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80 million tiny images: a large dataset for
non-parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman

Abstract— With the advent of the Internet, billions of images
are now freely available online and constitute a dense sampling
of the visual world. Using a variety of non-parametric methods,
we explore this world with the aid of a large dataset of 79,302,017
images collected from the Internet.

Motivated by psychophysical results showing the remarkable
tolerance of the human visual system to degradations in image
resolution, the images in the dataset are stored as 32× 32
color images. Each image is loosely labeled with one of the
75,062 non-abstract nouns in English, as listed in the Wordnet
lexical database. Hence the image database gives a comprehensive
coverage of all object categories and scenes. The semantic
information from Wordnet can be used in conjunction with
nearest-neighbor methods to perform object classification over
a range of semantic levels minimizing the effects of labeling
noise. For certain classes that are particularly prevalent in
the dataset, such as people, we are able to demonstrate a
recognition performance comparable to class-specific Viola-Jones
style detectors. We also demonstrate a range of other applications
of this very large dataset including automatic image colorization
and picture orientation determination.

Index Terms— Object recognition, tiny images, large datasets,
Internet images, nearest-neighbor methods.

I. I NTRODUCTION

With overwhelming amounts of data, many problems can be
solved without the need for sophisticated algorithms. One exam-
ple in the textual domain is Google’s “Did you mean?” tool which
corrects errors in search queries, not through a complex parsing
of the query but by memorizing billions of query-answer pairs
and suggesting the one closest to the users query. In this paper,
we explore a visual analog to this tool by using a large dataset
of 79 million images and nearest-neighbor matching schemes.

When very many images are available, simple image indexing
techniques can be used to retrieve images with object arrange-
ments to the query image. If we have a big enough database
then we can find, with high probability, images visually close
similar to a query image, containing similar scenes with similar
objects arranged in similar spatial configurations. If the images in
the retrieval set are partially labeled, then we can propagate the
labels to the query image, so performing classification.

Nearest-neighbor methods have been used in a variety of com-
puter vision problems, primarily for interest point matching [5],
[17], [27]. They have also been used for global image matching
(e.g. estimation of human pose [36]), character recognition [3],
and object recognition [5], [35]. A number of recent papers have
used large datasets of images in conjunction with purely non-
parametric methods for computer vision and graphics applications
[20], [39].

The authors are with the Computer Science and Artificial Intelligence Lab
(CSAIL) at the Massachusetts Institute of Technology.
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Fig. 1. 1st & 3rd columns: Eight32 × 32 resolution color images. Despite
their low resolution, it is still possible to recognize most of the objects and
scenes. These are samples from a large dataset of108 32 × 32 images we
collected from the web which spans all visual object classes. 2nd & 4th

columns: Collages showing the16 nearest neighbors within the dataset to each
image in the adjacent column. Note the consistency between theneighbors
and the query image, having related objects in similar spatialarrangements.
The power of the approach comes from the copious amount of data,rather
than sophisticated matching methods.

The key question that we address in this paper is: How big
does the image dataset need to be to robustly perform recognition
using simple nearest-neighbor schemes? In fact, it is unclear that
the size of the dataset required is at all practical since there are an
effectively infinite number of possible images the visual system
can be confronted with. What gives us hope is that the visual
world is very regular in that real world pictures occupy onlya
relatively small portion of the space of possible images.

Studying the space occupied by natural images is hard due to
the high dimensionality of the images. One way of simplifying
this task is by lowering the resolution of the images. When we
look at the images in Fig. 1, we can recognize the scene and its
constituent objects. Interestingly though, these pictures have only
32 × 32 color pixels (the entire image is just a vector of3072

dimensions with8 bits per dimension), yet at this resolution, the
images already seem to contain most of the relevant information
needed to support reliable recognition.

An important benefit of working with tiny images is that it
becomes practical to store and manipulate datasets orders of



2

8 16 32 64 256
0

10

20

30

40

50

60

70

80

90

100

Image resolution

C
o

rr
e

c
t 

re
c
o

g
n

it
io

n
 r

a
te

Color image

Grayscale

 
0

False positive rate

 

0.02 0.06 0.1 0.18
0.65

0.7

0.75

08.

0.85

0.9

0.95

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

office

windows

drawers

desk

wall-space

waiting area

table

C ouches

chairs

reception desk

plantwindow

dining room

light

plant

table
chairs

window

256x256

32x32

dining room
ceiling

light
doors

pi
wall

door

floor

table

picture

chair
chair

chair chair

center piece

bedside 

table

shoes painting chair
lamp

plant monitor center piece

c) Segmentation of 32x32 images

d) Cropped objectsb) Car detectiona) Scene recognition

Fig. 2. a) Human performance on scene recognition as a functionof resolution. The green and black curves show the performance on color and grayscale
images respectively. For color32 × 32 images the performance only drops by7% relative to full resolution, despite having 1/64th of the pixels. b) Car
detection task on the PASCAL 2006 test dataset. The colored dots show the performance of four human subjects classifying tiny versions of the test data.
The ROC curves of the best vision algorithms (running on full resolution images) are shown for comparison. All lie below the performance of humans on
the tiny images, which rely on none of the high-resolution cues exploited by the computer vision algorithms. c) Humans can correctly recognize and segment
objects at very low resolutions, even when the objects in isolation can not be recognized (d).

magnitude bigger than those typically used in computer vision.
Correspondingly, we introduce, and make available to researchers,
a dataset of79 million unique32×32 color images gathered from
the Internet. Each image is loosely labeled with one of 75,062
English nouns, so the dataset covers all visual object classes. This
is in contrast to existing datasets which provide a sparse selection
of object classes.

