reduces recognition rate..F2gd) we have collected a database of nearl) such images, made
shows crops of some of the smallest objects correctly rezedn possible by the minimal storage requirements for each image
when shown within the scene. Note that in isolation, the abje
cannot be identified since the resolution is so low. Hence the collection procedure
recognition of these objects within the scene is almostreti
based on context. Clearly, sufficient information remains f
reliable segmentation. However, not all visual tasks casdbeed
using such low resolution images. The experiments in thitiee
have studied only recognition tasks — the focus of this paites
results in this section suggest tht x 32 color images are the
minimum viable size at which to study the manifold of natur
images. Any further lowering in resolution results in a cagrop A
in recognition performance.

We use Wordnétto provide a comprehensive list of all classes
likely to have any kind of visual consistency. We do this by
extracting all non-abstract nouns from the database, 25¢i6
them in total. In contrast to existing object recognitiortad@ts
which use a sparse selection of classes, by collecting isnéue
azilll nouns, we have a dense coverage of all visual forms.

We selected 7 independent image search engines: Altavista,
sk, Flickr, Cydral, Google, Picsearch and Webshots (athere
outputs correlated with these). We automatically downl@éld

the images provided by each engine for all 75,846 non-atistra
I11. A LARGE DATASET OF 32 x 32 IMAGES nouns. Running oves months, this method gathered 97,245,098

As discussed in the previous sectioBsy 32 color images con- images in total. Once intra-word duplicatesnd uniform images

tain the information needed to perform a number of challeggi (images with zero variance) are removed, this number iscediu
to 79,302,017 images from 75,062 words (arourid &f the

2Experimental details: 6 participants classified 585 colorgesaas be-
longing to one of the 15 scene categories from [12], [22],][3thages 4Wordnet [13] is a lexical dictionary, meaning that it gives themantic
were presented at 5 possible resolutiond, (B5?, 322, 642 and 256). Each relations between words in addition to the information ulsugiven in a
image was shown at 5 possible sizes using bicubic interpolat reduce dictionary.
pixelation effects which impair recognition. Interpolatiovas applied to the  5The tiny database is not just about objects. It is about ¢hieny that can
low-resolution image with 8 bits per pixel and color chanrelages were be indexed with Wordnet and this includes scene-level elassch as streets,
not repeated across conditions. 6 additional particippetformed the same beaches, mountains, as well as category-level classes aedspexific objects
experiment but with gray scale images. such as US Presidents, astronomical objects and Abyssiatan ¢

3100% recognition rate can not be achieved in this dataset as thate 6At present we do not remove inter-word duplicates since ifiéng them
perfect separation between the 15 categories. in our dataset is non-trivial.



keywords had no images). Storing this number of images &t fugﬂg ‘ : /’/ ot , o =
resolution is impractical on the standard hardware useduin 020:8 e : : .

experiments so we down-sampled the image82tx 32 as they f{

0.7 B "]
were gathered The dataset fits onto a single hard disk, occupyingg ,, 0 e
760Gb in total. The dataset may be downloaded friont p: P s = :
\\people.csail.mt.edu\torral ba\ti nyi mages. gm : : 0 L o .l
Fig. 3(a) shows a histogram of the number of images per clasg. 03 =70 /
Around 10% of the query words are obscure so no images can b% 02 0 g 3 .
found on the Internet, but for the majority of words a reasi@a % w=79,000000[| ol Ll L .
number of images are found. We place an upper limi@io 3 o PR 100 TN 102

images/word to keep the total collection time to a reasankgviel.
Although the gathered dataset is very large, it is not necégs ' ' '
representative of all natural images. Images on the Intdrage Fig. 4. Evaluation of the method for computing approximate esar

. . . . neighbors. (a) Probability that an image from the set of eraatest neighbors
their own biases (e.g. objects tend to be centered and faidy Sw . with N = 50, is inside the approximate set of nearest neighlfiys

in the image). However, web images define an interestingalistas a function of?. b) Number of approximate neighbora/) that need to

world for developing computer vision applications [14],5]1 be considered as a function of the desired number of exachbeig (V) in
[37] order to have a probability d§.8 of finding NV exact neighbors. Each graph
' corresponds to a different dataset size, indicated by ther code.

B. Characterization of labeling noise

The images gathered by the engines are loosely Iabeledtri]r? probability of finding similar images will increase. Theal of

that the visual content is often unrelated to the query wo}gls section Is to evgluate experlme_ntally how fas_t thlsbatnhty
.~increases as a function of dataset size. In turn, this telsow big

(for example, see Fig. 13). In Fig. 3(b) we quantify this gsin . o :
a hand-labeled portion of the datas@& animal classes were the dataset needs to be to give a robust recognition pe a

labeled in a binary fashion (belongs to class or not) and allrec
precision curve was plotted for each search engine. Therifif
performance of the various engines is visible, with Googie a AS a first step, we use the sum of squared differences (SSD)
Altavista performing the best and Cydral and Flickr the worst0 compare two images. We will define later other similarity
Various methods exist for cleaning up the data by removirf§€asures that incorporate invariances to translationssealihg.
images visually unrelated to the query word. Berg and Forsyl he SSD between two imagés and /> is:

