854 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.5, MAY 2007

Sharing Visual Features for Multiclass
and Multiview Object Detection

Antonio Torralba, Kevin P. Murphy, and William T. Freeman, Senior Member, IEEE

Abstract—We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional
approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can
require a lot of training data since each classifier requires the computation of many different image features. In particular, for
independently trained detectors, the (runtime) computational complexity and the (training-time) sample complexity scale linearly with the
number of classes to be detected. We present a multitask learning procedure, based on boosted decision stumps, that reduces the
computational and sample complexity by finding common features that can be shared across the classes (and/or views). The detectors
for each class are trained jointly, rather than independently. For a given performance level, the total number of features required and,
therefore, the runtime cost of the classifier, is observed to scale approximately logarithmically with the number of classes. The features
selected by joint training are generic edge-like features, whereas the features chosen by training each class separately tend to be more
object-specific. The generic features generalize better and considerably reduce the computational cost of multiclass object detection.

Index Terms—Object detection, interclass transfer, sharing features, boosting, multiclass.

1 INTRODUCTION

long-standing goal of machine vision has been to build
a system which is able to recognize many different
kinds of objects in a cluttered world. Although the general
problem remains unsolved, progress has been made on
restricted versions of this goal. One succesful special case
considers the problem of detecting individual instances of
highly textured objects, such as magazine covers or toys,
despite clutter, occlusion, and affine transformations. The
method exploits features which are invariant to various
transformations, yet which are very specific to a particular
object [24], [31]. This can be used to solve tasks such as “find
an object that looks just like this one,” where the user
presents a specific instance, but it cannot be used to solve
tasks such as “find an object that looks like a car,” which
requires learning an appearance model of a generic car.
The problem of detecting a generic category of object in
clutter is often posed as a binary classification task, namely,
distinguishing between object class and background class.
Such a classifier can be turned into a detector by sliding it
across the image (or image pyramid) and classifying each
such local window [26], [16], [1]. Alternatively, one can
extract local windows at locations and scales returned by an
interest point detector and classify these, either as an object or
as part of an object (see, e.g., [12]). In either case, the classifier

o A. Torralba is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, 32 Vassar
Street, 32-D462, Cambridge, MA 02139. E-mail: torralba@csail.mit.edu.

o K.P. Murphy is with the Departments of Computer Science and Statistics,
University of British Columbia, 2366 Main Mall, ICICS/CS Building,
Room 187, Vancouver, BC V6T 124, Canada. E-mail: murphyk@cs.ubc.ca.

o W.T. Freeman is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, 32 Vassar
Street, 32-D476, Cambridge, MA 02139. E-mail: billf@mit.edu.

Manuscript received 13 May 2005; revised 30 Jan. 2006; accepted 16 June
2006; published online 22 Jan. 2007.

Recommended for acceptance by A. Rangarajan.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0246-0505.
Digital Object Identifier no. 10.1109/TPAMI.2007.1055.

0162-8828/07/$25.00 © 2007 IEEE

will be applied to a large number of image locations and,
hence, needs to be fast and to have a low false positive rate.
Various classifiers have been used, such as SVMs [26], naive
Bayes [30], mixtures of Gaussians [12], boosted decision
stumps [37], etc. In addition, various types of image features
have been considered, ranging from generic wavelets [30],
[37] to class-specific fragments [16], [36]. Since it is expensive
to compute these features at runtime, many classifiers will try
to select a small subset of useful features.

The category-level object detection work mentioned above
is typically only concerned with finding a single class of
objects (most work has concentrated on frontal and profile
faces and cars). To handle multiple classes, or multiple views
of a class, separate classifiers are trained and applied
independently. There has been work on training a single
multiclass classifier to distinguish between different classes
of object, but this typically assumes that the object has been
separated from the background (see e.g., [25], [22]).

In this paper [33], we consider the combined problem of
distinguishing classes from the background and from each
other. This is harder than standard multiclass isolated object
classification problems, because the background class is very
heterogeneous in appearance (it represents “all other
classes”) and is much more likely to appear than the various
object classes (since most of the image is background).

The first key insight of our work is that training multiple
binary classifiers at the same time needs less training data
since many classes share similar features (e.g., computer
screens and posters can both be distinguished from the
background by looking for the feature “edges in a
rectangular arrangement”). This observation has previously
been made in the multitask learning literature (see, e.g., [6],
[32]). However, nearly all of this work focuses on feedfor-
ward neural networks, whereas we use quite a different
kind of classifier based on boosted decision stumps [29].

The second key insight of our work is that training
multiple binary classifiers at the same time results in a much
faster classifier at run time since the computation of many of

Published by the IEEE Computer Society

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION 855

the features can be shared for the different classes. This
observation has previously been made in the neural network
literature [20], [21]. However, in these systems, the architec-
ture of the network (and, hence, its computational complex-
ity) is fixed in advance, whereas we effectively learn the
structure subject to the constraint that the classifier has a
given runtime complexity.

Our extensive empirical results, on 21 object classes, show
that the number of features needed when training jointly
grows roughly logarithmically with the number of classes (cf.
[18]), whereas independent training shows linear growth.
Since the number of features is fewer, the classifier is faster,
and the amount of training data (needed to select the features
and estimate their parameters) is less. We also show that the
features which are chosen when training jointly are generic,
edge-like features (reminiscent of V1 cells); this is similar to
the results of unsupervised learning methods such as ICA.
However, the features chosen when training independently
are more class-specific, similar to the results in [36]. Our
algorithm will smoothly interpolate between generic and
class-specific features, depending on the amount of training
data and the bound on the computational complexity of the
classifier.

This paper is organized as follows: We describe the
multiclass boosting algorithm in Section 2 and illustrate its
performance on some artificial data sets. In Section 3, we
show how the algorithm can be used to learn to detect
21 different classes of objects in cluttered, real world images.
In Section 4, we show how the algorithm can be used to learn
to detect different views of an object class (we focus on cars).
The intuition behind this view-based approach is that a car
seen from the side is essentially a different visual class than a
car seen from the front, but the angles in between share
many features in common. In Section 6, we show how the
algorithm can be used to perform both face detection and
recognition. The idea here is that we first learn to classify a
patch as face versus background and then learn features that
discriminate between the face classes. In Section 7, we
summarize previous work on multiclass object detection and
multiclass classifiers. We conclude in Section 8.

