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An object recognition system has been developed that uses a

new class of local image features. The features are invariant

to image scaling, translation, and rotation, and partially in-

variant to illumination changes and affine or 3D projection.

These features share similar properties with neurons in in-

ferior temporal cortex that are used for object recognition

in primate vision. Features are efficiently detected through

a staged filtering approach that identifies stable points in

scale space. Image keys are created that allow for local ge-

ometric deformations by representing blurred image gradi-

ents in multiple orientation planes and at multiple scales.

The keys are used as input to a nearest-neighbor indexing

method that identifies candidate object matches. Final veri-

fication of each match is achieved by finding a low-residual

least-squares solution for the unknown model parameters.

Experimental results show that robust object recognition

can be achieved in cluttered partially-occluded images with

a computation time of under 2 seconds.

1. Introduction

Object recognition in cluttered real-world scenes requires

local image features that are unaffected by nearby clutter or

partial occlusion. The features must be at least partially in-

variant to illumination, 3D projective transforms, and com-

mon object variations. On the other hand, the features must

also be sufficiently distinctive to identify specific objects

among many alternatives. The difficulty of the object recog-

nition problem is due in large part to the lack of success in

finding such image features. However, recent research on

the use of dense local features (e.g., Schmid & Mohr [19])

has shown that efficient recognition can often be achieved

by using local image descriptors sampled at a large number

of repeatable locations.

This paper presents a new method for image feature gen-

eration called the Scale Invariant Feature Transform (SIFT).

This approach transforms an image into a large collection

of local feature vectors, each of which is invariant to image

translation, scaling, and rotation, and partially invariant to

illumination changes and affine or 3D projection. Previous

approaches to local feature generation lacked invariance to

scale and were more sensitive to projective distortion and

illumination change. The SIFT features share a number of

properties in common with the responses of neurons in infe-

rior temporal (IT) cortex in primate vision. This paper also

describes improved approaches to indexing and model ver-

ification.

The scale-invariant features are efficiently identified by

using a staged filtering approach. The first stage identifies

key locations in scale space by looking for locations that

are maxima orminima of a difference-of-Gaussian function.

Each point is used to generate a feature vector that describes

the local image region sampled relative to its scale-space co-

ordinate frame. The features achieve partial invariance to

local variations, such as affine or 3D projections, by blur-

ring image gradient locations. This approach is based on a

model of the behavior of complex cells in the cerebral cor-

tex of mammalian vision. The resulting feature vectors are

called SIFT keys. In the current implementation, each im-

age generates on the order of 1000 SIFT keys, a process that

requires less than 1 second of computation time.

The SIFT keys derived from an image are used in a

nearest-neighbour approach to indexing to identify candi-

date object models. Collections of keys that agree on a po-

tential model pose are first identified through a Hough trans-

formhash table, and then througha least-squares fit to a final

estimate of model parameters. When at least 3 keys agree

on the model parameters with low residual, there is strong

evidence for the presence of the object. Since there may be

dozens of SIFT keys in the image of a typical object, it is

possible to have substantial levels of occlusion in the image

and yet retain high levels of reliability.

The current object models are represented as 2D loca-

tions of SIFT keys that can undergo affine projection. Suf-

ficient variation in feature location is allowed to recognize

perspective projection of planar shapes at up to a 60 degree

rotation away from the camera or to allow up to a 20 degree

rotation of a 3D object.
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Abstract
We study the question of feature sets for robust visual ob-

ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and backgrounds.

1 Introduction
Detecting humans in images is a challenging task owing

to their variable appearance and the wide range of poses that
they can adopt. The first need is a robust feature set that
allows the human form to be discriminated cleanly, even in
cluttered backgrounds under difficult illumination. We study
the issue of feature sets for human detection, showing that lo-
cally normalized Histogram of Oriented Gradient (HOG) de-
scriptors provide excellent performance relative to other ex-
isting feature sets including wavelets [17,22]. The proposed
descriptors are reminiscent of edge orientation histograms
[4,5], SIFT descriptors [12] and shape contexts [1], but they
are computed on a dense grid of uniformly spaced cells and
they use overlapping local contrast normalizations for im-
proved performance. We make a detailed study of the effects
of various implementation choices on detector performance,
taking “pedestrian detection” (the detection of mostly visible
people in more or less upright poses) as a test case. For sim-
plicity and speed, we use linear SVM as a baseline classifier
throughout the study. The new detectors give essentially per-
fect results on theMIT pedestrian test set [18,17], so we have
created a more challenging set containing over 1800 pedes-
trian images with a large range of poses and backgrounds.
Ongoing work suggests that our feature set performs equally
well for other shape-based object classes.

