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ABSTRACT

We suggest that an appropriate role of
early visual processing is to describe a scene
in terms of intrinsic (vertical)
characteristics -- such as range, orientation,
reflectance, and incident illumination -- of
the surface element visible at each point in
the image. Support for this idea comes from
three sources: the obvious utility of intrinsic
characteristics for higher-level scene
analysis; the apparent ability of humans to
determine these characteristics, regardless of
viewing conditions or familiarity with the
scene; and a theoretical argument that such a
description is obtainable, by a noncognitive
and nonpurposive process, at least, for simple
scene domains. The central problem in
recovering intrinsic scene characteristics is
that the information is confounded in the
original light-intensity image: a single
intensity value encodes all the characteristics
of the corresponding scene point. Recovery
depends on exploiting constraints, derived from
assumptions about the nature of the scene and
the physics of the imaging process.

I INTRODUCTION

Despite corsiderable progress in recent
years, our understanding of the principles
underlying visual perception remains primitive.
Attempts to construct computer models for the
interpretation of arbitrary scenes have
resulted in such poor performance, limited
range of abilities, and inflexibility that,
were it not for the human existence proof, we
might have been tempted long ago to conclude
that high-performance, general-purpose vision
is impossible. On the other hand, attempts to
unravel the mystery of human vision, have
resulted in a limited understanding of the
elementary neurophysiology, and a wealth of
phenomenological observations of the total
system, but not, as yet, in a cohesive model of
how the system functions. The time is right for
those in both fields to take a broader view:
those in computer vision might do well to look
harder at the phenomenology of human vision for
clues that might indicate fundamental
inadequacies of current aproaches; these
concerned with human vision might gain insights
by thinking more about what information is
sought, and how it might be obtained, from a
computational point of view. This position has
been strongly advocated for some time by Horn
[18-20] and Marr [26-29] at MIT.

Current scene analysis systems often use
pictorial features, such as regions of uniform
intensity, or step charges in intensity, as an
initial level of description and then jump
directly to descriptions at the level of
complete objects. The limitations of this
approach are well known [4]: first, region-
growing and edge-finding programs are
unreliable in extracting the features that
correspond to object surfaces because they have
no basis for evaluating which intensity
differences correspond to scene events sig-
nificant at the level of objects (e.g., surface
boundaries) and which do not (e.g., shadows).
Second, matching pictorial features to a large
number of object models is difficult and
potentially combinatorially explosive because
the feature descriptions are impoverished and
lack invariance to viewing conditions. Finally,
such systems cannot cope with objects for which
they have no explicit model.

Some basic deficiencies in current
approaches to machine vision are suggested when
one examines the known behavior and competence
of the human visual system. The literature
abounds with examples of the ability of people
to estimate characteristics intrinsic to the
scene, such as color, orientation, distance,
size, shape, or illumination, throughout a wide
range of viewing conditions. Many experiments
have been performed to determine the scope of
so-called “shape constancy,” “size constancy,”
and “color constancy” [13 and 14]. What is
particularly remarkable is that consistent
judgements can be made despite the fact that
these characteristics interact strongly in
determining intensities in the image. For
example, reflectance can be estimated over an
extraordinarily wide range of incident
illumination: a black piece of paper in bright
sunlight may reflect more light than a white
piece in shadow, but they are still perceived
as black and white respectively. Color also
appears to remain constant throughout wide
variation in the spectral composition of
incident illumination. Variations in incident
illumination are independently perceived:
shadows are usually easily distinguished from
changes in reflectance. Surface shape, too, is
easily discerned regardless of illumination or
surface markings: Yonas has experimentally
determined that human accuracy in estimating
local surface orientation is about eight
degrees [37]. It is a worthwhile exercise at
this point to pause and see how easily you can
infer intrinsic characteristics, like color or
surface orientation, in the world around you.
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The ability of humans to estimate
intrinsic characteristics does not seem to
require familiarity with the scene, or with
objects contained therein. One can form
descriptions of the surfaces in scenes unlike
any previously seen, even when the presentation
is as unnatural as a photograph. People can
look at photomicrographs, abstract art, or
satellite imagery, and make consistent
judgements about relative distance,
orientation, transparency, reflectance, and so
forth. See, for example, Figure 1, from a
thesis by Macleod [25].

Looking beyond the phenomenological
aspects, one might ask what is the value of
being able to estimate such intrinsic
characteristics. Clearly, some information is
valuable in its own right: for example, knowing
the three-dimensional structure of the scene is
fundamental to many activities, particularly to
moving around and manipulating objects in the
world. Since intrinsic characteristics give a
more invariant and more distinguishing
description of surfaces than raw light
intensities, they greatly simplify many basic
perceptual operations. Scenes can be
partitioned into regions that correspond to
smooth surfaces of uniform reflectance, and
viewpoint-independent descriptions of the
surfaces may then be formed [29]. Objects may
be described and recognized in terms of
collections of these elementary surfaces, with
attributes that are characteristic of their
composition or function, and relationships that
convey structure, and not merely appearance. A
chair, for example, can be described
generically as a horizantal surface, at an
appropriate height for sitting, and a vertical
surface situated to provide back support.
Previously unknown objects can be described in
terms of invariant surface characteristics, and
subsequently recognized from other viewpoints.

A concrete example of the usefulness of
intrinsic scene information in computer vision
can be obtained from experiments by Nitzan,
Brain and Duda [30] with a laser rangefinder
that directly measures distance and apparent
reflectance. Figure 2a shows a test scene taken
with a normal camera. Note the variation in
intensity of the wall and chart due to
variations in incident illumination, even
though the light sources are extended and
diffuse. The distance and reflectance for this
scene is obtained by the rangefinder are shown
in Figure 2b. The distance information is shown
in a pictorial representation in which closer
points appear brighter. Note that, except for a
slight amount of crosstalk on the top of the
cart, the distance image is insensitive to
reflectance variations. The laser images are
also entirely free from shadows.

Using the distance information, it is
relatively straightforward to extract regions
corresponding to flat or smooth surfaces, as in
Fig. 2c, or edges corresponding to occlusion
boundaries, as in Figure 2d, for example. Using
reflectance information, conventional region-
or edge-finding programs show considerable im-
provement in extracting uniformly painted sur-
faces. Even simple thresholding extracts accep-
table surface approximations, as in Figure 2e.

Since we have three-dimensional informa-
tion, matching is now facilitated. For example,
given  the intensity  data of  a planar surface

that is not parallel to the image plane, we can
eliminate the projective distortion in these
data to obtain a normal view of this surface,
Figure 2f. Recognition of the characters is
thereby simplified. More generally, it is now
possible to describe objects generically, as in
the chair example above. Garvey [10] actually
used generic descriptions at this level to
locate objects in rangefinder images of office
scenes.

The lesson to be learned from this
example is that the use of intrinsic
characteristics, rather than intensity values,
alleviates many of the difficulties that plague
current machine vision systems, and to which
the human visual system is apparently largely
immune.

The apparent ability of people to
estimate intrinsic characteristics in unfamil-
iar scenes and the substantial advantages that
such characteristics would provide strongly
suggest that a visual system, whether for an
animal or a machine, should be organized around
an initial level of domain-independent
processing, the purpose of which is the
recovery of intrinsic scene characteristics
from image intensities. The next step in
pursuing this idea is to examine in detail the
computational nature of the recovery process to
determine whether such a design is really
feasible.

In this paper, we will first establish
the true nature of the recovery problem, and
demonstrate that recovery is indeed possible,
up to a point, in a simple world. We will then
argue that the approach can be extended, in a
straightforward way, to more realistic scene
domains. Finally, we will discuss this paradigm
and its implications in the context or current
understanding of machine and human vision. For
important related work see [29].

II THE NATURE OF THE PROBLEM

The first thing we must do is specify
precisely the objectives of the recovery
process in terms of input and desired output.

The input is one or more images
representing light intensity values, for
different viewpoints and spectral bands. The
output we desire is a family of images for each
viewpoint. In each family there is one image
for each intrinsic characteristic, all in
registration with the corresponding input
images. We call these images “Intrinsic
Images.” We want each intrinsic image to
contain, in addition to the value of the
characteristic at each point, explicit
indications of boundaries due to discon-
tinuities in value or gradient. The intrinsic
images in which we are primarily interested are
of surface reflectance, distance or surface
orientation, and incident illumination. Other
characteristics, such as transparency,
specularity, luminosity, and so forth, might
also be useful as intrinsic images, either in
their own right or as intermediate results.

Figure 3 gives an example of one possible
set of intrinsic images corresponding to a
single, monochrome image of a simple scene. The
intrinsic images are here represented as line
drawings, but in fact would contain numerical
values  at every point.  The solid  lines  show
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(a)    CASTANOPSIS (X 3500)

(c)    FLAX (X 1000)

(b)    DRIMYS (X 3200)

(d)    WALLFLOWER (X 1800)

Figure 1    Photomicrographs of pollen grains (Macleod [20])
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(a)    THRESHOLDING REFLECTANCE (b)    CORRECTED VIEW OF CART TOP

Figure 2    Experiments with a laser rangefinger
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(a) ORIGINAL SCENE

(b) DISTANCE

(d) ORIENTATION (VECTOR)

Figure 3 A set of intrinsic images derived from
a single monochrome intensity image

The images are depicted as line
drawings, but, in fact, would contain
values at every point. The solid lines
in the intrinsic images represent dis-
continuities in the scene characteris-
tic; the dashed lines represent
discontinuities  in its derivative.