2 MuLTICLASS BOOSTING WITH FEATURE SHARING

2.1 Boosting for Binary Classification

We start with a brief review of boosting for binary
classification problems [29], [28], [14]. Boosting provides a
simple way to sequentially fit additive models of the form

Z hun

where v is the input feature vector, M is the number of
boosting rounds, and H(v) =log P(z = 1|v)/P(z = —1|v) is
the log-odds of being in class +1, where z is the class
membership label (+1). Hence, P(z=1|v) = o(H(v)),
where o(z) = 1/(1 + ") is the sigmoid or logistic function.
In the boosting literature, the h,,(v) are often called weak
learners and H(v) is called a strong learner. Boosting
optimizes the following cost function one term of the
additive model at a time:

J=FE [esz@)}. (1)

The term zH (v) is called the “margin” and is related to the
generalization error (out-of-sample error rate). The cost
function can be thought of as a differentiable upper bound
on the misclassification rate [28] or as an approximation to the
likelihood of the training data under a logistic noise model
[14]. There are many ways to optimize this function. We chose
to base our algorithm on the version of boosting called
“gentleboost” [14] because it is simple to implement,
numerically robust, and has been shown experimentally
[23] to outperform other boosting variants for the face
detection task. In gentleboost, the optimization of .J is done
using adaptive Newton steps, which corresponds to mini-
mizing a weighted squared error at each step. Specifically, at
each step m, the function H is updated as H(v) := H(v) +
hm(v), where h,, is chosen so as to minimize a second order
Taylor approximation of the cost function:

argmin J(H + h,,) ~ argmin £ [e_ZH

Im, Im,

(7 — hm)2]. 2)

Replacing the expectation with an empirical average over the
training data, and defining weights w; = e~*(*) for training
example i, this reduces to minimizing the weighted squared
error:

U se Zw7 7))2’ (3)

where N is the number of training examples. How we
minimize this cost depends on the specific form of the weak
learners h,,. It is common to define the weak learners to be
simple functions of the form h,,(v) = ad(v/ >) + bd(v/ < 0),
where v/ denotes the fth component (dimension) of the
feature vector v, 0 is a threshold, 6 is the indicator function,
and a and b are regression parameters. In this way, the weak
learners perform feature selection, since each one picks a
single component f. These weak learners are called decision
or regression “stumps” since they can be viewed as
degenerate decision trees with a single node. We can find
the best stump just as we would learn a node in a decision
tree: We search over all possible features f to split on, and for
each one, we search over all possible thresholds ¢ induced by
sorting the observed values of f; given f and 6, we can
estimate the optimal a and b by weighted least squares.
Specifically, we have

iy w;zi6(v! > 0)

> wbe! > 0) W
b > wizi (< 9) 5)
> wid(v] < 0)

Wepick the fand § and corresponding a and b with the lowest
cost (using (3)) and add this weak learner to the previous
ones for each training example: H(v;) := H(v;) + hy,(v;).
Finally, boosting makes the following multiplicative update
to the weights on each training sample:

w; 1= wye),
This update increases the weight of examples which are
missclassified (i.e., for which z; H(v;) < 0) and decreases the
weight of examples which are correctly classified. The
overall algorithm is summarized in Fig. 1.

856 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

VOL. 29, NO.5, MAY 2007

2) Repeat form=1,2,...,M

1) Initialize the weights w; =1 and set H(v;) =0, i = 1..N.

a) Fit stump: ho, (v;) = ad(v] > 0) + bd(v] < 6)
b) Update class estimates for examples i = 1,...,N: H(v;) := H(v;) + hum(v;)

¢) Update weights for examples i = 1,..., N: w; := wzehm i)

Fig. 1. Boosting for binary classification with regression stumps. 1;{' is the fth feature of the ith training example, z; € {—1,+1} are the labels, and w;
are the unnormalized example weights. IV is the number of training examples and A is the number of rounds of boosting.

2.2 Sharing Features: Basic Idea

In the multiclass case, we modify the cost function as in
Adaboost.MH [29]:

J =

C

C .
E |:672’H(7)’C):| ’ (6)
=1

where 2z is the membership label (+1) for class ¢ and

M
H(v,c) = Z R (v,),
m=1

where H(v,c) = log P(2° = 1|v)/P(2° = —1Jv). Our algorithm
for minimizing this cost function differs from Adaboost.MH
[29] in the structure of the weak classifiers h,,. The key idea is
that, at each round m, the algorithm will choose a subset of
classes S(m) that will share a feature and that will have their
classification error reduced. The weak classifier is obtained
by fitting a binary decision stump as outlined above (some
small modifications are required when we share classes,
which are explained below.). We consider multiple over-
lapping subsets of classes, rather than a hierarchical parti-
tioning, because some features may be shared between classes
in a way that is not tree-structured (see Fig. 2).

We will present two methods for choosing the best subset
of classes at each round: The first is based on an exhaustive
search of all possible subsets, which has complexity O(2¢);
the second is based on greedy search (forward selection),
which has complexity O(C?). We will show that, at least on
artificial data, the greedy approach is a very good approx-
imation to the exhaustive approach.

Fig. 2. Objects may share features in a way that cannot be represented
as a tree. In this example, we can see how each pair of objects shares a
part: The R and the 3 share the crescent-shaped fragment in the top
right, the R and the b share the vertical line on the left, and the b and the
3 share the semi-circle-shaped fragment on the bottom right.

2.3 Toy Problem

Before we explain in detail how JointBoost works, we
illustrate its behavior on a toy data set. We consider the
problem of discriminating among C' classes, which consists
of C spherical “clouds” of data in D dimensions, embedded
in a uniform “sea” of background distractors. So, the
classification task requires discriminating among the
C classes and also against the background class. In Fig. 3,
we consider C'=3 classes (plus a background class) in
D = 2 dimensions. In this 2D example, the feature vectors are
the projection of the coordinates onto lines at 60 different
angles coming from the origin. Itis intuitively clear that some
features (lines) are useful for separating multiple classes
from the background and, thus, can be fruitfully shared. In
our formulation, the multiclass classifier is composed by
three binary classifiers that can share features (stumps). Each
binary problem classifies one class against the others and the
background. Our goal is to figure out which features to share
among which classes.

