Low-level vision: shading, paint, and texture

Bill Freeman
October 27, 2008
Why shading, paint, and texture matters in object recognition

- We want to recognize objects independently from:
 - surface colorings
 - lighting
 - surface texture

- **One approach**: learn appearance-based models of objects, spanning the space of all possible.

- **Alternate approach**: develop bottom-up processing to separate shading from paint from texture. Hence, we study those issues today.
Separating shading from paint
Separating shading from paint

• From a single image:
 – identify all-shading versus all-paint
 – locally separate shading from paint

• From a sequence of images:
 – separate stable from varying component

• From a stereo pair
 – separate shading, paint, occlusion.
Separating shading from paint

• **From a single image:**
 – identify all-shading versus all-paint
 – locally separate shading from paint

• **From a sequence of images:**
 – separate stable from varying component

• **From a stereo pair**
 – separate shading, paint, occlusion.
Shading

Paint
Bayesian model of surface perception

William T. Freeman
MERL, Mitsubishi Electric Res. Lab.
201 Broadway
Cambridge, MA 02139
freeman@merl.com

Paul A. Viola
Artificial Intelligence Lab
Massachusetts Institute of Technology
Cambridge, MA 02139
viola@ai.mit.edu

Abstract

Image intensity variations can result from several different object surface effects, including shading from 3-dimensional relief of the object, or paint on the surface itself. An essential problem in vision, which people solve naturally, is to attribute the proper physical cause, e.g. surface relief or paint, to an observed image. We addressed this problem with an approach combining psychophysical
survey instructions

Pretend that each of the following pictures is a photograph of work made by either a painter or a sculptor.
The painter could use paint, markers, air brushes, computer, etc., to make any kind of mark on a flat canvas. The paint had no 3-dimensionality; everything was perfectly flat.
The sculptor could make 3-dimensional objects, but could make no markings on them. She could mold, sculpt, and scrape her sculptures, but could not draw or paint. All the objects were made out of a uniform plaster material and were made visible by lighting and shading effects.

The subjects used a 5-point rating scale to indicate whether each image was made by the painter (P) or sculptor (S): S, S?, ?, P?, P.
Figure 2: Histogram of survey responses. Intensity shows the number of responses of each score (vertical scale) for each image (horizontal, sorted in increasing order of shapeness).
Evaluate the prior probability of the all-shape and all-reflectance explanations
Figure 3: 28 of the 60 test images, arranged in decreasing order of subjects' shapeness ratings. Left: Subjects' rankings. Right: Algorithm's rankings.
Figure 4: Correlation of individual subjects’ image ratings compared with the mean rating (bars) compared with correlation of algorithm’s rating with the mean rating (dashed line).
Separating shading from paint

• **From a single image:**
 – identify all-shading versus all-paint
 – locally separate shading from paint

• **From a sequence of images:**
 – separate stable from varying component

• **From a stereo pair**
 – separate shading, paint, occlusion.
Learning to separate shading from paint

Marshall F. Tappen1
William T. Freeman1
Edward H. Adelson1,2

1MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
2MIT Dept. Brain and Cognitive Sciences
Forming an Image

Surface
Forming an Image

Illuminate the surface to get:

Surface

The “shading image” is the interaction of the shape of the surface and the illumination

Shading Image
Painting the Surface

Scene
Painting the Surface

Scene

Image
We can also include a reflectance pattern or a “paint” image. Now shading and reflectance effects combine to create the observed image.
Goal: decompose the image into shading and reflectance components.
Goal: decompose the image into shading and reflectance components.

- These types of images are known as intrinsic images (Barrow and Tenenbaum).
- Note: while the images multiply, we work in a gamma-corrected domain and assume the images add.
Why compute these intrinsic images
Why compute these intrinsic images

- Ability to reason about shading and reflectance independently is necessary for most image understanding tasks.
 - Material recognition
 - Image segmentation
- Want to understand how humans might do the task.
- For image editing, want access and modify the intrinsic images separately.
Treat the separation as a labeling problem
Treat the separation as a labeling problem

• We want to identify what parts of the image were caused by shape changes and what parts were caused by paint changes.
Treat the separation as a labeling problem

• We want to identify what parts of the image were caused by shape changes and what parts were caused by paint changes.

