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Abstract. There is general consensus that context can be a rich source of information about an object’s identity,
location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin
to those that apply to a single object. Here we introduce a simple framework for modeling the relationship between
context and object properties based on the correlation between the statistics of low-level features across the entire
scene and the objects that it contains. The resulting scheme serves as an effective procedure for object priming,
context driven focus of attention and automatic scale-selection on real-world scenes.
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1. Introduction

In the real world, there exists a strong relationship
between the environment and the objects that can be
found within it. Experiments in scene perception and
visual search (Palmer, 1975; Biederman et al., 1982;
De Graef et al., 1990; Henderson and Hollingworth,
1999; Chun and Jiang, 1998) have shown that the hu-
man visual system makes extensive use of these rela-
tionships for facilitating object detection and recogni-
tion suggesting that the visual system first processes
context information in order to index object properties.
In particular, scene recognition experiments suggest
that information about scene identity may be available
before performing a more detailed analysis of the indi-
vidual objects (Potter, 1975; Biederman, 1987; Schyns
and Oliva, 1994; Oliva and Schyns, 1997; Rensink
et al., 1997). However, object-centered approaches
dominate the research in computational vision. Object-
centered representations use exclusively object intrin-
sic features for performing object detection and recog-
nition tasks (e.g. Burl et al., 1998; Moghaddam and
Pentland, 1997; Papageorgiou and Poggio, 2000; Rao
et al., 1996; Rowley et al., 1998; Schiele and Crowley,
2000).

The structure of many real-world scenes is governed
by strong configurational rules akin to those that ap-
ply to a single object. In some situations, contextual
information can provide more relevant information for
the recognition of an object than the intrinsic object
information (Fig. 1). One way of defining the ‘con-
text’ of an object in a scene is in terms of other pre-
viously recognized objects within the scene. However,
in such a framework, the context representation is still
object-centered, as it requires object recognition as a
first step. As suggested in Oliva and Torralba (2001) it
is possible to build a representation of the scene that
bypasses object identities, in which the scene is repre-
sented as a single entity. The representation is based on
the differential regularities of the second order statistics
of natural images when considering different environ-
ments. Our goal here is to use such a scheme for in-
cluding context information in object representations
and to demonstrate its role in facilitating individual
object detection (Torralba and Sinha, 2001; Torralba,
2002). The approach presented here is based on using
the differences of the statistics of low-level features in
real-world images when conditioning those statistics
to the presence/absence of objects, their locations and
sizes.



170 Torralba

(a) (b)

Figure 1. The structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object.
In such situations, individual objects can be recognized even when the intrinsic information is impoverished, for instance due to blurring
as shown above. In presence of image degradation (due to distance or fast scene scanning), object recognition mechanisms have to in-
clude contextual information in order to make reliable inferences. Recognition based on intrinsic features provides very poor performances
when asking to observers. However, when the object is immersed in its typical environment, subjects experience a vivid recognition of the
object.

The paper is organized as follows: in Section 2 we
review the role of context and discuss some of the past
work on context-based object recognition. Section 3
formalizes the statistical framework used in this work
for including context information in the object detec-
tion task. Section 4 details the contextual representa-
tion. Section 5 describes the image database used for
our experiments. Sections 6, 7 and 8 describe respec-
tively object priming, context-driven focus of attention
and automatic context-driven scale selection.

2. Context

2.1. The Role of Context

Under favorable conditions, the multiplicity of cues
(color, shape, texture) in the retinal image produced
by an object provides enough information to unam-
biguously determine the object category. Under such
high quality viewing conditions, the object recognition
mechanisms could rely exclusively on intrinsic object
features ignoring the background. Object recognition
based on intrinsic object features can robustly handle
many transformations such as displacement, rotation,
scaling, changes in illumination, etc. Therefore, at least
in principle, contributions from context do not seem
necessary for object recognition.

However, in situations with poor viewing quality
(caused, for instance, by large distances, or short ac-
quisition times) context appears to play a major role
in enhancing the reliability of recognition. This is be-
cause, in such circumstances, the analysis of intrinsic
object information alone cannot yield reliable results
(Fig. 1(a)). When the object is immersed in its typ-
ical environment, recognition of the object becomes
reliable (Fig. 1(b)). Under degradation, purely object-
centered representations are not enough for account-
ing for the reliable object recognition performance of
observers when the object is presented in context. In
real-world scenes, intrinsic object information is of-
ten degraded due to occlusions, illumination, shadows,
peripheral vision and distance, leading to poor resolu-
tion and/or contrast. Therefore, the inclusion of con-
text is mandatory in order to build efficient and reliable
algorithms for object recognition. In the absence of
enough local evidence about an object’s identity, the
scene structure and prior knowledge of world regular-
ities provide the only information for recognizing and
localizing the object (see Fig. 2). Figure 2 illustrates
how a simple feature (orientation) in combination with
strong contextual information are driving the recogni-
tion of the object.

Even when objects can be identified via intrin-
sic information, context can simplify the object dis-
crimination by cutting down on the number of object
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Figure 2. In presence of image degradation (e.g. blur), object recognition is strongly influenced by contextual information. Recognition makes
assumptions regarding object identities based on its size and location in the scene. In this picture subjects describe the scenes as (a) a car in
the street, and (b) a pedestrian in the street. However, the pedestrian is in fact the same shape as the car except for a 90 degrees rotation. The
non-typicality of this orientation for a car within the context defined by the street scene makes the car be perceived as a pedestrian. Without
degradation, subjects can correctly recognize the rotated car due to the sufficiency of local features.

categories, scales, locations and features that need to
be considered.

2.2. Context-Based Vision Systems

Although computational vision is strongly dominated
by object-centered approaches, there are previous stud-
ies that make use of contextual information for object
recognition.

Hanson and Riseman (1978) proposed a system
called VISIONS consisting of a collection of experts
specialized for recognizing different types of objects.
Each expert generates hypotheses about the presence
and location of objects in the image. Based on hand-
coded if-then rules, the system analyzes the consistency
among the different hypotheses in order to arrive at reli-
able decisions. Built on a similar philosophy, the CON-
DOR system (Strat and Fischler, 1991) uses contextual
information for object recognition. The system is based
on a large number of hand-written rules that constitute
the knowledge database of the system. A collection of
rules (context sets) defines the conditions under which
it is appropriate to use an operator to identify a candi-
date region or object. The candidates are then the inputs
for other rules that will activate other vision routines.
The ideal output of the system is a labeled 3D model
of the scene.

In Fu et al. (1994) context consists of prior knowl-
edge about regularities of a reduced world in which the

system has to operate. The regularities are fixed priors
on the locations of the objects and the structure of the
environment. In Bobick and Pinhanez (1995) context is
used to validate and select vision routines. Context con-
sists of a model (hand-written rules) of a reduced world
in which the vision system has to work. The model in-
cludes a description of the 3D geometry of the scene in
which the system operates and information about the
camera’s field of view. In Moore et al. (1999), a prior
model of a particular fixed scene and the identification
of human motion constitute the context used for the
recognition of objects.