Fig. 4a shows all subsets of three classes arranged in a
lattice (ordered by subset inclusion). Let the set at node n in
this graph be denoted S(n). At each round, JointBoost will
consider each of one of these subsets as a possible candidate to
share a stump and will learn a weak classifier for that subset.
If we sum up all the weak learners associated with
subset S(n), we get a strong learner, which we can denote
G5 (v). (If subset S(n) was never chosen by the algorithm,
then G°(")(v) = 0.) Finally, for each class ¢, we can find all
subsets S(n) that contain ¢ and sum up their additive models
to give the final form of the classifiers:

Fig. 3. lllustration of feature sharing (top row) and independent features
(bottom row) on a toy problem in which there are three object classes
and one background class. 50 samples from each class are used for
training, and we use eight rounds of boosting. Left: The thickness of the
lines indicates the number of classes sharing each stump. Right: Whiter
colors indicate that the class is more likely to be present. Note that, for
the same computational resources, feature sharing gives better
separation of the three classes from the background class.

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION 857

. Ei B

ool A I;I >
¢

\G2 —>G3 '—)n L

(a) (b)

Fig. 4. (a) All possible ways to share features among three classifiers.
The sets are shown in a lattice ordered by subset inclusion. The leaves
correspond to single classes. (b) Decision boundaries learned by all the
nodes in the sharing graph for the problem in Fig. 3.

H(v,1) = G"*3(v) + G"?(v) + G (v) + G (v),
H(v,2) =G (v) + G2 (v) + G**(v) + G*(v),
H(v,3) =G"*3(v) + G (v) + G*3(v) + G3(v),

where each G (v) is itself an additive model of the form
G (v) = o0, b ().

If we apply the JointBoost algorithm to the data in Fig. 3,
but restrict it to eight rounds (so it can choose exactly eight
features), the resultis the model shown in Fig. 4b. In this case,
the first shared function has the form G'(v) = 327 | hl%(v),
meaning that the classifier which separates classes 1, 2, and 3
versus the background has three decision boundaries. The
other nodes have the following number of boundaries:
M123 = 3, M]Q = 2, M23 = 1, M13 = 0, M] =]., Mg = 0, and
Ms =1, so there are no pure boundaries for class 2 in
this example (indicated by the blank G? square in Fig. 4b).
The decomposition is not unique as different choices of
functions G (v) can give the same classifiers H(v,). But,
we are interested in the choices of G°"(v) that minimize
the computational cost. We impose the constraint that
>, M, = M, where M is the total number of functions that
have to be learned (i.e., the number of rounds of boosting).

2.4 Shared Stumps

We now explain in more detail how JointBoost works.
Proceeding as in the regular gentleBoost algorithm, we
must solve the following weighted least squares problem at
each iteration:

i=1

B (03, 0))°, (7)

c=
where w§ = e~%# (") are the weights for example i and for

the classifier for class c. Note that each training example ¢
has C' weights, w{, one for each binary problem. It is
important to note that the weights cannot be normalized for
each binary problem independently, but a global normal-
ization does not affect the results. z{ is the membership label
(£1) for example i for class ¢.'

For classes in the chosen subset, ¢ € S(n), we can fit a

regression stump as before. For classes not in the chosen

1. For each binary classification problem, we can consider as negative
examples all the other classes and the background or just the background
class (in such a case, we can set the weights to w{ > 0 for samples in the
class ¢ (z{ = 1) or in the background class and we set w§ = 0 for samples ¢ in
one of the other classes C' — ¢).

subset, ¢ ¢ S(n), we define the weak learner to be a class-
specific constant £°. The form of a shared stump is:

ag ifvf>9andc€5(n)
bs if v/ <Bandce S(n) (8)
kG if ¢ & S(n).

hm(v,c) =

The purpose of the class-specific constant kg is to prevent a
class being chosen for sharing just due to the imbalance
between negative and positive training examples. (The
constant gives a way to encode a prior bias for each class,
without having to use features from other classes that
happen to approximate that bias.) Note that this constant
changes the way features are shared, especially in the first
iterations of boosting. Therefore, in order to add a class to
the shared subset, we need to have a decrease of the
classification error that is larger than just using a constant as
weak classifier. This insures that the shared features are
really providing additional discriminative information.

At iteration n, the algorithm will select the best stump
and a classes subset. For a subset S(n), the parameters of the
stump are set to minimize (7). Note that the class labels z{
do not change with the shared subset selected. The class
labels z{ define the C' binary classification problems that we
are trying to solve jointly. When a stump is shared among
several classes, the error for each shared class increases with
respect to a stump optimized just for that class. However,
because more classes have their classification error reduced
when the stump is shared, the total multiclass error
decreases (see also Section 3.5).

Minimizing (7) gives

ZFGS (n) Z U}IZL(S(U > 9)

as(f,0) = : 9

S0 Zces(n) 2 wj,(s(’Uz; > 0))
e 2o Wi (] 9)

bs(/,0) = 10

S(f) Ecesm) Zi () ()

k":% c & S(n). (11)

Thus, each weak learner contains four parameters (a, b, f, 0)
for the positive class, C — |S(n)| parameters for the negative
class, and one parameter to specify which subset S(n) was
chosen.

Fig. 5 presents the simplest version of the algorithm,
which involves a search over all 2¢ — 1 possible sharing
patterns at each iteration. Obviously, this is very slow. In
Section 2.5, we discuss a way to speed this up by a constant
factor by reusing computation at the leaves to compute the
score for the interior nodes of the sharing graph. In
Section 2.6, we discuss a greedy search heuristic that has
complexity O(C?) instead of O(2%).

2.5 Efficient Computation of Shared Regression
Stumps

To evaluate the quality of a node in the sharing graph, we
must find the optimal regression stump, which is a slow
computation since it involves scanning over all features and
all N thresholds (where N is the number of training
examples). However, we can propagate most of the compu-
tations from the leaves to higher nodes, as we now discuss.

858 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.5, MAY 2007

1) Initialize the weights w§ = 1 and set H(v;,¢) =0, i =1..N, c=1..C.
2) Repeat form=1,2,...,.M
a) Repeat forn=1,2,...,2¢ —1
i) Fit shared stump:
as ifv! >0 and c € S(n)
hp(vi,c) =14 bs if of <6 andce S(n)
k¢ ifc¢ S(n)
ii) Evaluate error

c N
Juse(n) = DY wi(zf — iy (vi,¢))?
c=1i=1
b) Find best subset: n* = argmin,, Jyse(n).