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5–6. The main
conclusions are summarized in §7.

2 Previous Work
There is an extensive literature on object detection, but

here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola et al [22] build an efficient
moving person detector, using AdaBoost to train a chain of
progressively more complex region rejection rules based on
Haar-like wavelets and space-time differences. Ronfard et
al [19] build an articulated body detector by incorporating
SVM based limb classifiers over 1st and 2nd order Gaussian
filters in a dynamic programming framework similar to those
of Felzenszwalb & Huttenlocher [3] and Ioffe & Forsyth
[9]. Mikolajczyk et al [16] use combinations of orientation-
position histograms with binary-thresholdedgradient magni-
tudes to build a parts based method containing detectors for
faces, heads, and front and side profiles of upper and lower
body parts. In contrast, our detector uses a simpler archi-
tecture with a single detection window, but appears to give
significantly higher performance on pedestrian images.

3 Overview of the Method
This section gives an overview of our feature extraction

chain, which is summarized in fig. 1. Implementation details
are postponed until §6. The method is based on evaluating
well-normalized local histograms of image gradient orienta-
tions in a dense grid. Similar features have seen increasing
use over the past decade [4,5,12,15]. The basic idea is that
local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or
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Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction
We consider the problem of detecting and localizing ob-

jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty

This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

object categories. Figure 1 shows an example detection ob-
tained with our person model.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6,10, 12, 13,15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a
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Abstract
We study the question of feature sets for robust visual ob-

ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and backgrounds.

1 Introduction
Detecting humans in images is a challenging task owing

to their variable appearance and the wide range of poses that
they can adopt. The first need is a robust feature set that
allows the human form to be discriminated cleanly, even in
cluttered backgrounds under difficult illumination. We study
the issue of feature sets for human detection, showing that lo-
cally normalized Histogram of Oriented Gradient (HOG) de-
scriptors provide excellent performance relative to other ex-
isting feature sets including wavelets [17,22]. The proposed
descriptors are reminiscent of edge orientation histograms
[4,5], SIFT descriptors [12] and shape contexts [1], but they
are computed on a dense grid of uniformly spaced cells and
they use overlapping local contrast normalizations for im-
proved performance. We make a detailed study of the effects
of various implementation choices on detector performance,
taking “pedestrian detection” (the detection of mostly visible
people in more or less upright poses) as a test case. For sim-
plicity and speed, we use linear SVM as a baseline classifier
throughout the study. The new detectors give essentially per-
fect results on theMIT pedestrian test set [18,17], so we have
created a more challenging set containing over 1800 pedes-
trian images with a large range of poses and backgrounds.
Ongoing work suggests that our feature set performs equally
well for other shape-based object classes.

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5–6. The main
conclusions are summarized in §7.

2 Previous Work
There is an extensive literature on object detection, but

here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola et al [22] build an efficient
moving person detector, using AdaBoost to train a chain of
progressively more complex region rejection rules based on
Haar-like wavelets and space-time differences. Ronfard et
al [19] build an articulated body detector by incorporating
SVM based limb classifiers over 1st and 2nd order Gaussian
filters in a dynamic programming framework similar to those
of Felzenszwalb & Huttenlocher [3] and Ioffe & Forsyth
[9]. Mikolajczyk et al [16] use combinations of orientation-
position histograms with binary-thresholdedgradient magni-
tudes to build a parts based method containing detectors for
faces, heads, and front and side profiles of upper and lower
body parts. In contrast, our detector uses a simpler archi-
tecture with a single detection window, but appears to give
significantly higher performance on pedestrian images.