Common to all these approaches are the use of an
object-based representation of context and a rule-based
expert system. The context is defined as a collection of
objects or regions (already recognized or at least given
candidate object labels). Predefined rules about the
world in which the system is expected to operate pro-
duce reliable inferences using the candidates as input.

Other approaches use a statistical approach in order
to learn the joint distribution of N objects O1, . . . , ON

within a scene (e.g., Haralick, 1983; Song et al., 2000)
given a set of local measurements v1, . . . , vN corre-
sponding to image regions:

P(O1, . . . , ON , v1, . . . , vN )

�
[

N∏
i

P(vi | Oi )

]
P(O1, . . . , ON ) (1)
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The joint PDF is approximated by assuming condi-
tional independence between local image measure-
ments. Therefore, contextual information is incor-
porated in the joint PDF by means of the factor
P(O1, . . . , ON ) which provides the prior probability
of the different combinations of objects in the world. In
Campbell et al. (1997), they define the contextual fea-
tures of an image region as the probabilities assigned to
each of the possible labels of the surrounding regions
in the image. This formulation of context is object-
centered and there is no attempt at identifying the con-
text prior to the object recognition process. In a similar
vein, some models of visual search and attention in-
clude the use of context (e.g., Noton and Stark, 1971;
Chernyak and Stark, 2001) to guide eye movements.

As suggested in Torralba and Oliva (1999), Oliva
and Torralba (2001), and Torralba and Sinha (2001)
the scene/context can be considered a single entity that
can be recognized by means of a scene-centered repre-
sentation bypassing the identification of the constituent
objects. In this paper we define context as a set of im-
age features not still grouped into regions or objects.
In the next section we introduce the main formalism of
our approach.

3. Statistical Object Detection

In this section we introduce the general statistical
framework on which the rest of the paper is based.
Although other schemes can be used, a probabilistic
framework yields a simple formulation of contextual
influences on object recognition.

3.1. Local Features and Object-Centered
Object Likelihood

In the classical probabilistic framework, the problem
of object detection given a set of image measure-
ments v requires the evaluation of the object likelihood
function:

P(O | v) = P(v | O)

P(v)
P(O) (2)

The function P(O | v) is the conditional probability
density function (PDF) of the presence of the object
O given a set of image measurements v. v may be
the pixel intensity values, color distributions, output of
multiscale oriented band-pass filters, shape features,
etc. The notation O is used to summarize the proper-

ties of an object in an image: O = {o, x, σ, . . .}. Where
o is the label of the object category (car, person, . . . ), x
is the location of the object in image coordinates, and
σ is the size of the object. This is not an exhaustive
list and other parameters can be used to describe ob-
ject properties like pose, illumination, etc. The goal of
an object detection algorithm is to obtain O from the
image features v.

Note that as written in Eq. (2), v refers to the image
measurements at all spatial locations. Although Eq. (2)
is the ideal PDF that has to be evaluated in order to
detect an object, as all information provided by the im-
age is taken into account, the high dimensionality of v
makes the modeling of this PDF extremely ill-posed.
In order to reduce the complexity, most object recogni-
tion schemes assume that the regions surrounding the
object have independent features with respect to the ob-
ject presence. Therefore, the PDF that is actually used
by statistical approaches for object recognition is (e.g.,
Moghaddam and Pentland, 1997; Schiele and Crowley,
2000):

P(O | v) � P(O | vL ) = P(vL | O)

P(vL )
P(O) (3)

This function is the object-centered object likelihood.
vL = vB(x,ε) is a set of local image measurements in a
neighborhood B of the location x with a size defined by
ε = g(σ ) which is a function of the size of the object.
The feature vector vL is expected to have a low dimen-
sionality. Equation (3) formalizes the main principle
underlying the classic approach for object: the only
image features that are relevant for the detection of an
object at one spatial location are the features that po-
tentially belong to the object and not to the background.
For instance, in a template-matching paradigm, the ob-
ject detection stage is performed by the computation
of similarities between image patches with different
sizes and locations and a template built directly from
the object. The image patches that do not satisfy the
similarity criteria are discarded and modeled as noise
with particular statistical properties. The template used
for the matching corresponds to an object-based view-
centered representation. The context is thus treated as
a collection of distractors but not as an entity that also
conveys information about the object identity.

Such object-based approaches suffer from two im-
portant drawbacks: First, they cease to be effective
when the image is so degraded (due to noise or lose
of resolution due to viewing distances) that the in-
trinsic object information is insufficient for reliable
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recognition. Second, it requires exhaustive exploration
of a large search space corresponding to different object
models, locations and scales.

Instead of considering the background as a set of
potential distractors that can produce false alarms for
an object detection procedure, we propose to use the
background statistics as an indicator of object presence
and properties.

3.2. Object Detection in Context

Figure 3 shows a superposition of about 300 pictures
containing people at three scales. The pictures have
been corrected in translation so that the head is always
centered in the image. However, there is no correction
in scale. Only the pictures that contain people with
a given scale are averaged. The resulting images are
composed of two parts: the first part is the average of
the target object which in this case can still be easily
recognized and segmented from the background due
to the strong regular shape shared across different im-
ages and views. The second part is the background that
does not average to a mean gray showing that there
is also a regular pattern in the background structure
when centering the image with respect to the object.
More interestingly, the mean background has different
properties when the object is at different scales.

In this paper, we shall formalize the intuition that
there is a strong relationship between the background
and the objects that can be found inside of it. The
background provides an estimate of the likelihood of
finding an object (for example, one is unlikely to find
a car in a room). It can also indicate the most likely
positions and scales at which an object might appear
(e.g. pedestrians on walkways in an urban area). In
order to model the context features, we split image

Figure 3. Average of pictures containing heads in context at three different scales. Notice that the background does not average out to a
homogeneous field but preserves some structure when centering the images with respect to the object.

measurements v in two sets:

v = {
vB(x,ε), vB̄(x,ε)

} = {vL , vC} (4)

where B refers to the local spatial neighborhood of
the location x and B̄ refers to the complementary
spatial locations. The object likelihood function can
be written as:

P(O | v) = P(O | vL , vC ) (5)

Note that current object-centered computational ap-
proaches assume that P(O | vL , vC ) = P(O | vL )
yielding Eq. (3). In order to formalize contextual influ-
ences, we use Bayes’ rule to write the object likelihood
of Eq. (5) as:

P(O | v) = P(O, v)

P(v)
= P(vL | O, vC )

P(vL | vC )
P(O | vC )

(6)

The object likelihood function is decomposed in two
factors: the first factor is the posterior distribution of
local features when the object O is present in the con-
text represented by vC . The normalization factor is the
distribution of local features at the location x in the con-
text vC . Note that this ratio differs from that of Eq. (3)
in that now all the probabilities are conditional with
respect to contextual information (Jepson et al., 1996).
The inclusion of the context in the likelihood function
might account for different appearances of the object as
a function of the context (for instance, due to global il-
lumination factors or the pose of the object). Although
this point is of great interest and should be studied in
more detail, in this paper we will focus on the study
of the second factor which has received much less at-
tention in computational vision and object recognition
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approaches. The second factor, the PDF P(O | vC ),
provides context-based priors on object class, location
and scale and it is of capital importance for insur-
ing reliable inferences in situations where the image
measurements produce ambiguous interpretations (see
Jepson et al., 1996, for a discussion on this topic). The
only problem is the high dimensionality of the con-
text features vector. However, we will see in Section 4
that the dimensionality can be drastically reduced by
simple techniques such as PCA while still preserving
information relevant for object priming. Therefore, we
will show that context-centered object likelihood can
be computed efficiently in a single step.

