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Abstract

We propose a novel approach for solving the perceptual grouping problem in vi-

sion. Rather than focusing on local features and their consistencies in the image data,

our approach aims at extracting the global impression of an image. We treat image

segmentation as a graph partitioning problem and propose a novel global criterion, the

normalized cut, for segmenting the graph. The normalized cut criterion measures both

the total dissimilarity between the di�erent groups as well as the total similarity within

the groups. We show that an e�cient computational technique based on a generalized

eigenvalue problem can be used to optimize this criterion. We have applied this ap-

proach to segmenting static images as well as motion sequences and found results very

encouraging.
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1 Introduction

Nearly 75 years ago, Wertheimer[24] launched the Gestalt approach which laid out the

importance of perceptual grouping and organization in visual perception. For our purposes,

the problem of grouping can be well motivated by considering the set of points shown in the

�gure (1).

Figure 1: How many groups?

Typically a human observer will perceive four objects in the image{a circular ring with

a cloud of points inside it, and two loosely connected clumps of points on its right. However
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this is not the unique partitioning of the scene. One can argue that there are three objects{

the two clumps on the right constitute one dumbbell shaped object. Or there are only two

objects, a dumb bell shaped object on the right, and a circular galaxy like structure on the

left. If one were perverse, one could argue that in fact every point was a distinct object.

This may seem to be an arti�cial example, but every attempt at image segmentation

ultimately has to confront a similar question{there are many possible partitions of the domain

D of an image into subsets Di (including the extreme one of every pixel being a separate

entity). How do we pick the \right" one? We believe the Bayesian view is appropriate{ one

wants to �nd the most probable interpretation in the context of prior world knowledge. The

di�culty, of course, is in specifying the prior world knowledge{some of it is low level such

as coherence of brightness, color, texture, or motion, but equally important is mid- or high-

level knowledge about symmetries of objects or object models.

This suggests to us that image segmentation based on low level cues can not and should

not aim to produce a complete �nal \correct" segmentation. The objective should instead be

to use the low-level coherence of brightness, color, texture or motion attributes to sequentially

come up with hierarchical partitions. Mid and high level knowledge can be used to either

con�rm these groups or select some for further attention. This attention could result in

further repartitioning or grouping. The key point is that image partitioning is to be done

from the big picture downwards, rather like a painter �rst marking out the major areas and

then �lling in the details.

Prior literature on the related problems of clustering, grouping and image segmentation

is huge. The clustering community[12] has o�ered us agglomerative and divisive algorithms;

in image segmentation we have region-based merge and split algorithms. The hierarchical

divisive approach that we advocate produces a tree, the dendrogram. While most of these

ideas go back to the 70s (and earlier), the 1980s brought in the use of Markov Random

Fields[10] and variational formulations[17, 2, 14]. The MRF and variational formulations also

exposed two basic questions (1) What is the criterion that one wants to optimize? and (2) Is

there an e�cient algorithm for carrying out the optimization? Many an attractive criterion

has been doomed by the inability to �nd an e�ective algorithm to �nd its minimum{greedy

or gradient descent type approaches fail to �nd global optima for these high dimensional,
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nonlinear problems.

Our approach is most related to the graph theoretic formulation of grouping. The set

of points in an arbitrary feature space are represented as a weighted undirected graph G =

(V ;E), where the nodes of the graph are the points in the feature space, and an edge is

formed between every pair of nodes. The weight on each edge, w(i; j), is a function of the

similarity between nodes i and j.

In grouping, we seek to partition the set of vertices into disjoint sets V1;V2; :::;Vm,

where by some measure the similarity among the vertices in a set Vi is high and across

di�erent sets Vi,Vj is low.

To partition a graph, we need to also ask the following questions:

1. What is the precise criterion for a good partition?

2. How can such a partition be computed e�ciently?

In the image segmentation and data clustering community, there has been much previous

work using variations of the minimal spanning tree or limited neighborhood set approaches.

Although those use e�cient computational methods, the segmentation criteria used in most

of them are based on local properties of the graph. Because perceptual grouping is about

extracting the global impressions of a scene, as we saw earlier, this partitioning criterion

often falls short of this main goal.

In this paper we propose a new graph-theoretic criterion for measuring the goodness of

an image partition{ the normalized cut. We introduce and justify this criterion in section 2.

The minimization of this criterion can be formulated as a generalized eigenvalue problem;

the eigenvectors of this problem can be used to construct good partitions of the image and

the process can be continued recursively as desired(section 2.1) Section 3 gives a detailed

explanation of the steps of our grouping algorithm. In section 4 we show experimental results.

The formulation and minimization of the normalized cut criterion draws on a body of results

from the �eld of spectral graph theory(section 5). Relationship to work in computer vision is

discussed in section 6, and comparison with related eigenvector based segmentation methods

is represented in section 6.1. We conclude in section 7.
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2 Grouping as graph partitioning

A graph G = (V;E) can be partitioned into two disjoint sets, A;B, A[B = V, A\B = ;,

by simply removing edges connecting the two parts. The degree of dissimilarity between

these two pieces can be computed as total weight of the edges that have been removed. In

graph theoretic language, it is called the cut:

cut(A;B) =
X

u2A;v2B

w(u; v): (1)

The optimal bi-partitioning of a graph is the one that minimizes this cut value. Although

there are exponential number of such partitions, �nding the minimum cut of a graph is a

well studied problem, and there exist e�cient algorithms for solving it.

Wu and Leahy[25] proposed a clustering method based on this minimum cut criterion.

In particular, they seek to partition a graph into k-subgraphs, such that the maximum cut

across the subgroups is minimized. This problem can be e�ciently solved by recursively

�nding the minimum cuts that bisect the existing segments. As shown in Wu & Leahy's

work, this globally optimal criterion can be used to produce good segmentation on some of

the images.

However, as Wu and Leahy also noticed in their work, the minimum cut criteria favors

cutting small sets of isolated nodes in the graph. This is not surprising since the cut de�ned

in (1) increases with the number of edges going across the two partitioned parts. Figure

(2) illustrates one such case. Assuming the edge weights are inversely proportional to the

Min-cut 1n1

n2

better cut

Min-cut 2

Figure 2: A case where minimum cut gives a bad partition.

distance between the two nodes, we see the cut that partitions out node n1 or n2 will have a
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very small value. In fact, any cut that partitions out individual nodes on the right half will

have smaller cut value than the cut that partitions the nodes into the left and right halves.

To avoid this unnatural bias for partitioning out small sets of points, we propose a new

measure of disassociation between two groups. Instead of looking at the value of total edge

weight connecting the two partitions, our measure computes the cut cost as a fraction of the

total edge connections to all the nodes in the graph. We call this disassociation measure the

normalized cut (Ncut):

Ncut(A;B) =
cut(A;B)

assoc(A;V )
+

cut(A;B)

assoc(B;V )
(2)

where assoc(A;V ) =
P

u2A;t2V w(u; t) is the total connection from nodes in A to all nodes

in the graph, and assoc(B;V ) is similarly de�ned. With this de�nition of the disassociation

between the groups, the cut that partitions out small isolated points will no longer have

small Ncut value, since the cut value will almost certainly be a large percentage of the total

connection from that small set to all other nodes. In the case illustrated in �gure 2, we see

that the cut1 value across node n1 will be 100% of the total connection from that node.