(c) REFLECTANCE

(e) ILLUMINATION
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discontinuities in the represented char-
acteristic, and the dashed lines show
discontinuities in its gradient. In the input
image, intensities correspond to the reflected
flux received from the visible points in the
scene. The distance image gives the range along
the line of sight from the center of projection
to each visible point in the scene. The
orientation image gives a vector representing
the direction of the surface normal at each
point. It is essentially the gradient of the
distance image. The short lines in this image
are intended to convey to the reader the
surface orientation at a few sample points.
(The distance and orientation images correspond
to Marr's notion of a 2.5D sketch [29].) It is
convenient to represent both distance and
orientation explicitly, despite the redundancy,
since some visual cues provide evidence
concerning distance and other evidence
concerning orientation. Moreover, each form of
information may be required by some higher-
level process in interpretation or action. The
reflectance image gives the albedo (the ratio-
of total reflected to total incident
illumination) at each point. Albedo completely
describes the reflectance characteristics for
lambertian (perfectly diffusing) surfaces, in a
particular spectral band. Many surfaces are
approximately lambertian over a range of
viewing conditions. For other types of surface,
reflectance depends on relative directions of
incident rays, surface normal and reflected
rays. The illumination image gives the total
light flux incident at each point. In general,
to completely describe the incident light it is
necessary to give the incident flux as a
function of direction. For point light sources,
one image per source is sufficient, if we
ignore secondary illumination by light
scattered from nearby surfaces.

Figure 4   An ideally diffusing surface

When an image is formed, by a camera or
by an eye, the light intensity at a point in
the image is determined mainly by three factors

at the corresponding point in the scene: the
incident illumination, the local surface
reflectance, and the local surface orientation.
In the simple case of an ideally diffusing
surface illuminated by a point source, as in
Figure 4, for example, the image light
intensity, L, is given by

L = I * R * cos i            (1)

where I is intensity of incident illumination,
R is reflectivity of the surface, and i is the
angle of incidence of the illumination [20].

The central problem in recovering
intrinsic scene characteristics is that
information is confounded in the light-
intensity image: a single intensity value
encodes all the intrinsic attributes of the
corresponding scene point. While the encoding
is deterministic and founded upon the physics
of imaging, it is not unique: the measured
light intensity at a single point could result
from any of an infinitude of combinations of
illumination, reflectance, and orientation.

We know that information in the intrinsic
images completely determines the input image.
The crucial question is whether the information
in the input image is sufficient to recover the
intrinsic images.

III THE NATURE OF THE SOLUTION

The only hope of decoding the confounded
information is, apparently, to make assumptions
about the world and to exploit the constraints
they imply. In images of three-dimensional
scenes, the intensity values are not
independent but are constrained by various
physical phenomena. Surfaces are continuous in
space, and often have approximately uniform
reflectance. Thus, distance and orientation are
continuous, and reflectance is constant
everywhere in the image, except at edges
corresponding to surface boundaries. Incident
illumination, also, usually varies smoothly.
Step changes in intensity usually occur at
shadow boundaries, or surface boundaries.
Intrinsic surface characteristies are
continuous through shadows. In man-made
environments, straight edges frequency
correspond to boundaries of planar surfaces,
and ellipses to circles viewed obliquely. Many
clues of this sort are well known to
psychologists and artists. There are also
higher-level constraints based on knowledge of
specific objects, or classes of object, but we
shall not concern ourselves with them here,
since our aim is to determine how well images
can be interpreted without object-level
knowledge.

We contend that the constraints provided
by such phenomena, in conjunction with the
physics of imaging, should allow recovery of
the intrinsic images from the input image. As
an example, look carefully at a nearby painted
wall. Observe that its intensity is not
uniform, but varies smoothly. The variation
could be due, in principle, to variations in
reflectance, illumination, orientation, or any
combination of them. Assumptions of continuity
immediately rule out the situation of a smooth
intensity variation arising from cancelling
random variations in illumination, reflectance,
and orientation since  surfaces are  assumed to
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be uniform in reflectance, the intensity
variation must thus be due to a smooth
variation in illumination or surface shape. The
straight edge of the wall suggests, however,
that the wall is planar, and that the variation
is in illumination only. To appreciate the
value of this constraint, view a small central
portion of the wall through a tube. With no
evidence from the edge, it is difficult to
distinguish whether the observed shading is due
to an illumination gradient on a planar
surface, or to a smooth surface curving away
from the light source.

The tube experiment shows that while
isolated fragments of an image have inherent
ambiguity, interactions among fragments
resulting from assumed constraints can lead to
a unique interpretation of the whole image. Of
course, it is possible to construct (or
occasionally to encounter) scenes in which the
obvious assumptions are incorrect -- for
example, an Ames roon (see [13] for an
illustration). In such cases, the image will be
misinterpreted, resulting in an illusion. The
Ames illusion is particularly interesting
because it shows the lower-level
interpretation, of distance and orientation,
dominating the higher-level knowledge regarding
relative sizes of familiar objects, and even
dominating size constancy. Fortunately, in
natural scenes, as commonly encountered, the
evidence is usually overwhelmingly in favor of
the correct interpretation.

We have now given the flavor of the
solution, but with many of the details lacking.
Our current research is aimed at making the
underlying ideas sufficiently precise to
implement a computational model. While we are
far from ready to attack the full complexity of
the real world, we can give a fairly precise
description of such a model for recovering
intrinsic characteristics in a limited world.
Moreover, we can argue that this model may be
extended incrementally to handle more realistic
scenes.

IV SOLUTION FOR A SIMPLE WORLD

A.    Methodology   
To approach the problem systematically,

we select an idealized domain in which a
simplified physics holds exactly, and in which
explicit contraints on the nature of surfaces
and illuminants. From these assumptions, it is
possible to enumerate various types of scene
fragments and determine the appearance of their
corresponding image fragments. A catalog of
fragment appearances and alternative
interpretations can thus be compiled (in the
style of Huffman [21] and Waltz [34]).

We proceed by constructing specific
scenes that satisfy the domain assumptions,
synthesizing corresponding images of them, and
then attempting to recover intrinsic
characteristics from the images, using the
catalog and the domain knowledge. (By
displaying synthetic images, we could check
that people can interpret them adequately. If
they cannot, we can discover oversimplifica-
tions by comparing the synthetic images to real
images of similar scenes.)

B.      Selection       of       a       Domain   
Specifications for an experimental domain

must include explicit assumptions regarding the
scene, the illumination, the viewpoint, the
sensor, and the image-encoding process. The
initial domain should be sufficiently simple to
allow exhaustive enumeration of its
constraints, and complete cataloging of
appearances. It must, however, be sufficiently
complex so that the recovery process is non-
trivial and generalizable. A domain satisfying
these requirements is defined as follows:

* Objects are relatively smooth, having
surfaces over which distance and
orientation are continuous. That is,
there are no sharp edges or creases.

* Surfaces are lambertian reflectors,
with constant albedo over them. That
is, there are no surface markings and
no visible texture.

* Illumination is from a distant point
source, of known magnitude and
direction, plus uniformly diffuse
background light of known magnitude (an
approximation to sun, sky, and
scattered light). Local secondary
illumination (light reflected from
nearby objects) is assumed to be
negligible. (See Figure 5.) ;

* The image is formed by central
projection onto a planar surface. Only
a single view is available (no stereo
or motion parallax). The scene is
viewed from a general position
(incremental changes in viewpoint do
not change the topology of the image) .

* The sensor measures reflected flux
density. Spatial and intensity
resolution are sufficiently high that
quartization effects may be ignored.
Sensor noise is also negligible.

Such a domain might be viewed as an
approximation of a world of colored Play-Doh
objects in which surfaces are smooth,
reflectance is uniform for each object, there
is outdoor illumination, and the scene is
imaged by a tv camera. The grossest
approximations, perhaps, are the assumptions
about illumination, but they are substantially
more realistic than the usual single-point-
source model, which renders all shadowed
regions perfectly black.

For this domain, our objective is to
recover intrinsic images of distance,
orientation, reflectance, and illumination.

C.    Describing       the       Image   
Elementary physical considerations show

that a portion of a surface that is continuous
in visibility, distance, orientation, and
incident illumination, and has uniform
reflectance, maps to a connected region of
continuous intensity in the image. Images thus
consist of regions of smoothly varying
intensity, bounded by step discontinuities. In
our domain, reflectance is constant over each
surface, and there are two states of
illumination, corresponding to sun and shadow.
Image regions therefore correspond to areas of
surface with a particular state of
illumination,  and the boundaries corresponding
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Figure 5    Sun and sky illumination model

to occluding (extremal) boundaries of
surfaces, or to the edges of shadows. There
are also junctions where boundaries meet.
Figure 6b shows the regions and edges for the
simple scene of Figure 3.