3.3. Contextual Priors

As many studies have already focused on the function
P(O | vL ), in this paper we will consider only the infor-
mation available in the function P(O | vC ). In this sec-
tion we study some of the object properties that can be
inferred based on contextual features. The object O is
represented by a set of parameters O = {o = category,
x = location, σ = scale, pose, 3D model, appearance
parameters, . . . }. The probability function P(O | vC )
will introduce priors on the different object parameters.
The strength of the relationship P(O | vC ) will depend
on the nature of the contextual features used and on
the object properties considered. For instance, the size
of people in the image has a strong relationship with
the scale of the environment and therefore one might
expect that contextual features introduce strong priors
in selecting scale for face detection. However, pose pa-
rameters will be more loosely related to context. In this
paper, we consider only three object properties: object
category, image location and scale: O = {o, x, σ }. We
apply the Bayes rule successively in order to split the
PDF P(O | vC ) in three factors that model three kinds
of context priming:

P(O | vC ) = P(σ | x, o, vC )P(x | o, vC )P(o | vC )

(7)

The meanings of these three factors are:

• Object priming: P(o | vC ) gives priors for the most
likely object categories (o) given context informa-
tion.

• Focus of attention: P(x | o, vC ). The most likely lo-
cations for the presence of object o given context
information.

• Scale selection: P(σ | x, o, vC ). The most likely
scales (sizes, distances) of the object o at different
spatial locations given context information.

This decomposition of the PDF leads to factors that
can be interpreted as follows: the context representa-
tion activates a schema of the constituent object, then
the prototypical locations and scales of the most likely
objects are activated. However, any other factoriza-
tion is possible as the probability graph is fully con-
nected for the three object properties considered here.
For instance, P(o | σ, x, vC )P(σ | x, vC )P(x | vC ) will
start by activating a spatial organization of the main ele-
ments (with their scales), and then at the most important
locations, different objects are primed. In this paper, we
will consider the decomposition given in Eq. (7).

Although these kinds of context priming have been
shown to be important in human vision (e.g. Biederman
et al., 1982), computational models of object detec-
tion typically ignore the information available from
the context. From a computational point of view,
context priming reduces the set of possible objects
and therefore the number of features needed for dis-
criminating between objects (Jepson et al., 1996). It
reduces the need for multiscale search and focuses
computational resources into the more likely spatial
locations and scales. Therefore, we propose that the
first stage of an efficient computational procedure for
object detection comprises the evaluation of the PDF
P(O | vC ).

4. Context-Centered Representation

One of the main problems that computational recog-
nition approaches face in including contextual infor-
mation is the lack of simple representations of context
and efficient algorithms for the extraction of such in-
formation from the visual input. In fact, vC , the image
information corresponding to scene context, has a very
high dimensionality and it conveys information regard-
ing all objects within the scene. There are as many ways
of breaking down the dimensionality of vC as there are
possible definitions of contextual information. For in-
stance, one way of defining the ‘context’ of an object
is in terms of other previously recognized objects and
regions within the scene. The drawback of this concep-
tualization is that it renders the complexity of context
analysis to be at par with the problem of individual
object recognition. An alternative view of context re-
lies on using the entire scene information holistically
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(Oliva and Torralba, 2001; Torralba and Sinha, 2001).
This dispenses with the need for identifying other in-
dividual objects or regions within a scene. This is
the viewpoint we shall adopt in the work presented
here.

4.1. Holistic Context Representation

There are many examples of holistic representations
in the field of object recognition. In contrast to parts-
based schemes that detect and recognize objects based
on an analysis of their constituent elements, holistic
representations do not attempt to decompose an object
into smaller entities. However, in the domain of scene
recognition, most schemes have focused on ‘parts-
based’ representations. Scenes are encoded in terms
of their constituent objects and their mutual spatial re-
lationships. But this requires the detection and recogni-
tion of objects as the first stage. Furthermore, the human
visual system is able to analyze scenes even under de-
graded conditions that obscure the identities of individ-
ual objects (Schyns and Oliva, 1994; Oliva and Schyns,
1997). A few recent works have taken a different ap-
proach in which the scene is represented as a whole
unity, as if it was an individual object, without splitting
it into constituent parts. As we will show here, a holis-
tic scene analysis allows representing the context in a
very low dimensional space (see Oliva and Torralba,
2001 for a detailed description). Previous studies (e.g.
Gorkani and Picard, 1994; Carson et al., 1997; Lipson
et al., 1997; Oliva and Torralba, 2001; Szummer
and Picard, 1998; Torralba and Oliva, 2002; Vailaya
et al., 1998; De Bonet and Viola, 1997; Clarkson and
Pentland, 2000) have shown that some of the features
that seem to be relevant for discrimination between
different scenes are:

• The statistics of structural elements: Different
structural elements (e.g., buildings, road, tables,
walls, with particular orientation patterns, smooth-
ness/roughness) compose each context (e.g., rooms,
streets, shopping center). As discussed in Oliva and
Torralba (2001), the second order statistics of natu-
ral images (encoded in the Fourier spectra) are cor-
related with simple scene attributes (e.g. depth) and,
therefore, strongly differ between distinct environ-
mental categories.

• The spatial organization: The structural elements
have particular spatial arrangements. Each context
imposes certain organization laws (e.g. for streets:

road on the bottom, buildings on the sides, an aper-
ture in the center). These different organization laws
introduce spatial non-stationarities in the statistics of
low-level features that provide differential signatures
between scene categories.

• Color distribution: color histograms and their coarse
spatial distribution provide discriminant information
between scene categories. Coarse color distributions
have also been shown to be relevant for scene per-
ception by subjects (Oliva and Schyns, 2000).

Due to the relationship between objects and context
categories in real-world scenes, one might expect to
find a strong correlation between the objects present
in the scene (their location and scale) and the statis-
tics of local low-level features in the overall scene. As
described below, we use a low dimensional holistic rep-
resentation that encodes the structural scene properties.
Color is not taken into account in this study, although
the framework can be naturally extended to include this
attribute.