In the same spirit, we can de�ne a measure for total normalized association within groups

for a given partition:

Nassoc(A;B) =
assoc(A;A)

assoc(A;V )
+
assoc(B;B)

assoc(B;V )
(3)

where assoc(A;A) and assoc(B;B) are total weights of edges connecting nodes within A

and B respectively. We see again this is an unbiased measure, which re
ects how tightly on

average nodes within the group are connected to each other.

Another important property of this de�nition of association and disassociation of a par-

tition is that they are naturally related:

Ncut(A;B) =
cut(A;B)

assoc(A;V )
+

cut(A;B)

assoc(B;V )

=
assoc(A;V )� assoc(A;A)

assoc(A;V )

+
assoc(B;V )� assoc(B;B)

assoc(B;V )

= 2� (
assoc(A;A)

assoc(A;V )
+
assoc(B;B)

assoc(B;V )
)
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= 2�Nassoc(A;B)

Hence the two partition criteria that we seek in our grouping algorithm, minimizing the

disassociation between the groups and maximizing the association within the group, are

in fact identical, and can be satis�ed simultaneously. In our algorithm, we will use this

normalized cut as the partition criterion.

Unfortunately minimizing normalized cut exactly is NP-complete, even for the special

case of graphs on grids. The proof, due to C. Papadimitriou, can be found in appendix A.

However, we will show that when we embed the normalized cut problem in the real value

domain, an approximate solution can be found e�ciently.

2.1 Computing the optimal partition

Given a partition of nodes of a graph, V, into two sets A and B, let x be an N = jV j

dimensional indicator vector, xi = 1 if node i is in A, and �1 otherwise. Let d(i) =
P

j w(i; j),

be the total connection from node i to all other nodes. With the de�nitions x and d we can

rewrite Ncut(A;B) as:

Ncut(A;B) =
cut(A;B)

assoc(A;V )
+

cut(B;A)

assoc(B;V )

=

P
(xi>0;xj<0)�wijxixjP

xi>0
di

+

P
(xi<0;xj>0)�wijxixjP

xi<0
di

Let D be an N �N diagonal matrix with d on its diagonal, W be an N � N symmetrical

matrix with W(i,j) = wij, k =

P
xi>0

diP
i
di

, and 1 be an N � 1 vector of all ones. Using the

fact 1+x
2

and 1�x
2

are indicator vectors for xi > 0 and xi < 0 respectively, we can rewrite

4[Ncut(x)] as:

= (1+x)T (D�W)(1+x)

k1TD1
+ (1�x)T (D�W)(1�x)

(1�k)1TD1

= (xT (D�W)x+1T (D�W)1)
k(1�k)1TD1

+ 2(1�2k)1T (D�W)x
k(1�k)1TD1
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Let �(x) = xT (D�W)x, �(x) = 1T (D�W)x, 
 = 1T (D�W)1, and M = 1TD1, we

can then further expand the above equation as:

=
(�(x) + 
) + 2(1 � 2k)�(x)

k(1 � k)M

=
(�(x) + 
) + 2(1 � 2k)�(x)

k(1 � k)M
�
2(�(x) + 
)

M
+
2�(x)

M
+
2


M

Dropping the last constant term, which in this case equals 0, we get

=
(1 � 2k + 2k2)(�(x) + 
) + 2(1 � 2k)�(x)

k(1 � k)M
+
2�(x)

M

=

(1�2k+2k2)

(1�k)2
(�(x) + 
) + 2(1�2k)

(1�k)2
�(x)

k
1�k

M
+
2�(x)

M

Letting b = k
1�k

, and since 
 = 0, it becomes,

=
(1 + b2)(�(x) + 
) + 2(1 � b2)�(x)

bM
+
2b�(x)

bM

=
(1 + b2)(�(x) + 
)

bM
+
2(1 � b2)�(x)

bM
+
2b�(x)

bM
�

2b


bM

=
(1 + b2)(xT (D�W)x+ 1T (D�W)1)

b1TD1

+
2(1 � b2)1T (D�W)x

b1TD1

+
2bxT (D�W)x

b1TD1
�
2b1T (D�W)1

b1TD1

=
(1+ x)T (D�W)(1+ x)

b1TD1

+
b2(1� x)T (D�W)(1� x)

b1TD1

�
2b(1� x)T (D�W)(1+ x)

b1TD1

=
[(1+ x)� b(1� x)]T (D�W)[(1+ x)� b(1� x)]

b1TD1

Setting y = (1+ x)� b(1� x), it is easy to see that

yTD1 =
X
xi>0

di � b
X
xi<0

di = 0 (4)
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since b = k
1�k

=

P
xi>0

diP
xi<0

di

; and

yTDy =
P

xi>0
di + b2

P
xi<0

di

= b
P

xi<0 di + b2
P

xi<0 di

= b(
P

xi<0 di + b
P

xi<0 di)

= b1TD1:

Putting everything together we have,

minxNcut(x) = miny
yT (D�W)y

yTDy
; (5)

with the condition y(i) 2 f1;�bg and yTD1 = 0.

Note that the above expression is the Rayleigh quotient[11]. If y is relaxed to take on

real values, we can minimize equation (5) by solving the generalized eigenvalue system,

(D�W)y = �Dy: (6)

However, we have two constraints on y, which come from the condition on the corresponding

indicator vector x. First consider the constraint yTD1 = 0. We can show this constraint

on y is automatically satis�ed by the solution of the generalized eigensystem. We will do so

by �rst transforming equation (6) into a standard eigensystem, and show the corresponding

condition is satis�ed there. Rewrite equation (6) as

D� 1
2 (D�W)D� 1

2z = �z; (7)

where z = D
1
2y. One can easily verify that z0 = D

1
21 is an eigenvector of equation (7)

with eigenvalue of 0. Furthermore, D�
1
2 (D�W)D�

1
2 is symmetric positive semide�nite,

since (D�W), also called the Laplacian matrix, is known to be positive semide�nite[18].

Hence z0 is in fact the smallest eigenvector of equation (7), and all eigenvectors of equation

(7) are perpendicular to each other. In particular, z1 the second smallest eigenvector is

perpendicular to z0. Translating this statement back into the general eigensystem (6), we

have 1) y0 = 1 is the smallest eigenvector with eigenvalue of 0, and 2) 0 = z1
T z0 = y1

T D

1, where y1 is the second smallest eigenvector of (6).
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Now recall a simple fact about the Rayleigh quotient[11]:

Let A be a real symmetric matrix. Under the constraint that x is orthogonal to the

j-1 smallest eigenvectors x1,...,xj�1, the quotient x
T
Ax

xTx is minimized by the next smallest

eigenvector xj , and its minimum value is the corresponding eigenvalue �j.

As a result, we obtain:

z1 = arg:minzTz0=0

zTD�
1
2 (D�W)D�

1
2z

zTz
; (8)

and consequently,

y1 = arg:minyT
D1=0

yT (D�W)y

yTDy
; (9)

Thus the second smallest eigenvector of the generalized eigensystem (6) is the real valued

solution to our normalized cut problem. The only reason that it is not necessarily the

solution to our original problem is that the second constraint on y that y(i) takes on two

discrete values is not automatically satis�ed. In fact relaxing this constraint is what makes

this optimization problem tractable in the �rst place. We will show in section (3) how this

real valued solution can be transformed into a discrete form.

A similar argument can also be made to show that the eigenvector with the third smallest

eigenvalue is the real valued solution that optimally sub-partitions the �rst two parts. In fact

this line of argument can be extended to show that one can sub-divide the existing graphs,

each time using the eigenvector with the next smallest eigenvalue. However, in practice

because the approximation error from the real valued solution to the discrete valued solution

accumulates with every eigenvector taken, and all eigenvectors have to satisfy a global mutual

orthogonality constraint, solutions based on higher eigenvectors become unreliable. It is best

to restart solving the partitioning problem on each subgraph individually.