[6] have shovyn a variety of effective methods for doing thithw D= Z (I (2, y, ¢) — In(z, 9, c))? 1)
images of animals gathered from the web. Berg et al. [4] skdowe P

how text and visual cues could be used to cluster faces oflpeop
from cluttered news feeds. Fergus et al. [14], [15] have shtwe
use of a variety of approaches for improving Internet imaggach
engines. Li et al. [25] show further approaches to decregdsibel

A. Distribution of neighbors as a function of dataset size

Each image is normalized to have zero mean and unit fiorm
Computing similarities among9x 107 images is computationally
expensive. To improve speed, we index the images using #te fir

. . 7 . . ._
noise. However, due to the extreme size of our dataset, ibtis r'}g principal components of the.9 x 10" images (9 is the maxi

practical to employ these methods. In Section 5, we show tHaHm number of components per imagt; such that the entire index
reasonable recognition performances can be achievedteehpi structure can be held_ in memory). Thef prope_rty of the power
high labeling noise. spectrum of natural images means that the distance between t

images can be approximated using few principal compongves.
compute the approximate distanbé,g = °_, (v1 (n)—va(n))?,
wherew; (n) is then™" principal component coefficient for th&'
Despite32 x 32 being very low resolution, each image lives inmage, and” is the number of components used to approximate
a space 08072 dimensions. This is a very large space — if eacthe distance. We defingy as the set ofV exact nearest neighbors
dimension has bits, there are a total afo™%° possible images. and$,; as the set ofi/ approximate nearest neighbors. Fig. 4(a)
This is a huge number, especially if we consider that a humandhows the probability that an image, of indigxXrom the setSy
a 100 years only gets to see'' frames (at 30 frames/second).is also insideS,;: P(i € Syli € Sx). The plot corresponds to
However, natural images only correspond to a tiny fractibn v = 50. Fig. 4(b) shows the number of approximate neighbors
this space (most of the images correspond to white noisd)it@ (17) that need to be considered as a function of the desired numbe
natural to investigate the size of that fraction. A numbestoflies of exact neighborsX) in order to have a probability of.8 of
[8], [23] have been devoted to characterize the space ofralatufinding N exact neighbors. As the dataset becomes larger, we
images by studying the statistics of small image patcheweder, need to collect more approximate nearest neighbors in dmder
low-resolution scenes are quite different to patches etdthby have the same probability of including the ficst exact nearest
randomly cropping small patches from images. neighbors. These plots were obtained from 200 images fochwhi
Given a similarity measure, the question that we want to @nswye computed the exact distances to all thex 107 images.
is: how many images are needed to be able to find a similar imageFor the experiments in this paper, we use the following pro-
to match any imput image®s we increase the size of the datasetedure. First, using exhaustive search we find the close8026

IV. STATISTICS OF VERY LOW RESOLUTION IMAGES

"We store a version of the images that maintained the originmagatio 8Normalization of each image is performed by transforming the inatp
(the minimum dimension was set at 32 pixels) and a link to theimalg a vector concatenating the three color channels. The narat@in does not
thumbnail and high resolution URL. change image color, only the overall luminance.
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Fig. 6. Image matching using distance mettgssg Dwarp and Dspjtt. After
transforming each neighbor by the optimal transformation; shaglasses
always results in a poor match. However, for the car exampke nthtched
image approximates the pose of the target car.
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Fig. 5. Exploring the dataset usingssq (@) Cumulative probability that the
nearest neighbor has a correlation greater thaBach of the colored curves
shows the behavior for a different size of dataset. (b) Gsession of figure
]

(a) plots the probability of finding a neighbor with corrédat > 0.9 as a
function of dataset size. (c) Probability that two images @duplicates as a
function of pixel-wise correlation. (d) Probability thad images belong to
the same category as a function of pixel-wise correlatiorpl{date images
are removed). Each curve represents a different human labeler

Probability for same category

Probability for image duplicates

image$ per image. From Fig. 4(a) we know that more thar¥%80
of the exact neighbors will be part of this approximate nbigh
set. Then, within the set of 16,000 images, we compute thetexa
distances to provide the final rankings of neighbors.

Fig. 5 shows several plots measuring various propertiebi@s tig. 7.  Sibling sets from 79,302,017 images, found with diseametrics
size of the dataset is increased. The plots use the norrdaliZeésss and Dsii. Dshitt provides better matches thabssq
correlation p between images (note thadZ, = 2(1 — p)). In
Fig. 5(a), we show the probability that the nearest neightas ) ] N
a normalized correlation exceeding a certain value. EachecuAS the normalized correlation exceedss, the probability of
corresponds to a different dataset size. Fig. 5(b) showsticae Pelonging to the same class grows rapidly. Hence a simple K-
section through Fig. 5(a) at the correlations and0.9, plotting nearest-neighbor approach might be effective with our size
the probability of finding a neighbor as the number of image&ataset. We will explore this further in Section V.
in the dataset grows. ¢From Fig. 5(b) we see that a third of
the images in the dataset are expected to have a neighbor visthimage similarity metrics

correlation> 0.8. S . We can improve recognition performance using better measur
Many images on the web appear multiple times. Fig. 5(¢¥ image similarity. We now introduce two additional sinmitgt

shows the probability of the matched image being a duplicafgeasures between a pair of imagsand I, that incorporate

removed manually all the image pairs that were duplicates.