The paper is divided in three parts. In Section 2 we investigate
the limits of human recognition, establishing the minimal reso-
lution required for scene and object recognition. In Sections 3
and 4 we introduce our dataset of79 million images and explore
some of its properties. In Section 5 we attempt scene and object
recognition using a variety of nearest-neighbor methods. We
measure performance at a number of semantic levels, obtaining
impressive results for certain object classes.

II. L OW DIMENSIONAL IMAGE REPRESENTATIONS

Non-parametric approaches must cover the input space, and
our scheme relies on the dataset of79 million images densely
populating the manifold of natural images. We seek a compact
image representation in which the intrinsic dimensionality of the
manifold is a low as possible, since that makes the manifold
easy to cover, while preserving the semantic content. One of
the simplest mechanisms to reduce the dimensionality of an
image is by lowering its resolution. A second benefit of a
low resolution representation is that the images can be indexed
efficiently and provide the storage savings essential for dealing
with very large datasets. However, it is important that the low
dimensional representation not loses important image information.
In this section we study the minimal image resolution which still
retains useful information about the visual world. In orderto
do this, we perform a series of human experiments on (i) scene
recognition and (ii) object recognition. Studies on face perception
[1], [19] have shown that only16×16 pixels are needed for robust
face recognition. This remarkable performance is also found in a
scene recognition task [31].

In this section we provide experimental evidence showing

that 32×32 color images1 contain enough information for scene
recognition, object detection and segmentation (even whenthe
objects occupy just a few pixels in the image). As we will see
in Fig. 2, a significant drop in performance is observed when
the resolution drops below 322 pixels. Note that this problem is
distinct from studies investigating scene recognition using very
short presentation times [11], [30], [33], [34]. Here, we are
interested in characterizing the amount of information available in
the image as a function of the image resolution (with no constraint
on presentation time).

In cognitive psychology, thegist of the scene [30], [44] refers
to a short summary of the scene (the scene category, and a
description of a few objects that compose the scene). In computer
vision, the termgist is used to refer to a low dimensional
representation of the entire image. Low dimensional globalimage
representation have been used to for scene recognition [16], [32],
[22], for providing context for object detection [38], [40], depth
estimation [41] and image retrieval for computer graphics [20].
In this section, we show that this low dimensional representation
can rely on very low-resolution information and, therefore, can
be computed very efficiently.

A. Scene recognition

We evaluate the scene recognition performance of humans as
the image resolution is decreased. We used a dataset of15 scenes
was taken from [12], [22], [32]. Each image was shown at one
of 5 possible resolutions (82, 162, 322, 642 and 2562 pixels)
and the participant task was to assign the low-resolution picture
to one of the 15 different scene categories (bedroom, suburban,
industrial, kitchen, living room, coast, forest, highway,inside city,

132×32 is very very small. For reference, typical thumbnail sizes are:
Google images (130× 100), Flikr (180× 150), default Windows thumbnails
(90 × 90).
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mountain, open country, street, tall buildings, office, andstore)2.
Fig. 2(a) shows human performance on this task when presented
with grayscale and color images3 of varying resolution. For
grayscale images, humans need around64× 64 pixels. When the
images are in color, humans need only32×32 pixels. Below this
resolution the performance rapidly decreases. Therefore,humans
need around 3000 dimensions of either color or grayscale data to
perform this task. In the next section we show that32× 32 color
images also preserve a great amount of local information andthat
many objects can still be recognized even when they occupy just
a few pixels.

B. Object recognition

Recently, the PASCAL object recognition challenge evaluated
a large number of algorithms in a detection task for several object
categories [10]. Fig. 2(b) shows the performances (ROC curves) of
the best performing algorithms in the car classification task (i.e.
is there a car present in the image?). These algorithms require
access to relatively high resolution images. We studied theability
of human participants to perform the same detection task butusing
very low-resolution images. Human participants were shown
color images from the test set scaled to have32 pixels on the
smallest axis, preserving their aspect ratio. Fig. 2(b) shows some
examples of tiny PASCAL images. Each participant classified
between200 and400 images selected randomly. Fig. 2(b) shows
the performances of four human observers that participatedin
the experiment. Although around 10% of cars are missed, the
performance is still very good, significantly outperforming the
computer vision algorithms using full resolution images. This
shows that even though the images are very small, they contain
sufficient information for accurate recognition.

Fig. 2(c) shows some representative322 images segmented by
human subjects. It is important to note that taking objects out
of their context drastically reduces recognition rate. Fig. 2(d)
shows crops of some of the smallest objects correctly recognized
when shown within the scene. Note that in isolation, the objects
cannot be identified since the resolution is so low. Hence the
recognition of these objects within the scene is almost entirely
based on context. Clearly, sufficient information remains for
reliable segmentation. However, not all visual tasks can besolved
using such low resolution images. The experiments in this section
have studied only recognition tasks — the focus of this paper. The
results in this section suggest that32 × 32 color images are the
minimum viable size at which to study the manifold of natural
images. Any further lowering in resolution results in a rapid drop
in recognition performance.

III. A LARGE DATASET OF32 × 32 IMAGES

As discussed in the previous sections,32×32 color images con-
tain the information needed to perform a number of challenging

2Experimental details: 6 participants classified 585 color images as be-
longing to one of the 15 scene categories from [12], [22], [32]. Images
were presented at 5 possible resolutions (82, 162, 322, 642 and 2562). Each
image was shown at 5 possible sizes using bicubic interpolation to reduce
pixelation effects which impair recognition. Interpolation was applied to the
low-resolution image with 8 bits per pixel and color channel.Images were
not repeated across conditions. 6 additional participantsperformed the same
experiment but with gray scale images.

3100% recognition rate can not be achieved in this dataset as thereis no
perfect separation between the 15 categories.
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Fig. 3. Statistics of the tiny images database. a) A histogramof images
per keyword collected. Around 10% of keywords have very few images. b)
Performance of the various engines (evaluated on hand-labeled ground truth).
Google and Altavista are the best performing while Cydral andFlickr the
worst.

recognition tasks. One important advantage of very low resolution
images is that it becomes practical to work with millions of
images. In this section we will describe a dataset of108 tiny
images.