It is interesting to note that, while the second smallest eigenvector y of (6) only approx-

imates the optimal normalized cut solution, it exactly minimizes the following problem:

infyT
D1=0

P
i

P
j(y(i)� y(j))

2wijP
i y(i)2d(i)

; (10)

in real-valued domain, where d(i) = D(i; i). Roughly speaking, this forces the indicator

vector y to take similar values for nodes i and j that are tightly coupled(large wij).
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In summary, we propose using the normalized cut criteria for graph partitioning, and we

have shown how this criteria can be computed e�ciently by solving a generalized eigenvalue

problem.

3 The grouping algorithm

Our grouping algorithm consists of the following steps:

1. Given an image or image sequence, set up a weighted graph G = (V;E), and set the

weight on the edge connecting two nodes being a measure of the similarity between

the two nodes.

2. Solve (D�W)x = �Dx for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with second smallest eigenvalue to bipartition the graph.

4. Decide if the current partition should be sub-divided, and recursively repartition the

segmented parts if necessary.

The grouping algorithm as well as its computational complexity can be best illustrated

by using the following two examples.

3.1 Example 1: Point Set Case

Take the example illustrated in �gure 3. Suppose we would like to group points on the 2D

plane based purely on their spatial proximity. This can be done through the following steps:

1. De�ne a weighted graph G = (V;E), by taking each point as a node in the graph, and

connecting each pair of nodes by a graph edge. The weight on the graph edge connecting

node i and j is set to be w(i; j) = e�(d(i;j)=�x), where d(i; j) is the Euclidean distance between

the two nodes, and �x controls the scale of the spatial proximity measure. �x is set to be 2.0

which is 10% of the height of the point set layout. Figure 4 shows the weight matrix for the

weighted graph constructed.
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Figure 3: A point set in the plane.
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Figure 4: The weight matrix constructed for the point set in (3), using spatial proximity as

the similaritymeasure. The points in �gure (3), are numbered as: 1-90, points in the circular

ring in counter-clockwise order, 90-100, points in the cluster inside the ring, 100-120, and

120-140, the upper and lower clusters on the right respectively. Notice that the non-zero

weights are mostly concentrated in a few blocks around the diagonal. The entries in those

square blocks are the connections within each of the clusters.
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2. Solve for the eigenvectors with the smallest eigenvalues of the system

(D�W)y = �Dy; (11)

or equivalently the eigenvectors with the largest eigenvalues of the system

Wy = (1� �)Dy: (12)

This can be done by using a generalized eigenvector solver, or by �rst transforming the

generalized eigenvalue system of (11) or (12) into standard eigenvector problems of

D�
1

2 (D�W)D�
1

2x = �x; (13)

or

D�
1

2WD�
1

2x = (1 � �)x; (14)

with x = D
1
2y, and solve it with a standard eigenvector solver.

Either way, we will obtain the solution of the eigenvector problem as shown in �gure 5.

3. Partition the point set using the eigenvectors computed. As we have shown, the eigen-

vector with the second smallest eigenvalue is the continuous approximation to the discrete

bi-partitioning indicator vector that we seek. For the case that we have constructed, the

eigenvector with the second smallest eigenvalue(�gure 5.3) is indeed very close to a discrete

one. One can just partition the nodes in the graph based on the sign of their values in the

eigenvector. Using this rule, we can partition the point set into two sets as shown in �gure

6.

To recursively subdivide each of the two groups, we can either 1) rerun the above proce-

dure on each of the individual groups, or 2) using the the eigenvectors with the next smallest

eigenvalues as approximation to the sub-partitioning indicator vectors for each of the groups.

We can see that in this case, the eigenvector with the third and the fourth smallest eigenvalue

are also good partitioning indicator vectors. Using zero as the splitting point, one can par-

tition the nodes based on their values in the eigenvector into two halves. The sub-partition

of the existing groups based on those two subsequent eigenvectors are shown in �gure 7.

In this case, we see that the eigenvectors computed from system (11) are very close to the

discrete solution that we seek. The second smallest eigenvalue is very close to the optimal
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Figure 5: Subplot (1) plots the smallest 10 eigenvalues of the generalized eigenvalue system

(11). Subplot (2) - (6) shows the eigenvectors corresponding the the 5 smallest eigenvalues

of the system. Note the eigenvector with the smallest eigenvalue (2) is a constant as shown

in section 2, and eigenvector with the second smallest eigenvalue (3) is an indicator vector: it

takes on only positive values for points in the two clusters to the right. Therefore, using this

eigenvector, we can �nd the �rst partition of the point set into two clusters: the points on

the left with the ring and the cluster inside, and points on the right with the two dumb bell

shaped clusters. Furthermore, note that the eigenvectors with the third smallest eigenvalue,

subplot (3) and the fourth smallest eigenvalue, subplot(4), are indicator vectors which can

be used to partition apart the ring set with the cluster inside of it, and the two clusters on

the right.
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Figure 6: Partition of the point set using the eigenvector with the second smallest eigenvalue.
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Figure 7: Sub-partitioning of the point sets using the eigenvectors with the third and fourth

smallest eigenvalues.

14



normalized cut value. For the general case, although we are not necessarily this lucky,

there is a bound on how far the second smallest eigenvalue can deviate from the optimal

normalized cut value, as we shall see in section 5. However, there is little theory on how

close the eigenvector is to the discrete form that the normalized cut algorithm seeks. In our

experience, the eigenvector computed is quite close to the desired discrete solution.

3.2 Example 2: Brightness Images

Having studied an example of point set grouping, we turn our attention to the case of static

image segmentation based on brightness and spatial features. Figure 8 shows an image that

we would like to segment.

Figure 8: A gray level image of a baseball game.

Just as in the point set grouping case, we have the following steps for image segmentation:

1. Construct a weighted graph, G = (V;E), by taking each pixel as a node, and con-

necting each pair of pixels by an edge. The weight on that edge should re
ect the likelihood

of the two pixels belong to one object. Using just the brightness value of the pixels and their

spatial location, we can de�ne the graph edge weight connecting two nodes i and j as:

wij = e
�kF (i)�F (j)k2

2
�I �

8>><
>>:

e
�kX (i)�X (j)k2

2
�X if kX(i)�X(j)k2 < r

0 otherwise

(15)

Figure 9 shows the weight matrixW associated with this weighted graph.
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nr

W
(b)

n=nr * nc

i2

i1

n=nr * nc

W(i1,j) W(i2,j)

nc

(c)

(a)

(d)

Figure 9: The similarity measure between each pair of pixels in (a) can be summarized in a

n�n weight matrixW, shown in (b), where n is the number of pixels in the image. Instead

of displayingW itself, which is very large, two particular rows, i1 and i2 of W are shown in

(c) and (d). Each of the rows, is the connection weights from a pixel to all other pixels in

the image. The two rows,i1 and i2 are reshaped into the size of the image, and displayed.