To be quantitative, we assume image
intensity is calibrated to give reflected flux
density at the corresponding scene point.
Reflected flux density is the product of
integrated incident illumination, I, and
reflectance (albedo), R, at a surface element.
Thus,

L = I * R               (2)

The reflected light is distributed uniformly
over a hemisphere for a lambertian surface.
Hence, image intensity is independent of
viewing direction. It is also independent of
viewing distance, because although the flux
density received from a unit area of surface
decreases as the inverse square of distance,
the surface area corresponding to a unit area
in the image increases as the square of
distance.

In shadowed areas of our domain, where
surface elements are illuminated by uniform
diffuse illumination of total incident    
flux density I0, the image intensity is given
by

L = IO * R              (3)

When a surface element is illuminated by
a point source, such that the flux density  
is I1,  from a direction specified by the unit

vector, S, the incident flux density at the
surface is I1 * N.S, where N is the unit
normal to the surface, and . is the vector dot
product. Thus,

L = I1 * N.S * R             (4)

In directly illuminated areas of the scene,
image intensity, L, is given by the sum of the
diffuse and point-source components:

L = (I0 + I1 + N.S) * R        (5)

From the preceding sections, we are not in a
position to describe the appearance of image
fragments in our domain, and then to derive a
catalog.

1.     Regions   
For a region corresponding to a

directly illuminated portion of a surface,
since R, I0, and I1 are constant, any
variation in image intensity is due solely to
variation in surface orientation. For a region
corresponding to a shadowed area of surface,
intensity is simply proportional to
reflectance, and hence is constant over the
surface.

We now catalog regions by their
appearance. Regions can be classified
initially according to whether their
intensities are smoothly varying, or constant.
In the former case, the region must correspond
to a nonshadowed, curved surface with constant
reflectance and continuous depth and
orientation. In the latter case, it must
correspond to a shadowed surface. (An
illuminated planar surface also has constant
intensity, but such surfaces are excluded from
our domain.) The shadowing may be due either
to a shadow cast upon it, or to its facing
away from the point source. The shape of a
shadowed region is indeterminable from
photometric evidence. The surface may contain
bumps or dents and may even contain
discontinuities in orientation and depth
across a self-occlusion, with no corresponding
intensity variations in the image.

2.     Edges   
In the same fashion as for regions,

we can describe and catalog region boundaries
(edges). An edge should not be considered
merely as a step change in image intensity,
but rather as an indication of one of several
distinct scene events. In our simple world,
edges correspond to either the extremal boun-
dary of a surface (the solid lines in Figure
3b), or to the boundary of a cast shadow (the
solid lines in Figure 3e). The "terminator"
line on a surface, where there is a smooth
transition from full illumination to self-
shadowing (the dashed lines in Figure 3e),
does not produce a step change in intensity

The boundary of a shadow cast on a
surface indicates only a difference in
incident illumination: the intrinsic
characteristics of the surface are continuous
across it. As we observed earlier, the
shadowed region is constant in intensity, and
the illuminated region has an intensity
gradient that is a function of the surface
orientation. The shadowed region is
necessarily darker than the illuminated one.
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(a)   ORIGINAL SCENE

(c)   LA: CONSTANT, LB: CONSTANT

(e)   LA: CONSTANT, LB: TANGENT

(b)   INPUT INTENSITY IMAGE

(d)   LA: CONSTANT, LB: VARYING

(f)   LA: VARYING, LB: TANGENT

Figure 6    Initial classification of edges in an example scene.
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An extremal boundary is a local ex-
tremum of the surface from the observer's point
of view, where the surface turns away from him.
Here one surface occludes another, and all
intrinsic characteristics may be discontinuous.
In our world, it is assumed that depth and
orientation are always discontinuous. Reflec-
tance is constant on each side of the edge, and
will only be continuous across it if the two
surfaces concerned have identical reflectance,
or when a single surface occludes itself.

A very important condition results
from the fact that an extremal boundary
indicates where a smooth surface turns away
from the viewer: the orientation is normal to
the line of sight, and to the tangent to the
boundary in the image. Hence the absolute
orientation of the occluding surface can be
determined along an extremal boundary. The
boundary must first be identified as extremal,
however.

The regions on either side of an
extremal boundary are independently
illuminated. When both are in shadow, they both
have constant intensity, and the ratio of
intensities is equal to the ratio of the
reflectances: it is not possible to determine
from local intensity information which region
corresponds to the occluding surface.

When a region is illuminated,
intensity varies continuously along its side of
the boundary. We noted that the image of an
extremal boundary tells us precisely the
orientation of the occluding surface at points
along it. The orientation, together with tbe
illumination flux densities, I0 and I1, and the
image intensity, L, can be used in Equation (5)
to determine reflectance at any point on the
boundary. For a true extremal boundary, our
assumption of uniform reflectance means that
estimates of reflectance at all points along it
must agree. This provides a basis for
recognizing  an  occluding  surface by  testing

whether reflectances derived at several
boundary points are consistent. We call this
test the    tangency       test   , because it depends
upon the surface being tangential to the line
of sight at the boundary. This test is derived
by differentiating the logarithm of Equation
(5):

dL/L = dR/R + (I1*dN.s)/(I0 + I1*N.s)   (6)

The vector dN is the derivative of surface
orientation along the edge, and may be
determined from the derivative of edge
direction. The derivatives dL and dR are taken
along the edge. Equation (6) may be rewritten
to give dR/R explicitly in terms of L, dL, N,
dN and the constants I0, I1, and S. The
tangency condition is met when dR/R is zero.
The tangency condition is a powerful constraint
that can be exploited in further ways, which we
will discuss later.

Strictly speaking, where we have
referred to derivatives here, we should have
said "the knit of the derivative as the edge is
approached from the side of the region being
tested." Clearly, the tests are not applicable
at gaps, and the tangency test is not
applicable where the edge is discontinuous in
direction.

We can now catalog edges by their
appearances, as we did for regions. Edges are
classified according to the appearance of the
regions on either side in the vicinity of the
edge. This is done by testing intensity values
on each side for constancy, as before, and for
satisfaction of the tangency test, and by
testing relative intensities across the edge.
Table 1 catalogs the possible appearances and
interpretations of an edge between two regions,
A and B.

In this table, "Constant" means
constant intensity along the edge, "Tangency"
means that the tangency condition  is met,  and

Table 1    The Nature of Edges
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"Varying" means that neither of these tests
succeeds. The entry "EDGE" denotes a
discontinuity in the corresponding intrinsic
attribute, with the same location and direction
as the corresponding image intensity edge. The
magnitude and sense of the discontinuity are
unknown, unless otherwise shown. Where the
value of an intrinsic attribute can be
determined from the image (see Section IV.D),
it is indicated by a term of the form RA, RB,
DA, etc. (These terms denote values for
reflectance, R; orientation, vector N;
distance, D; and incident flux density, I; for
the regions A and B, in the obvious way.) Where
only a constraint on values is known, it is
indicated by an inequality. There is a special
situation, concerning case 1 of the second type
of edge, in which a value can be determined for
NB.S, but not for NB itself.

Note that, from the types of intensity
variations, edges can be interpreted
unambiguously, except for two cases: namely,
the sense of the occluding edge between two
shadowed regions, and the interpretation of an
edge between illuminated and shadowed regions
when the tangency test fails. Figure 6
illustrates the classification of edges
according to tbe catalog for our example scene.

3.     Junctions   

Since the objects in our domain are
smooth, there are no distinguished points on
surfaces. Junctions in the image, therefore,
are viewpoint dependent. There are just two
classes of junction, both resulting from an
extremal boundary, and both appearing as a T-
shape in the image (see Figure 7).

The first type of junction arises when
one object partially occludes a more distant
boundary, which may be either a shadow edge or
an extremal edge. The crossbar of the junction
is thus an extremal edge of an object that is
either illuminated or shadowed. The boundary
forming the stem lies on the occluded object
and its edge type is unconstrained.

The second type of junction arises
when a shadow cast on a surface continues
around behind an extremal boundary. In this
case, the crossbar is again an extremal edge,
half in shadow, while the stem is a shadow edge
lying on the occluding object.

Note that in both cases the crossbar
of the T corresponds to a continuous extremal
boundary. Hence the two edges forming the
crossbar are continuous, occluding, and have
the same sense.

The T junctions provide constraints
that can sometimes resolve the ambiguities in
the edge table above. Consider the cases as
follows: if all the regions surrounding the T
are shadowed, the edge table tells us that all
the edges are occluding, but their senses are
ambiguous. The region above the crossbar,
however, must be occluding the other two,
otherwise the continuity of the crossbar could
be due to an accident of viewpoint. If one or
more of the regions is illuminated, the
occlusion sense of the crossbar is immediately
determined from the tangency test. Thus we can
always determine the nature of the two edges
forming the crossbar of the T, even wnen they
may have been ambiguous according to the edge
table.