In Fig. 5(d) we explore how the plots shown in Fig. 5(a) & (b)
relate to recognition performance. Three human subjetis|éa
pairs of images as belonging to the same visual class or not Diarp = min > (Ih(x,y, ¢) — TylLa(x,y, c)))°
(pairs of images that correspond to duplicate images areved). z,y,c
The plot shows the probability that two images are labeled as |n this expression, we minimize the similarity by transferm
belonging to the same class as a function of image similarity ing 7, (horizontal mirror; translations and scaling up 10

pixel shifts) to give the minimum SSD. The transformation

9The exhaustive search currently také$ seconds per image using the parameter® are optimized by gradient descent [28].

principle components method. Undoubtedly, if efficient ddtacsures such " ; P ; .
as a kd-tree were used, the matching would be significantlerfalister » We allow for additional distortion in the images by shifting

and Stewenius [29] used related methods to index over 1 milfitages in every pixel individu_ally W_ithin as by 5 window to give _
~ 1sec. minimum SSD. This registration can be performed with

e In order to incorporate invariance to small translations,
scaling and image mirror, we define the similarity measure:
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Fig. 8. As we increase the size of the dataset, the qualitheféetrieved set Fig. 9. This figure shows two examples. (a) Query image. (b} Esof 80

increases dramatically. However, note that we need to isertize size of the neighbors found usin@sit. (c) Ground truth Wordnet branch describing the

dataset logarithmically in order to have an effect. Theseltesre obtained content of the query image at multiple semantic levels. (d) ®ed-formed

using Dghift @s a similarity measure between images. by accumulating branches from all 80 neighbors. The numbeaah exode
denotes the accumulated votes. The red branch shows the widdke most
votes. Note that this branch substantially agrees with thedh for vise and
for person in the first and second examples respectively.

more complex representations than pixels (e.g., Berg and

Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due ® th Fig. 1 shows examples of query images and sets of neighboring
low resolution of the images. images, from our dataset of 79,302,017 images, found usipg.
A In the rest of the paper we will call the set of neighboring gas
Dy = _min Z (It (z,y,¢) — Io(x + Da,y + Dy,¢))*>  a sibling set Fig. 8 shows the effects of increasing the dataset
Doyl<w g g size on the quality of the sibling set. As we increase the size
In order to get better matches, we initializg with the the dg_taset, the quality of the rgtrieved set increasesaiiegﬂy.
. - S Specifically, note the change in performance when using only
warping parameters obtained after optimization 0farp, . ical ber used in image ratriev
b = Ty[Io). around 10,000 images (a typlc_a number us ge ret
2= "el72 research) compared 1®°. Despite the simplicity of the similarity
Fig. 6 shows a pair of images being matched using the 3 metriggasures used in these experiments, due to the large siae of o
and shows the resulting neighbor images transformed by tHetaset, the retrieved images are very similar (hesiblng9 to
optimal parameters that minimize each similarity measiitee the target image. We will now quantify this observation ir th
figure shows two candidate neighbors: one matching the ttargext section.
semantic category and another one that corresponds to agwron
match. For Dwarp and Dghir We show the closest manipulated
image to the targetDwarp l0Oks for the best translation, scaling )
and horizontal mirror of the candidate neighbor in order mich A Wordnet voting scheme
the target.Dghire further optimizes the warping provided Bywarp We now attempt to use our dataset for object and scene
by allowing pixels to move independently in order to minimiz recognition. While an existing computer vision algorithmuéd
the distance with the target. Fig. 7 shows two examples bé adapted to work 082 x 32 images, we prefer to use a simple
qguery images and the retrieved sibling set, out of 79,302,0hearest-neighbor scheme based on one of the distance snetric
images, usingDssq and Dspit. Both measures provide very goodDssq Dwarp OF Dshiri. Instead of relying on the complexity of
matches, butDghr returns closer images at the semantic levethe matching scheme, we let the data to do the work for us:
This observation will be quantified in Section V. the hope is that there will always be images close to a given

V. RECOGNITION
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Fig. 11. ROC curves for people detection (not localizationjnages drawn
randomly from the dataset of 79 million. The performance is &fiom of the
person’s size in an image, the numbers indicating the fraatiothe image
occupied by the head.