The brightness value in (c) and (d) re
ects the connection weights. Note that W contains

large number of zeros or near zeros, due to the spatial proximity factor.
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2. Solve for the eigenvectors with the smallest eigenvalues of the system

(D�W)y = �Dy; (16)

As we saw above, the generalized eigensystem in (16) can be transformed into a standard

eigenvalue problem of

D�
1

2 (D�W)D�
1

2x = �x; (17)

Solving a standard eigenvalue problem for all eigenvectors takes O(n3) operations, where n is

the number of nodes in the graph. This becomes impractical for image segmentation applica-

tions where n is the number of pixels in an image. Fortunately, our graph partitioning has the

following properties: 1) the graphs often are only locally connected and the resulting eigen-

system are very sparse, 2) only the top few eigenvectors are needed for graph partitioning,

and 3) the precision requirement for the eigenvectors is low, often only the right sign bit is re-

quired. These special properties of our problem can be fully exploited by an eigensolver called

the Lanczos method. The running time of a Lanczos algorithm is O(mn) +O(mM(n))[11],

where m is the maximum number of matrix-vector computations required, and M(n) is the

cost of a matrix-vector computation of Ax, where A = D�
1

2 (D�W)D�
1

2 . Note that sparse

structure inA is identical to that of the weight matrixW. Due to the sparse structure in the

weight matrixW, and therefore A, the matrix- vector computation is only of O(n), where

n is the number of the nodes.

To see why this is the case, we will look at the cost of the inner product of one row of A

with a vector x. Let yi = Ai �x =
P

j Aijxj. For a �xed i, Aij is only nonzero if node j is in

a spatial neighborhood of i. Hence there are only a �xed number of operations required for

each Ai � x, and the total cost of computing Ax is O(n). Figure 10 is graphical illustration

of this special inner product operation for the case of the image segmentation.

Furthermore, it turns out that we can substantially cut down additional connections from

each node to its neighbors by randomly selecting the connections within the neighborhood

for the weighted graph as shown in �gure 11. Empirically, we have found that one can remove

up to 90% of the total connections with each of the neighborhoods when the neighborhoods

are large, without e�ecting the eigenvector solution to the system.
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Figure 10: The inner product operation between A(i; j) and x, of dimension n, is a convo-

lution operation in the case of image segmentation.
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Figure 11: Instead of connecting a node i to all the nodes in its neighborhood (indicated by

the shaded area in (a)), we will only connect i to randomly selected nodes(indicated by the

open circles in (b)).
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Putting everything together, each of the matrix-vector computations costO(n) operations

with a small constant factor. The numberm depends on many factors[11]. In our experiments

on image segmentation, we observed that m is typically less than O(n
1
2 ).

Figure 12 shows the smallest eigenvectors computed for the generalized eigensystem with

the weight matrix de�ned above.
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Figure 12: Subplot (1) plots the smallest eigenvectors of the generalized eigenvalue system

(11). Subplot (2) - (9) shows the eigenvectors corresponding the 2nd smallest to the 9th

smallest eigenvalues of the system. The eigenvectors are reshaped to be the size of the

image.

3. Once the eigenvectors are computed, we can partition the graph into two pieces using

the second smallest eigenvector. In the ideal case, the eigenvector should only take on two

discrete values, and the signs of the values can tell us exactly how to partition the graph.
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However, our eigenvectors can take on continuous values, and we need to choose a splitting

point to partition it into two parts. There are many di�erent ways of choosing such splitting

point. One can take 0 or the median value as the splitting point, or one can search for the

splitting point such that the resulting partition has the best Ncut(A;B) value. We take

the latter approach in our work. Currently, the search is done by checking l evenly spaced

possible splitting points, and computing the best Ncut among them. In our experiments, the

values in the eigenvectors are usually well separated, and this method of choosing a splitting

point is very reliable even with a small l. Figure 13 shows this process.

4. After the graph is broken into two pieces, we can recursively run our algorithm on the

two partitioned parts. Or equivalently, we could take advantage of the special properties of

the other top eigenvectors as explained in previous section to subdivide the graph based on

those eigenvectors. The recursion stops once the Ncut value exceeds certain limit.

We also impose a stability criterion on the partition. As we saw earlier, and as we see in

the eigenvectors with the 7-9th smallest eigenvalues(�gure(12.7-9)), sometimes an eigenvector

can take on the shape of a continuous function rather that the discrete indicator function that

we seek. From the view of segmentation, such an eigenvector is attempting to subdivide an

image region where there is no sure way of breaking it. In fact, if we are forced to partition

the image based on this eigenvector, we will see there are many di�erent splitting points

which have similar Ncut values. Hence the partition will be highly uncertain and unstable.

In our current segmentation scheme, we simply choose to ignore all those eigenvectors which

have smoothly varying eigenvector values. We achieve this by imposing a stability criterion

which measures the degree of smoothness in the eigenvector values. The simplest measure is

based on �rst computing the histogram of the eigenvector values, and then computing the

ratio between the minimum and maximum values in the bins. When the eigenvector values

are continuously varying, the values in the histogram bins will stay relatively the same, and

the ratio will be relatively high. In our experiments, we �nd that simple thresholding on the

ratio described above can be used to exclude unstable eigenvectors. We have set that value

to be 0.06 in all our experiments.

Figure 14 shows the �nal segmentation for the image shown in �gure 8.
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Figure 13: The eigenvector in (a) is a close approximation to a discrete partitioning indicator

vector. Its histogram, shown in (b), indicates that the values in the eigenvector cluster around

two extreme values. (c) and (d) shows the partitioning results with di�erent splitting points

indicated by the arrows in (b). The partition with the best normalized cut value is chosen.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 14: (a) shows the original image of size 80 � 100. Image intensity is normalized to

lie within 0 and 1. Subplot (b) - (h) shows the components of the partition with Ncut value

less than 0.04. Parameter setting: �I = 0:1, �X = 10:0, r = 10.
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3.3 Recursive 2-way Ncut

In summary, our grouping algorithm consists of the following steps:

1. Given a set of features, set up a weighted graph G = (V;E), compute the weight on

each edge, and summarize the information intoW, and D.

2. Solve (D�W)x = �Dx for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with second smallest eigenvalue to bipartition the graph by �nding

the splitting point such that Ncut is maximized,

4. Decide if the current partition should be sub-divided by checking the stability of the

cut, and make sure Ncut is below pre-speci�ed value. Recursively repartition the

segmented parts if necessary.

The number of groups segmented by this method is controlled directly by the maximum

allowed Ncut.

3.4 Simultanous K-way cut with multiple eigenvectors

One drawback of the recursive 2-way cut is its treatment of the oscillatory eigenvectors. The

stability criteria provides us from cutting oscillatory eigenvectors, but it also prevents us

cutting the subsequent eigenvectors which might be perfect partitioning vectors. Also the

approach is computationally wasteful; only the second eigenvector is used whereas the next

few small eigenvectors also contain useful partitioning information.

Instead of �nding the partition using recursive 2-way cut as described above, one can

use the all the top eigenvectors to simultanously obtain a K-way partition. In this method,

the n top eigenvectors are used as n dimensional indicator vectors for each pixel. In the

�rst step, a simple clustering algorithm, such as the k-means algorithm, is used to obtain an

over-segmentation of the image into k0 groups. No attempt is made to identify and exclude

oscillatory eigenvectors{they exarcabete the oversegmentation, but that will be dealt with

subsequently.

In the second step, one can proceed in the following two ways:
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1. Greedy pruning: iteratively merge two segments at a time until only k segments are

left. At each merge step, those two segments are merged that minimize the k-way

Ncut criterion de�ned as:

Ncutk =
cut(A1;V �A1)

assoc(A1;V)
+
cut(A2;V �A2)

assoc(A2;V)
+ :::+

cut(Ak;A�Ak)

assoc(Ak;V)
; (18)

where Ai is the ith subset of whole set V.