3 Overview of the Method
This section gives an overview of our feature extraction

chain, which is summarized in fig. 1. Implementation details
are postponed until §6. The method is based on evaluating
well-normalized local histograms of image gradient orienta-
tions in a dense grid. Similar features have seen increasing
use over the past decade [4,5,12,15]. The basic idea is that
local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or
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distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola et al [22] build an efficient
moving person detector, using AdaBoost to train a chain of
progressively more complex region rejection rules based on
Haar-like wavelets and space-time differences. Ronfard et
al [19] build an articulated body detector by incorporating
SVM based limb classifiers over 1st and 2nd order Gaussian
filters in a dynamic programming framework similar to those
of Felzenszwalb & Huttenlocher [3] and Ioffe & Forsyth
[9]. Mikolajczyk et al [16] use combinations of orientation-
position histograms with binary-thresholdedgradient magni-
tudes to build a parts based method containing detectors for
faces, heads, and front and side profiles of upper and lower
body parts. In contrast, our detector uses a simpler archi-
tecture with a single detection window, but appears to give
significantly higher performance on pedestrian images.

3 Overview of the Method
This section gives an overview of our feature extraction

chain, which is summarized in fig. 1. Implementation details
are postponed until §6. The method is based on evaluating
well-normalized local histograms of image gradient orienta-
tions in a dense grid. Similar features have seen increasing
use over the past decade [4,5,12,15]. The basic idea is that
local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or
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INRIA Rhône-Alps, 655 avenue de l’Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill.Triggs}@inrialpes.fr, http://lear.inrialpes.fr

Abstract
We study the question of feature sets for robust visual ob-

ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
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approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
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a large range of pose variations and backgrounds.
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Detecting humans in images is a challenging task owing

to their variable appearance and the wide range of poses that
they can adopt. The first need is a robust feature set that
allows the human form to be discriminated cleanly, even in
cluttered backgrounds under difficult illumination. We study
the issue of feature sets for human detection, showing that lo-
cally normalized Histogram of Oriented Gradient (HOG) de-
scriptors provide excellent performance relative to other ex-
isting feature sets including wavelets [17,22]. The proposed
descriptors are reminiscent of edge orientation histograms
[4,5], SIFT descriptors [12] and shape contexts [1], but they
are computed on a dense grid of uniformly spaced cells and
they use overlapping local contrast normalizations for im-
proved performance. We make a detailed study of the effects
of various implementation choices on detector performance,
taking “pedestrian detection” (the detection of mostly visible
people in more or less upright poses) as a test case. For sim-
plicity and speed, we use linear SVM as a baseline classifier
throughout the study. The new detectors give essentially per-
fect results on theMIT pedestrian test set [18,17], so we have
created a more challenging set containing over 1800 pedes-
trian images with a large range of poses and backgrounds.
Ongoing work suggests that our feature set performs equally
well for other shape-based object classes.

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5–6. The main
conclusions are summarized in §7.

2 Previous Work
There is an extensive literature on object detection, but

here we mention just a few relevant papers on human detec-
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al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
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[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
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trian detection system [7]. Viola et al [22] build an efficient
moving person detector, using AdaBoost to train a chain of
progressively more complex region rejection rules based on
Haar-like wavelets and space-time differences. Ronfard et
al [19] build an articulated body detector by incorporating
SVM based limb classifiers over 1st and 2nd order Gaussian
filters in a dynamic programming framework similar to those
of Felzenszwalb & Huttenlocher [3] and Ioffe & Forsyth
[9]. Mikolajczyk et al [16] use combinations of orientation-
position histograms with binary-thresholdedgradient magni-
tudes to build a parts based method containing detectors for
faces, heads, and front and side profiles of upper and lower
body parts. In contrast, our detector uses a simpler archi-
tecture with a single detection window, but appears to give
significantly higher performance on pedestrian images.