4.2. Spatial Layout of Main Spectral Components

In order to develop a scheme for representing scene-
context holistically, we have to decide on the nature of
the image features to use. Experimental studies (Hubel
and Wiesel, 1968) have provided evidence for the use of
oriented band-pass filters (such as Gabors) in the early
stages of the visual pathway. Computational studies
too (Gorkani and Picard, 1994; Schiele and Crowley,
2000; Rao et al., 1996; Oliva and Torralba, 2001) have
found this choice of features useful for several object
and scene recognition tasks. Using such features, in
this paper, images are encoded in a high dimensional
vector: v = {v(x, k)} with:

v(x, k) =
∣∣∣∣∣
∑

x′
i(x′)gk(x − x′)

∣∣∣∣∣ (8)

where i(x) is the input image and gk(x) are
oriented band-pass filters defined by gk(x) = g0

e−‖x‖2/σ 2
k e2π j〈fk ,x〉. In such a representation, v(x, k) is

the output amplitude at the location x of a complex
Gabor filter tuned to the spatial frequency fk . The vari-
able k indexes filters tuned to different spatial frequen-
cies and orientations. The resulting image representa-
tion encodes spatially localized structural information.
For the present study we use a set of filters organized
in 4 frequency bands and 6 orientations.
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Figure 4. Conditional average of v(x, k) with respect to the presence or absence of different objects. (a) E[v(x, k) | ¬people, car ] and (b)
E[v(x, k) | people, ¬car ]. Each sub-image corresponds to the average of v(x, k) for a fixed k. The index k indexes orientations and scales. Both
averages differ in the dominant orientations and in how the energy is distributed across coarse spatial regions.

Studies on the statistics of natural images have
shown that the statistics of low-level features, like the
ones encoded by v(x, k), are constrained when dealing
with real-world images. The use of such regularities
in the statistics finds applications in models of neural
coding (Field, 1987), lightness and reflectance percep-
tion (Weiss, 2001; Dror, 2001), and camera distortion
removal (Farid, 2001) among many other applications.
Statistical regularities play also a role in recognition.
Low-level features statistics differ when considering
real world images corresponding to different scene cat-
egories (Oliva and Torralba, 2001).

Here, we study the conditional statistics of v(x, k)
with respect to the presence or absence of different ob-
jects. As different objects can be found in different en-
vironments, there is a correlation between the statistics
of low-level features across the scene and the objects
that can be found inside. Figure 4(a) shows the condi-
tional expectation of the features v(x, k) for scenes that
contain cars but no people, E[v(x, k) | ¬people, car ],
and Fig. 4(b) shows E[v(x, k) | people, ¬car ]. In both
cases, only images in which the present object is
smaller that 20 pixels where averaged. Each conditional
expectation is obtained by averaging more than 500
images from an annotated database (see Section 5 for
a description of the database). As shown in Fig. 4 there
are large differences between both signatures. They dif-
fer in the dominant orientations and in how the energy
is distributed across coarse spatial regions, mainly from
top to bottom in the spatial domain. If these differences
are stable enough across single images then they can
be used for object priming as we show in the rest of
the paper. The variability of the features v(x, k) can
be characterized by means of the principal component
analysis (PCA).

We decompose the image features v(x, k) into the
basis functions provided by PCA:

v(x, k) �
D∑

n=1

anψn(x, k) (9)

where the functions ψn are the eigenfunctions of the
covariance operator given by v(x, k). The functions
ψn(x, k) incorporate both spatial and spectral informa-
tion. The decomposition coefficients are obtained by
projecting the image features v(x, k) into the principal
components:

an =
∑

x

∑
k

v(x, k) ψn(x, k) (10)

We propose to use the decomposition coefficients
vC � {an}n=1,D as context features. This approxima-
tion holds in the sense that we expect P(O | vC ) �
P(O | {an}n=1,D). D is the dimensionality of the rep-
resentation. By using only a reduced set of compo-
nents (D < 64), the coefficients {an}n=1,D encode the
main spectral characteristics of the scene with a coarse
description of their spatial arrangement. As shown in
Fig. 5 the first principal components encode only low
resolution spatial and spectral information. The low-
resolution representation, combined with the absolute
value in Eq. (8), provides some robustness with respect
to objects arrangements that are compatible with the
same scene. The representation contains information
regarding the major elements that compose the scene.

In essence, {an}n=1,D is a holistic representation as
all the regions of the image contribute to all the coef-
ficients, and objects are not encoded individually (see
Oliva and Torralba, 2001, for a detailed description
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Figure 5. Principal components ψn(x, k) of magnitude of the output of the gabor filters. From left to right and from top to bottom, the images
show the 1st, 2nd, 3rd and 7th, 8th and 9th principal components. Each group of 6 × 5 sub-images correspond to a single principal component
ψn(x, k). The functions ψn(x, k) incorporate both spatial and spectral information. The mean gray level correspond to the zero value. Dark pixels
correspond to negative values and white pixels correspond to positive values.

of the holistic representation). Note that this defini-
tion of context features differs from the one given in
Eq. (4) mainly because here vC is computed from all the
image measurements without discarding the ones be-
longing to the object O . This fact highlights the differ-
ence between background features and scene/context
features. When the object size is small with respect
to the size of the image and vC has a low dimensional-
ity, the scene/context features are mostly determined by
the background and not by the object. However, when
the target object occupies a significant portion of the
image, then vC ∼ vL .

Although the results shown in the rest of the paper
will be based on these features, the approach is not
limited to this set of features and many other represen-
tations could be used (e.g. wavelet histograms, color
distributions, image patches, etc.).

5. Database Annotation

Computation of the context-centered object likelihood
(Eq. (7)) requires a learning stage in which the system
learns the relationship between the contextual features
and the object properties that compose the scene. In

this section we describe the database used for train-
ing the system. The rest of the paper is devoted to the
estimation of the different kinds of contextual priming
formalized in Eq. (7) and to showing the ability of the
holistic context features to predict object properties.

The database consists of 2400 annotated pictures of
2562 pixels. The scenes used spanned a range of cate-
gories and distances: indoors (rooms, restaurant, super-
market, stations, etc.) and outdoors (streets, shopping
area, buildings, houses, etc.).

For the purposes of the present study, four object cat-
egories where annotated: persons, vehicles, furniture
and vegetation. For each picture, the annotations indi-
cate the presence of exemplars of each object category
in the scene, and the objects present are surrounded
with a rectangular box. This coarse annotation allows
dealing with a large number of pictures in reasonable
time and provides information about the locations and
approximate sizes of the objects (Fig. 6).

6. Object Priming

The first factor of Eq. (7), P(o | vC ), gives the proba-
bility of presence of the object class o given contextual
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Figure 6. Examples of images with annotations from the database used in our study.

information. If we assume that the context features vec-
tor vC conveys enough information about the identity
of the context, then there should exist strong priors on
object identities, at least at the superordinate level (peo-
ple, furniture, vehicles, vegetation, etc.). For instance,
context-centered object priming should capture the in-
tuition that while we do not expect to find cars in a room,
we do expect to find furniture with a high probability.

6.1. Learning Contextual Priming for Objects

The learning of the PDF P(o | vC ) = P(vC | o)P(o)/
P(vC ) with P(vC ) = P(vC | o)P(o) + P(vC | ¬o)
P(¬o) is done by approximating the in-class and
out-of-class PDFs, for each object, by a mixture of
Gaussians:

P(vC | o) =
M∑

i=1

bi G(vC ; µi , �i ) (11)

where G(vC ; µi , �i ) is a multivariate Gaussian func-
tion of vC with center µi and covariance matrix �i . bi

are the weights of each Gaussian cluster. M is the num-
ber of Gaussian clusters used for the approximation of
the PDF. The model parameters (bi , µi , �i )i=1,M for
the object class o are obtained using the EM algorithm.