This computation can be e�ciently carried out by iteratively updating the compacted

weight matrixWc , with Wc(i; j) = assoc(Ai;Aj).

2. Global recursive cut. From the initial k0 segments we can build a condensed graph

Gc = (Vc;Ec), where each segment Ai corresponds to a node Vc
i of the graph. The

weight on each graph edge Wc(i; j) is de�ned to be assoc(Ai;Aj), the total edge

weights from elements in Ai to elements in Aj . From this condensed graph, we then

recursively bi-partition the graph according the Ncut criteria. This can be carried

out either with the generalized eigenvalue system as in section 3.3, or with exhaustive

search in the discrete domain. Exhaustive search is possible in this case since k0 is

small, typically k0 � 100.

We have experimented with this simultanous k-way cut method on our recent test images.

However, the results presented in this paper are all based on the recursive 2-way partitioning

algorithm outlined in the previous subsection 3.3.

4 Experiments

We have applied our grouping algorithm to image segmentation based on brightness, color,

texture, or motion information. In the monocular case, we construct the graph G = (V;E)

by taking each pixel as a node, and de�ne the edge weight wij between node i and j as the

product of a feature similarity term and spatial proximity term:

wij = e
�kF (i)�F (j)k2

2
�I �

8>><
>>:

e
�kX (i)�X (j)k2

2
�X if kX(i)�X(j)k2 < r

0 otherwise
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where X(i) is the spatial location of node i, and F (i) is a feature vector based on intensity,

color, or texture information at that node de�ned as:

� F (i) = 1, in the case of segmenting point sets,

� F (i) = I(i), the intensity value, for segmenting brightness images,

� F (i) = [v; v � s � sin(h); v � s � cos(h)] (i), where h; s; v are the HSV values, for color

segmentation,

� F (i) = [jI � f1j; :::; jI � fnj] (i), where the fi are DOOG �lters at various scales and

orientations as used in[16], in the case of texture segmentation.

Note that the weight wij = 0 for any pair of nodes i and j that are more than r pixels apart.

We �rst tested our grouping algorithm on spatial point sets similar to the one shown in

�gure (2). Figure (15) shows a point set and the segmentation result. As we can see from

the �gure, the normalized cut criterion is indeed able to partition the point set in a desirable

way as we have argued in section (2).
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Figure 15: (a) Point set generated by two Poisson processes, with densities of 2.5 and 1.0

on the left and right clusters respectively, (b) 4 and � indicates the partition of point set
in (a). Parameter settings: �X = 5; r = 3.

Figures (16), (17), (18), and (19) shows the result of our segmentation algorithm on var-

ious brightness images. Figure (16), (17) are synthetic images with added noise. Figure (18)

and (19) are natural images. Note that the \objects" in �gure (19) have rather ill-de�ned

26



cba

Figure 16: A synthetic image showing a noisy \step" image. Intensity varies from 0 to
1, and Gaussian noise with � = 0.2 is added. Subplot (b) shows the eigenvector with the
second smallest eigenvalue, and subplot (c) shows the resulting partition.

a b c d

Figure 17: (a) A synthetic image showing three image patches forming a junction. Image

intensity varies from 0 to 1, and Gaussian noise with � = 0:1 is added. (b)-(d) shows the
top three components of the partition.
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e f g h

Figure 18: (a) shows a 80x100 baseball scene, image intensity is normalized to lie within
0 and 1. (b)-(h) shows the components of the partition with Ncut value less than 0.04.
Parameter setting: �I = 0.01, �X = 4.0, r = 5.

a b c d

e f g

Figure 19: (a) shows a 126x106 weather radar image. (b)-(g) show the components of the

partition with Ncut value less than 0.08. Parameter setting: �I = 0:005, �x = 15:0, r = 10
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boundaries which would make edge detection perform poorly. Figure (20) shows the segmen-

tation on a color image, reproduced in gray scale in these transactions. The original image

and many other examples can be found at web site http://www.cs.berkeley.edu/~jshi/Grouping.

Note that in all these examples the algorithm is able to extract the major components

of scene, while ignoring small intra-component variations. As desired, recursive partitioning

can be used to further decompose each piece.

a b c

d e

Figure 20: (a) shows a 77x107 color image. (b)-(e) show the components of the partition

with Ncut value less than 0.04. Parameter settings: �I = 0.01, �X = 4.0, r = 5.

Figure (21) shows preliminary results on texture segmentation for a natural image of

a zebra against a background. Note that the measure we have used is orientation-variant,

and therefore parts of the zebra skin with di�erent stripe orientation should be marked as

separate regions.

In the motion case, we will treat the image sequence as a spatiotemporal data set. Given

an image sequence, a weighted graph is constructed by taking each pixel in the image se-

quence as a node, and connecting pixels that are in the spatiotemporal neighborhood of each

other. The weight on each graph edge is de�ned as:

wij =

8>><
>>:

e
�dm(i;j)2

�2m if kX(i)�X(j)k2 < r

0 otherwise
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Figure 21: (a) shows an image of a zebra. The remaining images show the major com-

ponents of the partition. The texture features used correspond to convolutions with DOOG
�lters[16] at 6 orientations and 5 scales.
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where d(i; j) is the \motion distance" between two pixels i and j. Note that X i in this case

represents the spatial-temporal position of pixel i.

To compute this \motion distance", we will use a motion feature called motion pro�le.

By motion pro�le we seek to estimate the probability distribution of image velocity at each

pixel. Let I t(X) denote a image window centered at the pixel at location X 2 R2 at time

t. We denote by Pi(dx) the motion pro�le of an image patch at node i, I t(Xi), at time t

corresponding to another image patch I t+1(Xi+dx) at time t+1. Pi(dx) can be estimated

by �rst computing the similarity Si(dx) between I
t(Xi) and I

t+1(Xi+dx), and normalizing

it to get a probability distribution:

Pi(dx) =
Si(dx)P
dx Si(dx)

: (19)

There are many ways one can compute similarity between two image patches; we will use a

measure that is based on the sum of squared di�erences(SSD):

Si(dx) = exp(�
X
w

(I t(Xi +w) � I t+1(Xi + dx+w))2=�2ssd); (20)

where w 2 R2 is within a local neighborhood of image patch I t(Xi). The \motion distance"

between two image pixels is then de�ned as one minus the cross-correlation of the motion

pro�les:

d(i; j) = 1 �
X
dx

Pi(dx)Pj(dx): (21)

In �gure (22) and (23) we show results of the normalized cut algorithm on a synthetic

random dot motion sequence and a indoor motion sequence respectively. For more elaborate

discussion on motion segmentation using normalized cut, as well as how to segment and

track over long image sequences, readers might want to refer to our paper[21].