Current experiments in object recognition typically use102-104

images spread over a few different classes; the largest available
dataset being one with 256 classes from the Caltech vision group
[18]. Other fields, such as speech, routinely use106 data points
for training, since they have found that large training setsare vital
for achieving low errors rates in testing. As the visual world is
far more complex than the aural one, it would seem natural to use
very large set of training images. Motivated by this, and theability
of humans to recognize objects and scenes in32 × 32 images,
we have collected a database of nearly108 such images, made
possible by the minimal storage requirements for each image.

A. Collection procedure

We use Wordnet4 to provide a comprehensive list of all classes5

likely to have any kind of visual consistency. We do this by
extracting all non-abstract nouns from the database, 75,062 of
them in total. In contrast to existing object recognition datasets
which use a sparse selection of classes, by collecting images for
all nouns, we have a dense coverage of all visual forms.

We selected 7 independent image search engines: Altavista,
Ask, Flickr, Cydral, Google, Picsearch and Webshots (others have
outputs correlated with these). We automatically downloadall
the images provided by each engine for all 75,846 non-abstract
nouns. Running over8 months, this method gathered 97,245,098
images in total. Once intra-word duplicates6 and uniform images
(images with zero variance) are removed, this number is reduced
to 79,302,017 images from 75,062 words (around 1% of the

4Wordnet [13] is a lexical dictionary, meaning that it gives the semantic
relations between words in addition to the information usually given in a
dictionary.

5The tiny database is not just about objects. It is about everything that can
be indexed with Wordnet and this includes scene-level classes such as streets,
beaches, mountains, as well as category-level classes and more specific objects
such as US Presidents, astronomical objects and Abyssinian cats.

6At present we do not remove inter-word duplicates since identifying them
in our dataset is non-trivial.
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keywords had no images). Storing this number of images at full
resolution is impractical on the standard hardware used in our
experiments so we down-sampled the images to32 × 32 as they
were gathered7. The dataset fits onto a single hard disk, occupying
760Gb in total. The dataset may be downloaded fromhttp:
\\people.csail.mit.edu\torralba\tinyimages.

Fig. 3(a) shows a histogram of the number of images per class.
Around10% of the query words are obscure so no images can be
found on the Internet, but for the majority of words a reasonable
number of images are found. We place an upper limit of3000

images/word to keep the total collection time to a reasonable level.
Although the gathered dataset is very large, it is not necessarily
representative of all natural images. Images on the Internet have
their own biases (e.g. objects tend to be centered and fairlylarge
in the image). However, web images define an interesting visual
world for developing computer vision applications [14], [15],
[37].

B. Characterization of labeling noise

The images gathered by the engines are loosely labeled in
that the visual content is often unrelated to the query word
(for example, see Fig. 13). In Fig. 3(b) we quantify this using
a hand-labeled portion of the dataset.78 animal classes were
labeled in a binary fashion (belongs to class or not) and a recall-
precision curve was plotted for each search engine. The differing
performance of the various engines is visible, with Google and
Altavista performing the best and Cydral and Flickr the worst.
Various methods exist for cleaning up the data by removing
images visually unrelated to the query word. Berg and Forsyth
[6] have shown a variety of effective methods for doing this with
images of animals gathered from the web. Berg et al. [4] showed
how text and visual cues could be used to cluster faces of people
from cluttered news feeds. Fergus et al. [14], [15] have shown the
use of a variety of approaches for improving Internet image search
engines. Li et al. [25] show further approaches to decreasing label
noise. However, due to the extreme size of our dataset, it is not
practical to employ these methods. In Section 5, we show that
reasonable recognition performances can be achieved despite the
high labeling noise.

IV. STATISTICS OF VERY LOW RESOLUTION IMAGES

Despite32× 32 being very low resolution, each image lives in
a space of3072 dimensions. This is a very large space — if each
dimension has8 bits, there are a total of107400 possible images.
This is a huge number, especially if we consider that a human in
a 100 years only gets to see1011 frames (at 30 frames/second).

However, natural images only correspond to a tiny fraction of
this space (most of the images correspond to white noise), and it is
natural to investigate the size of that fraction. A number ofstudies
[8], [23] have been devoted to characterize the space of natural
images by studying the statistics of small image patches. However,
low-resolution scenes are quite different to patches extracted by
randomly cropping small patches from images.

Given a similarity measure, the question that we want to answer
is: how many images are needed to be able to find a similar image
to match any imput image?As we increase the size of the dataset,

7We store a version of the images that maintained the original aspect ratio
(the minimum dimension was set at 32 pixels) and a link to the original
thumbnail and high resolution URL.

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
10

0
10

1
10

2

10
1

10
2

10
3

10
4

M

N

O
v
e

rl
a

p
 b

e
tw

e
e

n
 S

(5
0

) 
a

n
d

 S
(M

)
^

7,900

79,000

790,000

7,900,000

79,000,000

Fig. 4. Evaluation of the method for computing approximate nearest
neighbors. (a) Probability that an image from the set of exactnearest neighbors
SN , with N = 50, is inside the approximate set of nearest neighborsŜM

as a function ofM . b) Number of approximate neighbors (M ) that need to
be considered as a function of the desired number of exact neighbors (N ) in
order to have a probability of0.8 of finding N exact neighbors. Each graph
corresponds to a different dataset size, indicated by the color code.

the probability of finding similar images will increase. Thegoal of
this section is to evaluate experimentally how fast this probability
increases as a function of dataset size. In turn, this tells us how big
the dataset needs to be to give a robust recognition performance.