The training set used for learning the PDF P(vC | o)
is a random subset of pictures that contain the ob-
ject o. The training data is {vt }t=1,Nt where vt are
the contextual features of the picture t of the training
set. The EM algorithm is an iterative procedure com-
posed of two steps (e.g. Dempster et al., 1977; Jordan
and Jacobs, 1994; Moghaddam and Pentland, 1997;
Gershnfeld, 1999):

• E-step: Computes the posterior probabilities of the
clusters hi (t) given the observed data vt . For the k
iteration:
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• M-step: Computes the most likely cluster parameters
by maximization of the join likelihood of the training
data:
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The EM algorithm converges after a few iterations
(<20). The same scheme holds for the out-of-class PDF
P(vC | ¬o) which provides the statistical distribution of
the contextual features in the set of images in which the
object class o is not present. The prior probability of the
object presence is approximated by P(o) = P(¬o) =
0.5 (using the frequency of presence of the object-class
in our database as an estimate of P(o) does not change
the results).

6.2. Simulation Results

Figure 7 shows some typical results from the prim-
ing model on four categories of objects (o1 = people,
o2 = furniture, o3 = vehicles and o4 = trees). Note
that the system predicts the presence of an object based
on contextual information and not on the actual pres-
ence of the object. In other words, the PDF P(o | vC )
evaluates the consistency of the object category o with
the context vC and, therefore, provides information
about the probable presence/absence of one object cat-
egory without scanning the picture looking for the ob-
ject. For instance, in some of the examples in Fig. 7
and in Fig. 11(a), the system predicts the possible pres-
ence of people based on the context even if the object
is missing in the scene.
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Figure 7. Random selection of images from the test set showing the results of object priming for four superordinate object categories
(o1 = people, o2 = furniture, o3 = vehicles and o4 = trees). The bars at the right-hand of each picture represent the probability P(o | vC ).

Figure 8. Random selection of images from the test set organized with respect to the probability P(o | vC ) for o = people and furniture.

Figure 8 shows a set of images organized with re-
spect to the value of the estimated P(o | vC ) when look-
ing for people and for furniture. The value of P(o | vC )
provides the degree of confidence that the contextual
features give for deciding about the presence or ab-
sence of the object. If P(o | vC ) > th with th � 1 then
there is high confidence for deciding about the pres-
ence of the object without scanning the picture. On
the other hand, if P(o | vC ) < 1 − th then the system

can reliably decide that the object cannot be present in
the scene represented by vC . The pictures on the
extreme ends of each row of Fig. 8 are those for which
the system has high confidence about the presence or
absence of the target objects (people and furniture).
The pictures in the middle of each row represent scenes
for which the system cannot reliably decide about the
presence/absence of the object given the contextual
features vC .
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Figure 9. Performances as a function of decision threshold th and (a) target object (o1 = people, o2 = furniture, o3 = vehicles and o4 = trees),
(b) number of contextual features and (c) number of gaussians for modeling the PDF P(o | vC ).

In order to study the object priming performance, we
test the ability of the estimated PDF P(o | vC ) to predict
the presence/absence of the object in a forced choice
task as described before. By modifying the value of the
threshold th we change the amount of scenes for which
the system will be forced to take a decision. By setting
th = 0.5, the system will take a decision for 100% of the
images of the test set. With th ∼ 1, the system will make
a decision only for the high confidence situations. The
percentage of scenes for which the system will produce
high confidence predictions depends on (1) the target
object and the strength of the relationship with its con-
text, (2) the ability of the representation vC for charac-
terizing the scene/context and (3) the quality of the es-
timation of the PDF P(o | vC ). Figure 9 summarizes the
system performance as a function of these three factors.
For the three graphs, the horizontal axis represents the
percentage of pictures for which the system is forced to
take a decision. The percentage is adjusted by changing
the decision threshold th. In general, performance de-
creases as we force decisions for low confidence rated
scenes. Figure 9(a) shows the performances for the four

Figure 10. (a) Images with low prior probability for the presence of vehicles. (b) Images with high prior probability for the presence of vehicles.

objects tested. The best performance was obtained for
predicting the presence of vehicles (o3) and the lowest
performance corresponded to predicting the presence
of vegetation (o4). Figure 9(b) shows the results for
different dimensionalities of the representation (coef-
ficients of the PCA decomposition). Performance does
not improve much when using more than 32 contex-
tual features. Figure 9(c) shows change in performance
when increasing the number of gaussians used for mod-
eling the PDF. As shown, one gaussian already provides
good results (we have also experimented with other
methods such as Parzen window approximation and
K-NN, and have obtained similar results). On average,
when setting the threshold th in order to force decision
on at least in 50% of the images, the system yields 95%
correct prediction rate within this set of labeled images
(with two gaussians and 32 contextual features). Pre-
diction rate is 82% when making decisions on the entire
test database.

Figure 10 shows scenes belonging to the sets de-
fined by P(vehicles | vC ) < 0.05 and P(vehicles | vC ) >

0.95. 51% and 34% images of the test set belong to
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Figure 11. Examples of scenes belonging to the sets defined by (a) P(people | vC ) > 0.95 and (b) P(furniture | vC ) > 0.95 in which the target
object are missing.

each group respectively. Figure 11 shows scenes be-
longing to the sets defined by P( people | vC ) > 0.95
and P( furniture | vC ) > 0.95 in which the target ob-
ject are missing. Although these images are considered
as prediction errors in terms of the results presented in
Fig. 9, in most of the cases, the system predictions are
in agreement with the nature of the context.

In general, the introduction of multiple object fami-
lies into the model does not require learning an increas-
ing number of PDFs. Another way of writing the object
category priming PDF, P(on | vC ), is:

P(on | vC ) =
Ncat∑
i=1

P(on | Ci , vC )P(Ci | vC )

�
Ncat∑
i=1

P(on | Ci )P(Ci | vC ) (16)

where {Ci }i=1,Ncat refers to Ncat non-overlapping con-
textual categories (for instance; road, sidewalk, forest,
office, etc.). The assumption is that P(on | Ci , vC ) �
P(on | Ci ) which requires defining the correct set of
contextual categories. This formulation is a dual for-
mulation in which a context recognition step precedes

Figure 12. Examples of scenes sharing similar probabilities in the component objects. The introduction of more object categories yield more
similar contexts.

object priming. It requires learning the distribution of
contextual features corresponding to contextual cate-
gories instead of the presence/absence of object cat-
egories. This would be efficient only if there are less
context categories than object categories. In practical
situations this may well be true. In such cases, once
the probabilities P(Ci | vC ) have been learned, object
priming requires the specification of the matrix pn | i =
P(on | Ci ) which specifies the probability of presence
of the object category on in the context category Ci .