If the region above the crosbar is the
occluder, we have the first type of T junction,
and can say no more about the stem than the
edge tests give us. Otherwise, we have the
second type (a shadow edge cast over an
extremal boundary), and any ambiguity of the
stem is now resolved.

Figure 7    Two types of T-junction

D.      Recovery       Using       the       Catalog   

The ideal goal is to recover all
intrinsic scene characteristics, exactly,
everywhere in an image that is consistent with
our domain. In this section, we outline the
principles of recovery using the catalog and
address the issue of how nearly our goal can be
attained. The following section will describe a
detailed computational model of the recovery
process.

The recovery process has four main steps:

(1) Find the step edges in the input
intensity image.

(2) Interpret the intrinsic nature of the
regions and edge elements, according
to the catalog. Interpretation is
based on the results of constancy and
tangency tests.

(3) Assign initial values for intrinsic
characteristics along the edges,
based on the interpretations.

(4) Propagate these "boundary" values
into the interiors of regions,  using
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continuity assumptions. This step is
analogous to the use of relaxation
methods in physics for determining
distributions of temperature or
potential over a region based on
boundary values.

For pedagogical purposes, in this section
only, we assune that it is possible to extract
a perfect line drawing from the intensity
image. The recovery process described later
does not depend on this assumption, because: it
perfects the line drawing as an integral part
of its interpretation. Let us now consider the
ultimate limitations of the recovery paradigm
in our simple domain.

Shadowed and directly illuminated areas
of the image are distinguished immediately,
using the constancy test. Reflectance
everywhere in shadowed areas is then given by
Equation (3).

The orientation of a region corresponding
to an illuninated surface can be determined
along extremal boundaries identified by the
tangency test. Reflectance of this region can
then be determined at the boundary by Equation
(5), and thus throughout the region based on
the assumption that reflectance is constant
over a surface.

So far, recovery has been exact; the
intrinsic values and edges that can be exactly
inferred from intensity edges are shown in
Table 1. Surface orientation within illuminated
regions bounded, at least in part, by extremal
edges can be reasonably estimated, as follows:
Equation (5) can be solved, knowing L, R, I0,
and I1, for N.S, the cosine of the angle of
incidence of the direct component of
illumination, at each point. This does not
uniquely determine the orientation, which has
two degrees of freedom, but it does allow
reasonable estimates to be obtained using the
assumption of smoothness of surfaces and the
known orientation at extremal boundaries to
constrain the other degree of freedom. Two
examples of how this reconstruction can be done
are given by the work of Horn [19] and Woodham
[35] on "shape fron shading."

Orientation can be integrated to obtain
relative distance within the regions, and the
tangency test gives distance ordering across
the boundary.

Since a shadowed region of surface
appears uniform in the intensity image, its
shape cannot be determined from shading
information. A plausible guess can be made,
however, by interpolating in from points of
known orientation, using the smoothness
assumption. This can be done only if at least
part of the boundary of the shadowed region can
be interpreted as extremel boundary (e.g.,
using T-junctions), or as a shadow edge with
the shape on the illuminated side known.

Not surprisingly, little can be said
about regions, shadowed or illuminated, with no
visible portions of boundary identifiable as
extremal (e.g. a region seen through a hole, or
shadowed, with no T-junctions). It is still
reasonable to attempt to interpret such
inherently ambiguous situations, but it is then
necessary to introduce further, and perhaps
less general, assumptions. For example: an
object is predominantly convex, so the sense of
an occlusion can be guessed locally from the
shape of the boundary; the brightest point   
on an illuminated  surface is probably oriented

with its normal pointing at the light source,
providing a boundary condition for determining
the surface reflectance and its shape from
shading. Of course, such assumptions must be
subordinate to harder evidence, when it is
available.

We conclude that, in this limited domain,
unambiguous recovery of intrinsic character-
istics at every point in an image is not
generally possible, primarily because of the
lack of information in some regions of the
intensity image. Thus, in some cases, we must
be content with plausible estimates derived
from assumptions about likely scene
characteristics. When these assumptions are
incorrect, the estimates will be wrong, in the
sense that they will not correspond exactly to
the scene; they will, however, provide an
interpretation that is consistent with the
evidence available in the intensity image, and
most of the time this interpretation will be
largely correct.

Though perfect recovery is unattainable,
it is remarkable how much can be done
considering the weakness (and hence generality)
of the assumptions, and the limited number of
cues available in this domain. We used no shape
prototypes, nor object models, and made no use
of any primary depth cues, such as stereopsis,
motion parallax, or texture gradient. Any of
these sources, if available, could be
incorporated to improve performance by
providing information where previously it could
only be guessed (for example, texture gradient
could eliminate shape ambiguity in shadows).

V    A COMPUTATIONAL MODEL

We now propose a detailed computational
model of the recovery process. The model
operates directly on the data in a set of
intrinsic images and uses parallel local
operations that codify values in the images to
make them consistent with the input image and
constraints representing the physical
assumptions about imaging and the world.

A.       Establishing       Constraints   

Recovery begins with the detection of
edges in the intensity image. If quantization
and noise are assumed negligible in the domain,
we can easily distinguish all step
discontinuities, and hence generate a binary
image or intensity edges, each with an
associated direction. This image will resemble
a perfect line drawing, but despite the ideal
conditions, there can still be gaps where
intensities on two sides or a boundary happen
to be identical. Usually this will occur only
at a single isolated point -- for example, at a
point where the varying intensities on the two
sides of an occlusion boundary simultaneously
pass through the same value. Complete sections
of a boundary may also occasionally be
invisible -- for example, when a shadowed body
occludes itself. Our recovery process is
intended to cope with these imperfections, as
will be seen later.

Given the edge image, the next step is to
interpret the intrinsic nature of the edge
elements according to the edge table.
Interpretation is based on the results of two
tests, constancy and tangency applied to the
intensities of the regions immediately adjacent
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to an edge element. The constancy test is
applied by simply checking whether the gradient
of intensity is zero. The tangency test is
applied in its differential form by checking
whether the derivative of estimated
reflectance, taken along the edge, is zero.

The resulting edge interpretations are
used to initialize values and edges in the
intrinsic images in accordance with the edge
table. The table specifies, for each type of
intensity edge, the intrinsic images in which
corresponding edge elements should be inserted.
Values are assigned to intrinsic image points
adjacent to edges, as indicated in the table.
For example, if an intensity edge is
interpreted as an occlusion, we can generate an
edge in the distance and orientation images,
and initialize orientation and reflectance
images at points on the occluding side of the
boundary.

When the edge interpretation is
ambiguous, we make conservative initializa-
tions, and wait for subsequent processing to
resolve the issue. In the case of an extremal
boundary separating two shadowed regions, this
means assigning a discontinuity in distance,
orientation and reflectance, but not assuming
anything else about orientation or relative
distance. In the case of ambiguity between a
shadow edge and a shadowed occluding surface,
we assume discontinuities in all characteris-
tics, and that the illumination and reflectance
of the shadowed region are known. It is better
to assume the possible existence of an edge,
when unsure, because it merely decouples the
two regions locally; they may still be related
through a chain of constraints along some other
route.

For points at which intrinsic values have
not been uniquely specified, initial values are
assigned that are reasonable on statistical and
psychological grounds. In the orientation
image, the initial orientation is assigned as
N0, the orientation pointing directly at the
viewer. In the illumination image, areas of
shadow, indicated by the constancy test, are
assigned value I0. The remaining directly
illuminated points are assigned value I1*N0.S
In shadowed areas, reflectance values are
assigned as L/I0, and in illuminated areas,
they are assigned L/(I0 + I1*N0.S). Distance
values are more arbitrary, and we assign a
uniform distance, DO everywhere. The choice of
default values is not critical, they simply
serve as estimates to be improved by the
constraint satisfaction processes.

Following initialization, the next step
is to establish consistency of intrinsic values
and edges in the images. Consistency within an
individual image is governed by simple
continuity and limit constraints. In the
reflectance image, the constraint is that
reflectance is constant -- that is, its
gradient must be defined and be zero
everywhere, except at a reflectance edge.
Reflectance is additionally constrained to take
values between 0 and 1. Orientation values are
also constrained to be continuous, except at
occlusion edges. The vectors must be unit
vectors,  with a positive component in the
direction of the viewpoint. Illumination is
positive and continuous, except across shadow
boundaries. In shadowed regions, it must be
ccnstant, and equal to I0. Distance values must
be continuous  everywhere  --  that  is,  their

gradient must be defined and finite, except
across occlusion edges. Where the sense of the
occlusion is known, the sense of the
discontinuity is constrained appropriately.
Distance values must always be positive.

All these constraints involve local
neighborhoods, and can thus be implemented via
asynchronous parallel processes. The continuity
constraints, in particular, might be
implemented by processes that simply ensure
that the value of a characteristic at a point
is the average of neighboring values. Such
processes are essentially solving Laplace's
equation by relaxation.