A. Distribution of neighbors as a function of dataset size

As a first step, we use the sum of squared differences (SSD)
to compare two images. We will define later other similarity
measures that incorporate invariances to translations andscaling.
The SSD between two imagesI1 andI2 is:

D2
ssd=

X

x,y,c

(I1(x, y, c) − I2(x, y, c))2 (1)

Each image is normalized to have zero mean and unit norm8.
Computing similarities among7.9×107 images is computationally
expensive. To improve speed, we index the images using the first
19 principal components of the7.9×107 images (19 is the maxi-
mum number of components per image such that the entire index
structure can be held in memory). The1/f2 property of the power
spectrum of natural images means that the distance between two
images can be approximated using few principal components.We
compute the approximate distanceD̂2

ssd=
PC

n=1
(v1(n)−v2(n))2,

wherevi(n) is thenth principal component coefficient for theith

image, andC is the number of components used to approximate
the distance. We defineSN as the set ofN exact nearest neighbors
andŜM as the set ofM approximate nearest neighbors. Fig. 4(a)
shows the probability that an image, of indexi, from the setSN

is also insideŜM : P (i ∈ ŜM |i ∈ SN ). The plot corresponds to
N = 50. Fig. 4(b) shows the number of approximate neighbors
(M ) that need to be considered as a function of the desired number
of exact neighbors (N ) in order to have a probability of0.8 of
finding N exact neighbors. As the dataset becomes larger, we
need to collect more approximate nearest neighbors in orderto
have the same probability of including the firstN exact nearest
neighbors. These plots were obtained from 200 images for which
we computed the exact distances to all the7.9 × 107 images.

For the experiments in this paper, we use the following pro-
cedure. First, using exhaustive search we find the closest 16,000

8Normalization of each image is performed by transforming the image into
a vector concatenating the three color channels. The normalization does not
change image color, only the overall luminance.
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images9 per image. From Fig. 4(a) we know that more than 80%

of the exact neighbors will be part of this approximate neighbor
set. Then, within the set of 16,000 images, we compute the exact
distances to provide the final rankings of neighbors.

Fig. 5 shows several plots measuring various properties as the
size of the dataset is increased. The plots use the normalized
correlation ρ between images (note thatD2

ssd = 2(1 − ρ)). In
Fig. 5(a), we show the probability that the nearest neighborhas
a normalized correlation exceeding a certain value. Each curve
corresponds to a different dataset size. Fig. 5(b) shows a vertical
section through Fig. 5(a) at the correlations0.8 and0.9, plotting
the probability of finding a neighbor as the number of images
in the dataset grows. ¿From Fig. 5(b) we see that a third of
the images in the dataset are expected to have a neighbor with
correlation> 0.8.

Many images on the web appear multiple times. Fig. 5(c)
shows the probability of the matched image being a duplicate
as a function ofDssd. For the other plots in this figure, we have
removed manually all the image pairs that were duplicates.

In Fig. 5(d) we explore how the plots shown in Fig. 5(a) & (b)
relate to recognition performance. Three human subjects labeled
pairs of images as belonging to the same visual class or not
(pairs of images that correspond to duplicate images are removed).
The plot shows the probability that two images are labeled as
belonging to the same class as a function of image similarity.

9The exhaustive search currently takes30 seconds per image using the
principle components method. Undoubtedly, if efficient data structures such
as a kd-tree were used, the matching would be significantly faster. Nister
and Stewenius [29] used related methods to index over 1 millionimages in
∼ 1sec.

NeighborTarget Warping Pixel shifting

Fig. 6. Image matching using distance metricsDssd, Dwarp andDshift. After
transforming each neighbor by the optimal transformation; thesunglasses
always results in a poor match. However, for the car example, the matched
image approximates the pose of the target car.

Dssd Dshift

Fig. 7. Sibling sets from 79,302,017 images, found with distance metrics
Dssd, andDshift. Dshift provides better matches thanDssd.

As the normalized correlation exceeds0.8, the probability of
belonging to the same class grows rapidly. Hence a simple K-
nearest-neighbor approach might be effective with our sizeof
dataset. We will explore this further in Section V.

B. Image similarity metrics

We can improve recognition performance using better measures
of image similarity. We now introduce two additional similarity
measures between a pair of imagesI1 and I2, that incorporate
invariances to simple spatial transformations.

• In order to incorporate invariance to small translations,
scaling and image mirror, we define the similarity measure:

D2
warp = min

θ

X

x,y,c

(I1(x, y, c) − Tθ[I2(x, y, c)])2

In this expression, we minimize the similarity by transform-
ing I2 (horizontal mirror; translations and scaling up to10

pixel shifts) to give the minimum SSD. The transformation
parametersθ are optimized by gradient descent [28].

• We allow for additional distortion in the images by shifting
every pixel individually within a5 by 5 window to give
minimum SSD. This registration can be performed with
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dataset logarithmically in order to have an effect. These results are obtained
usingDshift as a similarity measure between images.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D2
shift = min

|Dx,y|≤w

X

x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

In order to get better matches, we initializeI2 with the
warping parameters obtained after optimization ofDwarp,
Î2 = Tθ[I2].