3 Overview of the Method
This section gives an overview of our feature extraction

chain, which is summarized in fig. 1. Implementation details
are postponed until §6. The method is based on evaluating
well-normalized local histograms of image gradient orienta-
tions in a dense grid. Similar features have seen increasing
use over the past decade [4,5,12,15]. The basic idea is that
local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or
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[8] take a more direct approach, extracting edge images and
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Approach

•robust feature set (HOG)

•simple classifier (linear SVM)

•fast detection (sliding window)
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• Gamma normalization

• Space: RGB, LAB or Gray

• Method: SQRT or LOG
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• Filtering with simple 
masks

uncentered

centered

cubic-corrected

diagonal

Sobel

remember SIFT ?



...after filtering, each “pixel” represents 
an oriented gradient...



...pixels are regrouped in “cells”, 
they cast a weighted vote for an 
orientation histogram...

HOG (Histogram of Oriented Gradients)



a window can be 
represented like 
that



then, cells are locally normalized 
using overlapping “blocks”



they used two types of blocks

• rectangular

• similar to SIFT (but dense)

• circular

• similar to Shape Context



and four different types of block 
normalization



like SIFT, they gain invariance... 

...to illuminations, small 
deformations, etc.



finally, a sliding window is 

classified by a simple linear SVM



during the learning phase, the 
algorithm “looked” for hard examples

Training

adapted from Martial Hebert
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Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.

tector performance. Throughout this section we refer results
to our default detector which has the following properties,
described below: RGB colour space with no gamma cor-
rection; [−1, 0, 1] gradient filter with no smoothing; linear
gradient voting into 9 orientation bins in 0◦–180◦ ; 16×16
pixel blocks of four 8×8 pixel cells; Gaussian spatial win-
dowwith σ = 8 pixel; L2-Hys (Lowe-style clipped L2 norm)
block normalization; block spacing stride of 8 pixels (hence
4-fold coverage of each cell); 64×128 detection window;
linear SVM classifier.
Fig. 4 summarizes the effects of the various HOG param-

eters on overall detection performance. These will be exam-
ined in detail below. The main conclusions are that for good
performance, one should use fine scale derivatives (essen-
tially no smoothing), many orientation bins, and moderately
sized, strongly normalized, overlapping descriptor blocks.
6.1 Gamma/Colour Normalization
We evaluated several input pixel representations includ-

ing grayscale, RGB and LAB colour spaces optionally with
power law (gamma) equalization. These normalizations have
only a modest effect on performance, perhaps because the
subsequent descriptor normalization achieves similar results.
We do use colour information when available. RGB and
LAB colour spaces give comparable results, but restricting
to grayscale reduces performance by 1.5% at 10−4 FPPW.
Square root gamma compression of each colour channel im-
proves performance at low FPPW (by 1% at 10−4 FPPW)
but log compression is too strong and worsens it by 2% at
10−4 FPPW.
6.2 Gradient Computation
Detector performance is sensitive to the way in which

gradients are computed, but the simplest scheme turns out
to be the best. We tested gradients computed using Gaus-
sian smoothing followed by one of several discrete deriva-

tive masks. Several smoothing scales were tested includ-
ing σ=0 (none). Masks tested included various 1-D point
derivatives (uncentred [−1, 1], centred [−1, 0, 1] and cubic-
corrected [1,−8, 0, 8,−1]) as well as 3×3 Sobel masks and
2×2 diagonal ones

(

0 1
−1 0

)

,
(

−1 0
0 1

)

(the most compact cen-
tred 2-D derivative masks). Simple 1-D [−1, 0, 1] masks at
σ=0 work best. Using larger masks always seems to de-
crease performance, and smoothing damages it significantly:
for Gaussian derivatives, moving from σ=0 to σ=2 reduces
the recall rate from 89% to 80% at 10−4 FPPW. At σ=0,
cubic corrected 1-D width 5 filters are about 1% worse than
[−1, 0, 1] at 10−4 FPPW, while the 2×2 diagonal masks are
1.5% worse. Using uncentred [−1, 1] derivative masks also
decreases performance (by 1.5% at 10−4 FPPW), presum-
ably because orientation estimation suffers as a result of the
x and y filters being based at different centres.
For colour images, we calculate separate gradients for