¢) Update the class estimates

H(vi,c) := H(vi, c) + h™ (vi,¢)

d) Update the weights

wg = wie ™ hm (Vi)

Fig. 5. Boosting with shared regression stumps. vlf is the fth feature of
the ith training example, z; € {—1, 41} are the labels for class ¢, and wf
are the unnormalized example weights. N is the number of training
examples, and M is the number of rounds of boosting.

At each boosting round, and for each isolated class (the
leaves of the graph), we compute the parameters a. and b,
for a set of predefined thresholds and for all features, so as
to minimize the weighted square error. Then, the para-
meters ag and bg for each threshold and feature at any other
internal node can be computed simply as a weighted
combination of the parameters at the leaves that are
connected with that node. The best regression parameters
for a subset of classes S is:

ZCES ac(fv e)w:—(fv 9)

as(10) = = ()

(12)

ZceS bc(f7 g)w(— (.fa 9)
ZCGS wi (f7 9) '
with ws (f,0) = X0, wis(v] > 6) and w (f,6) = L, wf
§(v] < 0). For each feature f, and each threshold 6, the joint
weighted regression error, for the set of classes S(n), is:

use(n) = (L—al) D wf +(1=00) 3w+

ceS(n) ceS(n)

N
+ D Dl -k

cgS(n) i=1

bS(f7 6) =

(13)

(14)

The first two terms correspond to the weighted error in the
classes sharing a feature. The third term is the error for the
classes that do not share a feature at this round. This can be
used instead of (7) for speed.

2.6 Approximate Search for the Best Sharing

As currently described, the algorithm requires computing
features for all possible 2C _ 1 subsets of classes, so it does
not scale well with the number of classes. Instead of
searching among all possible 2¢ — 1 combinations, we use
best-first search and a forward selection procedure. This is
similar to techniques used for feature selection but, here, we
group classes instead of features.

At each round, we have to decide which classes are
going to share a feature. We start by computing all the

features for the leaves (single classes) as described in the
previous section. We first select the class that has the best
reduction of the error. Then, we select the second class that
has the best error reduction jointly with the previously
selected class. We keep adding the next best class until we
have added all the classes. We then pick the set, from the C
we have considered, with the largest error reduction. This
set can have any size between 1 and C.

Since, at each step, we must consider adding one from the
O(C) classes and there are C steps, the overall complexity of
this algorithm is O(C?). This is much better than O(2°)
required for exhaustive search. We can improve the approx-
imation by using beam search, considering, at each step, the
best N. < C classes.

To compare the exhaustive and greedy search procedures,
we return to the toy data shown in Fig. 3. We consider
D = 2 dimensions but C' = 9 classes (so that we can afford to
consider all possible subsets). For this experiment, the
features are the raw coordinate values; we use 25 training
samples per class and 8,000 samples for the background.

Fig. 6a illustrates the differences between exact search for
the best sharing, the best first approximate search, the best
pairs only, a random sharing, and no sharing. For each
search algorithm, the graph shows the number of stumps
needed to achieve a fixed level of performance (area under
the ROC =0.95). We can see that using the exact best
sharing or the one obtained using the approximate search
(best first) provides similar results. The complexity of the
resulting multiclass classifier (17 stumps) is smaller than the
complexity of a one-versus-all classifier that requires
63 stumps to achieve the same performance.

Fig. 6b illustrates the dependency of the complexity of the
classifier as a function of the number of classes when using
different sharing patterns. For these experiments, we use two
dimensions, 25 training samples per class, and 40,000 samples
for the background. As expected, when no sharing is used
(one-versus-all classifier), the complexity grows linearly with
the number of classes. When the sharing is allowed to happen
only between pairs of classes, then the complexity is lower
that the one-versus-all but still grows linearly with the
number of classes. The same thing happens with random
sharing. What is perhaps a bit surprising is that, even though
random sharing exhibits linear complexity, it still performs
about as well as the best pair. The reason is that a random
sharing will be good for at least two classes at each round (in
general, for D classes in D dimensions). However, when using
the best sharing at each round (here, using best-first search),
then the complexity drops dramatically and the dependency
between complexity and number of classes follows a
logarithmic curve.

The above scaling results are on low-dimensional
artificial data, but the experimental results in Section 3
show that the algorithm also scales to handle 21 object
classes and feature vectors of size 2,000.

3 MuLTicLASS OBJECT DETECTION

In this section, we used 21 object categories: 13 indoor objects
(screen, keyboard, mouse, mouse pad, speaker, computer,
trash, poster, bottle, chair, can, mug, and light), seven
outdoor objects (frontal view car, side view car, traffic light,
stop sign, one way sign, do not enter sign, and pedestrians),
and heads (which can occur indoors and outdoors). We used

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION 859

©
(=]

=0.95)
[\ w S (9,1 N ~
(e) (] [e) (e) (e) ()

Number of features (area ROC
S

0

Best Best Best Random No
sharing first pairs sharing sharing
search
(a)

0.95)

Number of features (area ROC

===

==

— NN W A NN X O
[=} (=}

Best sharing |

=]

(=)

1 10 20 30 40 50
Number of classes

(b)

Fig. 6. (a) Comparison of number of stumps needed to achieve the same performance (area under ROC equal to 0.95) when using exact search,
best-first, best pair, random sharing, and no sharing at each round. We use a toy data set with C' =9 classes plus a background class in D =2
dimensions. (b) Complexity of the multiclass classifier as a function of the number of classes. The complexity of a classifier is evaluated here as the
number of stumps needed for achieving a predefined level of performance (area under the ROC of 0.95).

a)

(b)

Fig. 7. (a) Each feature is composed of a template (image patch on the left) and a binary spatial mask (on the right) indicating the region in which the
response will be averaged. The patches vary in size from 4 x 4 pixels to 14 x 14. (b) Each feature is computed by applying normalize correlation with
the template. From each image, we get positive (2 = 1) and negative (background, z© = —1 V¢) training samples by sampling the set of responses
from all the features in the dictionary at various points in the background and in the center of each target object.

hand-labeled images from the LabelMe database of objects
and scenes [27], available at labelme.csail.mit.edu.