Fig. 6 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure.The
figure shows two candidate neighbors: one matching the target
semantic category and another one that corresponds to a wrong
match. ForDwarp and Dshift we show the closest manipulated
image to the target.Dwarp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target.Dshift further optimizes the warping provided byDwarp

by allowing pixels to move independently in order to minimize
the distance with the target. Fig. 7 shows two examples of
query images and the retrieved sibling set, out of 79,302,017
images, usingDssd andDshift. Both measures provide very good
matches, butDshift returns closer images at the semantic level.
This observation will be quantified in Section V.
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Fig. 9. This figure shows two examples. (a) Query image. (b) First 16 of 80

neighbors found usingDshift. (c) Ground truth Wordnet branch describing the
content of the query image at multiple semantic levels. (d) Sub-tree formed
by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodeswith the most
votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

Fig. 1 shows examples of query images and sets of neighboring
images, from our dataset of 79,302,017 images, found usingDshift.
In the rest of the paper we will call the set of neighboring images
a sibling set. Fig. 8 shows the effects of increasing the dataset
size on the quality of the sibling set. As we increase the sizeof
the dataset, the quality of the retrieved set increases dramatically.
Specifically, note the change in performance when using only
around 10,000 images (a typical number used in image retrieval
research) compared to108. Despite the simplicity of the similarity
measures used in these experiments, due to the large size of our
dataset, the retrieved images are very similar (hencesiblings) to
the target image. We will now quantify this observation in the
next section.

V. RECOGNITION

A. Wordnet voting scheme

We now attempt to use our dataset for object and scene
recognition. While an existing computer vision algorithm could
be adapted to work on32× 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
Dssd, Dwarp or Dshift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given
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Fig. 10. Some examples of test images belonging to the “person” node of the
Wordnet tree, organized according to body size. Each pair shows the query
image and the 25 closest neighbors out of79 million images usingDshift with
32 × 32 images. Note that the sibling sets contain people in similar poses,
with similar clothing to the query images.

query image with some semantic connection to it. The goal of
this section is to show that the performance achieved can match
that of sophisticated algorithms which use much smaller training
sets.

An additional factor in our dataset is the labeling noise. Tocope
with this we propose a voting scheme based around the Wordnet
semantic hierarchy.

Wordnet [13] provides semantic relationships between the
75,062 nouns for which we have collected images. For simplicity,
we reduce the initial graph-structured relationships between words
to a tree-structured one by taking the most common meaning of
each word. The result is a large semantic tree whose nodes consist
of the 75,062 nouns and their hypernyms, with all the leaves being
nouns10. Fig. 9(c) shows the unique branch of this tree belonging
to the nouns “vise” and “chemist”. The Wordnet tree provides
two benefits:

• Recognition of a test image can be performed at multiple
semantic levels. Given the large number of classes in our
dataset (75,062) and their highly specific nature, it is not
practical or desirable to try and classify each of the classes

10Note that not all nouns are leaf nodes since many of the 75,062 nouns are
hypernyms of other nouns. E.g. “yellowfin tuna” and “fish” are two nouns.
The former is a leaf node, while the latter is in intermediate node since “fish”
is a hypernym of “yellowfin tuna”.
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Fig. 11. ROC curves for people detection (not localization)in images drawn
randomly from the dataset of 79 million. The performance is a function of the
person’s size in an image, the numbers indicating the fractionof the image
occupied by the head.

separately. Instead, using the Wordnet hierarchy, we can
perform classification at a variety of different semantic
levels. So instead of just trying to recognize the noun
“yellowfin tuna”, we may also perform recognition at the
level of “tuna” or “fish” or “animal”. This is in contrast to
current approaches to recognition that only consider a single,
manually imposed, semantic meaning of an object or scene.

• If classification is performed at some intermediate semantic
level, for example using the noun “person”, we need not only
consider images gathered from the Internet using “person”.
Using the Wordnet hierarchy tree, we can also draw on
all images belonging to nouns whose hypernyms include
“person” (for example, “arithmetician”). Hence, we can
massively increase the number of images in our training
set at higher semantic levels. Near the top of the tree,
however, the nouns are so generic (e.g. “object”) that the
child images recruited in this manner have little visual
consistency, so despite their extra numbers may be of little
use in classification11.

Our classification scheme uses the Wordnet tree in the follow-
ing way. Given a query image, the neighbors are found using some
similarity measure. Each neighbor in turn votes for its branch
within the Wordnet tree. In this manner votes are accumulated
across a range of semantic levels and the effects of the labeling
noise are averaged out over many neighbors. Classification may
be performed by assigning the query image the label with the
most votes at the desired height (i.e. semantic level) within the
tree, the number of votes acting as a measure of confidence in
the decision.

In Fig. 9(a) we show a query image of a vise from our test
set. In Fig. 9(b) we show the first 16 images from theK = 80

nearest neighbors usingDshift over the79 million images. Note
that many of the neighbors, despite not being vices, are somekind
of device or instrument. In Fig. 9(c) we show the Wordnet branch

11The use of Wordnet tree in this manner implicitly assumes that semantic
and visual consistency are tightly correlated. While this might be the case
for certain nouns (for example, “poodle” and “dachshund”), it is not clear
how true this is in general. To explore this issue, we constructed a poster
consisting of 75,062 tiles. Each title is the arithmetic average of the first 50
images belonging to a given noun. The titles are arranged within the poster
according to their semantic meaning, using the Wordnet tree totessalate the 2-
D space. As the distance between two tiles relates to their semantic similarity,
the relationship between semantic and visual worlds may easily be judged by
the viewer. The poster may be viewed at:http:\\people.csail.mit.
edu\torralba\tinyimages.
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b) Person detection (head size > 20%) 
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Fig. 12. (a) Recall-precision curves for people detection (not localization)
in images drawn randomly from the dataset of 79 million. (b) As per (a) but
for the subset of test images where the person’s head occupies> 20% of the
image. The left column compares the three different similarity metrics using
all 79 millions images. The black line indicates chance-levelperformance.
The graphs on the right compare performance usingDshift as a function of
dataset size.

for “vise”. In Fig. 9(d) we show the accumulated votes from the
neighbors at different levels in the tree, each image votingwith
unit weight. For clarity, we only show parts of the tree with at least
three votes (the full Wordnet tree has45, 815 non-leaf nodes).
The nodes shown in red illustrate the branch with the most votes,
which matches the majority of levels in the query image branch
(Fig. 9(c)), demonstrating how precise classifications canbe made
despite significant labeling noise and spurious siblings.