separately. Instead, using the Wordnet hierarchy, we can
perform classification at a variety of different semantic
levels. So instead of just trying to recognize the noun
“yellowfin tuna”, we may also perform recognition at the
level of “tuna” or “fish” or “animal”. This is in contrast to
current approaches to recognition that only consider desjng
manually imposed, semantic meaning of an object or scene.
o If classification is performed at some intermediate sersanti
level, for example using the noun “person”, we need not only
consider images gathered from the Internet using “person”.
Using the Wordnet hierarchy tree, we can also draw on
all images belonging to nouns whose hypernyms include
“person” (for example, “arithmetician”). Hence, we can

Fig. 10. Some examples of test images belonging to the “persoaté of the
Wordnet tree, organized according to body size. Each pawslthe query
image and the 25 closest neighbors out@fmillion images usingDspst With

massively increase the number of images in our training
set at higher semantic levels. Near the top of the tree,
however, the nouns are so generic (e.g. “object”) that the

32 x 32 images. Note that the sibling sets contain people in similaepp

with similar clothing to the query images. child images recruited in this manner have little visual

consistency, so despite their extra numbers may be of little
use in classificatioft.
query image with some semantic connection to it. The goal of Our classification scheme uses the Wordnet tree in the fellow
this section is to show that the performance achieved cashmatng way. Given a query image, the neighbors are found usinteso
that of sophisticated algorithms which use much smallénitig ~ Similarity measure. Each neighbor in turn votes for its lefan
sets. within the Wordnet tree. In this manner votes are accumdlate
An additional factor in our dataset is the labeling noisec@pe across a range of semantic levels and the effects of theirigpbel
with this we propose a voting scheme based around the Wordneise are averaged out over many neighbors. Classificatin m
semantic hierarchy. be performed by assigning the query image the label with the
Wordnet [13] provides semantic relationships between thgost votes at the desired height (i.e. semantic level) withe
75,062 nouns for which we have collected images. For sintyplic tree, the number of votes acting as a measure of confidence in
we reduce the initial graph-structured relationships leefmwords the decision.
to a tree-structured one by taking the most common meaning ofin Fig. 9(a) we show a query image of a vise from our test
each word. The result is a large semantic tree whose nodssstorset. In Fig. 9(b) we show the first 16 images from thie= 80
of the 75,062 nouns and their hypernyms, with all the leaedisgp nearest neighbors usinDshir over the79 million images. Note
nouns®. Fig. 9(c) shows the unique branch of this tree belongiri§at many of the neighbors, despite not being vices, are $amde
to the nouns “vise” and “chemist”. The Wordnet tree providesf device or instrument. In Fig. 9(c) we show the Wordnet bran

two benefits:
. . _ The use of Wordnet tree in this manner implicitly assumes thaasgic
« Recognition of a test image can be performed at multipkgd visual consistency are tightly correlated. While this fmhige the case

semantic levels. Given the large number of classes in oiar certain nouns (for example, “poodie” and “dachshundt)isi not clear

e i s [P w true this is in general. To explore this issue, we cowlstal a poster
dataset (75,062) and their highly specific nature, it is "ansisting of 75,062 tiles. Each title is the arithmetic ager of the first 50

practical or desirable to try and classify each of the clsiSsgages belonging to a given noun. The titles are arrangedmitre poster
according to their semantic meaning, using the Wordnet tréesgalate the 2-

109Note that not all nouns are leaf nodes since many of the 75,068sare
hypernyms of other nouns. E.g. “yellowfin tuna” and “fish” ameotnouns.
The former is a leaf node, while the latter is in intermediatdensince “fish”
is a hypernym of “yellowfin tuna”.

D space. As the distance between two tiles relates to theiasgc similarity,
the relationship between semantic and visual worlds mayyebsijudged by
the viewer. The poster may be viewed lat:t p: \\ peopl e.csail.nit.
edu\torral ba\tinyi nages.



100 100 and size of the body in the image, which varies considerably i
8o} - - 8o} - - the examples.
_5 _5 To classify an image as containing people or not, we use
2 60 —— g 6o the scheme introduced in Section V-A, collecting votes from
o == Dyarp 2 the 80 nearest neighbors. Note that the Wordnet tree all@vs u
0. 401 [ ==Dsnit o 40 0 make use of hundreds of other words that are also related to
20l 20 790,000 “person” (e.g. artist, politician, kid, taxi driver, etcJo evaluate
— performance, we used two different sets of test images. The fi
05 5‘0 00 % — =0 700 consisted of a random sampling of images from the dataset. Th
Recall Recall second consisted of images returned by Altavista using tieeyq
a) Person detection “person”.
100 100 1) Evaluation using randomly drawn image4:125 images
ol ol were randomly drawn from the dataset of 79 million (Fig. 10
s s shows 6 of them, along some of their sibling set). For evanat
D 60} - ® 60} - purposes, any people within the 1125 images were manually
8 8 segmentetf.
o 40 o 40 Fig. 11 shows the classification performance as the size of
the person in the image varies. When the person is large in
20 - - 20} - - . S
the image, the performance is significantly better than witen
0 : 0 ‘ is small. This occurs for two reasons: first, when the person i