• But how represent that? Can’t label pixels of the image as “shading” or “paint”.
Treat the separation as a labeling problem

- We want to identify what parts of the image were caused by shape changes and what parts were caused by paint changes.
- But how represent that? Can’t label pixels of the image as “shading” or “paint”.
- Solution: we’ll label *gradients* in the image as being caused by shading or paint.
Treat the separation as a labeling problem

• We want to identify what parts of the image were caused by shape changes and what parts were caused by paint changes.
• But how represent that? Can’t label pixels of the image as “shading” or “paint”.
• Solution: we’ll label \textit{gradients} in the image as being caused by shading or paint.
• Assume that image gradients have only one cause.
Recovering Intrinsic Images

Original x derivative image

Classify each derivative (White is reflectance)
Recovering Intrinsic Images

- Classify each x and y image derivative as being caused by either shading or a reflectance change.
Recovering Intrinsic Images

- Classify each x and y image derivative as being caused by *either* shading or a reflectance change.
- Recover the intrinsic images by finding the least-squares reconstruction from each set of labeled derivatives. (Fast Matlab code for that available from Yair Weiss’s web page.)

Original x derivative image

Classify each derivative (White is reflectance)
Classic algorithm: Retinex

- Assume world is made up of Mondrian reflectance patterns and smooth illumination
- Can classify derivatives by the magnitude of the derivative
Outline of our algorithm
Outline of our algorithm

• Gather local evidence for shading or reflectance
Outline of our algorithm

• Gather local evidence for shading or reflectance
 – Color (chromaticity changes)
Outline of our algorithm

• Gather local evidence for shading or reflectance
 – Color (chromaticity changes)
 – Form (local image patterns)
Outline of our algorithm

- Gather local evidence for shading or reflectance
 - Color (chromaticity changes)
 - Form (local image patterns)
- Integrate the local evidence across space.
Outline of our algorithm

• Gather local evidence for shading or reflectance
 – Color (chromaticity changes)
 – Form (local image patterns)

• Integrate the local evidence across space.
 – Assume a probabilistic model and use “belief propagation”.

Outline of our algorithm

- Gather local evidence for shading or reflectance
 - Color (chromaticity changes)
 - Form (local image patterns)
- Integrate the local evidence across space.
 - Assume a probabilistic model and use “belief propagation”.
Outline of our algorithm

• Gather local evidence for shading or reflectance
 – Color (chromaticity changes)
 – Form (local image patterns)

• Integrate the local evidence across space.
 – Assume a probabilistic model and use “belief propagation”.

• Results shown on example images
Probabilistic graphical model

Unknown Derivative Labels (hidden random variables that we want to estimate)
Probabilistic graphical model

- Local evidence
Probabilistic graphical model

- Local evidence

Derivative Labels

Local Color Evidence
Probabilistic graphical model

- Local evidence

Derivative Labels → Local Color Evidence

Some statistical relationship that we’ll specify
Probabilistic graphical model

- Local evidence

Local Form Evidence → Local Color Evidence

Derivative Labels
Propagating the local evidence in Markov Random Fields. This strategy can be used to solve other low-level vision problems.
Classifying Color Changes

Chromaticity Changes

Angle between the two vectors, θ, is greater than 0
Classifying Color Changes

Chromaticity Changes

Angle between the two vectors, \(\theta \), is greater than 0

Intensity Changes

Angle between two vectors, \(\theta \), equals 0
1. Normalize the two color vectors c_1 and c_2

2. If $(c_1 \cdot c_2) > T$
 - Derivative is a reflectance change
 - Otherwise, label derivative as shading
Result using only color information

Figure 1: Example. Computed using Color Detector. To facilitate printing, the intrinsic images have been computed from a gray-scale version of the image. The color information is used solely for classifying derivatives in the gray-scale copy of the image.
Results Using Only Color