The likelihood of presence of several object cate-
gories given context information provides a signature
that relates the context features to the scene category.
Figure 12 shows several examples of scenes sharing the
same object likelihood for the four object categories
defined in our experiments. In general, scenes sharing
same component objects belong to the same category.

All the inferences regarding scene and object cate-
gories can be inverted. For instance, if one object has
been reliably detected, we can use the properties of
the object (its location, size and category) to infer the
nature of the context in which it is immersed by us-
ing P(Ci | O). Once the possible presence of an object
is predicted the next step is to predict its most likely
location.
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7. Context-Driven Focus of Attention

One of the strategies that biological visual systems use
to deal with the analysis of complex real-world scenes
is to selectively focus attention into the image regions
that require a detailed analysis, neglecting less impor-
tant regions. The goal is to concentrate computational
resources into relevant scene regions for solving the
task. It is unclear, however, what mechanisms the vi-
sual system uses in order to make decisions about the
importance of scene regions before they have been an-
alyzed in detail.

There are several studies modeling the control of fo-
cus of attention. The most popular ones are based on
low-level saliency maps (without any high-level infor-
mation relative to the task or context, e.g. Itti et al.,
1998; Lindeberg, 1993; Treisman and Gelade, 1980;
Wolfe, 1994). Saliency maps provide a measure of the
‘saliency’ of each location in the image based on low-
level features such as intensity contrast, orientations,
color and motion. Regions that have different prop-
erties than their neighborhood are considered salient
(more informative) and attract attention. The image is
then explored by analyzing in detail the salient regions

Figure 13. Two different approaches for focus of attention. In both cases the goal is to focus computational resources into potentially relevant
image regions. On the left-hand side, the focus of attention is directed toward the salient regions (in this example, saliency is simply a measure of
local intensity contrast). On the right-hand side, contextual control of the focus of attention directs attention towards the sidewalk when looking
for pedestrians. No local information or target models are used to drive attention here.

in the scene. These models do not take into account
any high-level information (the identity of the scene) or
task constraints (looking for a particular object). Other
algorithms propose to include models of the target in
order to account for task dependent constraints (e.g.
Rao et al., 1996; Moghaddam and Pentland, 1997).
But again, common to all these models is the use of
features in a local-type or object-centered framework
ignoring more high-level context information that is
available in a global-type framework. When consid-
ering real world-scenes, it is very likely that visual
search strategies and the computation of saliency maps
are modulated by global high-level information related
to the scene (De Graef et al., 1990; Henderson and
Holligworth, 1999).

In this section we propose a model of the contextual
control of the focus of attention. Figure 13 illustrates
the differences in the control of focus of attention be-
tween a pure bottom-up saliency map (see Itti et al.,
1998 for a model of low-level saliency maps) and a
global context driven approach. The control of the fo-
cus of attention by contextual information is both task
driven (looking for object o) and context driven (given
global context information: vC ), however, it is only
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based on global contextual information and does not
include any model of the object (object-centered fea-
tures). The context-driven approach associates (during
a learning stage) the contextual features and the typical
locations of the objects that compose the scene. Some
previous models of top-down attention guidance in-
corporate context information to direct attention (e.g.,
Noton and Stark, 1971; Chernyak and Stark, 2001;
Tsotsos et al., 1995).

From an algorithmic point of view, contextual con-
trol of the focus of attention is important as it avoids
expending computational resources in spatial locations
with low probability of containing the target based on
prior experience. It also provides criteria for rejecting
possible false detections or salient features that fall out-
side the primed region. When the target is small (a few
pixels), the problem of detection using only local fea-
tures (with intrinsic target models or by saliency maps)
is ill-posed. For instance, in large views of urban scenes
(see Fig. 14), some of the pedestrians are just scratches
on the image. Similar scratches can be found in other
locations of the picture. Due to context information,
they are not considered as potential targets by the hu-
man visual system as they fall outside the ‘pedestrian
region’ (see examples of this in Fig. 14).

In our framework, the problem of contextual con-
trol of the focus of attention can be formulated as the

Figure 14. Focus of attention based on global context configuration. Each pair shows the original image and the image multiplied by the
function P(x | vC , o = heads) to illustrate the primed regions.

selection of the spatial locations that have the highest
prior probability of containing the target object given
context information (vC ). It involves the evaluation of
the PDF P(x | o, vC ). For each location, the PDF gives
the probability of presence of the object o given the
context vC .

7.1. Learning

The PDF P(x | o, vC ) is obtained via a learning stage.
The learning provides the relationship between the con-
text and the more typical locations of the objects be-
longing to one family. For modeling the PDF we use a
mixture of gaussians (Gershnfeld, 1999):

P(x, vC | o) =
M∑

i=1

bi G(x; xi , Xi ) G(vC ; vi , Vi ) (17)

The join PDF is modeled as a sum of gaussian clus-
ters. Each cluster is decomposed into the product of
two gaussians. The first gaussian models the distri-
bution of object locations and the second gaussian
models the distribution of contextual features for each
cluster. The center of the gaussian distribution of ob-
ject locations is written as having a linear depen-
dency with respect to the contextual features for each
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cluster: xi = ai + Ai (vC − vi ). The model parameters
are (bi , ai , Ai , Xi , vi , Vi )i=1,M .

The training set used for the learning of the PDF
P(x, vC | o) is a random subset of the pictures that con-
tain the object o. The training data is {vt }t=1,Nt and
{xt }t=1,Nt where vt are the contextual features of the
picture t of the training set and xt is the location of
object o in the scene (we take into account only one
exemplar of the multiple instances of the object in the
scene). The EM algorithm is now (see Gershnfeld, 1999
for a description of the learning equations):

• E-step: Computes the posterior probabilities of the
clusters hi (t) given the observed data vt and xt . For
the k-th iteration:
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• M-step: Computes the most likely cluster parameters
by maximization of the join likelihood of the training
data:
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where i indexes the M clusters. The notation 〈 〉i

represents the weighted average with respect to the pos-
terior probabilities of cluster i as detailed in Eq. (20).
All vectors are column vectors.

7.2. Results

Once the parameters of the joint PDF are computed,
the conditional PDF P is obtained as:

P(x | o, vC ) =
∑M

i=1 bi G(x; xi , Xi )G(vC ; vi , Vi )∑M
i=1 bi G(vC ; vi , Vi )

(25)

This PDF formalizes the contextual control of the focus
of attention. When looking for the object class o, atten-
tion will be directed into the candidate regions with the
highest likelihood P(x | o, vC ) of containing the target
based on the past experience of the system. The search
should not be affected by locally salient features (as in
Fig. 13) outside the primed regions. Figure 14 shows
several examples of images and the selected regions
based on contextual features. In such examples the tar-
get object is a human head.