Other work making use of Wordnet includes Hoogs and Collins
[21] who use it to assist with image segmentation. While not
using Wordnet explicitly, Barnard et al. [2] and Carbonettoet al.
[7] learn models using both textual and visual cues.

Using this scheme we now address the task of classifying
images of people.

B. Person detection

In this experiment, our goal is to label an image as containing
a person or not, a task with many applications on the web and
elsewhere. A standard approach would be to use a face detector
but this has the drawback that the face has to be large enough to
be detected, and must generally be facing the camera. While these
limitations could be overcome by running multiple detectors, each
tuned to different view (e.g. profile faces, head and shoulders,
torso), we adopt a different approach.

As many images on the web contain pictures of people, a large
fraction (23%) of the 79 million images in our dataset have people
in them. Thus for this class we are able to reliably find a highly
consistent set of neighbors, as shown in Fig. 10. Note that most
of the neighbors match not just the category but also the location

and size of the body in the image, which varies considerably in
the examples.

To classify an image as containing people or not, we use
the scheme introduced in Section V-A, collecting votes from
the 80 nearest neighbors. Note that the Wordnet tree allows us
make use of hundreds of other words that are also related to
“person” (e.g. artist, politician, kid, taxi driver, etc.). To evaluate
performance, we used two different sets of test images. The first
consisted of a random sampling of images from the dataset. The
second consisted of images returned by Altavista using the query
“person”.

1) Evaluation using randomly drawn images:1125 images
were randomly drawn from the dataset of 79 million (Fig. 10
shows 6 of them, along some of their sibling set). For evaluation
purposes, any people within the 1125 images were manually
segmented12.

Fig. 11 shows the classification performance as the size of
the person in the image varies. When the person is large in
the image, the performance is significantly better than whenit
is small. This occurs for two reasons: first, when the person is
large, the picture become more constrained, and hence finding
good matches becomes easier. Second, the weak labels associated
with each image in our dataset typically refer to the largestobject
in the image.

Fig. 12 shows precision-recall curves as a function of head size,
similarly measure and dataset size. As expected, the performance
is superior when the person is large in the image and the
full 79 million images are used. TheDshift similarity measure
outperforms bothDssd andDwarp.

2) Evaluation using Altavista images:Our approach can also
be used to improve the quality of Internet image search engines.
We gathered 1018 images from Altavista image search using the
keyword “person”. Each image was classified using the approach
described in Section V-A. The set of 1018 images was then
re-ordered according to the confidence of each classification.
Fig. 13(a) shows the initial Altavista ranking while Fig. 13(b)
shows the re-ordered set, showing a significant improvementin
quality.

To quantify the improvement in performance, the Altavista
images were manually annotated with bounding boxes around any
people present. Out of the 1018 images, 544 contained people,
and of these, 173 images contained people occupying more than
20% of the image.

Fig. 14 shows the precision-recall curves for the people de-
tection task. Fig. 14(a) shows the performance for all Altavista
images while Fig. 14(b) shows the performance on the subset
where people occupy at least 20% of the image. Note that the
raw Altavista performance is the same irrespective of the persons’
size (in both plots, by 5% recall the precision is at the level
of chance). This illustrates the difference between indexing an
image using non visual versus visual cues. Fig. 14 also shows
the results obtained when running a frontal face detector13. We
run the face detector on the original high-resolution images.
Note that the performance of our approach working on32 × 32

images is comparable to that of the dedicated face detector on

12The images and segmentations are available at:http://labelme.
csail.mit.edu/browseLabelMe/static_web_tinyimages_
testset.html

13The detector is the OpenCV implementation of the Viola and Jones
boosted cascade [26], [43].
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a) Altavista ranking b) Sorted by the tiny images

Fig. 13. (a) The first 100 images returned by Altavista when using the query “person” (out of 1018 total). (b) The first 100 images after re-ordering using
our Wordnet voting scheme with the 79,000,000 tiny images. This performance improvement is quantified in Fig. 14.
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Fig. 14. Evaluation of the results from Fig 13, comparing the performance
of the initial Altavista ranking with the re-ordered images using the Wordnet
voting scheme and also a Viola & Jones-style frontal face detector. (a) shows
the recall-precision curves for all 1018 images gathered from Altavista. (b)
shows curves for the subset of 173 images where people occupy at least 20%
of the images.

high resolution images. For comparison, Fig. 14 also shows the
results obtained when running the face detector on low-resolution
images (we downsampled each image so that the smallest axis has
32 pixels, we then upsampled the images again to the original
resolution using bicubic interpolation. The upsampling operation
was to allow the detector to have enough resolution to be ableto
scan the image.). The performances of the OpenCV face detector
drop dramatically with low-resolution images.

C. Person localization

While the previous section was concerned with an object
detection task, we now address the more challenging problem
of object localization. Even though the tiny image dataset has not
been labeled with the location of objects in the images, we can
use the weakly labeled (i.e. only a single global label is provided
for each image) dataset to localize objects.

Much the recent work in object recognition uses explicit
models that labels regions (or pixels) of images as being ob-
ject/background. In contrast, we use the tiny image datasetto
localize without learning an explicit object model. It is important
to emphasize that this operation is performed without the need
for manual labeling of images: all the information comes from
the loose text label associated with each image.

The idea is to extract multiple putative crops of the high
resolution query image (Fig. 15a-c). For each crop, we resize
it to 32 × 32 pixels and query the tiny image database to obtain
it’s siblings set (Fig. 15.d). When a crop contains a person,we
expect the sibling set to also contain people. Hence, the most
prototypical crops should get have a higher number of votes
for the person class. To reduce the number of crops that need
to be evaluated, we first segment the image using normalized
cuts [9], producing around 10 segments (segmentation is perform
on the high resolution image). Then, all possible combinations
of contiguous segments are considered, giving a set of putative
crops for evaluation. Fig. 15 shows an example of this procedure.
Fig. 16 shows the best scoring bounding box for images from the
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Fig. 15. Localization of people in images. (a) input image, (b)Normalized-
cuts segmentation, (c) three examples of candidate crops, (d)the 6 nearest
neighbors of each crop in (c), accompanied by the number of votes for the
person class obtained using 80 nearest neighbors under similarity measure
Dshift.