each colour channel, and take the one with the largest norm
as the pixel’s gradient vector.
6.3 Spatial / Orientation Binning
The next step is the fundamental nonlinearity of the de-

scriptor. Each pixel calculates a weighted vote for an edge
orientation histogram channel based on the orientation of the
gradient element centred on it, and the votes are accumu-
lated into orientation bins over local spatial regions that we
call cells. Cells can be either rectangular or radial (log-polar
sectors). The orientation bins are evenly spaced over 0◦–
180◦ (“unsigned” gradient) or 0◦–360◦ (“signed” gradient).
To reduce aliasing, votes are interpolated bilinearly between
the neighbouring bin centres in both orientation and posi-
tion. The vote is a function of the gradient magnitude at the
pixel, either the magnitude itself, its square, its square root,
or a clipped form of the magnitude representing soft pres-
ence/absence of an edge at the pixel. In practice, using the

not good good
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Figure 4. For details see the text. (a) Using fine derivative scale significantly increases the performance. (‘c-cor’ is the 1D cubic-corrected
point derivative). (b) Increasing the number of orientation bins increases performance significantly up to about 9 bins spaced over 0◦–
180◦. (c) The effect of different block normalization schemes (see §6.4). (d) Using overlapping descriptor blocks decreases the miss rate
by around 5%. (e) Reducing the 16 pixel margin around the 64×128 detection window decreases the performance by about 3%. (f) Using
a Gaussian kernel SVM, exp(−γ‖x1 − x2‖

2), improves the performance by about 3%.

magnitude itself gives the best results. Taking the square root
reduces performance slightly, while using binary edge pres-
ence voting decreases it significantly (by 5% at 10−4 FPPW).
Fine orientation coding turns out to be essential for good

performance, whereas (see below) spatial binning can be
rather coarse. As fig. 4(b) shows, increasing the number
of orientation bins improves performance significantly up to
about 9 bins, but makes little difference beyond this. This
is for bins spaced over 0◦–180◦, i.e. the ‘sign’ of the gradi-
ent is ignored. Including signed gradients (orientation range
0◦–360◦, as in the original SIFT descriptor) decreases the
performance, even when the number of bins is also doubled
to preserve the original orientation resolution. For humans,
the wide range of clothing and background colours presum-
ably makes the signs of contrasts uninformative. However
note that including sign information does help substantially
in some other object recognition tasks, e.g. cars, motorbikes.
6.4 Normalization and Descriptor Blocks
Gradient strengths vary over a wide range owing to local

variations in illumination and foreground-background con-
trast, so effective local contrast normalization turns out to
be essential for good performance. We evaluated a num-
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Figure 5. The miss rate at 10−4 FPPW as the cell and block sizes
change. The stride (block overlap) is fixed at half of the block size.
3×3 blocks of 6×6 pixel cells perform best, with 10.4% miss rate.

ber of different normalization schemes. Most of them are
based on grouping cells into larger spatial blocks and con-
trast normalizing each block separately. The final descriptor
is then the vector of all components of the normalized cell
responses from all of the blocks in the detection window.
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Figure 4. For details see the text. (a) Using fine derivative scale significantly increases the performance. (‘c-cor’ is the 1D cubic-corrected
point derivative). (b) Increasing the number of orientation bins increases performance significantly up to about 9 bins spaced over 0◦–
180◦. (c) The effect of different block normalization schemes (see §6.4). (d) Using overlapping descriptor blocks decreases the miss rate
by around 5%. (e) Reducing the 16 pixel margin around the 64×128 detection window decreases the performance by about 3%. (f) Using
a Gaussian kernel SVM, exp(−γ‖x1 − x2‖

2), improves the performance by about 3%.