We can estimate the center of the region of focus of
attention as:

(x̄, ȳ) =
∫

xP(x | o, vC ) dx

=
∑M

i=1 bi xi G(vC ; vi , Vi )∑M
i=1 bi G(vC ; vi , Vi )

(26)

and the width of the selected region:

σ 2
r =

∫
r2 P(x | o, vC ) dx (27)

with r2 = (x − x̄)2 + (y − ȳ)2 and x = (x, y).
Figures 15(a) and (b) summarize the results obtained

when the target object is human heads. Figure 15(a)
compares the coordinate y of center of the focus of
attention provided by the contextual features with re-
spect to the average vertical location of the heads with
each scene. Figure 15(b) compares the x coordinate of
the center of focus of attention with respect the average
horizontal location of heads. Global contextual features
provide relevant information for the estimation of the
image elevation y at which faces are located. However,
it does not allow the estimation of the x coordinate.
This is consistent with the fact that while context places
constraints on elevation (a function of ground level), it
typically provides few constraints in the horizontal lo-
cation of heads. This is shown in Fig. 14 where the
selected regions are elongated horizontally. In general,
scenes are organized along horizontal layers where the
reference point is the ground level. The functions and
the objects inside each layer (in man-made environ-
ments) are constrained by the human size.

Figures 15(c) and (d) compare the location of one
head in the image with respect to the average location
of the rest of heads in the scene. This allows us to ver-
ify that there exists a strong correlation between the
y location of heads in the scene, but the x coordinate
of two heads within the same scene is decorrelated.
Figures 15(c) and (d) correspond to the contextual
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Figure 15. Graphs (a) and (b) show respectively the comparison of
the coordinates ȳ and x̄ of center of the focus of attention provided
by the contextual features with respect to the average vertical and
horizontal location of the heads in each scene. Graphs (c) and (d)
compare the location of one head in the image with respect to the
average location of the rest of heads in the scene.

priming provided by the objects already recognized for
the detection of the remaining objects of the same cat-
egory in the scene: P(x | o, O1, O2, . . .).

Figure 16(a) shows the distribution of the locations
of the heads in the test database which is almost
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Figure 16. (a) Spatial distribution of head locations across the
database. All locations are equi-probable. Therefore, an object-
centered system requires exhaustive search for head detection. (b)
Distribution of heads with respect to the center of the focus of at-
tention. It is evident that context provides relevant information for
the estimation of the image elevation at which faces are located.
However, it does not allow accurate estimation of the x coordinate.
This is consistent with the fact that while context places constraints
on elevation (a function of ground level), it typically provides few
constraints on the horizontal location of heads.

uniform. Therefore, in absence of additional informa-
tion, all the locations in the image are equally likely
to contain the target object. Figure 16(b) illustrates
the distribution of heads with respect to the center
of the focus of attention. The success of the function
P(x | o, vC ) in narrowing the region of the focus of
attention will depend on the rigidity of the relationship
between the object and the context. In order to test for
the reduction of the size of the search region we define
the region with P(x | o, vC ) > th with 0 < th < 1
being a constant threshold. By adjusting the threshold
th we change the size of the search region from 100%
of the image size, th = 0, to a small image region,
th � 1. Figure 17 show the results that summarize the
success of the contextual features in the reduction of
the search region. For the four graphs, the horizontal
axis correspond to the size of the selected image region
in % and the vertical axis correspond to the percent
of instances of the target object that fall inside the
selected region (when there are multiple instances of
the same object within a scene we only consider one
randomly chosen for computing the performance). For
comparison purposes, in Figs. 17(a) and (b) we also
show the performances obtained when (1) contextual
information is not used (in such a case, the region is
selected according to the P(x | o) computed across
the database) and (2) when the contextual information
is provided by other instances of the object that have
been already detected (O1, O2, . . .), then, the region
is selected according to P(x | o, O1, O2, . . .) that is
approximated as a gaussian distribution centered on
the mean location xm of the objects (O1, O2, . . .).
This provides an approximation of the upper bound on
performances that can be expected from contextual
information. Figure 17(a) shows performances as a
function of the number of contextual features when
the target object is heads, and Fig. 17(b) shows perfor-
mances as a function of the number of clusters used
for modeling the joint PDF. The best performances are
obtained with 8 clusters and 32 features. Increasing
the dimensionality or the number of clusters beyond
these numbers did not significantly improve the
results.

The width of the selected region σ 2
r (Eq. (27)) also

provides a confidence measurement for the strength of
the relationship between the contextual features and
target location. Figure 17(c) shows the performance
when selecting the 50% and 25% of the images with
the lowest σ 2

r from the test database. When considering
the full test database, th needed to be set to select a
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Figure 17. Quantifying the ability of contextual features to reduce the size of the search region as a function of (a) number of contextual
features (D = 2, 8, 32). The thick lines show the lower and upper bounds in location priming (lower = p(x | o), upper = p(x | o, xm )). (b)
Performance as a function of the number of clusters. Graph (c) shows performances for the top 25% and 50% of images with the lowest σ 2

r .
Graph (d) compares performances across the four object classes (1-people, 2-furniture, 3-vehicles and 4-vegetation).

region of 35% of the size of the image to guarantee
that 90% of the targets will be in the selected region.
When selecting the 50% of images with lowest width
σ 2

r , then the target is 90% of the times within a region
of size 25% of the image, and the region size becomes
20% of the image for the top 25% of the test images
with the lowest σ 2

r .
Figure 17(d) shows performance for the four object

classes used in the study. The location of furniture and
vegetation is mostly unconstrained. Cars and people
(heads) show similar performance.

The aim of this section was to provide the basis
for modeling the contextual control of the focus of at-
tention based on holistic context-centered information.
The procedure provides a simple framework for mod-
eling the relationship between the scene/context and
the locations of the objects that compose the scene.
The model does not include any target model or lo-
cal analysis and the results show the strong constraints
global scene structure provides for localizing objects.
In the next section we show how context constraints
also the scales of the objects that can be found inside the
scene.

8. Context-Driven Scale Selection

Scale selection is a fundamental problem in computa-
tional vision. Multi-scale search constitutes one of the
key bottlenecks for object detection algorithms based
on object-centered representations. If scale informa-
tion could be estimated by a pre-processing stage, then
subsequent stages of object detection and recognition
would be greatly simplified by focusing the processing
only onto the diagnostic/relevant scales.

Previous studies in automatic scale selection are
based on bottom-up approaches (e.g., Lindeberg,
1993). Similar to approaches of spatial focus of atten-
tion, scale selection has been based on measurements of
the saliency of low-level operators across spatial scales.
For instance, Lindeberg (1993) proposed a method for
scale selection for the detection of low-level features
such as edges, junctions, ridges and blobs when no a
priori information about the nature of the picture is
available. However, when looking for particular ob-
jects (like pedestrians in a street scene), the target ob-
ject will not always appear as a salient blob or even a
well-defined shape.
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Here we show that context features provide a strong
cue for scale selection for the detection of high-
level structures as objects. In the model we propose,
automatic scale selection is performed by the PDF
P(σ | o, vC ). For simplicity, we have assumed that the
scale is independent of location x which simplifies the
learning of the PDF:

P(σ | x, o, vC ) � P(σ | o, vC ). (28)

This PDF relates the typical scales σ (image size
in pixels) of the object o with the contextual features
vC . As the scene structure restricts the possible po-
sitions and distances at which objects can be located
we can expect that the PDF P(σ | o, vC ) provides rele-
vant information for scale selection. This is illustrated
in Fig. 18 which shows the conditional average of the
output of Gabor filters at different scales and orienta-
tion when the scenes contain people at three different
scales. In this section we show that the differences be-
tween the signatures of each scale are stable enough to
provide reliable object scale priming.