4.1 Computation time

As we saw from section 3.2, the running time of the normalized cut algorithm is O(mn),

where n is the number of pixels, and m is the number of steps Lanczos takes to converge. On

the 100 � 120 test images shown here, the normalized cut algorithm takes about 2 minutes

on a Intel Pentium 200MHz machines.
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(a)

(b)

(1)

(2)

(3)

Figure 22: Row (a) of this plot shows the six frames of a synthetic random dot image
sequence. Row (b) shows the outlines of the two moving patches in this image sequence.
The outlines shown here are for illustration purposes only. Row (1)-(3) shows the top three

partitions of this image sequence that have Ncut values less than 0.05. The segmentation

algorithm produces 3D space-time partitions of the image sequence. Cross-sections of those

partitions are shown here. The original image size is 100 � 100, and the segmentation is

computed using image patches(superpixels) of size 3� 3. Each image patch is connected to
other image patches that are less than 5 superpixels away in spatial distance, and 3 frames

away in temporal distance.
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(a) (b)

(1) (2) (3) (4) (5)

Figure 23: Subimage (a) and (b) shows two frames of an image sequence. Segmentation

results on this two frame image sequence are shown in subimage (1) to (5). Segments in (1)

and (2) correspond to the person in the foreground, and segments in (3) to (5) correspond to

the background. The reason that the head of the person is segmented away from the body is

that although they have similar motion, their motion pro�les are di�erent. The head region

contains 2D textures and the motion pro�les are more peaked, while in the body region the

motion pro�les are more spread out. Segment (3) is broken away from (4) and (5) for the

same reason.
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An multi-resolution implementation can be used to reduce this running time further on

larger images. In our current experiments, with this implementation, the running time on a

300 � 400 image can be reduced to about 20 seconds on Intel Pentium 300MHz machines.

Furthermore, the bottle neck of the computation, a sparse matrix-vector multiplication step,

can be easily parallelized taking advantage of future computer chip designs.

In our current implementation, the sparse eigenvalue decomposition is computed using

the LASO2 numerical package developed by D. Scott.

4.2 Choice of graph edge weight

In the examples shown here, we used an exponential function of the form of w(x) = e�(d(x)=�)
2

,

on the weighted graph edge with feature similarity of d(x). The value of � is typically set to

10�20% of the total range of the feature distance function d(x). The exponential weighting

function is chosen here for its relatively simplicity as well as neutrality, since the focus of this

paper is on developing a general segmentation procedure, given a feature similarity measure.

We found this choice of weight function is quite adequate for typical image and feature

spaces. Section 6.1 shows the e�ect of using di�erent weighting functions and parameters on

the output of the normalized cut algorithm.

However, the general problem of de�ning feature similarity incorporating a variety of cues

is not a trivial one. The grouping cues could be of di�erent abstraction levels and types, and

they could be in con
ict with each other. Furthermore, the weighting function could vary

from image region to image region, particularly in a textured image. Some of these issues

are addressed in [15].

5 Relationship to Spectral Graph Theory

The computational approach that we have developed for image segmentation is based on

concepts from spectral graph theory. The core idea to use matrix theory and linear algebra

to study properties of the incidence matrix, W and the Laplacian matrix, D �W, of the

graph and relate them back to various properties of the original graph. This is a rich area
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of mathematics, and the idea of using eigenvectors of the Laplacian for �nding partitions of

graphs can be traced back to Cheeger[4], Donath & Ho�man[7], and Fiedler[9]. This area has

also seen contributions by theoretical computer scientists[1, 3, 22, 23]. It can be shown that

our notion of normalized cut is related by a constant factor to the concept of conductance

in[22].

For a tutorial introduction to spectral graph theory, we recommend the recent monograph

by Fan Chung[5]. In this monograph, Chung[5] proposes a \normalized" de�nition of the

Laplacian, as D� 1
2 (D�W)D� 1

2 . The eigenvectors for this \normalized" Laplacian, when

multiplied by D�
1
2 , are exactly the generalized eigenvectors we used to compute normalized

cut. Chung points out that the eigenvalues of this \normalized" Laplacian relate well to

graph invariants for general graph in ways that eigenvalues of the standard Laplacian has

failed to do.

Spectral graph theory provides us some guidance on the goodness of the approximation

to the normalized cut provided by the second eigenvalue of the normalized Laplacian. One

way is through bounds on the normalized Cheeger constant[5] which in our terminology can

be de�ned as

hG = inf
cut(A;B)

min(assoc(A;V ); assoc(B;V ))
: (22)

The eigenvalues of (6) are related to the Cheeger constant by the inequality[5]:

2hG � �1 >
h2G
2
: (23)

Earlier work on spectral partitioning used the second eigenvectors of the Laplacian of the

graph de�ned as D�W to partition a graph. The second smallest eigenvalue of D�W is

sometimes known as the Fiedler value. Several results have been derived relating the ratio

cut, and the Fiedler value. A ratio cut of a partition of V , P = (A;V �A), which in fact is

the standard de�nition of the Cheeger constant, is de�ned as cut(A;V�A)

min(jAj;jV�Aj)
. It was shown that

if the Fiedler value is small, partitioning graph based on the Fiedler vector will lead to good

ratio cut[1][23]. Our derivation in section 2.1 can be adapted (by replacing the matrix D in

the denominators by the identity matrix I) to show that the Fiedler vector is a real valued

solution to the problem of minA�V
cut(A;V�A)

jAj
+ cut(V�A;A)

jV�Aj
, which we can call the average cut.
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Although average cut looks similar to the normalized cut, average cut does not have the

important property of having a simple relationship to the average association, which can be

analogously de�ned as assoc(A;A)

jAj
+ assoc(V�A;V�A)

jV�Aj
: Consequently, one can not simultaneously

minimize the disassociation across the partitions, while maximizing the association within

the groups. When we applied both techniques to the image segmentation problem, we found

that the normalized cut produces better results in practice. There are also other explanations

why the normalized cut has better behavior from graph theoretical point of view, as pointed

out by Chung[5].

As far as we are aware, our work, �rst presented in[20], represents the �rst application

of spectral partitioning to computer vision or image analysis. There is however one applica-

tion area that has seen substantial application of spectral partitioning{the area of parallel

scienti�c computing. The problem there is to balance the workload over multiple processors

taking into account communication needs. One of the early papers is [18]. The generalized

eigenvalue approach was �rst applied to graph partitioning by [8] for dynamically balancing

computational load in a parallel computer. Their algorithm is motivated by [13]'s paper on

representing a hypergraph in a Euclidean Space.

5.1 A physical interpretation

As one might expect, a physical analogy can be set up for the generalized eigenvalue system

(6) that we used to approximate the solution of normalized cut. We can construct a spring-

mass system from the weighted graph by taking graph nodes as physical nodes and graph

edges as springs connecting each pair of nodes. Furthermore, we will de�ne the graph edge

weight as the spring sti�ness, and the total edge weights connecting to a node as its mass.

Imagine what would happen if we were to give a hard shake to this spring-mass system

forcing the nodes to oscillate in the direction perpendicular to the image plane. Nodes that

have stronger spring connections among them will likely oscillate together. As the shaking

become more violent, weaker springs connecting to this group of node will be over-stretched.

Eventually the group will \pop" o� from the image plane. The overall steady state behavior

of the nodes can be described by its fundamental mode of oscillation. In fact, it can be
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shown that the fundamental modes of oscillation of this spring mass system are exactly the

generalized eigenvectors of (6).

Let kij be the spring sti�ness connecting nodes i and j. De�neK to be the n�n sti�ness

matrix, with K(i; i) =
P

i kij, and K(i; j) = �kij. De�ne the diagonal n�n mass matrixM

as M(i; i) =
P

i kij . Let x(t) be the n � 1 vector describing the motion of each node. This

spring-mass dynamic system can be described by:

Kx(t) = �M�(x)(t): (24)

Assuming the solution take the form of x(t) = vkcos(!kt+ �), the steady state solutions of

this spring-mass system satisfy:

Kvk = !2
kMvk; (25)

analogous to equation (6) for normalized cut.