Fig. 16. Localization examples. Images from the 1016 Altavista set overlaid
with the crop that gave the highest “person” score. See text for details.

1018 image Altavista test set.

D. Scene recognition

Many web images correspond to full scenes, not individual
objects. In this section we use our dataset to classify image
between the two; that is to decide that an image is a scene
and not a picture of an object. Many nodes in the Wordnet tree
refer to scenes and one of the most generic is “location”, having
children that include “landscape”, “workplace”, “city” and so
on. Using the Wordnet voting scheme of Section V-A, we count
the number of votes accumulated at the “location” node of the
Wordnet tree to classify a given query. Hopefully, scene images
will have a high count, with the reverse being true for object
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Fig. 17. Classifying between pictures of scenes and objects. (a) Examples
of images classified as scenes. The red bounding box denotes a classification
error. (b) The set of images having the fewest “location” votes. (c) ROC curve
evaluation on test set of 1125 randomly drawn tiny images, of which 185 are
scenes. (d) Corresponding precision-recall curve.

images. With the dataset of 1125 randomly drawn tiny images,
of which 185 are scenes, we evaluate the performance at scene
versus object classification, the results being shown in Fig. 17.
We can also perform classification at a finer semantic level. In
Fig. 18, we attempt to classify the 1125 randomly drawn images
(containing objects as well as scenes) into “city”, “river”, “field”
and “mountain” by counting the votes at the corresponding node
of the Wordnet tree. Scene classification for the 32x32 images
performs surprisingly well, exploiting the large, weakly labeled
database.

E. Automatic image annotation

Here we examine the classification performance at a variety
of semantic levels across many different classes, not just people.
For evaluation we use the test set of 1125 randomly drawn tiny
images, with each image being fully segmented and annotated
with the objects and regions that compose each image. To give
a distinctive test set, we only use images for which the target
object is absent or occupies at least20% of the image pixels.
Using the voting tree described in Section V-A, we classified
them usingK = 80 neighbors at a variety of semantic levels. To
simplify the presentation of results, we collapsed the Wordnet tree
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Fig. 18. Scene classification at a finer semantic level than Fig. 17 using the
randomly drawn 1125 image test set. Note that the classification is“mountain”
vs all classes present in the test set (which includes many kinds of objects),
not “mountain” vs “field”, “city”, “river” only. Each quadrant shows some
examples of high scoring images for that particular scene category, along with
an ROC curve (red = 7,900 image training set; yellow = 790,000 images; blue
= 79,000,000 images).
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if all images in Google image search were used (∼2 billion), extrapolating
linearly.

by hand (which had19 levels) down to3 levels corresponding to
one very high level (“organism”, “artifact”), an intermediate level
(“person”, “vehicle”, “animal”) and a level typical of existing
datasets (“fish”, “bird”, “car”).

In Fig. 19 we show the average ROC curve area (across words
at that level) at each of the three semantic levels forDssdandDshift

as the number of images in the dataset is varied. Note that (i)
the classification performance increases as the number of images
increases; (ii)Dshift outperformsDssd; (iii) the performance drops
off as the classes become more specific.

By way of illustrating the quality of the recognition achieved
by using the 79 million weakly labeled images, we show in
Fig. 20, for categories at three semantic levels, the images
that were more confidently assigned to each class. Note that
despite the simplicity of the matching procedure presentedhere,
the recognition performance achieves reasonable levels even for
relatively fine levels of categorization.

VI. OTHER APPLICATIONS

In this section we discuss other applications, beyond recogni-
tion, that rely on a dense sampling of the manifold of natural
images. We present two applications: (i) image colorization of
gray scale images; (ii) detecting image orientation.

A. Image colorization

The goal of image colorization is to recover the missing color
information from a gray scale image. This task is generally solved
by having a user specify colors that the different image regions
will have and then using a diffusion process to propagate thecolor
to the rest of the image. Given a gray scale query image, we
propose to use the sibling set to define a distribution of possible
colors for it, with no human labeling. The assumption is that
images in a neighborhood contain similar objects arranged in
similar locations, thus the colors should be exchangeable among
the images in the sibling set. Clearly, this will only work when
the neighborhood of the query image is densely populated, hence
large amounts of images will be required.

Fig. 21 shows the various stages of our approach. We start
with a gray scale image (first row). We search in the tiny image
database for similar images using only gray scale information
(second row). Then, for each of the retrieved siblings, we down-
load the original high resolution color image (third row). The
idea is to use the colors from the sibling images to colorize the
gray scale input image. One possible approach is to compute
the arithmetic average of the color sibling images (as shown
in the fourth row). The color channelsa & b (from the Lab

transformed image) for each pixel from the average sibling image
are copied to the input image, so colorizing it. When the siblings
are very similar to one another, the average appears sharp and
the colorized image is compelling (fifth row). Alternatively, we
can copy the color channels from individual siblings to propose
multiple plausible colorizations of the input image (sixthrow).
The user can then select the best one. While simple, our approach
has its limitations: by directly copying the color information
across, the edges in the input image are not respected. It would be
possible to improve the quality of the results by using a method
such as Levin et al. [24] which would take color cues from the
sibling images and propagate within the input image in an edge-
aware manner.