The model for the conditional PDF P(σ | o, vC ) is
similar to the one used for modeling the focus of atten-
tion (Eq. (25)):

P(σ | o, vC ) =
∑M

i=1 bi G(σ ; σi , Si )G(vC ; vi , Vi )∑M
i=1 bi G(vC ; vi , Vi )

(29)

with σi = ai + Ai (vC − vi ). The model parameters
are (bi , ai , Ai , Si , vi , Vi )i=1,M which are obtained af-
ter a learning stage. The learning stage is performed by
means of the EM algorithm as detailed in the precedent

Figure 18. Conditional average of v(x, k) for images that contain people at three different scales 5, 25 and 125 pixels (the images are 2562

pixels is size). No other constrains are impose for the other objects.

section (Eqs. (19) to (24)) using the database of anno-
tated images. For the examples provided in this section
we have focused in the prediction of the size of human
heads (o = heads) in the scene. We estimated the scale
σ as being the mean height H of the heads present in
the picture (in logarithmic units): σ = log(H ), with H
given in pixels. Head height, which refers to the vertical
dimension of a square box surrounding a head in the
image, is mostly independent of head pose (variations
in pose are mostly due to horizontal rotations). In the
case of human heads, changes in pose due to horizontal
rotations are unconstrained by contextual information
(Torralba, 2002).

The preferred scale (σ̄ ) given context information
(vC ) is estimated as the conditional expectation:

σ̄ =
∫

σ P(σ | o, vC ) dσ =
∑M

i=1 σi bi G(vC ; vi , Vi )∑M
i=1 bi G(vC ; vi , Vi )

(30)

and the variance of the estimation is σ 2
h :

σ 2
h =

∫
(σ − σ̄ )2 P(σ | o, vC ) dσ (31)

The model reaches maximal performance with as
few as M = 4 clusters. Figure 19 shows a random se-
lection of images from the entire test set with the ex-
pected head size estimated with Eq. (30). The square
box indicates the estimated height and the segment at
the right-hand side indicates the real mean height of
the heads in the picture. The results are summarized in
Fig. 20(a). The estimated scale, σ̄ , is compared with
respect to the mean scale of heads in each scene, σm .
For 81% of the images, the real scale was inside the
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Figure 19. Results for scale selection given global context information for random selection of results from the test set. The size of the square
box corresponds to the expected height of heads given the holistic contextual features. The line at the right hand indicates the real height of the
heads when they are present in the image.
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Figure 20. (a) Results for scale selection for face detection given global context information. (b) As a comparison, this graph shows how the
size of one face already detected constraints the possible sizes of the remaining faces in the image.

range of scales σm ∈ [σ̄ /α, σ̄ · α] with α = 2. For
comparison, we also show the scale priming for the
detection of heads provided that one head has already
been detected reliably. This provides an upper bound
of the constraints existing between the scale of one ob-
ject (heads) and its context. For 90% of the images the
scale of one head, σ1, selected at random among the
multiple instances in each scene, was within the range
of scales σ1 ∈ [σm/α, σm · α], with σm is given by the
mean scale of the rest of heads in the scene and α = 2
(Fig. 21(a)).

Figure 21(a) summarizes the results for different
scale ranges α when varying the number of contextual

features (M = 4). The results show that, in order to
assure that 90% of the heads are within the scales ex-
plored, we have to explore the range of scales given by
[σ̄ /α, σ̄ · α] with α = 2.4 and σ̄ given by Eq. (30). It
has to be noted that, when no contextual information is
taken into account, it is necessary to explore the range
of scales [σ̄ /α, σ̄ ·α] with α = 7.3 in order to guaranty
that 90% of the heads are within the scales explored
given the variability within our database.

The variance of the estimation given by Eq. (31)
provides a confidence measurement for the scale prim-
ing and can be used for reducing the range of pos-
sible scales to explore for high confidence contexts.
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Figure 21. The graphs show the percent of heads that are within the range of scales given by the interval [σ̄ /α, σ̄ · α] with varying α. σ̄

is the selected scale for each image. (a) Performance of scale selection as a function of the number of contextual features (2, 8 and 32). (b)
Scale selection performance when considering the 100%, 50% or 25% of the images of the test set according to the confidence measure σ 2

h . (c)
Performances in scale selection for the four classes of objects (1 = people, 2 = furniture, 3 = cars, and 4 = vegetation).

Figure 22. Each row shows a set of 8 pictures sorted according to the predicted size of human heads (top) and cars (bottom).

Figure 21(b) shows the results when selecting the 50%
and the 25% of the images with the lowest σ 2

h among the
scenes used for the test. For the selected 50% images, it
is necessary to explore the range of scales [σ̄ /α, σ̄ · α]
with α = 1.7 in order to guarantee that 90% of the
heads are within the scales explored.

The relative size (σ ) of an object inside an image,
depends on both the relative image size of the object at
one fixed distance and the actual distance D between
the observer and the object. Figure 22 shows a set of
images sorted according to the estimated scale of heads
inside the image. The organization is correlated with
the size of the space that the scene subtends (Torralba
and Oliva, 2002).

The success of the scale selection from context will
depend on the constraints that the scene context im-
poses on the object. In the case of cars, most of the
scenes allow for a large range of possible sizes (as
many of them in our database correspond to perspec-
tive views of streets). Therefore, performances were
lower (Fig. 21(c)). Only for 55% of the images the real
scale was inside the range of scales σm ∈ [σ̄ /α, σ̄ · α]
with α = 2. Figure 22 shows a set of images sorted
according to the estimated scale of cars inside the im-
age. Furniture and vegetation are even less constrained

due to the large variability of possible sizes and shapes
within the same scene (Fig. 21(c)). For furniture and
vegetation scale is defined as the image area covered
by the objects.

9. Conclusion

There are strong constrains in the statistical distribu-
tion of objects and environment in real-world scenes.
Furthermore, real-world scene pictures have strong reg-
ularities of simple pixel statistics like the ones captured
by linear filter outputs. Both statistical regularities, the
distribution of objects and the statistics of low-level fea-
tures, are linked. In particular, we showed that there are
differential regularities when conditioning the statistics
with respect to the presence/absence of objects and
their properties. The study of such conditional regu-
larities provides the basis for the contextual priming
framework developed in this paper.

We have shown that object locations and scales can
be inferred from a simple holistic representation of
context, based on the spatial layout of spectral com-
ponents that captures low-resolution spatial and spec-
tral information of the image. The use of the statistical
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framework provides also a simple way for giving con-
fidence measurements for the contextual priming. The
strength of the contextual priming P(O | vC ) varies
from one image to another.
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