Each solution pair (!k;vk) of equation 25 describes a fundamental mode of the spring-

mass system. The eigenvectors vk give the steady state displacement of the oscillation in each

mode, and the eigenvalues !2
k give the energy required to sustain each mode of oscillation.

Therefore, �nding graph partitions that have small normalized cut values is, in e�ect, the

same as �nding a way to \pop" o� image regions with minimal e�ort.

6 Relationship to other graph theoretic approaches to

image segmentation

In the computer vision community, there has been some been previous work on image seg-

mentation formulated as a graph partition problem. Wu&Leahy[25] use the minimum cut

criterion for their segmentation. As mentioned earlier, our criticism of this criterion is that it

tends to favor cutting o� small regions which is undesirable in the context of image segmen-

tation. In an attempt to get more balanced partitions, Cox et.al. [6] seek to minimize the

ratio cut(A;V�A)

weight(A)
; A � V , where weight(A) is some function of the set A. When weight(A) is

taken to the be the sum of the elements in A, we see that this criterion becomes one of the
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terms in the de�nition of average cut above. Cox et. al. use an e�cient discrete algorithm

to solve their optimization problem assuming the graph is planar.

Sarkar & Boyer[19] use the eigenvector with the largest eigenvalue of the systemWx =

�x for �nding the most coherent region in an edge map. Using a similar derivation as

in section (2.1), we can see that the �rst largest eigenvector of their system approximates

minA�V
assoc(A;A)

jAj
, and the second largest eigenvector approximates minA�V;B�V

assoc(A;A)

jAj
+

assoc(B;B)

jBj
: However, the approximation is not tight, and there is no guarantee that A+B = V .

As we should see later in the section , this situation can happen quite often in practice. Since

this algorithm is essentially looking for clusters that have tight within-grouping similarity,

we will call this criteria average association.

6.1 Comparison with related eigenvector based methods

The normalized cut formulation has certain resemblance to the average cut, the standard

spectral graph partitioning, as well as average association formulation. All these three algo-

rithms can be reduced to solving certain eigenvalue systems. How are they related to each

other?

Figure 24 summarizes the relationship between these three algorithms. On one hand, both

the normalized cut and the average cut algorithm are trying to �nd a \balanced partition"

of a weighted graph, while on the other hand, the normalized association and the average

association are trying to �nd \tight" clusters in the graph. Since the normalized association

is exactly 2�ncut, the normalized cut value, the normalized cut formulation seeks a balance

between the goal of clustering and segmentation. It is, therefore, not too surprising to see

that the normalized cut vector can be approximated with the generalized eigenvector of

(D�W)x = �Dx, as well as that of Wx = �Dx.

Judging from the discrete formulations of these three grouping criterion, it can be seen

that the average association, assoc(A;A)

jAj
+ assoc(B;B)

jBj
, has a bias for �nding tight clusters. There-

fore it runs the risk of becoming too greedy in �nding small but tight clusters in the data.

This might be perfect for data that are Gaussian distributed. However for typical data in

the real world that are more likely to be made up of a mixture of various di�erent types of
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Figure 24: Relationship between normalized cut and other eigenvector based partitioning

techniques. Compared to the average cut and average association formulation, normalized

cut seeks a balance between the goal of �nding clumps and �nding splits.
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distributions, this bias in grouping will have undesired consequences, as we shall illustrate

in the examples below.

For average cut, cut(A;B)

jAj
+ cut(A;B)

jBj
, the opposite problem arises { one can not ensure the

two partitions computed will have tight within-group similarity. This becomes particularly

problematic if the dissimilarity among the di�erent groups varies from one to another, or if

there are several possible partitions all with similar average cut values.

To illustrate these points, let us �rst consider a set of randomly distributed data in

1D shown in �gure 25. The 1D data is made up by two subsets of points, one randomly

distributed from 0 to 0.5, and the other from 0.65 to 1.0. Each data point is taken as a node

in the graph, and the weighted graph edge connecting two points is de�ned to be inversely

proportional to the distance between two nodes. We will use three monotonically decreasing

weighting functions, w(x) = f(d(x)), de�ned on the distance function, d(x), with di�erent

rate of fall-o�. The three weighting functions are plotted in �gure 26(a), 27(a), and 28(a).

The �rst function, w(x) = e�(
d(x)

0:1
)2, plotted in �gure 26(a), has the fastest decreasing rate

among the three. With this weighting function, only close-by points are connected, as shown

in the graph weight matrixW plotted in �gure 26(b). In this case, average association fails

to �nd the right partition. Instead it focuses on �nding small clusters in each of the two

main subgroups.

The second function, w(x) = 1� d(x), plotted in �gure 27(a), has the slowest decreasing

rate among the three. With this weighting function, most points have some non-trivial

connections to the rest. To �nd a cut of the graph, a number of edges with heavy weights

have to be removed. In addition, the cluster on the right has less within-group similarity

comparing with the cluster on the left. In this case, average cut has trouble deciding on

where to cut.

The third function, w(x) = e�
d(x)

0:2 , plotted in �gure 28(a), has a moderate decreasing

rate. With this weighting function, the nearby point connections are balanced against far-

away point connections. In this case, all three algorithms performs well with normalized cut

producing a clearer solution than the two other methods.

These problems illustrated in �gure 26, 27 and 28, in fact are quite typical in segmenting

real natural images. This is particularly true in the case of texture segmentation. Di�erent
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Figure 25: A set of randomly distributed points in 1D. The �rst 20 points are randomly

distributed from 0.0 to 0.5, and the remaining 12 points are randomly distributed from 0.65
to 1.0. Segmentation result of these points with di�erent weighting functions are show in
�gure 26, 27, and 28.

texture regions often have very di�erent within-group similarity, or coherence. It is very

di�cult to pre-determine the right weighting function on each image region. Therefore it is

important to design a grouping algorithm that is more tolerant to a wide range of weighting

functions. The advantage of using normalized cut becomes more evident in this case. Figure

29 illustrates this point on a natural texture image shown previously in �gure 21.

7 Conclusion

In this paper, we developed a grouping algorithm based on the view that perceptual group-

ing should be a process that aims to extract global impressions of a scene and provides

a hierarchical description of it. By treating the grouping problem as a graph partitioning

problem, we proposed the normalized cut criteria for segmenting the graph. Normalized

cut is an unbiased measure of disassociation between sub-groups of a graph, and it has the

nice property that minimizing normalized cut leads directly to maximizing the normalized

association which is an unbiased measure for total association within the sub-groups. In

�nding an e�cient algorithm for computing the minimum normalized cut, we showed that

a generalized eigenvalue system provides a real valued solution to our problem.
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Figure 26: A weighting function with fast rate of fall-o�: w(x) = e�(
d(x)

0:1
)2, shown in subplot

(a) in solid line. The dotted lines show the two alternative weighting functions used in

�gure 27 and 28. Subplot (b) shows the corresponding graph weight matrix W . The two
columns (1) and (2) below show the �rst, and second extreme eigenvectors for the Normalized

cut(row 1), Average cut(row 2), and Average association(row 3). For both normalized cut,

and average cut, the smallest eigenvector is a constant vector as predicted. In this case, both
normalized cut and average cut perform well, while the average association fails to do the

right thing. Instead it tries to pick out isolated small clusters.
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Figure 27: A weighting function with slow rate of fall-o�: w(x) = 1�d(x), shown in subplot

(a) in solid line. The dotted lines show the two alternative weighting functions used in �gure
26 and 28. Subplot (b) shows the corresponding graph weight matrixW . The two columns
(1) and (2) below show the �rst, and second extreme eigenvectors for the Normalized cut(row