50 100 0 50 100
Recall Recall

b) Person detection (head size > 20%)

large, the picture become more constrained, and hence dindin
good matches becomes easier. Second, the weak labelsaasdoci
with each image in our dataset typically refer to the largdgect
Fig. 12, (a) Recall o . e d o (ocalization) in the image.
1g. . a, ecall-precision curves for people detectioot (ocalization H Tl _ : -
in images drawn randomly from the dataset of 79 million. (b) As (@@ but . F.Ig. 12 shows precision reca“.curves as a function of heze s
for the subset of test images where the person’s head occupi®d of the ~ Similarly measure and dataset size. As expected, the peafure
image. The left column compares the three different similarityrice using is superior when the person is large in the image and the
all 79 millions images. The black line indicates chance-lgwetformance. fyll 79 million images are used. Th®gp Similarity measure
The graphs on the right compare performance udingi: as a function of tperf bothD dD s
dataset size. outpertorms bothssq and Dwarp.
2) Evaluation using Altavista image®ur approach can also
_ ' be used to improve the quality of Internet image search e&sgin
for “vise”. In Fig. 9(d) we show the accumulated votes frome thwe gathered 1018 images from Altavista image search usiag th
neighbors at different levels in the tree, each image voiiith  keyword “person”. Each image was classified using the amproa
unit weight. For clarity, we only show parts of the tree withelst described in Section V-A. The set of 1018 images was then
three votes (the full Wordnet tree has, 815 non-leaf nodes). re-ordered according to the confidence of each classifitatio
The nodes shown in red illustrate the branch with the mosts/ot Fig. 13(a) shows the initial Altavista ranking while Fig. (b3
which matches the majority of levels in the query image bhanghows the re-ordered set, showing a significant improverirent
(Fig. 9(c)), demonstrating how precise classificationslmamade quality.
despite significant labeling noise and spurious siblings. ~ To quantify the improvement in performance, the Altavista
Other work making use of Wordnet includes Hoogs and Collingages were manually annotated with bounding boxes aromyd a
[21] who use it to assist with image segmentation. While ngfeople present. Out of the 1018 images, 544 contained people
using Wordnet explicitly, Barnard et al. [2] and Carbonedtcal. and of these, 173 images contained people occupying more tha

[7] learn models using both textual and visual cues. 20% of the image.
. Using this scheme we now address the task of cIassﬁymg,:ig_ 14 shows the precision-recall curves for the people de-
images of people. tection task. Fig. 14(a) shows the performance for all A

_ images while Fig. 14(b) shows the performance on the subset
B. Person detection where people occupy at least Z0of the image. Note that the

In this experiment, our goal is to label an image as contginifiaw Altavista performance is the same irrespective of theges’
a person or not, a task with many applications on the web agi@e (in both plots, by % recall the precision is at the level
elsewhere. A standard approach would be to use a face dete®fochance). This illustrates the difference between inugxan
but this has the drawback that the face has to be large enougfintage using non visual versus visual cues. Fig. 14 also shows
be detected, and must generally be facing the camera. Wieigeet the results obtained when running a frontal face detéttane
limitations could be overcome by running multiple detest@ach run the face detector on the original high-resolution insage
tuned to different view (e.g. profile faces, head and shag|deNote that the performance of our approach working3anx 32
torso), we adopt a different approach. images is comparable to that of the dedicated face detector o
As many images on the web contain pictures of people, a large
fraction (23%) of the 79 million images in our dataset have people **The images and segmentations are availablehat:p: / /| abel me.
in them. Thus for this class we are able to reliably find a highl's2, Le[n thi ;d”/ browseLabel M/ stati c_web_tinyi mges_
consistent set of neighbors, as shown in Fig. 10. Note thatt mo 13the detector is the OpenCV implementation of the Viola and Sone
of the neighbors match not just the category but also thetimta boosted cascade [26], [43].



a) Altavista ranking
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b) Sorted by the tiny images

Fig. 13. (a) The first 100 images returned by Altavista whemgishe query “person” (out of 1018 total). (b) The first 100 ireagfter re-ordering using
our Wordnet voting scheme with the 79,000,000 tiny imagess Peirformance improvement is quantified in Fig. 14.
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Fig. 14. Evaluation of the results from Fig 13, comparing tleefgrmance
of the initial Altavista ranking with the re-ordered imagesing the Wordnet
voting scheme and also a Viola & Jones-style frontal faceatete(a) shows
the recall-precision curves for all 1018 images gatherechfdtavista. (b)
shows curves for the subset of 173 images where people octugssa 20%

40 60 80 100
Recall
a)

of the images.

20 40 60 80 100
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C. Person localization

While the previous section was concerned with an object
detection task, we now address the more challenging problem
of object localization. Even though the tiny image datasest hot
been labeled with the location of objects in the images, we ca
use the weakly labeled (i.e. only a single global label is/joled
for each image) dataset to localize objects.

Much the recent work in object recognition uses explicit
models that labels regions (or pixels) of images as being ob-
ject/background. In contrast, we use the tiny image dattset
localize without learning an explicit object model. It isportant
to emphasize that this operation is performed without thedne
for manual labeling of images: all the information comesniro
the loose text label associated with each image.