The value at a point in an intrinsic
image is related not only to neighboring values
in the same image, but also to values at the
corresponding point in the other images. The
primary constraint of this sort is that image
intensity is everywhere the product of
illumination and reflectance, as in Equation
(2). Incident illumination is itself a sum of
terms, one for each source. This may
conveniently be represented by introducing
secondary intrinsic images for the individual
sources. The image representing diffuse
illumination is constant, with value I0, while
that for the point source is I1*N.S, where N.S
is positive and the surface receives direct
illumination, and zero elsewhere. These
constraints tie together values at
corresponding points in the input intensity,
reflectance, primary and secondary
illumination, and orientation images. The
orientation and distance images are constrained
together by the operation of differentiation.

B.       Achieving       Consistency   
Consistency is attained when the intra-

and inter-image constraints are simultaneously
satisfied. That occurs when values and
gradients everywhere are consistent with
continuity assumptions and constraints
appropriate to the type of image, and the
presence or absence of edges. The intraimage
constraints ensure that intrinsic character-
istics vary smoothly, in the appropriate ways.
Such constraints are implicit in the domain
description, and are not usually made so
explicit in machine vision systems. The inter-
image constraints ensure that the characteris-
tics are also consistent with the physics of
imaging and the input intensity image. It is
these constraints that permit an estimate of
surface shape from the shading within regions
of smoothly varying intensity [19].

Consistency is achieved by allowing the
local constraint processes, operating in
parallel, to adjust intrinsic values. The
explicitly determined values listed in the
initialization table, however, are treated as
boundary conditions and are not allowed to
change. As a result, information propagates
into the interior of regions from the known
boundaries.

The initial assignment of intrinsic edges
is, as we have already noted, imperfect: edges
found in the intensity image may contain gaps,
introducing corresponding gaps in the intrinsic
edges; certain intrinsic edges are not visible
in the intensity image -- for example, self-
occlusion in shadow; some intrinsic cases were
assumed in the interests of conservatism, but
they may be incorrect. From the recovered
intrinsic values,  it may be clear where futher
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edges should be inserted in (or deleted from)
the corresponding intrinsic image. For example,
when the gradient in an image becomes very
high, insertion of an edge element is
indicated, and, conversely, when the difference
in values across an edge becomes very small,
deletion is indicated. Insertion and deletion
must operate within existing constraints. In
particular, edge elements cannot be manipulated
within a single image in isolation, because a
legal interpretation must always be maintained.
For example, in our world, occlusion implies
edges in distance and orientation simultaneous-
ly. Within an intrinsic image, continuity of
surfaces implies continuity of boundaries.
Hence, the decision to insert must take
neighboring edge elements into consideration.

Constraints and boundary conditions are
dependent upon the presence or absence of
edges. For example, if a new extremal edge is
inserted, continuity of distance is no longer
required at that point, and the orientation on
one side is absolutely determined.
Consequently, when edge elements are inserted
or deleted, the constraint satisfaction problem
is altered. The constraint and edge
modification processes run continuously,
interacting to perfect the original
interpretation and recover the intrinsic
characteristics. Figures 8 and 9 summarize the
overall organization of images and constraints.

So far we have not mentioned the role of
junctions in the recovery process. At this
point, it is unclear whether junctions need to
be treated explicitly since the edge
constraints near a confluence of edges will
restrict relative values and interpretations.
Junctions could also be used in an explicit
fashion. When a T-configuration is detected,
either during initialization or subsequently,
the component edges could be interpreted via a
junction catalog, which would provide more
specific interpretations than the edge table.
Detection of junctions could be performed in
parallel by local processes, consistent with
the general organization of the system. The
combinatorics of junction detection are much
worse than those of edge detection, and have
the consequence that reliability of detection
is also worse. For these reasons, it is to be
hoped that explicit reliance upon junctions
will not be necessary.

The general structure of the system is
clear, but a number of details remain to be
worked out. These include: how to correctly
represent and integrate inter- and intra-image
constraints; how to insert and delete edge
points; how to correctly exploit junction
constraints; how to ensure rapid convergence
and stability. Although we do not yet have a
computer implementation of the complete model,
we have been encouraged by experiments with
some of the key components.

We have implemented a simple scheme that
uses a smoothness constraint to estimate
surface orientation in region interiors from
boundary values. The constraint is applied by
local parallel processes that replace each
orientation vector by the average of its
neighbors. The surface reconstructed is a
quadratic function of the image coordinates. It
is smooth, but not uniformly curved, with its
boundary lying in a plane. It appears possible
to derive more  complex continuity  constraints

that result in more uniformly curved surfaces,
interpolating, for example, spherical and
cylindrical surfaces from their silhouettes.

The above smoothing process was augmented
with another process that simultaneously
adjusts the component of orientation in the
direction of steepest intensity gradient to be
consistent with observed intensity. The result
is a cooperative "shape from shading"
algorithm, somewhat different from Woodham's
[35]. The combined algorithm has the potential
for reconstructing plausible surface shape in
both shadowed and directly illuminated regions.

VI    EXTENDING THE THEORY

Our initial domain was deliberately
oversimplified, partly for pedagogic purposes
and partly to permit a reasonably exhaustive
analysis. The approach of thoroughly describing
each type of scene event and its appearance in
the image, and then inverting to form a catalog
of interpretations for each type of image
event, is more generally applicable. Results so
far appear to indicate that while ambiguities
increase with increasing domain complexity,
available constraints also increase
proportionately. Information needed to effect
recovery of scene characteristics seems to be
available; it is mainly a matter of thinking
and looking hard enough for it.

In this section, we will briefly describe
some of the ways in which the restrictive
assumptions of our initial domain can be
relaxed, and the recovery process
correspondingly augmented, to bring us closer
to the real world.

The assumption of coutinuous, noise-free
encoding is important for avoiding
preoccupation with details of implementation,
but it is essential for a realistic theory to
avoid reliance upon it. With these assumptions,
problems of edge detection are minimized, but,
as we noted earlier, perfect line drawings are
not produced. Line drawings conventionally
correspond to surface outlines, which may not
be visible everywhere in the image. The
recovery process we described, therefore,
incorporated machinery for inserting and
deleting edges to achieve surface integrity.
Relaxing the assumption of ideal encoding will
result in failure to detect some weak intensity
edges and possibly the introduction of spurious
edge points in areas of high intensity
gradient. Insofar as these degradations are
moderate, the edge-refinement process should
ensure that the solution is not significantly
affected.

The assumption of constant reflectance on
a surface can be relaxed by introducing a new
edge type -- the reflectance edge -- where
orientation, distance, and illumination are
still continuous, but reflectance undergoes a
step discontinuity. Reflectance edges bound
markings on a surface, such as painted letters
or stripes. The features distinguishing the
appearance of an illuminated reflectance edge
are that the ratio of edge intensities across
the edge is constant along it and equal to the
ratio of the reflectances and the magnitude of
intensity gradient across the edge is also
equal  to the ratio  of the  reflectances,  and
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Figure 8   A parallel computational model for recovering intrinsic images

The basic model consists of a stack of registered arrays, representing the original
intensity image (top) and the primary intrinsic arrays. Processing is initialized by
detecting intensity edges in the original image, interpreting them according to the
catalog, and then creating the appropriate edges in the intrinsic images (as implied by
the downward sweeping arrows).

Parallel local operations (shown as circles) modify the values in each intrinsic image
to make them consistent with the intraimage continuity and limit constraints.
Simultaneously, a second set of processes (shown as vertical lines) operates to make
the values consistent with interimage photometric constraints. A third set of processes
(shown as Xs) operates to insert and delete edge elements, which locally inhibit
continuity constraints. The constraint and edge modification processes operate
continuously and interact to recover accurate intrinsic scene characteristics and to
perfect the initial edge interpretation.
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Figure 9 Organization of the computational
model

The input intensity inage and
primary intrinsic images each have
an associated gradient image and an
edge image. Additional images
represent intermediate results of
computation, such as N.S. (All
images are shown as hexagons.) The
constraints, shown here as circles,
are of three varieties: physical
limits (e.g., 0 =< R =< 1), local
continuity, and interimage
consistency of values and edges.
Continuity constraints are inhibited
across edges. For example, values of
illumination gradient are
constrained to be continuous, except
at illumination edges.

its direction is the same on both sides. These
characteristics uniquely identify illuminated
reflectance edges, and provide constraints
relating intrinsic characteristics on the two
sides.

In shadow, it is not possible to locally
distinguish a pure reflectance edge from an
extremal edge between surfaces of different
reflectance, for which the ratio of intensities
is also equal to the ratio of reflectances.

The existence of reflectance edges
introduces a new type or X-shaped junction,
where a shadow edge is cast across a
reflectance edge. The detection of an X-
junction in the image unambiguously identifies
a shadow edge, since the reflectance edge may
be easily identified by the ratio test.

An interesting case of surface markings
is that of reflectance texture. Texture has
certain regular or statistical properties that
can be exploited to estimate relative distance
and surface orientation. If we can assume
statistically uniform density of particular
textural features, the apparent density in the
image relates distance and inclination of the
surface normal to the viewing direction. A
second cue is provided by orientation of
textural features (for example, reflectance
edge elements). As the surface is viewed more
obliquely, the orientation distribution of
image features tends to cluster about the
orientation of the extremal boundary, or of the
horizon. These cues are important, since they
provide independent information about surface
shape, perhaps less precisely and of lower
resolution than photometric information, but in
areas where photometric information is
unavailable (e.g., shadowed regions) or
ambiguous (e.g., an illuminated region seen
through a hole).