3.1 Features

The features we use are inspired by the fragments proposed
by [36]. As in [36], first we build a dictionary of features by
extracting a random set of D = 2,000 patches or fragments
from a subset of the training images from all the classes (with
objects normalized in scale so that they fit in a bounding box
of 32 x 32 pixels). The fragments have sizes ranging from
4 x 4to14 x 14 pixels. When we extracta fragment g¢, we also
record the location with respect to the object center from
which it was taken (within the 32 x 32 window); this is
represented by a binary spatial mask w; (we fix the mask to
be a square of 7 x 7 pixels centered on the original fragment
location). See Fig. 7a for some examples. Once the dictionary is
built, for each image, we compute the features by performing
the following steps for each of the 2,000 fragments f:

1. For training, we first scale the images so that the
target object fits in a bounding box of 32 x 32 pixels.

We crop the images so that they are not larger than
128 x 128 pixels. We will use the background around
the object to collect negative training samples.

We apply normalized cross correlation between each
fragment g and the training images. Normalized cross
correlation can be speed up by approximating each
patch gy with a linear combination of 1D separable
filters [35], [19].

We perform elementwise exponentiation of the result,
using exponent p. With a large exponent, this has the
effect of performing template matching. With p =1,
the feature vector encodes the average of the filter
responses, which are good for describing textures. In
this paper, we use p = 10; this is good for template
matching as it approximates a local maximum
operator (although other values of p will be useful for
objects defined as textures like buildings, grass, etc.).

We convolve the response with the spatial mask wy
(to test if the fragment occurs in the expected
location). This corresponds to make each feature

860 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.5, MAY 2007

Fig. 8. Examples of typical detections for computer screen, mouse, do-not-enter sign, mug, and chairs (results are the first five images processed
from a typical run). For each row, only the output of one object class detector is shown. The results are obtained training 21 object classes using
50 training samples per class and 1,000 background samples. The classifier uses 500 features (rounds of boosting). Images are cropped so that the
difficulty of detecting all the object classes is the same independent of their real size. Images have about 180 x 180 pixels. Detections are performed
by scanning the image across locations and scales. Scale is explored by scaling the image with steps of 0.9.

vote for the expected object center. Convolution with
the binary, rectangular masks wy can be implemen-
ted in a small number of operations using the
integral image [37].

This will give us a very large set of training vectors. To
reduce the number, we use only a sparse set of locations.
From each image in the training set, we extract positive
training vectors by sampling the feature outputs at the object
center and negative training vectors by sampling randomly
in the background (Fig. 7). We do not use samples that are
inside the object bounding box. For each chosen location, we
get a vector of size equal to the number of features in the
dictionary. Using 2,000 fragments gives us a 2,000-dimen-
sional feature vector for each location. However, by only
using M rounds of boosting, we will select at most M of these
features, so the run time complexity of the classifier is
bounded by M.

At test time, objects are detected by applying the classifier
tothejet of feature responses ateachimagelocation. As objects
were normalized in scale for the training images, objects are
only detected at a normalized scale of 32 x 32 pixels. Scale
invariance is obtained by scanning scale by scaling down the
image in small steps. This evaluation of features for all image
locations and scales can be summarized as:

o (2, y,0) = (wy* I, @ gsF), (15)

where I, is the image at scale o, g; is the fragment, wy is the
spatial mask, ® represents the normalized correlation, and *
represents the convolution operator.

3.2 Results on Multiclass Object Detection

Fig. 8 shows some sample detection results when running the
detectors with shared features on whole images by scanning
each location and scale and finding the local maxima. Fig. 9
summarizes the performances of the detectors for each class.
For the test, we use an independent set of images. All the
detectors have better performances when trained jointly,
sometimes dramatically so. When separate classifiers are
trained, we require that exactly the same number of features
(weak learners) are used in total (summing across classes), as
in the joint classifier, to ensure that the runtime complexity of
the two approaches is comparable.

Note that as we reduce the number of features and
training samples, all the results get worse. In particular,
when training the detectors independently, if we allow
fewer features than classes, then some classifiers will have
no features and will perform at chance level (a diagonal line
on the ROC). Even for the classifiers that get some features,
the performance can be bad—sometimes it is worse than
chance (below the diagonal) because there is not enough
data to reliably pick the good features or to estimate their
parameters. However, the jointly trained detectors perform
well even as we reduce the amount of computation time
and training data.

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION 861

70 features 15 features 15 features 70 features 15 features 15 features 70 features 15 features 15 features

20 tr. samples 20 tr. samples 2 tr. samples 20 tr. samples 20 tr. samples 2 tr. samples 20 tr. samples 20 tr. samples 2 tr. samples
F = - | 1 1

Screen

Car frontal

=]
—_

Chair
Keyboard

—
(=]
—_

—]

—

Mouse pad

Bottle
|
i |

Car side

[=)

Oﬂo

—

Can
Head

Mug

Person
Speaker

One way sign

Trafic light
Do not enter

(=]
(=
—

Stop
Light

Computer

0 1
D ll
0
0 1
Fig. 9. ROC curves for 21 objects (red (lower curve) = isolated detectors, blue (top curve) = joint detectors). ROC is obtained by running the detector
on entire images and sampling the detector output at the location of the target and on the background. For each graph, the horizontal axis is the false
alarm ratio and the vertical axis is the ratio of correct detections. For each object, we show the ROC obtained with different training parameters. From
left to right: 1) 70 features in total (on average 70/21 ~ 3.3 features per object) and 20 training samples per object, 2) 15 features and 20 training

samples, and 3) 15 features and two training samples. In the second and third cases, there are fewer features than classes, so training each class
separately will inevitably result in some classifiers performing at chance (shown by diagonal ROC lines).

(=]
=

) . .] . ‘ . ‘ 18 + .
o
0.95 Sharing features % 16
&
__________ = 14
<
085 I w12
4 I §
5 | £10
E 0.75} Class-specific features I 2
3 g 8
g ! =
& ' 6
& o
5 065 [2
< | [24
[' g 2
0.55} | ["
0.5 == , ; j il 0
: 10 20 30 40 50 60 70 10 20 30 40 50 60 70

Boosting round (m) Boosting round (m)
(a) (b)

Fig. 10. (a) Evolution of classification performance of the test set as a function of number of boosting rounds (or features). Performance is measured as
the average area below the ROC across all classes. Chance level is 0.5 and perfect detection for all objects corresponds to area = 1. Both joint and
independent detectors are trained using up to 70 features (boosting rounds), 20 training samples per object, and 21 object classes. The dashed lines
indicate the number of features needed when using joint or independent training for the same performance. (b) This graph shows how many objects
share the same feature at each round of boosting during training. Note that a feature shared among 10 objects is, in fact, using 20 « 10 = 200 training
samples.