1), Average cut(row 2), and Average association(row 3). In this case, both normalized cut

and average association give the right partition, while the average cut has trouble deciding

on where to cut.
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Figure 28: A weighting function with medium rate of fall-o�: w(x) = e�
d(x)

0:2 , shown in

subplot (a) in solid line. The dotted lines show the two alternative weighting functions used
in �gure 26 and 28. Subplot (b) shows the corresponding graph weight matrixW . The two

columns (1) and (2) below show the �rst, and second extreme eigenvectors for the Normalized

cut(row 1), Average cut(row 2), and average association(row 3). All these three algorithms
perform satisfactorily in this case, with normalized cut producing a clearer solution than the

other two cuts.
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Figure 29: Normalized cut and average association result on the zebra image in �gure

21. Subplot (a) shows the second largest eigenvector of Wx = �Dx, approximating the

normalized cut vector. Subplot (b) - (e) shows the �rst to fourth largest eigenvectors of
Wx = �x, approximating the average association vector, using the same graph weight

matrix. In this image, pixels on the zebra body have, on average, lower degree of coherence
than the pixels in the background. The average association, with its tendency to �nd tight

clusters, partitions out only small clusters in the background. The normalized cut algorithm,

having to balance the goal of clustering and segmentation, �nds the better partition in this
case.
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A computational method based on this idea has been developed, and applied to segmen-

tation of brightness, color, and texture images. Results of experiments on real and synthetic

images are very encouraging, and illustrate that the normalized cut criterion does indeed

satisfy our initial goal of extracting the \big picture" of a scene.
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A NP-Completeness Proof for Normalized Cut

Proposition 1 [Papadimitriou 97] Normalized Cut(NCUT) for a graph on regular grids is

NP-complete.

Proof: We shall reduce NCUT on regular grids from PARTITION:

� Given integers x1; x2; :::; xn adding to 2k, is there a subset adding to k?

We construct a weighted graph on a regular grid that has the property that it will have a

small enough normalized cut if and only if we can �nd a subset from x1; x2; :::; xn adding to

k. Figure 30(a) shows the graph and 30(b) shows the form that a partition that minimizes

the normalized cut must take.

In comparison to the integers x1; x2; :::; xn, M is much larger, M > 2k2, and a is much

smaller, 0 < a < 1=n. We ask the question
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Figure 30: (a) shows a weighted graph on a regular grid. The missing edges on the grids have

weights of 0. In comparison to the integers x1; x2; :::; xn, M is a large number(M > 2k2),

and a is very small number (0 < a < 1=n). (b) shows a cut that has a Ncut value less

than 4an
c�1=c

. This cut, which only goes through edges with weight equal to a or na, has the

property that the xi's on each side of the partition sum up to k.
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� Is there a partition with Ncut value less than 4an
c�1=c

, where c is half the sum of edge

weights in the graph, c = 2M(n + 1) + k + 3a n.

We shall see that a good Ncut partition of the graph must separate the left and right columns.

In particular, if and only if there is a subset S1 = fx1; :::; xmg adding to k, by taking the

corresponding edges in the middle column to be in one side of the partition, as illustrated

in �gure 30(b), we achieve a Ncut value less than 4an
c�1=c

. For all other partitions, the Ncut

value will be bounded below by 4an
c�1=c

.

First, let us show that the cut illustrated in 30(b), where each side has a subset of middle

column edges x1; x2; :::; xn that add upto k, does have Ncut value less than 4a n
c�1=c

Let the

ncut� be the Ncut value for this cut. By using the formula for Ncut(equation 2.2), we can

see that ncut� = 4an
2c+2an(2k1�1)

+ 4an
2c�2an(2k1�1)

, where c is half the total edge weights in the

graph, c = 2M(n + 1) + k + 3an, and k1n and (1 � k1)n are the number of edges from the

middle column on the two sides of the graph partition, 0 < k1 < 1. The term an(2k1 � 1)

can be interpreted as the amount of imbalance between the denominators in the two terms

in the Ncut formula and lies between �1 and +1(since 0 < an < 1). Simplifying, we see

that ncut� = 4an c
c2�(an(2k1�1))2

< 4an c
c2�1

= 4an
c�1=c

: as was to be shown.

To complete the proof we must show that all other partitions result in a Ncut greater

than or equal to 4a n
c�1=c

. Informally speaking, what will happen is that either the numerators

of the terms in the Ncut formula{the cut become too large, or the denominators become

signi�cantly imbalanced, again increasing the Ncut value. We need to consider three cases:

1. A cut that deviates from the cut in 1(b) slightly by re-shu�ing some of the xi edges,

so that the sums of the xi in each subset of the graph partition are no longer equal.

For such cuts, the resulting Ncut values are at best ncut1 =
2an
c+x

+ 2an
c�x

= 4an c
c2�x2

. But

since x � 1, we have ncut1 �
4an c
c2�1

= 4a n
c�1=c

.

2. A cut that goes through any of the edges with weightM . Even with the denominators

on both sides completely balanced, the Ncut value ncut2 =
2M
c

is going to be larger

than 4a n
c�1=c

. This is ensured by our choice in the construction that M > 2k2. We have

50



to show that

2M

c
�

4an

c� 1=c
; or

M � 2an
c2

c2 � 1

This is direct, since an < 1 by construction, c2

c2�1
� 81

80
(using k � 1, M � 2, c � 9).

3. A cut that partitions out some of the nodes in the middle as one group. We see

that any cut that goes through one of the xi's can improve its Ncut value by going

through the edges with weight a instead. So we will focus on the case where the

cut only goes through the weight a edges. Suppose that m edges of xi's are grouped

into one set, with total weight adding to x, where 1 < x < 2k. The corresponding

ncut value, ncut3(m) = 4am
4am+2x

+ 4am
8M(n+1)+4k+12an�4am�2x

= 2am
c�dm

+ 2am
c+dm

, where dm =

2M(n+1)+k+3an�2am�x > 2M(n+1)�k+3an�2am = xl. The lower bound

on ncut3(m) = 4amc
c2�d2m

is then ncutl(m) = 4amc
c2�x2

l

. Further expansion of the ncutl(m)

yields

ncutl(m) =
4amc

c2 � x2l

=
4amc

c2 � (B � 2am)2
; where B = 2M(n + 1)� k + 3an

=
4a c

c2�B2

m
� 4a2m+ 4aB

One can check to see that ncutl(m) is a non-decreasing function, and has its minimum

at 4ac
(c2�B2)+4aB�4a2

when m = 1.

In order to prove that ncutl(m) > 4a n
c�1=c

, we need to establish the inequality

4a c

(c2 �B2) + 4aB � 4a2
�

4an c

c2 � 1
or

1

(c2 �B2) + 4aB � 4a2
�

n

c2 � 1
or

((c2 �B2) + 4aB � 4a2)n � c2 � 1 or

(4c k � 4k2)n+ 4an(c� 2k � a) + 1 � c2

51



using the fact that c = B+2k. To continue, note that since an < 1, this will be true if

(4c k � 4k2)n+ 4(c� 2k) � 4a+ 1 � c2 or if

4c k2 + 4c� (4k3 + 8k + 4a� 1) � c2;

since n < k. Since 4k3 + 8k + 4a � 1 > 0, we only need to show that 4c k2 + 4c < c2,

or that c > 4(k2 + 1). This is so because c = 2M(n + 1) + k + 3an and M > 2k2.
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