The assumption of smoothness of surfaces
can be relaxed by introducing a further edge
type, the intersection edge, which represents a
discontinuity in surface orientation, such as
occurs at a crease or between the faces of a
polyhedron. There are two distinct ways an
intersection edge can appear in an image,
corresponding to whether one or both of the
intersecting surfaces are visible. We shall
call these subcases "occluding" and
"connecting," respectively.

At a connecting intersection edge, only
distance is necessarily continuous, since faces
can be differently painted, and illuminated by
different sources. The strong assumption of
continuity of orientation is replaced by the
weaker one that the local direction of the
surface edge in three dimensions is normal to
the orientations of both surfaces forming it.
The effect of this constraint is that if one
surface orientation is known, the surface edge
direction can be inferred from the image, and
the other surface orientation is then hinged
about that edge, leaving it one degree of
freedom. Even when neither orientation is known
absolutely, the existence of a connecting edge
serves to inhibit application of continuity
constraints, and thereby permit more accurate
reconstruction of surface shape.

At an occluding intersection edge,
nothing is known to be continuous, and the only
constraint is on relative distance.

18                                                                                                                                                                              H. G. Barrow and J. M. Tenenbaum



In the image, an illuminated intersecting
edge can be distinguished from an extremal edge
since the intensity on both sides is varying,
but the tangency test fails, and it can be
distinguished from a reflectance edge since the
ratio of intensities across the edge is not
constant. The constraint between surface
orientations forming the edge makes it appear
likely that a test can also be devised for
distinguishing between connecting and occluding
intersection edges.

In shadowed regions, intersection edges
are only visible when they coincide with
reflectance edges, from which they are
therefore locally indistinguishable. Creases in
a surface are thus invisible in shadows.

When one surface is illuminated and the
other shadowed, an intersection edge cannot  
be locally distinguished from the case       
of a shadowed object occluding an illuminated
one.

Extremal and intersection boundaries
together give a great deal of information about
surface shape, even in the absence of other
evidence, such as shading, or familiarity with
the object. Consider, for example, the ability
of an artist to convey abstract shape with line
drawings. The local inclination of an extremal
or intersection boundary to the line of sight
is, however, unknown; a given silhouette can be
produced in many ways [27]. In the absence of
other constraints, the distance continuity
constraint will ensure smooth variation of
distance at points along the boundary. An
additional constraint that could be invoked is
to assume that the torsion (and possibly also
the curvature) of the boundary space curve is
minimal. This will tend to produce planar space
curves for boundaries, interpreting a straight
line in the image as a straight line in space,
or an ellipse in the image as a circle in
space. The assumption of planarity is often
very reasonable: it is the condition used by
Marr to interpret silhouettes as generalized
cylinders [27].

The assumption of known illumination can
be relaxed in various ways. Suppose we have the
same "sun and sky" model of light sources, but
do not have prior knowledge of I0, I1 and S. In
general, we cannot determine the flux densities
absolutely, since they trade off against
reflectance. We may, however, assign an
arbitrary reflectance to one surface (for
example, assume the brightest region is white,
R = 1.0 ), and then determine other
reflectances and the flux densities relative to
it. The initial assignment may need to be
changed if it forces the reflectance of any
region to exceed the limits, 0.0 < R < 1.0.

The parameters of illumination, flux
densities I0 and I1, and unit vector S, can be
determined by assuming reflectance and
exploiting a variation of the tangency test. If
we have an illuminated extremal boundary,
Equation (5) gives a linear equation in the
parameters for each point on the edge. The
equations for any four points can be solved
simultaneously to yield all the parameters. The
remaining points on the boundary can be used
with the now-known illumination to verify the
assumption of an extremal boundary. An
independent check on the ratio of I0 to I1 can
be made at any shadow edge where surface
orientation is known. This method of solving
for illumination parameters can be extended to
multiple point sources by merely increasing the

number of points on the boundary used to
provide equations. Care is required with
multiple sources because it is necessary to
know which points are illuminated by which
sources. The method works for a centrally
projected image, but not for an orthogonally
projected one, since, in the latter case, all
the known surface normals are coplanar.

Even modelling illumination as a set of
point sources does not capture all the
subtleties of real-world lighting, which
include extended sources, possibly not distant,
and secondary illumination. Extended sources
cause shadows to have fuzzy edges, and close
sources cause significant gradients in flux
density and direction. Secondary illumination
causes local perturbations of illumination that
can even dominate primary illumination, under
some circumstances (e.g., light scattered into
shadow regions). All these effects make exact
modelling of illumination difficult, and hence
cast suspicion on a recovery method that
requires such models.

In the absence of precise illumination
models that specify magnitude and direction
distributions of flux density everywhere,
accurate point-wise estimation of reflectance
and surface orientation from photometric
equations alone is not possible. It should
still be possible, however, to exploit basic
photometric constraints, such as local
continuity of illumination, along with other
imaging constraints and domain assumptions, to
effect recovery within our general paradigm. As
an example, we might still be able to find and
classify edges in the intensity image:
reflectance edges still have constant intensity
ratios (less than 30:1) across them, shadow
edges can be fuzzy with high intensity ratios,
occlusion and intersection edges are generally
sharp without constant ratios. The occlusion
and intersection edges, together with
reflectance texture gradient and continuity
assumptions, should still provide a reasonable
initial shape estimate. The resulting knowledge
of surface continuity, the identified
reflectance edges, and the assumption of
reflectance constancy enable recovery of
relative reflectance, and hence relative total
incident flux density. The ability to determine
continuity of illumination and to discriminate
reflectance edges from other types thus allows
us to generalize Horn's lightness determination
process [18] to scenes with relief, occlusion,
and shadows.

Having now made initial estimates of
intrinsic characteristics, it may be possible
to refine them using local illumination models
and photometric knowledge. It may be possible,
using assumptions of local monotonicity of
illumination, to decide within regions whether
the surface is planar, curved in some
direction, or whether it inflects.

Even with all the extensions that we have
so far discussed, our scene domain is still
much less complex than the real world, in which
one finds specularity, transparency, luster,
visible light sources, three-dimensional
texture, and sundry other complications.
Although, at first sight, these phenomena make
recovery seem much harder, they also represent
additional intrinsic characteristics for more
completely describing the scene, and poten-
tially rich sources of information for forming
the description. There are also many well-
known sources  of information about  the scene,
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that make use of multiple images, including
stereo, motion parallax, and color. We believe
that the framework we have put forward can be
extended to accommodate these additional
sources.

At this point, it is not clear whether
adding complexity to our domain will lead to
fewer ambiguities, or more. So far, however, we
have seen no reason to rule out the feasibility
of recovering intrinsic scene descriptions in
realworld situations.

VII   DISCUSSION

The concept of intrinsic images clari-
fies a number of issues in vision and
generalizes and unifies many previously
disjoint computational techniques. In this
section, we will discuss some implications of
our work, in the contexts of system
organization, image analysis, scene analysis,
and human vision.

A.      System       Organization   

The proper organization of a visual
system has been the subject of considerable
debate. Issues raised include the controversy
over whether processing should be data-driven
or goal-driven, serial or parallel, the level
at which the transition from iconic to symbolic
representation should occur, and whether
knowledge should be primarily domain-
independent or domain-specific [4]. These
issues have a natural resolution in the
context of a system organized around the
recovery of intrinsic images, as in Figure  
10.

The recovery process we have outlined is
primarily data-driven and dependent only on
general domain assumptions. Subsequent goal-
oriented or domain-specific processes (ranging
from segmentation to object recognition) may
then operate on information in the intrinsic
images.

Intrinsic images appear to be a natural
interface between iconic and symbolic
representations. The recovery process seems
inherently iconic, and suited to implementation
as an array of parallel processes attempting to
satisfy local constraints. The resulting
information is iconic, invariant, and at an
appropriate level for extracting symbolic scene
descriptions. Conversely, symbolic information
from higher levels (e.g., the size or color of
known objects) can be converted to iconic form
(e.g., estimates of distance or reflectivity)
and used to refine or influence the recovery
process. Symbolic information clearly plays an
important role in the perception of the three-
dimensional world.

Multilevel, parallel constraint satis-
faction is an appealing way to organize a
visual system because it facilitates
incremental addition of knowledge and avoids
many arbitrary problems of control and
sequencing. Parallel implementations have been
used previously, but only at a single level,
for recovering lightness [18], depth [28], and
shape [35]. Each of these processes is
concerned with recovering one of our intrinsic
images, under specialized assumptions
equivalent to assuming values for the other im-

ages. In this paper, we have suggested how they
might be coherently integrated.