Input
Results Using Only Color

Input

Shading

Reflectance
Results Using Only Color

- Some changes are ambiguous
Results Using Only Color

- Some changes are ambiguous
- Intensity changes could be caused by shading or reflectance
 - So we label it as “ambiguous”
 - Need more information
Utilizing local intensity patterns
Utilizing local intensity patterns
Utilizing local intensity patterns

- The painted eye and the ripples of the fabric have very different appearances.
- Can learn classifiers which take advantage of these differences.
Shading/paint training set

Examples from Reflectance Change Training Set

Examples from Shading Training Set
From Weak to Strong Classifiers: Boosting

• Individually these weak classifiers aren’t very good.
• Can be combined into a single strong classifier.
• Call the classification from a weak classifier $h_i(x)$.
• Each $h_i(x)$ votes for the classification of x (-1 or 1).
• Those votes are weighted and combined to produce a final classification.

$$H(x) = \text{sign}\left(\sum_i \alpha_i h_i(x)\right)$$
Using Local Intensity Patterns
Using Local Intensity Patterns

- Create a set of weak classifiers that use a small image patch to classify each derivative
Using Local Intensity Patterns

• Create a set of weak classifiers that use a small image patch to classify each derivative

• The classification of a derivative:
Using Local Intensity Patterns

- Create a set of weak classifiers that use a small image patch to classify each derivative.
- The classification of a derivative: I.
Using Local Intensity Patterns

• Create a set of weak classifiers that use a small image patch to classify each derivative

• The classification of a derivative:

\[I \ast F \]
Using Local Intensity Patterns

• Create a set of weak classifiers that use a small image patch to classify each derivative

• The classification of a derivative:

\[
\text{abs} \left(\begin{array}{c}
I \\
F
\end{array} \right)
\]
Using Local Intensity Patterns

- Create a set of weak classifiers that use a small image patch to classify each derivative.
- The classification of a derivative:

\[
\text{abs} \left(\begin{bmatrix} I \end{bmatrix} \ast \begin{bmatrix} F \end{bmatrix} \right) > T
\]
AdaBoost
(Freund & Shapire ’95)

\[f(x) = \theta \left(\sum \alpha_t h_t(x) \right) \]

\[\alpha_t = 0.5 \log \left(\frac{\text{error}_t}{1 - \text{error}_t} \right) \]

\[w^i_t = \frac{w^i_{t-1} e^{-y_i \alpha_t h_t(x_i)}}{\sum_i w^i_{t-1} e^{-y_i \alpha_t h_t(x_i)}} \]

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
AdaBoost
(Freund & Shapire '95)

\[f(x) = \theta \left(\sum_t \alpha_t h_t(x) \right) \]

\[\alpha_t = 0.5 \log \left(\frac{\text{error}_t}{1 - \text{error}_t} \right) \]

\[w_t^i = \frac{w_{t-1}^i e^{-y_t \alpha_t h_t(x_i)}}{\sum_i w_{t-1}^i e^{-y_t \alpha_t h_t(x_i)}} \]

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
AdaBoost
(Freund & Shapire ’95)

\[f(x) = \theta \left(\sum_t \alpha_t h_t(x) \right) \]

\[\alpha_t = 0.5 \log \left(\frac{error_t}{1 - error_t} \right) \]

\[w_t^i = \frac{w_{t-1}^i e^{-y_i \alpha_t h_t(x_i)}}{\sum_i w_{t-1}^i e^{-y_i \alpha_t h_t(x_i)}} \]

Incorrect classifications re-weighted more heavily

Initial uniform weight on training examples

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
AdaBoost
(Freund & Shapire ’95)

\[f(x) = \theta \left(\sum_t \alpha_t h_t(x) \right) \]

\[\alpha_t = 0.5 \log \left(\frac{\text{error}_t}{1 - \text{error}_t} \right) \]

\[w_t^i = \frac{w_t^{i-1} e^{-y_t \alpha_t h_t(x_i)}}{\sum_i w_t^{i-1} e^{-y_i \alpha_t h_t(x_i)}} \]

Initial uniform weight on training examples

Incorrect classifications re-weighted more heavily

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
AdaBoost
(Freund & Shapire ’95)