Fig. 10a shows performance of both methods improves shows the area under the ROC for the test set, averaged
as we allow more rounds of boosting. The horizontal axis of across all object classes. When enough training samples are
the figure corresponds to the number of features (rounds of ~provided and many boosting rounds are allowed, then both
boosting) used for all the object classes. The vertical axis joint and independent classifiers will converge to the same

862 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 5,

—

r
it

mousepad car side
—o

=0
T

trash
=)
L

head
—o
s J
=N

—_
T

)
[
s

donotenter one way Pedestrian

(=}
T

AR TR, e
20 40 60 80 100 120 140 160 180

T T T T T
2 n e l i
regresslon stump

20 40 60 80 100 120 140 160 180
vf (arbitrary units)

(=]

Feature

o5

Fig. 11. Example of a shared feature (obtained at round 4 of boosting)
between two objects (heads and trash cans) when training eight objects
jointly. The shared feature is shown at the bottom of the figure. It is
defined by an image feature (template and mask) and a regression
stump (a, b, and 6). For each object, the blue graph shows an empirical
approximation to p(v/|z° = —1) (negative examples) and the red graph
shows p(v/|2¢ =1) (positive examples). The x-axis represents the
feature indices f on an arbitrary scale.

B N 1 A

screen [
poster

car frontal
chair
keyboard
bottle

car side
mouse
mouse pad
can [l
trashcan
head
person

mug
speaker
traffic light
one way Sign
do not enter
stop Sign
light

cpu

50 o i 0 .] 0 5 5 IS D
b [P (L]] Al [da [[[a]afs]

MAY 2007

performance, as both have the same functional form.
However, when only a reduced number of rounds are
allowed (in order to reduce computational cost), the joint
training outperforms the isolated detectors. Furthermore,
we expect the relative advantage of joint training to get
larger and larger as more classes are added.

3.3 Feature Sharing

To gain some insight into how the algorithm works, it is
helpful to examine which features it selects and why. Fig. 11
shows an example of a feature shared between two objects
at one of the boosting rounds. The selected feature can help
discriminate both trash cans and heads against the back-
ground, as is shown by the distribution of positive and
negative samples along the feature dimension.

Fig. 10b shows the evolution of the number of objects
sharing features for each boosting round. We expected to
see that the features chosen initially would be shared by
many classes and the features chosen later would be more
class-specific, but this is not what is observed.

Fig. 12 shows the final set of features selected (the
parameters of the regression stump are not shown) and the
sharing matrix that specifies how the different features are
shared across the 21 object classes. Each column corresponds
to one feature and each row shows the features used for each
object. A white entry in cell (¢, j) means that object i uses
feature j. The features are sorted according to the number of
objects that use each feature. From left toright, the features are
sorted from generic features (shared across many classes) to
class-specific features (shared among very few objects).

We can measure similarity between two object classes by
counting the number of features that they have in common
and normalizing by the number of features used by each

Fig. 12. Matrix that relates features to classifiers, which shows which features are shared among the different object classes. The features are sorted
from left to right from more generic (shared across many objects) to more specific. Each feature is defined by one filter, one spatial mask, and the
parameters of the regression stump (not shown). These features were chosen from a pool of 2,000 features in the first 40 rounds of boosting.

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION

863

~

i . a E A i
o ‘
Screen Poster Mouse Head Chair Car Trash
frontal

Mug

Fig. 13. Clustering of objects according to the number of shared features.

Speaker Computer Do not
enter

1,

Mouse One way Car side Bonle
pad sign

) ‘E

£ Y
Stop Keyboard Light
sign

Can

Objects that are close in the tree are objects that share more features and,

therefore, share most of the computations when running the classifiers on images. This clustering is obtained by jointly training 21 objects, using

70 stumps, and 50 training samples per object.

class (normalized correlation). Fig. 13 shows the result of a
greedy clustering algorithm using this simple similarity
measure. Objects that are close in the tree are objects that
share many features and, therefore, share most of their
computations. The same idea can be used to group features
(results not shown).

3.4 Specific versus Generic Features

One consequence of training object detectors jointly is in the
nature of the features selected for multiclass object detec-
tion. When training objects jointly, the system will look for
features that generalize across multiple classes. These
features tend to be edges and generic features typical of
many natural structures, similar to the response properties
of V1 cells. Similar results have been obtained using
unsupervised learning methods, such as ICA, applied to
image patches, but we obtained our results using super-
vised, discriminative methods (similar to a neural network).

The generality of the features we find is in contrast to the
claim in [36] that class-specific features (of intermediate
complexity) are best. When training classifiers indepen-
dently, we find that class-specific features are indeed best,
since they are more discriminative and, therefore, fewer are
needed. However, in cases where we cannot afford to have
a large number of features, it is better to use generic
features, since they can be shared.

Fig. 14 illustrates the difference between class-specific and
generic features. In this figure, we show the features selected
for detecting a traffic sign. This is a well-defined object with a
very regular shape. When training a single detector using
boosting, most of the features are class-specific (the selected
features are pieces of the target object despite the fact that the
algorithm could choose pieces coming from 20 other object
categories) and behave like a template matching detector (see
Fig. 14b). But, when we need to detect thousands of other
objects, we cannot afford to develop such specific features for
each object. This is what we observe when training the same
detector jointly with 20 other objects. The new features
(Fig. 14c) are more generic (configuration of edges), which can
be reused by other objects.

3.5 The Number of Features Needed Is
Approximately Logarithmic in the Number of
Classes

One important consequence of feature sharing is that the
number of features needed grows sublinearly with respect to
the number of classes. Fig. 15a shows the number of features
necessary (vertical axis) to obtain a fixed performance as a
function of the number of object classes to be detected
(horizontal axis). When using C' independent classifiers, the

g‘

(0]
-

1

i]-1a

A]

(2]
~

= HEE- -

£

L)
ENCIEE o - B

Fig. 14. Specific versus generic features for object detection. (a) An object
with very little intraclass variation. (b) Selected features by a single
detector. When training an independent detector, the system learns
template-like filters. (c) When trained jointly with 20 other classes, the
system learns more generic, wavelet-like filters.