Figure 10   Organization of a visual system

Issues of stability and speed of
convergence always arise in iterative
approaches to constraint satisraction.
Heuristic "relaxation" schemes (e.g., [32]), in
which "probabilities" are adjusted, often use
ad hoc updating rules for which convergence is
difficult to obtain and prove. By contrast, the
system we have described uses iterative
relaxation methods to solve a set of equations
and inequalities. The mathematical principles
of iterative equation solving are well
understood [2] and should apply to our system,
at least, for a fixed set of edges. Insofar as
local edge modifications have only local
consequences, operations such as gap filling
should affect convergence to only a minor
extent.

Speed of convergence is sometimes raised
as an objection to the use of cooperative
processes in practical visual systems; it is
argued that such processes would be too slow in
converging to explain the apparent ability     
of humans  to interpret an image  in a fraction
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of a second. This objection can be countered in
several ways: first, full convergence may not
be necessary to achieve acceptable accuracy;
second, information propagation may be
predominantly local, influenced primarily by
nearby edges; third, there are ways of speeding
up long-range propagation -- for example, using
hierarchies of resolution [15].

B.      Image       Analysis   

Image analysis is usually considered to
be the generation of a two-dimensional
description of the image, such as a line
drawing, which may subsequently be interpreted.
We believe it is important to take a more
liberal view, and include some consideration of
the three-dimensional meaning of image features
in the earliest descriptions.

A topic often debated is segmentation --
the process of partitioning an image into
semantically interpretable regions. Fischler
[9] and others have raised a number of critical
questions: is segmentation meaningful in a
domain-independent sense, is it possible, and
how should it be done?

Partitioning of an arbitrary intensity
image into regions denoting objects is an
illusory goal, unless the notion of what
constitutes an object is precisely defined.
Since objects are often collections of   
pieces whose association must be learned,
general object segmentation seems impossible in
principle. It seems more reasonable, on the
other hand, to partition an image into regions
corresponding to smooth surfaces of uni-   
form reflectance. This is often the implicit
goal of programs that attempt to partition an
image into regions of uniform intensity.
Unfortunately, intensity does not corre-  
spond directly to surface characteristics.
There is no way of determining whether  
merging two regions is meaningful, and
consequently there is no reliable criterion for
terminating the merging process. Segmentation
based on intrinsic images avoids these
difficulties.

Another elusive goal, the extraction of a
perfect line drawing from an intensity image,
is also impossible in principle, for similar
reasons: the physical significance of
boundaries does not correlate well with the
magnitude of intensity changes. Surface
boundaries can be hard, and, in some places,
impossible, to detect; shadows and texture
contribute edge points in abundance, which, in
this context, are noise. To attain a line
drawing depicting surface boundaries, we must
take into account the physical significance of
intensity discontinuities. It is quite clear
from depth and orientation intrinsic images
where edges are necessary for consistency and
surface integrity. A perfect line drawing could
be regarded as one of the products of the
process of recovering intrinsic characteris-
tics.

From this point of view, all attempts to
develop more sophisticated techniques for
extracting line drawings from intensity images
appear inherently limited. Recently, relaxation
enhancement techniques for refining the
imperfect results of an edge detector have
attracted considerable interest [32 and 15].
These techniques manipulate edge confidences
according to the confidences of nearby points,
iterating until equilibrium is achieved. This
approach is really attempting  to introduce and

exploit the concept of edge continuity, and
does lead to modest improvements. It does not,
however, exploit the continuity of surfaces,
nor ideas of edge type, and consequently
produces curious results on occasion. Moreover,
as we noted earlier, convergence for ad hoc
updating rules is difficult to prove.

The major problem with all the image
analysis techniques we have mentioned is that
they are based on characteristics of the image
without regard to how the image was formed.
Horn at MIT for some time has urged the
importance of understanding the physical basis
of image intersity variations [20]. His
techniques for determining surface lightness
[18] and shape from shading [19] have had an
obvious influence on our own thinking. To
achieve a precise understanding of these
phenomena, Horn considered each in isolation,
in an appropriately simplified domain: a plane
surface bearing regions of different
reflectance lit by smoothly varying illumina-
tion for lightress, and a simple smoothly
curved surface with uniform reflectance and
illumination for shading. These domains are,
however, incompatible, and the techniques are
not directly applicable in domains where
variations in reflectance, illumination, and
shape may be discontinuous and confounded. We
have attempted to make explicit the constraints
and assumptions underlying such recovery
techniques, so that they may be integrated and
used in more general scenes.

The work most closely related to our own
is that of Marr [29], who has described a lay-
ered organization for a general vision system.
The first layer extracts a symbolic description
of the edges and shading in an intensity image,
know as the "Primal Sketch." These features are
intended to be used by a variety of pro-cesses
at the next layer (e.g., stereo correla-tion,
texture gradient) to derive the three-
dimensional surface structure of the image. The
resulting level of description is analogous to
our orientation and distance images, and is
called the "2.5D sketch." Our general phil-
osophy is similar to Marr's, but differs in
emphasis, being somewhat complementary. We are
all interested in understarding the organiza-
tion of visual systems, in terms of levels of
representation and information flow. Marr, how-
ever, has concentrated primarily on understand-
ing the nature of individual cues, such as
stereopsis and texture, while we have concen-
trated primarily on understanding the integra-
tion of multiple cues. We strongly believe that
interaction of different kinds of constraints
plays a vital role in unscrambling information
about intrinsic scene characteristics.

A particular point of departure is Marr's
reliance on two-dimensional image description
and grouping techniques to perfect the primal
sketch before undertaking any higher-level pro-
cessing. By contrast, we attempt to immediately
assign three-dimensional interpretations to
intensity edges to initialize processing at the
level of intrinsic images, and we maintain the
relationship between intensities and inter-
pretations as tightly as possible. In our view,
perfecting the intrinsic images should be the
objective of early visual processing; edges at
the level of the primal sketch are the
consequence of achieving a consistent three-
dimensional interpretation. We shall discuss
consequences of these differing organizations
with reference to human vision shortly.
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C.       Scene       Analysis   

Scene analysis is concerned with
interpreting images in three dimensions, in
terms of surfaces, volumes, objects, and their
interrelationships. The earliest work, on
polyhedral scenes, involved extracting line
drawings and then interpreting them using
geometric object prototypes [31, 8]. A
complementary approach analyzed scenes of
simple curved objects by partitioning the image
into regions of homogeneous intensity and then
interpreting them using relational models of
object appearances [5, 3]. Both these early
approaches were limited by the unreliability of
extracting image descriptions, as discussed in
the preceding section, and by the lack of
generality of the object prototypes used. It
was soon discovered that to extract image
descriptions reliably required exploiting
knowledge of the scene and image formation
process. Accordingly, attempts were made to
integrate segmentation and interpretation. The
general approach was to assign sets of
alternative interpretations to regions of
uniform intensity (or color), and then
alternately merge regions with compatible
interpretations and refine the interpretation
sets. The process terminates with a small
number of regions with disjoint (and hopefully
unique) interpretations. Yakimovsky and Feldman
[36] used Bayesian statistics for assigning
interpretations and guiding a search for the
set of regions and interpretations with the
highest joint likelihood. Tenenbaum and Barrow
(IGS [33]) used an inference procedure, similar
to Waltz's filtering [34], for eliminating
inconsistent interpretations. These systems
performed creditably upon complex images and
have been applied in a variety of scene
domains. They are not, however, suitable as
models of general-purpose vision because they
are applicable only when all objects are known
and can be distinguished on the basis of local
evidence or region attributes. Unknown objects
not only cannot be recognized; they cannot even
be described.

What seems needed in a general-purpose
vision system are more concise and more general
descriptions of the scene, at a lower level
than objects [4 and 38]. For example, once the
scene has been described at the level of
intrinsic surface characteristics, surfaces and
volumes can be found and objects can then
readily be identified. There is still the need
to guide formation of lower level descriptions
by the context of higher level ones, but now
the gaps between levels are much smaller and
easier to bridge.

Huffman [21], Clowes [6], and Waltz [34]
demonstrated the possibility of interpreting
line drawings of polyhedral scenes without the
need for specific object prototypes. Their
level of description involved a small set of
linear scene features (convex edge, concave
edge, shadow edge, crack) and a set of corner
features, where such edges meet. These scene
features were studied systematically to derive
a catalog of corresponding image features and
their alternative interpretations.
Interpretation of the line drawing involved a
combinatorial search for a compatible set of
junction labels. Waltz, in particular,
identified eleven types of linear feature, and
three cases of illumination for the surfaces
on each side. The resulting catalog of junction

interpretations contained many thousands of
entries. To avoid combinatorial explosion in
determining the correct interpretations, Waltz
used a pseudo-parallel local filtering paradigm
that eliminated junction interpretations
incompatible with any possible interpretation
of a neighboring junction.

While we also create and use a catalog,
the whole emphasis of our work is different. We
have attempted to catalog the appearances of
edges in grey-scale images, for a much wider
class of objects, and have described them in a
way that results in a much more parsimonious
catalog. Instead of interpreting an ideal line
drawing, we, in a sense, are attempting
simultaneously to derive the drawing and to
interpret it, using the interpretation to guide
the derivation. In contrast to the junctions in
line drawings, many gray-scale image features
can be uniquely interpreted using intensity
information and physical corstraints. We are
thus able to avoid combinatorial search and
"solve" directly for consistent interpretations
of remaining features. Our solution has a
definite iconic flavor, whereas Waltz’s has
largely a symbolic one.