The idea is to extract multiple putative crops of the high
resolution query image (Fig. 15a-c). For each crop, we eesiz
it to 32 x 32 pixels and query the tiny image database to obtain
it's siblings set (Fig. 15.d). When a crop contains a persoa,
expect the sibling set to also contain people. Hence, the mos

high resolution images. For comparison, Fig. 14 also shdws tprototypical crops should get have a higher number of votes
results obtained when running the face detector on lowliéso
images (we downsampled each image so that the smallestasist be evaluated, we first segment the image using normalized
32 pixels, we then upsampled the images again to the origirwaits [9], producing around 10 segments (segmentation fenper
resolution using bicubic interpolation. The upsampling@ion on the high resolution image). Then, all possible combameti
was to allow the detector to have enough resolution to be tableof contiguous segments are considered, giving a set of ipaitat
scan the image.). The performances of the OpenCV face deteatrops for evaluation. Fig. 15 shows an example of this proced
drop dramatically with low-resolution images.

for the person class. To reduce the number of crops that need

Fig. 16 shows the best scoring bounding box for images fraen th
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Fig. 15. Localization of people in images. (a) input image,Nbymalized- 1
cuts segmentation, (c) three examples of candidate cropshé¢d$ nearest
neighbors of each crop in (c), accompanied by the number ofsViaiethe o 0.8 80
person class obtained using 80 nearest neighbors unde@stypineasure & -
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Fig. 17. Classifying between pictures of scenes and objéajsExamples
of images classified as scenes. The red bounding box denotass#ication
error. (b) The set of images having the fewest “location” go{e) ROC curve
evaluation on test set of 1125 randomly drawn tiny images, a€lwh85 are
scenes. (d) Corresponding precision-recall curve.

images. With the dataset of 1125 randomly drawn tiny images,
of which 185 are scenes, we evaluate the performance at scene
versus object classification, the results being shown in Eiy

We can also perform classification at a finer semantic level. |
Fig. 18, we attempt to classify the 1125 randomly drawn insage
(containing objects as well as scenes) into “city”, “riveftfield”

and “mountain” by counting the votes at the correspondingdeno

of the Wordnet tree. Scene classification for the 32x32 irmage
performs surprisingly well, exploiting the large, weaklgbkled

1018 image Altavista test set. database.

Fig. 16. Localization examples. Images from the 1016 Altavssit overlaid
with the crop that gave the highest “person” score. See taxtétails.

D. Scene recognition E. Automatic image annotation

Many web images correspond to full scenes, not individual Here we examine the classification performance at a variety
objects. In this section we use our dataset to classify imagésemantic levels across many different classes, not gsple.
between the two; that is to decide that an image is a scefRer evaluation we use the test set of 1125 randomly drawn tiny
and not a picture of an object. Many nodes in the Wordnet trégmages, with each image being fully segmented and annotated
refer to scenes and one of the most generic is “location”jngav with the objects and regions that compose each image. To give
children that include “landscape”, “workplace”, “city” dnso a distinctive test set, we only use images for which the targe
on. Using the Wordnet voting scheme of Section V-A, we coumtbject is absent or occupies at le@st; of the image pixels.
the number of votes accumulated at the “location” node of tHdsing the voting tree described in Section V-A, we classified
Wordnet tree to classify a given query. Hopefully, scenegesa them usingK = 80 neighbors at a variety of semantic levels. To
will have a high count, with the reverse being true for objecimplify the presentation of results, we collapsed the \Wetdree
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VI. OTHER APPLICATIONS

In this section we discuss other applications, beyond neieog
tion, that rely on a dense sampling of the manifold of natural
images. We present two applications: (i) image colorizatid
gray scale images; (ii) detecting image orientation.

field mountain

2

A. Image colorization

=]
K

detection rate

The goal of image colorization is to recover the missing colo
information from a gray scale image. This task is generaillyed
by having a user specify colors that the different imageaegi
will have and then using a diffusion process to propagatedhar
to the rest of the image. Given a gray scale query image, we
propose to use the sibling set to define a distribution of iptess
colors for it, with no human labeling. The assumption is that
images in a neighborhood contain similar objects arranged i
similar locations, thus the colors should be exchangeableng
the images in the sibling set. Clearly, this will only work &rh
the neighborhood of the query image is densely populatat;ehe

<]
2

05 05
false alarm rate false alarm rate

Fig. 18. Scene classification at a finer semantic level thanIHgising the
randomly drawn 1125 image test set. Note that the classifité&imountain”
vs all classes present in the test set (which includes margskif objects),
not “mountain” vs “field”, “city”, “river” only. Each quadranhshows some
examples of high scoring images for that particular scengyoagealong with
an ROC curve (red = 7,900 image training set; yellow = 790,008ges; blue
= 79,000,000 images).