Initial uniform weight on training examples

\[f(x) = \theta \left(\sum_{t}^{\infty} \alpha_t h_t(x) \right) \]

\[\alpha_t = 0.5 \log \left(\frac{error_t}{1 - error_t} \right) \]

\[w_t^i = \frac{w_{t-1}^i e^{-y_t \alpha_t h_t(x_i)}}{\sum_i w_{t-1}^i e^{-y_t \alpha_t h_t(x_i)}} \]

Incorrect classifications re-weighted more heavily

Final classifier is weighted combination of weak classifiers

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Beautiful AdaBoost Properties

• Training Error approaches 0 exponentially
• Bounds on Testing Error Exist
 – Analysis is based on the Margin of the Training Set
• Weights are related the margin of the example
 – Examples with negative margin have large weight
 – Examples with positive margin have small weights

\[f(x) = \sum_i \alpha_i h_i(x) \]
\[C(x) = \theta(f(x)) \]
\[\min \sum_i e^{-y_i f(x_i)} \geq \sum_i (1 - y_i C(x_i)) \]

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Ada-Boost Tutorial

• Given a Weak learning algorithm
 – Learner takes a training set and returns the best classifier from a weak concept space
 • required to have error < 50%

• Starting with a Training Set (initial weights 1/n)
 – Weak learning algorithm returns a classifier
 – Reweight the examples
 • Weight on correct examples is decreased
 • Weight on errors is decreased

• Final classifier is a weighted majority of Weak Classifiers
 – Weak classifiers with low error get larger weight

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Learning the Classifiers

• The weak classifiers, $h_i(x)$, and the weights α are chosen using the AdaBoost algorithm (see www.boosting.org for introduction).

• Train on synthetic images.

• Assume the light direction is from the right.

• Filters for the candidate weak classifiers—cascade two out of these 4 categories:
 – Multiple orientations of 1st derivative of Gaussian filters
 – Multiple orientations of 2nd derivative of Gaussian filters
 – Several widths of Gaussian filters
 – impulse
These are the filters chosen for classifying vertical derivatives when the illumination comes from the top of the image.

Each filter corresponds to one $h_i(x)$.
Characterizing the learned classifiers

<table>
<thead>
<tr>
<th>Weak Classifiers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.58%</td>
<td>12.84%</td>
<td>10.90%</td>
<td>11.11%</td>
<td>10.03%</td>
<td>8.49%</td>
<td>8.36%</td>
<td>8.01%</td>
<td>6.72%</td>
<td>6.96%</td>
</tr>
</tbody>
</table>
Characterizing the learned classifiers

- Learned rules for all (but classifier 9) are: if rectified filter response is above a threshold, vote for reflectance.
Characterizing the learned classifiers

- Learned rules for all (but classifier 9) are: if rectified filter response is above a threshold, vote for reflectance.
- Yes, contrast and scale are all folded into that. We perform an overall contrast normalization on all images.
Learned rules for all (but classifier 9) are: if rectified filter response is above a threshold, vote for reflectance.

Yes, contrast and scale are all folded into that. We perform an overall contrast normalization on all images.

Classifier 1 (the best performing single filter to apply) is an empirical justification for Retinex algorithm: treat small derivative values as shading.
Characterizing the learned classifiers

- Learned rules for all (but classifier 9) are: if rectified filter response is above a threshold, vote for reflectance.
- Yes, contrast and scale are all folded into that. We perform an overall contrast normalization on all images.
- Classifier 1 (the best performing single filter to apply) is an empirical justification for Retinex algorithm: treat small derivative values as shading.
- The other classifiers look for image structure oriented perpendicular to lighting direction as evidence for reflectance change.
Results Using Only Form Information

Input Image
Results Using Only Form Information

Input Image

Shading Image
Results Using Only Form Information

Input Image

Shading Image

Reflectance Image
Using Both Color and Form Information

Input image

Shading

Reflectance
Using Both Color and Form Information

Input image Shading Reflectance

Results only using chromaticity.
Some Areas of the Image Are Ambiguous
Some Areas of the Image Are Ambiguous
Some Areas of the Image Are Ambiguous