The last column of figure 21 illustrates the sensibility of this
approach to the manifold of natural images. In this example,the
input is a picture upside-down. As this is not a typical picture
orientation, the image is slightly outside of the manifold of typical
natural images and the retrieved sibling set is not consistent
anymore. The average sibling image is not as sharp as the one
obtained when the picture was in the correct orientation. The
procedure does not provide plausible colorizations. This opens
the door to automatically predict what is the correct orientation
of a picture as discussed in the next section.

B. Detecting image orientation

Although it is easy for us to tell when a picture it is upside
down, currently there is no satisfactory way of doing thus auto-
matically. We present a simple approach using our large dataset
of tiny images. We argue is that when an image has the wrong
orientation, it becomes harder to find good neighbors since it
starts to move away from the manifold defined by the set of
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Fig. 20. Test images assigned to words at each semantic level. The images are ordered by voting confidence. The number indicates the total number of
positive examples in the test set out of the 1148 images. The color of the bounding box indicates if the image was correctly assigned (black) or not (red).
The middle row shows the ROC curves for three dataset sizes (red = 7,900 image training set; yellow = 790,000 images; blue = 79,000,000 images). The
bottom row shows the corresponding precision-recall graphs.
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by taking the color information from four different siblings.
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correctly oriented (i.e., camera parallel to the horizon line) natural
images. Thus the correct orientation may be found by selecting
the image orientation that maximizes the typicality of the image.
Fig. 22 shows three examples of images being evaluated at four
possible orientations. The number on top of each image is the
average correlation (1−Dwarp/2) to the 50 closest neighbors. The
red boundary denotes the preferred orientation, namely theone
with the highest average correlation. Fig. 23 shows a quantitative
evaluation using the test set of 1125 images randomly drawn
from the tiny images (as introduced in Section V-B.1) being
classified into one of four possible orientations. Many images in
this test set are ambiguous in terms of orientation, making them
hard to classify correctly (see Fig. 23(a)). Thus, if only those
images that are classified with high confidence are considered,
the performance is much improved (see Fig. 23(b)).

Our procedure differs dramatically from that of Vailaya et
al. [42] who vector-quantize image patches using a pre-built
codebook and model the resulting representation using parametric
models to predict image orientation. Instead, our non-parametric
approach relies entirely on a large dataset to give us an accurate
measure of the distance from the manifold of natural images.

VII. CONCLUSIONS

This paper makes five important contributions:
1) Compelling psychophysical experiments showing that32×

32 is the minimum color image resolution at which object
and scene recognition can reliably be performed.

2) The compilation of a dataset of 79 million32 × 32 color
images, each with a weak text label and link to the original
high-resolution image, which is available for download.

3) The characterization of the manifold of32 × 32 images,
showing that Internet sized datasets (108–109) yield a
reasonable density over the manifold of natural images, at
least from a categorization perspective.

4) The demonstration that simple non-parametric methods, in
conjunction with the tiny image dataset, can give reasonable
performance on object recognition tasks. For classes which
are richly represented, such as people, the performance is
comparable to leading class-specific detectors.

5) The novel application of the tiny image dataset to a variety
of other problems in computer vision, such as image
colorization and orientation determination.

Although the paper explores many topics, it has one key theme:
that of using non-parametric methods in conjunction with very
large collections of images to tackle object and scene recognition.
Previous usage of non-parametric approaches in recognition have
been confined to more limited domains (e.g. pose recognition
[36]) compared with the more general problems tackled in this
paper, the limiting factor being the need for very large amounts
of training data. The results obtained using our tiny image dataset
are an encouraging sign that the data requirements may not be
insurmountable. Indeed, search engines such as Google index
another 1–2 orders of magnitude more images, which could yeild
a significant improvement in performance.

While the Internet offers a plentiful supply of visual data,
there are drawbacks to using it as a source. First, the high
noise level in image labellings make it difficult to directlytrain
models without some method for ignoring the numerous outliers.
Although the Wordnet scheme we propose gives some benefit,
the results of all our experiments would undoubtedly be much
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Fig. 22. Automatic image orientation determination. For each of the three
example images we consider four possible orientations. The number on top
of each image is the average correlation (1 − Dwarp/2) to the 50 closest
neighbors. The red boundary denotes the preferred orientation. The last
example is an error.
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Fig. 23. (a) Distribution of assigned orientations, relative to the correct one,
in the set of 1125 randomly drawn images from the tiny image database.
52% of the images were assigned the correct orientation. Most of the errors
correspond to selecting an upside down version of the right image orientation.
(b) Distribution of assigned image orientations for the25% of the test set with
highest confidence. In this portion of the test set, 81.9% of the images are
assigned the correct image orientation. (c) Examples of the 16images with
highest classification confidence. (d) Examples of the 16 images with lowest
classification confidence. Images with a red boundary are errors. Note that
many of these images have no distinct orientation so are hard toclassify
correctly.
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improved if there were less labeling noise. Second, the images
themselves have peculiar statistics, different to other sources of
images (e.g. television or the view through our own eyes) in terms
of both their content and their class-distribution. For example,
many images contain centered views of objects. Also, there are
a disproportionate number of images containing people on the
Internet. Although this facilitates person detection, many classes
are not well represented in our tiny image dataset. It would
therefore be interesting to explore large collections of images
from alternative sources, such as video.

The technical methods used in this paper are simple and more
complex ones are likely to improve performance in a number of
areas. Better similarity metrics might give a significant increase
in the effective size of the dataset. Machine learning techniques
could be effective in reducing labeling noise, which in turnwould
improve performance. Also, efficient search methods would give
real-time recognition performance.

In summary, all methods in object recognition have two com-
ponents: the model and the data. The vast majority of the effort in
recent years has gone into the modeling part – seeking to develop
suitable parametric representations for recognition. In contrast,
this paper moves in the opposite direction, exploring how the
data itself can help to solve them problem. We feel the results in
this paper warrant further exploration in this direction.
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