1 1 1

Organism 0.75 Person 0.87 | Insect 0.82 large amounts of images will be required.
- Adifact0.71 r Animdl 0.75 1 r Bid0.70; 4 Fig. 21 shows the various stages of our approach. We start
Location 081 : Plant life 0.79 Fish 0.86: . : : . P
0.9t Feod 673, 1 0o L e 0.9k Croes . {1 with a gray scale image (first row). We search in the tiny image
g | Geological i | Mountain 0.86 " A | Fowero70 | @ database for similar images using only gray scale inforomati
50 B e s 77 o o RVEr086 . 7] (second row). Then, for each of the retrieved siblings, werdo
Q | bngo75: B ‘ load the original high resolution color image (third row)h&
& | s ] ] 1 idea is to use the colors from the sibling images to colorize t
© 07 — . E { gray scale input image. One possible approach is to compute
< _ i | the arithmetic average of the color sibling images (as shown
06l iy | | in the fourth row). The color channelg & b (from the Lab
B I e transformed image) for each pixel from the average siblingge
L . | ===Dshift | Lo ] Lo ] . . . . I
oo are copied to the input image, so colorizing it. When theisgd
21:03 s %_5103 s 21?03 YRR are very .S|m|I§1r to one another, thel average appears shatp an
# of images # of images # of images the colorized image is compelling (fifth row). Alternatiyelwe
can copy the color channels from individual siblings to e
Fig. 19. Classification at multiple semantic levels using 1i&8domly multiple plausible colorizations of the input image (sixtw).

The user can then select the best one. While simple, our appro
has its limitations: by directly copying the color infornai
across, the edges in the input image are not respected. lthweu
possible to improve the quality of the results by using a oéth
such as Levin et al. [24] which would take color cues from the
sibling images and propagate within the input image in areedg
aware manner.

The last column of figure 21 illustrates the sensibility oisth
approach to the manifold of natural images. In this examipie,
input is a picture upside-down. As this is not a typical pietu
orientation, the image is slightly outside of the manifofdypical

S natural images and the retrieved sibling set is not consiste
datasets (“fish”, “bird”, “car”).

In Fig. 19 we show the average ROC curve area (across wor('?ﬂ%,more' The average sibling image is not as sharp as the one

. ined when the picture was in th rr rientati Th

at that level) at each of the three semantic levelgiggand Dspis ained when the pictu € was .t € co .ect.o € tatpne

. . . . rocedure does not provide plausible colorizations. Thpsns
as the number of images in the dataset is varied. Note that i . . . "

e . . the door to automatically predict what is the correct omion
the classification performance increases as the numberagem . . : .
. o R of a picture as discussed in the next section.
increases; (ii)Dshirt outperformsDssg (iii) the performance drops
off as the classes become more specific. o ) .
By way of illustrating the quality of the recognition achezy B- Detecting image orientation

by using the 79 million weakly labeled images, we show in Although it is easy for us to tell when a picture it is upside
Fig. 20, for categories at three semantic levels, the imagdswn, currently there is no satisfactory way of doing thutoau
that were more confidently assigned to each class. Note thaatically. We present a simple approach using our largeséata
despite the simplicity of the matching procedure presehi@, of tiny images. We argue is that when an image has the wrong
the recognition performance achieves reasonable levels &r orientation, it becomes harder to find good neighbors since i
relatively fine levels of categorization. starts to move away from the manifold defined by the set of

drawn tiny images. Each plot shows a different manually defigemhantic

level, increasing in selectivity from left to right. The s represent the
average (across words at that level) ROC curve area as éunofi number

of images in the dataset (refissq blue=Dgphir). Words within each of the
semantic levels are shown in each subplot, accompanied by @ durve

area when using the full dataset. The red dot shows the eegbgetrformance
if all images in Google image search were usea (billion), extrapolating

linearly.

by hand (which had9 levels) down ta3 levels corresponding to
one very high level (“organism”, “artifact”), an intermexde level

(“person”, “vehicle”, “animal”) and a level typical of exisg
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Fig. 20. Test images assigned to words at each semantic levelirifages are ordered by voting confidence. The number indita&etotal number of

positive examples in the test set out of the 1148 images. Ttw oblthe bounding box indicates if the image was correctlyignesd (black) or not (red).
The middle row shows the ROC curves for three dataset sizels<(ré,900 image training set; yellow = 790,000 images; blue £0®000 images). The
bottom row shows the corresponding precision-recall gsaph
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Fig. 21. Automatic image colorization. From top to bottom, fis#, gray scale input image, second r@&,x 32 gray scale siblings, third row, corresponding
high resolution color siblings, fourth row, average of thaor siblings, fifth row, input image with color from the avem sixth row, candidate colorizations
by taking the color information from four different siblings
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correctly oriented (i.e., camera parallel to the horizom)inatural
images. Thus the correct orientation may be found by selgcti
the image orientation that maximizes the typicality of thege.
Fig. 22 shows three examples of images being evaluated at fo
possible orientations. The number on top of each image is t
average correlation ¢ Dwarp/2) to the 50 closest neighbors. The
red boundary denotes the preferred orientation, namelyottee
with the highest average correlation. Fig. 23 shows a gtsive 0.86
evaluation using the test set of 1125 images randomly drawn ﬁ
&,

from the tiny images (as introduced in Section V-B.1) being
classified into one of four possible orientations. Many ie®@n
this test set are ambiguous in terms of orientation, makiregnt _0.56
hard to classify correctly (see Fig. 23(a)). Thus, if onlypgh o
images that are classified with high confidence are consider 4 J
the performance is much improved (see Fig. 23(b)).