Is the change here better explained as

Input

Shading
Some Areas of the Image Are Ambiguous

Is the change here better explained as

- Shading
- Reflectance

Input

or

?
Propagating Information

- Can disambiguate areas by propagating information from reliable areas of the image into ambiguous areas of the image
Propagating Information

• Can disambiguate areas by propagating information from reliable areas of the image into ambiguous areas of the image
Markov Random Fields

- Allows rich probabilistic models for images.
- But built in a local, modular way. Learn local relationships, get global effects out.
Network joint probability

\[P(x, y) = \frac{1}{Z} \prod_{i,j} \Psi(x_i, x_j) \prod_i \Phi(x_i, y_i) \]

- **scene image**
- **Scene-scene compatibility function**
- **neighboring scene nodes**
- **Image-scene compatibility function**
- **local observations**
Inference in MRF’s

- Inference in MRF’s. (given observations, how infer the hidden states?)
 - Gibbs sampling, simulated annealing
 - Iterated conditional modes (ICM)
 - Variational methods
 - Belief propagation
 - Graph cuts

See www.ai.mit.edu/people/wtf/learningvision for a tutorial on learning and vision.
Derivation of belief propagation

\[x_{1MMSE} = \text{mean}_{x_1} \text{sum}_{x_2} \text{sum}_{x_3} P(x_1, x_2, x_3, y_1, y_2, y_3) \]
The posterior factorizes

\[x_{1MMSE} = \text{mean}_{x_1} \text{sum}_{x_2} \text{sum}_{x_3} P(x_1, x_2, x_3, y_1, y_2, y_3) \]

\[= \text{mean}_{x_1} \text{sum}_{x_2} \text{sum}_{x_3} \Phi(x_1, y_1) \]

\[\Phi(x_2, y_2) \Psi(x_1, x_2) \]

\[\Phi(x_3, y_3) \Psi(x_2, x_3) \]
Propagation rules

\[x_{1MMSE} = \text{mean}_{x_1} \text{sum}_{x_2} \text{sum}_{x_3} P(x_1, x_2, x_3, y_1, y_2, y_3) \]

\[x_{1MMSE} = \text{mean}_{x_1} \text{sum}_{x_2} \text{sum}_{x_3} \Phi(x_1, y_1) \]

\[\Phi(x_2, y_2) \Psi(x_1, x_2) \]

\[\Phi(x_3, y_3) \Psi(x_2, x_3) \]

\[x_{1MMSE} = \text{mean}_{x_1} \Phi(x_1, y_1) \]

\[\text{sum}_{x_2} \Phi(x_2, y_2) \Psi(x_1, x_2) \]

\[\text{sum}_{x_3} \Phi(x_3, y_3) \Psi(x_2, x_3) \]
Propagation rules

\[x_{1_{\text{MMSE}}} = \text{mean}_{x_1} \Phi(x_1, y_1) \]

\[\text{sum}_{x_2} \Phi(x_2, y_2) \Psi(x_1, x_2) \]

\[\text{sum}_{x_3} \Phi(x_3, y_3) \Psi(x_2, x_3) \]

\[M_1^2(x_1) = \text{sum}_{x_2} \Psi(x_1, x_2) \Phi(x_2, y_2) M_2^3(x_2) \]
Propagation rules

\[x_{1_{MMSE}} = \text{mean}_{x_1} \Phi(x_1, y_1) \]

\[\sum_{x_2} \Phi(x_2, y_2) \Psi(x_1, x_2) \]

\[\sum_{x_3} \Phi(x_3, y_3) \Psi(x_2, x_3) \]

\[M_1^2(x_1) = \sum_{x_2} \Psi(x_1, x_2) \Phi(x_2, y_2) M_2^3(x_2) \]
Propagation rules

\[x_{1_{MMSE}} = \text{mean}_{x_1} \Phi(x_1, y_1) \]

\[
\begin{align*}
\text{sum}_{x_2} & \Phi(x_2, y_2) \Psi(x_1, x_2) \\
\text{sum}_{x_3} & \Phi(x_3, y_3) \Psi(x_2, x_3)
\end{align*}
\]

\[M_1^2(x_1) = \text{sum}_{x_2} \Psi(x_1, x_2) \Phi(x_2, y_2) M_2^3(x_2) \]
Belief propagation: the nosy neighbor

“Given everything I’ve heard, and I know how you think about things, here’s what you should think.”