magnitude itself gives the best results. Taking the square root
reduces performance slightly, while using binary edge pres-
ence voting decreases it significantly (by 5% at 10−4 FPPW).
Fine orientation coding turns out to be essential for good

performance, whereas (see below) spatial binning can be
rather coarse. As fig. 4(b) shows, increasing the number
of orientation bins improves performance significantly up to
about 9 bins, but makes little difference beyond this. This
is for bins spaced over 0◦–180◦, i.e. the ‘sign’ of the gradi-
ent is ignored. Including signed gradients (orientation range
0◦–360◦, as in the original SIFT descriptor) decreases the
performance, even when the number of bins is also doubled
to preserve the original orientation resolution. For humans,
the wide range of clothing and background colours presum-
ably makes the signs of contrasts uninformative. However
note that including sign information does help substantially
in some other object recognition tasks, e.g. cars, motorbikes.
6.4 Normalization and Descriptor Blocks
Gradient strengths vary over a wide range owing to local

variations in illumination and foreground-background con-
trast, so effective local contrast normalization turns out to
be essential for good performance. We evaluated a num-
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Figure 5. The miss rate at 10−4 FPPW as the cell and block sizes
change. The stride (block overlap) is fixed at half of the block size.
3×3 blocks of 6×6 pixel cells perform best, with 10.4% miss rate.

ber of different normalization schemes. Most of them are
based on grouping cells into larger spatial blocks and con-
trast normalizing each block separately. The final descriptor
is then the vector of all components of the normalized cell
responses from all of the blocks in the detection window.



Further 
Development

• Detection on Pascal VOC (2006)

• Human Detection in Movies (ECCV 2006)

• US Patent by MERL (2006)

• Stereo Vision HoG (ICVES 2008)



Extension example: 

Pyramid HoG++



A simple demo...



A simple demo...

VIDEO HERE



so, it doesn’t work ?!?

no no, it works...

...it just doesn’t work well...



Object Recognition from Local Scale-Invariant Features
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Abstract

An object recognition system has been developed that uses a

new class of local image features. The features are invariant

to image scaling, translation, and rotation, and partially in-

variant to illumination changes and affine or 3D projection.

translation, scaling, and rotation, and partially invariant to

illumination changes and affine or 3D projection. Previous

approaches to local feature generation lacked invariance to

scale and were more sensitive to projective distortion and

illumination change. The SIFT features share a number of

properties in common with the responses of neurons in infe-

Lowe
(1999)

Histograms of Oriented Gradients for Human Detection
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Abstract
We study the question of feature sets for robust visual ob-

ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5–6. The main
conclusions are summarized in §7.

2 Previous Work
There is an extensive literature on object detection, but

Nalal and Triggs 
(2005)
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Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction
We consider the problem of detecting and localizing ob-

jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty

This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

object categories. Figure 1 shows an example detection ob-
tained with our person model.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6,10, 12, 13,15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a

1

Felzenszwalb et al.
(2008)



This paper describes one 
of the best algorithm in 
object detection...



They used the following methods:

HOG Features

Deformable Part Model

Latent SVM



They used the following methods:

HOG Features

Introduced by 
Dalal & Triggs (2005)



They used the following methods:

Deformable Part Model

Introduced by 
Fischler & Elschlager (1973)



They used the following methods:

Latent SVM

Introduced by the authors



HOG Features



Model Overview
detection root filter part filters

deformation 
models



HOG Features

// 8x8 pixel blocks window

// features computed at different 
resolutions (pyramid)



HOG Pyramid



Deformable Part Model



Deformable Part Model

// each part is a local 
property

// springs capture 
spatial relationships

// here, the springs 
can be “negative”



root filter

part filters
deformable

model

Deformable Part Model

detection score =
sum of filter responses - deformation cost



Deformable Part Model

filters feature vector
(at position p 

in the pyramid H)

position relative
to the root location

coefficients of a 
quadratic function on 

the placement

score of a placement



Latent SVM



Latent SVM

filters and deformation 
parameters

features part displacements



Latent SVM



Bonus

// Data Mining Hard Negatives

// Model Initialization



Results

Pascal VOC 2006



Results

Models learned



Experiments

~ Dalal’s model
~ Dalal’s + LSVM



Examples

errors
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Conclusions

so, it doesn’t work ?!?

no no, it works...

...it just doesn’t work well...

...or there is a problem with the 
seat-computer interface...



Conclusion