Our procedure differs dramatically from that of Vailaya et
al. [42] who vector-quantize image patches using a pre-buil o ) ) o
codebook and modelthe resuing representation usingsiic 1% 22, AOTc mage orentaton deernaton, For et rce
models to predict image orientation. Instead, our non4P&LEC  of each image is the average correlatidn-{ Dyarp/2) to the 50 closest
approach relies entirely on a large dataset to give us anraecu neighbors. The red boundary denotes the preferred orientafhe last
measure of the distance from the manifold of natural images. &xample is an error.

VII. CONCLUSIONS

This paper makes five important contributions:
1) Compelling psychophysical experiments showing t2ak

32 is the minimum color image resolution at which object
" . 100 " " " " 100
and scene recognition can reliably be performed. ; ‘ ‘ ‘
2) The compilation of a dataset of 79 milligi2 x 32 color 80} - 80} -
images, each with a weak text label and link to the original g g
. . . L . 60} - o607} -
high-resolution image, which is available for download. g =
3) The characterization of the manifold 62 x 32 images, %549 540
showing that Internet sized datasetd¥-10°) yield a & 8
reasonable density over the manifold of natural images, at 20}- 20
least from a categorization perspective. 0 0 :
4) The demonstration that simple non-parametric methads, i 0 90 180 -90 0 90 180 -90
Relative orientation Relative orientation

conjunction with the tiny image dataset, can give reasanabl
performance on object recognition tasks. For classes which
are richly represented, such as people, the performance is
comparable to leading class-specific detectors.

5) The novel application of the tiny image dataset to a variet . : - !
of other problems in computer vision, such as image ) _
colorization and orientation determination. ' @ _—

Although the paper explores many topics, it has one key theme (& | Sl J s b

that of using non-parametric methods in conjunction withyve - @ e
large collections of images to tackle object and scene ratiog.
Previous usage of non-parametric approaches in recogriawe
been confined to more limited domains (e.g. pose recognition
[36]) compared with the more general problems tackled is thi
paper, the limiting factor being the need for very large antsu

of training data. The results obtained using our tiny imageset Fig- 23. (a) Distribution of assigned orientations, refatio the correct one,
e set of 1125 randomly drawn images from the tiny image das@b

. . . i
are an encouraging sign that the dat_a requirements may ”9@% of the images were assigned the correct orientation. Moshefetrors
insurmountable. Indeed, search engines such as Googl& inggrespond to selecting an upside down version of the righagie orientation.

another 1-2 orders of magnitude more images, which could ye(b) Distribution of assigned image orientations for #&% of the test set with
a significant improvement in performance. highest confidence. Ir_1 this por_tion c_)f the test set, &1.6f the_z images are
While the Internet offers a plentiful supply of visual dataa§5|gned the_(_:orrgect image orientation. (c) Examples of t_harnlla@es with

p pply highest classification confidence. (d) Examples of the 16 ismagth lowest

there are drawbacks to using it as a source. First, the highssification confidence. Images with a red boundary arerseridote that
noise level in image |abe||ings make it difficult to direc]ﬂs&in many of these images have no distinct orientation so are haaatsify
models without some method for ignoring the numerous astlie °ect-

Although the Wordnet scheme we propose gives some benefit,

the results of all our experiments would undoubtedly be much



improved if there were less labeling noise. Second, the @rag17]
themselves have peculiar statistics, different to otherees of
images (e.g. television or the view through our own eyesgims
of both their content and their class-distribution. For repée, [19]
many images contain centered views of objects. Also, theze a
a disproportionate number of images containing people en 0]
Internet. Although this facilitates person detection, snatasses 21]
are not well represented in our tiny image dataset. It would
therefore be interesting to explore large collections ohgms [22]
from alternative sources, such as video.

The technical methods used in this paper are simple and mgrg)
complex ones are likely to improve performance in a number of
areas. Better similarity metrics might give a significantrease
in the effective size of the dataset. Machine learning tepies
could be effective in reducing labeling noise, which in tuwould  [25]
improve performance. Also, efficient search methods woule g
real-time recognition performance. [26]

In summary, all methods in object recognition have two com-
ponents: the model and the data. The vast majority of theteffo [27]
recent years has gone into the modeling part — seeking tdageve
suitable parametric representations for recognition. dntast, 28
this paper moves in the opposite direction, exploring hoe th
data itself can help to solve them problem. We feel the resnlt
this paper warrant further exploration in this direction.

(18]

(24]

(30]
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