(Given the probabilities of my being in different states, and how my states relate to your states, here’s what I think the probabilities of your states should be)
Belief propagation messages

A message: can be thought of as a set of weights on each of your possible states

To send a message: Multiply together all the incoming messages, except from the node you’re sending to, then multiply by the compatibility matrix and marginalize over the sender’s states.

\[
M_i^j(x_i) = \sum_{x_j} \psi_{ij}(x_i, x_j) \prod_{k \in N(j) \setminus i} M_j^k(x_j)
\]
Beliefs

To find a node’s beliefs: Multiply together all the messages coming in to that node.

\[b_j(x_j) = \prod_{k \in N(j)} M^k_j(x_j) \]
Optimal solution in a chain or tree:

• “Do the right thing” Bayesian algorithm.
• For Gaussian random variables over time: Kalman filter.
• For hidden Markov models: forward/backward algorithm (and MAP variant is Viterbi).
\[x_{1_{MMSE}} = \text{mean}_{x_1} \Phi(x_1, y_1) \]

\[\text{sum}_{x_2} \Phi(x_2, y_2) \Psi(x_1, x_2) \]

\[\text{sum}_{x_3} \Phi(x_3, y_3) \Psi(x_2, x_3) \Psi(x_1, x_3) \]
No factorization with loops!

\[x_{1MMSE} = \underset{x_1}{\text{mean }} \Phi(x_1, y_1) \]
\[\quad \sum_{x_2} \Phi(x_2, y_2) \Psi(x_1, x_2) \]
\[\quad \sum_{x_3} \Phi(x_3, y_3) \Psi(x_2, x_3) \Psi(x_1, x_3) \]
Justification for running belief propagation in

• Experimental results:
 – Error-correcting codes
 Kschischang and Frey, 1998; McEliece et al., 1998
 – Vision applications
 Freeman and Pasztor, 1999; Frey, 2000

• Theoretical results:
 – For Gaussian processes, means are correct.
 Weiss and Freeman, 1999
 – Large neighborhood local maximum for MAP.
 Weiss and Freeman, 2000
 – Equivalent to Bethe approx. in statistical physics.
 Yedidia, Freeman, and Weiss, 2000
Propagating Information

• Extend probability model to consider relationship between neighboring derivatives

\[\psi(x_i, x_j) = \begin{bmatrix} \beta & 1 - \beta \\ 1 - \beta & \beta \end{bmatrix} \]

• \(\beta \) controls how necessary it is for two nodes to have the same label

• Use Generalized Belief Propagation to infer labels. (Yedidia et al. 2000)
• Extend probability model to consider relationship between neighboring derivatives

\[\psi(x_i, x_j) = \begin{bmatrix} \beta & 1 - \beta \\ 1 - \beta & \beta \end{bmatrix} \]

• \(\beta \) controls how necessary it is for two nodes to have the same label

• Use Generalized Belief Propagation to infer labels. (Yedidia et al. 2000)
Setting Compatibilities

- All compatibilities have form
 \[\psi (x_i, x_j) = \begin{bmatrix} \beta & 1 - \beta \\ 1 - \beta & \beta \end{bmatrix} \]

- Assume derivatives along image contours should have the same label
- Set \(\beta \) close to 1 when the derivatives are along a contour
- Set \(\beta \) to 0.5 if no contour is present
- \(\beta \) is computed from a linear function of the image gradient’s magnitude and orientation
Setting Compatibilities

• All compatibilities have form

\[\psi(x_i, x_j) = \begin{bmatrix} \beta & 1 - \beta \\ 1 - \beta & \beta \end{bmatrix} \]

• Assume derivatives along image contours should have the same label

• Set \(\beta \) close to 1 when the derivatives are along a contour

• Set \(\beta \) to 0.5 if no contour is present

• \(\beta \) is computed from a linear function of the image gradient’s magnitude and orientation
Improvements Using Propagation