864 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.5, MAY 2007

250 - - - -
Total number of features 30F Number of features
for all the classes for a single class
200 e Shared features 25r
= = Class-specific features
¢
Al 20}
150 7 |J
’
’
J ’ 15+
100} VAR <
10+]
/
\ -
50} d LARd %\ - {_ | [P
’ %] % |
% ‘ ' 30 % 30

10 20 10 20
Number of object classes Number of object classes

(a) (b)

Fig. 15. Comparison of the efficiency of class-specific and shared
features to represent many object classes (in this experiment, we used
29 object classes by adding to 21 previous classes frontal faces, parking
meter, pot, paper cup, bookshelf, desk, laptop, and fire hydrant).
(a) Total number of features needed to reach a given classification
performance for all the objects (area under the ROC equal to 0.95). The
results are averaged across 20 training sets and different combinations
of objects. Error bars correspond to 80 percent interval. As we increase
the number of objects to be represented, the number of features
required to keep performance constant increases linearly for class-
specific features and sublinearly for shared features. (b) Number of
features allocated for each object class. When sharing features, the
features become less informative for a single class, and we therefore
need more features per class to achieve the same performance
compared to using class-specific features.

complexity grows linearly, as expected. However, when
shared features are used, the complexity seems to grow as
log(C). (A similar result has been reported by Krempp et al.
([18]) using character detection as a test bed.)

When the system is required to represent an increasing
number of object categories, each shared feature becomes less
informative for a single object class and, therefore, more
features are required for achieving the same detection
performance than if we were using class-specific features
(Fig. 15b). However, the fact that we can allocate more features
for each object by reusing features from other object classes
results in a reduced set of features (Fig. 15a). Fig. 15b explains
why class-specific features are the preferred representation
when studying representations for single object classes.
Although thisis the goal of some computer vision applications
(e.g., car detection), the human visual system is confronted
with a more general multiclass object recognition problem.

Both graphs in Fig. 15 show a trade-off between the
efficiency of the multiclass object representation and the

30

0

[P
.y

! 1

»

[] q,“

L
L -

representation of a single object class. A useful strategy
would be to devote class-specific features for classes of
special interest. For instance, faces play an important role in
human vision and area IT contains cells selective for faces
and parts of faces. Face-specific features emerge when we
indicate to the algorithm that a larger efficiency is required
for that object class (this is done by increasing the penalty of
classification errors for the face-class). The resulting visual
dictionary contains generic features (shared across many
object classes) and face-specific features devoted to an
efficient encoding of faces (see Section 6).

3.6 Loss Function for Multiclass Object Detection

We have given the same weight to all errors. But, some
mislabelings might be more important than others. For
instance, it is not a big error if a mug is mislabeled as a cup,
or if a can is mislabeled as a bottle. However, if a frontal view
of a car is mislabeled as a door, that could be hazardous.
Changing the loss function will have consequences for
deciding which objects will share more features. The more
features that are shared by two objects, the more likely it is
that they are going to be confused at the detection stage.

4 MuLTIVIEW OBJECT DETECTION

When building view invariant object detectors, the standard
approach is to discretize the space of poses (see Fig. 16) and
to implement a set of binary classifiers, each one tuned to a
particular pose (e.g., [30]). In this section, we discuss how to
train a single multiview classifier that exploits features that
are shared across views.

One problem when discretizing the space of poses is to
decide how fine the discretization should be. The finer the
sampling, the more detectors we will need and, hence, the
larger the computational cost. However, when training the
detectors jointly, the computational cost does not blow up in
this way: If we sample too finely, we find that many of the
views are quite similar and, hence, can share many features.

In the case of multiple views, some objects have poses
that look very similar. For instance, in the case of a car, both
frontal and back views have many common features, and
both detectors should share a lot of computations. How-
ever, in the case of a computer monitor, the front and back
views are very different, and we will not be able to share
features. Our algorithm will share features as much as
possible, but only if it does not hurt performance.

Fig. 17 shows the detection results obtained on the
PASCAL data set [8], which contains a challenging set of cars
with multiple views. We trained a set of classifiers H (v, c, ;)
for the car class and pose 6; (with some tolerance). For those
patches in which the detector is above the detection threshold,

Fig. 16. Examples of pose variations for cars and screens from the LabelMe data set (the angles are approximate).

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION 865

(@)

PASCAL Cars 2 RPC Curves
1 s

~ = FranceTelecom: pascal_develtest
w— specific-1-800
— — TSkpLSA (Fergus)
s shared-1-100
Constellation (Fergus)
s 5peCfic-50-300
Darmstadt: ISMbigd
Darmstadt: ISMSVMbig4
s shared-50-300
INRIA: dalal: ndalal_competition_number_6

0.9

0.8

0.7

0.6

0.5

Precision

0.4

0.3

0.2

0.1

3 0.4 0.5

0 0.1 0.

(b)

Fig. 17. (a) Detection results on images from the PASCAL collection (cars test set 2 [8]). The classifier is trained on 12 views of cars from the
LabelMe data set (50 positive examples for each view and 12,860 background samples) and uses 300 shared features. The detection results are
organized according to the confidence of the detector (from high precision/low recall to low precision/high recall). The first row’s images are randomly
selected among the most confident detections. Each row represents a different point in the precision-recall curve. (b) Precision-recall curves
comparing our algorithm with algorithms evaluated during the PASCAL challenge.

mazx;{H(v,c,0;)} > th, we can estimate the pose of the object
as 0 = argmaxy,{H (v, c,6;)}. Fig. 17a shows some detection
results ranked according to confidence of the detector. The
different aspect ratios of the bounding boxes correspond to
the hypothesized car orientations.

Fig. 17b compares performances with respect to other
algorithms from the PASCAL challenge [8] and also from
[11]. Our algorithm is evaluated in four versions:

1. one training sample per view, 800 features (rounds
of boosting), and no sharing (referenced in the figure
as specific-1-800),

2. one training sample/view, 100 features, and sharing
(shared-1-100),

3. 50 training samples/view, 300 features, and no
sharing (specific-50-300), and

4. 50 training samples/view, 300 features with sharing
(shared-50-300).

Versions 1 and 2 evaluate the ability of the algorithms to
generalize from few training examples (note that without
sharing features, generalization is poor and itis not a function
of how many features are used by the classifier, see next
section). Versions 3 and 4 evaluate performances for the same
computational cost. Note that, if the algorithm can use as
much training data as it wants and use as many computations
as needed, then there will not be any difference between
sharing and no sharing features in this framework.