Mackworth's approach to interpreting line
drawings [24] is somewhat closer to our point
of view. He attempts to interpret edges, rather
than junctions, with only two basic
interpretations (Connect and Occluding); he
models surfaces by representing their plane
orientations explicitly; and he tries to solve
constraints to find orientations that are
consistent with the edge interpretations. The
use of explicit surface orientation enables
Mackworth to reject certain interpretations
with impossible geometry, which are accepted by
Waltz. Since he does not, however, make
explicit use of distance information, there are
still some geometrically impossible
interpretations that Mackworth will accept.
Moreover, since he does not use photometry, his
solutions are necessarily ambiguous: Horn has
demonstrated [20] that when photometric
information is combined with geometry, the
orientations of surfaces forming a trihedral
corner may be uniquely determined. One
fundamental point to be noted is that intrinsic
characteristics provide a concise description
of the scene that enables rejection of
physically impossible interpretations.

Intermediate levels of representation
have played an increasingly important role in
recent scene analysis research. Agin and
Binford [1] proposed a specific representation
of three-dimensional surfaces, as generalized
cylinders, and described a system for
extracting such representations using a laser
rangefinder. Marr and Nishihara [29] have
described techniques for inferring a
generalized cylinder representation from line
drawings, and for matching geometrically to
object prototypes in recognition. Cylindrical
volume representations are being used in the
VISIONS system, under development by Riseman et
al. [16]. This system also includes explicit
representation of surfaces, which are inferred
from a two-dimensional image description using
higher-level cues, such as linear perspective
and the shape of known objects. Symbolic repre-
sentations at the level of surfaces and volumes
should be easier to derive from intrinsic
images than from intensity images, line
drawings, or even from noisy rangefinder data.
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D.       Human       Vision   

In this paper, we have been concerned
with the computational nature of vision tasks,
largely independent of implementation in
biological or artificial systems. This
orientation addresses questions of competence:
what information is needed to accomplish a
task, is it recoverable from the sensed image,
that additional constraints, in the form of
assumptions about the world, are needed to
effect the recovery?

Psychologists have been asking similar
questions fron their own viewpoint for many
years. For example, there has been a long-
standing debate, dating back at least to
Helmholtz, concerning how, and under what
circumstances, it is possible to independently
estimate illumination and reflectance. Recent
participants include Land, with his Retinex
theory of color perception [23], and Gilchrist,
who has identified a number of ways in which
intensity edges may be classified (e.g., the
30:1 ratio, intersecting reflectance and
illumination edges) [12].

From such work, a number of theories have
been proposed to explain human abilities to
estimate various scene characteristics. No one,
however, has yet proposed a comprehensive model
integrating all known abilities. While we have
no intention of putting forward our model as a
complete explanation of human vision, we think
that the recovery of intrinsic characteristics
is a plausible role for early stages of visual
processing in humans.

Figuree 11    A subjective contour

This hypothesis would appear to explain,
at least at a superficial level, many well-
known psychological phenomena. The constancy
phenomena are the obvious examples, but there
are others. Consider, for example, the
phenomenon of subjective contours, such as
appear in Figure 11. Marr suggests [26] that
such contours result from grouping place tokens
corresponding to line endings in the primal
sketch, and further suggests a "least-
commitment" clustering algorithm to control the
combinatorics of grouping. We suggest, as an
alternative explanation,  that  the abrupt line

endings are locally interpreted three
dimensionally as evidence of occlusion, causing
discontinuity edges to be established in the
distance image. The subjective contours then
result fron making the distance image
consistent with these boundary conditions and
assumptions of continuity of surfaces and
surface boundaries: they are primarily contours
of distance, rather than intensity. The net
result is the interpretation of the image as a
disk occluding a set of radiating lines on a
more distant surface.

Figure 12    Subjective depth (Coren [7])

There is considerable evidence to support
the hypothesis that subjective contours are
closely correlated with judgements of apparent
depth. Coren [7] reports a very interesting
demonstration. In Figure 12, the two circles
subtend the same visual angle; however, the
apparent elevation of the subjective triangle
causes the circle within it to be perceived as
smaller, consistent with the hypothesis that it
is nearer. Surfaces perceived when viewing
Julesz stereograms [22] have edges that are
purely subjective. There are no distinguishing
cues in the originating intensity images: the
edges result solely from the discontinuity in
disparity observed in a stereo presentation.
Hochberg [17] has investigated the subjective
contours produced by shadow cues to depth, seen
in figures like Figure 13. Most observers
report that Figure 13a is perceived as a single
entity in relief, while Figure 13b is not. The
figures are essentially equivalent as two-
dimensional configurations of lines. The
difference between the figures is that in b,
the lines are not consistent with the shadows
of a single solid entity cast by a directional
light source.

We can generalize our argument that
subjective contours arise as a consequence of
three-dimensional organization to other
phenomena of perceptual organization, such as
the Gestalt laws. For example, the law of
continuity follows directly from assumptions
of continuity of  surfaces and  boundaries, and
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the law of closure follows from integrity of
surfaces.

Figure 13    Subjective figures (Hochberg [17])

A system that is attempting to form a
consistent interpretation of an image as a
three-dimensional scene will, in principle, do
better than one that is attempting to describe
it as a two-dimensional pattern. The
organization of a chaotic collection of image
features may become clear when they are
considered as projections of three-dimensional
features, and the corresponding constraints are
brought into play.

Gregory has emphasized the importance of
three-dimensional interpretations and has
suggested that many illusions result from
attempting to form inappropriate three-
dimensional interpretations of two-dimensional
patterns [13 and 14]. He also suggests that
certain other illusions, such as those
involving the Ames room, result from applying
incorrect assumptions about the nature of the
scene. The distress associated with viewing
ambiguous figures, such as the well-known
“impossible triangle” and “devil's pitchfork,”
arises because of the impossibility of making
local evidence consistent with assumptions of
surface continuity and integrity.

Recent experiments by Gilchrist [11]
demonstrate that judgements of the  primary in-

trinsic characteristics are tightly integrated
in the human visual system. In one experiment,
the apparent position of a surface is
manipulated using interposition cues, so that
it is perceived as being either in an area of
strong illumination or in one of dim
illumination. Since the absolute reflected flux
from the surface remains constant, the observer
perceives a dramatic change in apparent
reflectance, virtually from black to white. In
a second experiment, the apparent orientation
of a surface is changed by means of perspective
cues. The apparent reflectance again changes
dramatically, depending upon whether the
surface is perceived as facing towards or away
from the light source.

We do not present our model of the
recovery of intrinsic scene characteristics as
a comprehensive explanation of these psycho-
logical phenomena. We feel, however, that it
may provide a useful viewpoint for considering
at least some of them.

VIII    CONCLUSION

The key ideas we have attempted to convey
in this paper are:

* A robust visual system should be
organized around a noncognitive,
nonpurposive level of processing that
attempts to recover an intrinsic
description of the scene.

*  The output ot this process is a set of
registered "intrinsic images" that give
values for such characteristics as
reflectance, orientation, distance, and
incident illumination, for every
visible point in the scene.

* The information provided by intrinsic
images greatly facilitates many higher-
level perceptual operations, ranging
from segmentation to object
recognition, that have so far proved
difficult to implement reliably.

* The recovery of intrinsic scene
characteristics is a plausible role for
the early stages of human visual
processing.

* Investigation of low-level processing
should focus on what type of
information is sought, and how it might
be obtained from the image. For
example, the design of edge detectors
should be based on the physical meaning
of the type of edge sought, rather than
on some abstract model of an intensity
discontinuity.

We have outlined a possible model of the
recovery process, demonstrated its feasibility
for a simple domain, and argued that it can be
extended in a straightforward way towards real-
world scenes. Key ideas in the recovery process
are:

* Information about the intrinsic
characteristics is confounded in the
intensities of the input image.
Therefore, recovery depends on
exploiting assumptions and constraints
from the physical nature of imaging and
the world.

* Interactions and ambiguities prohibit
independent  recovery  of the intrinsic
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characteristics; the recovery process
must determine their values
simultaneously in achieving
consisteney with the constraints.

* Interpretation of boundaries plays a
key role in recovery; they provide
information about which characteristics
are continuous and which discontinuous
at each point in the image, and they
provide explicit boundary conditions
for the solution.

* The nature of the solution, involving a
large number of interacting local
constraints, suggests implementation of
the recovery process by an array of
local parallel processes that achieve
consistency by a sequence of successive
approximations.

Our model for recovering intrinsic
characteristics is at a formative stage.
Important details still to be finalized include
the appropriate intrinsic images, constraints,
constraint representations, and the paths of
information flow relating them. Nevertheless,
the ideas we have put forth in this paper have
already clarified many issues for us and
suggested many exciting new prospects. They
also raise many questions to be answered by
future research, the most important of which
are "Can it work in the real world?" and "Do
people see that way?" To the extent that our
model corresponds to the human visual system,
valuable insights may be gained through
collaboration between computer and vision.
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