Input Image

Reflectance Image Without Propagation

Reflectance Image With Propagation
Improvements Using Propagation

Input Image

Reflectance Image Without Propagation

Reflectance Image With Propagation
More results…
The Senses Considered as Perceptual Systems

James J. Gibson / Cornell University
The Senses Considered as Perceptual Systems

J. J. Gibson / Cornell University

example of differing reflectances of surfaces may combine to cause borders in the ambient array. That is, they may cooperate, providing a double assurance of a border; or either may cause a border independently of the other (see Figure 10.13). For example, one kind of wallpaper may structure light only by being embossed, having no differences of color or printed pattern. Another kind may structure light only by differences in pigment or ink, having no appreciable roughness of texture. But a common sort of wallpaper has both embossing and printing in coincidence. The same thing happens in nature with surfaces of rock and vegetation. One or the other kind of optical structuring, if not both, is practically guaranteed in nature. For this reason the information for the existence of a surface as against empty air is usually trustworthy.

Conceivably these two principles could work in exact opposition to one another. It is theoretically possible to construct a room which would be invisible at a fixed monocular station-point. It could be done with very smooth unpatterned surfaces by a precise counterbalancing of inclination and reflectance so that all borders in the array corresponding to the junctions of planes in the room disappeared. The room would simply

Company

Company

Figure 10.13 Embossing without printing and printing without embossing. Letters can be made by altering only the inclination of a paper surface or by altering only the reflectance. (Photo by Benjamin Morse)
Gibson image
Gibson image

original

Company

Company
Gibson image

Original:

Shading:
Gibson image

original

Company

shading

Company

reflectance

Company
Clothing catalog image

Original
(from LL Bean catalog)
Clothing catalog image

Original (from LL Bean catalog)

Shading
Sign at train crossing

WHISTLES NOT BLOWN
Separated images

original
Separated images

original

shading
Separated images

original

shading

reflectance
Separated images

original

shading

reflectance

Note: color cue omitted for this processing
Finally, returning to our explanatory example...

input

Ideal shading image

Ideal paint image
Finally, returning to our explanatory example...

Algorithm output. Note: occluding edges labeled as reflectance.
Separating shading from paint

• From a single image:
 – identify all-shading versus all-paint
 – locally separate shading from paint

• From a sequence of images:
 – separate stable from varying component

• From a stereo pair
 – separate shading, paint, occlusion.
Deriving intrinsic images from image sequences

Yair Weiss
Computer Science Division
UC Berkeley
Berkeley, CA 94720-1776
yweiss@cs.berkeley.edu

Abstract

Intrinsic images are a useful midlevel description of scenes proposed by Barrow and Tenenbaum [1]. An image is derived template matching and shape-from-shading would be significantly less brittle if they could work on the intrinsic image representation rather than on the input image.

Recovering two intrinsic images from a single input im-
Assume multiple images where reflectance is constant but lighting varies.

Figure 2: Images from a “webcam” at www.berkeley.edu/webcams/sproul.html. Most of the changes are changes in illumination. Can we use such image sequences to derive intrinsic images?
Figure 5: A synthetic sequence in which a square cast shadow translates diagonally. Note that the pixels surrounding the diamond are always in shadow, yet their estimated reflectance is the same as that of pixels that were always in light. In the min and mean filters, this is not the case and the estimated reflectances are quite wrong.
Figure 7: Results on one face from the Yale Face Database B [5]. There were 64 images taken with variable lighting. Note that the recovered reflectance image is almost free of specularities and is free of cast shadows. The ML illumination images are shown with a logarithmic nonlinearity to increase dynamic range.
Result from Yair’s multi-image algorithm
Separating shading from paint

• From a single image:
 – identify all-shading versus all-paint
 – locally separate shading from paint

• From a sequence of images:
 – separate stable from varying component

• From a stereo pair
 – separate shading, paint, occlusion.
Intrinsic images from stereo

- **Input:** stereo pair (from Flickr or other)
- **Output:** shading image, reflectance image, material/lighting parameters for different regions, occluding contours.

This may help make stereo better (fewer unexplained phenomena). And could provide a great training set for the monocular image intrinsic image problem.