5 LEARNING FROM FEW EXAMPLES: MULTICLASS
VERSUS MULTIVIEW

Another important consequence of joint training is that the
amount of training data required is reduced. Fig. 9 shows the
ROC for the 21 objects trained with 20 samples per object, and
also with only two samples per objects. When reducing the
amount of training, some of the detectors trained in isolation

perform worse than chance level (which will be the diagonal
on the ROC), which means that the selected features were
misleading. This is due to the lack of training data, which
hurts the isolated method more. In the case where we are
training C' object class detectors and we have N positive
training examples for each class, by jointly training the
detectors, we expect that the performance will be equivalent
to training each detector independently with N° positive
examples for each class, with N < N¢ < NC. The number of
equivalent training samples N will depend on the degree of
sharing between objects.

To get an estimate of how much larger N¢ is compared to
N, we ran two experiments in which the classes have
different degrees of similarity. In the first experiment, we
used 12 different object classes; in the second, we used
12 different views of a car (see previous section). For this
comparison, we used 600 features in the dictionary and
1,000 negative examples in the two experiments. We used
images from the LabelMe data set for training and testing.

Intuitively, we expect that more features will be shared in
the multiview case than in the multiclass case. The experiment
confirms this intuition. Specifically, we find that, in the
multiclass case, each feature was shared among 5.4 classes on
average, whereas, in the multiview case, each feature was
shared among seven classes on average. In Fig. 18, we see that
that, in the multiclass case, N¢ =~ 2.1N (i.e., we need to double
the size of the training set to get the same performance out of
class-specific features) and that, in the multiview case, N¢ ~
4.8N (i.e., joint training effectively increases the training set
by almost a factor of 5).

6 FEATURE SHARING APPLIED TO FACE DETECTION
AND RECOGNITION
Feature sharing may be useful in systems requiring

different levels of categorization. If we want to build a
system to perform both class detection (e.g., faces versus

866

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.5, MAY 2007

0.95} -

Average area under ROC
=)
X

o w— Shared features

f
I
I
0.8}:4 -
|
|
I
1
1

o Class—spemﬁc features |

1 5 10 20
Number of training examples per class

(a)

50

1 g e =
J Sl i g s - —
095/ =7
Q g d
e) / :
& ool 1
PRl e e e
g)
208501
A
l.
(o)
g 1
o
<0.751..
|
07l i
1 5 10 20 50

Number of training examples per class

(b)

Fig. 18. Detection performance as a function of number of training examples per class. (a) Twelve objects of different categories. (b) Twelve views of
the same object class. Sharing features improves the generalization when few training samples are available, especially when the classes have
many features in common (case b). The boosting procedure (both with class-specific and shared features) is run for as many rounds as necessary to

achieve maximal performance on the test set.

background) and instance-level categorization (e.g., recog-
nition of specific faces), a common approach is to use a two
stage system: The first stage is built by training a generic
class detector (to detect any face), and the second stage is
built by training a dedicated classifier to discriminate
between specific instances (e.g., my face versus all others).

By applying the feature sharing approach, we can train one
classifier to solve both tasks. The algorithm will find the
commonalities between the object instances, deriving generic
class features (shared among all instances) and specific class
features (used for discriminating among classes). This
provides a natural solution that will adapt the degree of
feature sharing as a function of intraclass variability.

Toillustrate the feature sharing approach, we have trained
a system to do face detection and emotion recognition (the
same approach will apply for other intraclass discriminations
like person recognition, gender classification, etc.). We use
the MacBrain Face Stimulus® database (Fig. 19). There are 16
emotions and 40 faces per emotion. We use five faces of each
class to build the feature dictionary (2,000 features). For
training, we used 20 additional faces and 1,000 background
patches selected randomly from images. The test is per-
formed on the remaining faces and additional background
patches. The joint classifier is trained to differentiate the faces
from the background (detection task) and also to differentiate
between the different emotions (recognition task).

Fig.20shows the features selected and the sharing between
the different emotion categories. The first five features are
shared across all classes. Therefore, they contribute exclu-
sively to the task of detection and not to the recognition. For
instance, the smiling-face detector will have a collection of
features that are generic to all faces, as part of the difficulty of
the classification is in the localization of the face itself in a
cluttered scene. The training of a specific class detector will
benefit from having examples from other expressions. Note
that the features used for the recognition (i.e., not shared
among all classes) also contribute to the detection.

2. Development of the MacBrain Face Stimulus Set was overseen by Nim
Tottenham and supported by the John D. and Catherine T. MacArthur
Foundation Research Network on Early Experience and Brain Develop-
ment. Please contact Nim Tottenham at tott0006@tc.umn.edu for more
information concerning the stimulus set.

Fig. 21 summarizes the performances of the system on
detection and emotion recognition. The efficiency of the
final system will also be a function of the richness of the
dictionary of image features used. Here, we use image
patches and normalized correlation for computing image
features, as in the previous sections.

Recently, it has become popular to detect objects by
detecting their parts and checking that they satisfy certain
spatial constraints (see, e.g., [12], [10]). Our algorithm
implicitly does this: the spatial mask is a way of requiring
that the fragment occurs in the desired place. However, the
fragments that are chosen do not have any special semantic
meaning [36]. For example, Fig. 20 shows the features we
learn for faces; they do not have a clean correspondence
with nameable parts like eyes, nose, mouth, etc.

7 RELATED WORK

We first discuss work from the computer vision literature and
then discuss work from the machine learning community.

7.1 Multiclass Object Detection

There has been a large amount of work on object detection
and classification. Here, we only mention results that are
concerned with multiclass object detection in clutter.
Perhaps the closest previous work is by Krempp et al.
[18]. They present a system that learns to reuse parts for
detecting several object categories. The system is trained
incrementally by adding one new category at each step and
adding new parts as needed. They apply their system to

20220

SurprisedOpen SadOpen SadClose NervousOpen NervousClose HappyExtreme HappyOpen HappyClose

A2L2AAMAO

FearClose DisgustOpen DisgustClose CalmOpen CalmClose AngryOpen AngryClose

Fig. 19. Example of the emotions used.

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION

AngryClose
AngryOpen
CalmClose
CalmOpen
DisgustClose
DisgustOpen
FearClose
FearOpen
HappyClose
SurprisedOpen
HappyOpen
NervousClose
NervousOpen
SadClose
SadOpen

867

Generic features
(Detection)

Intra-class specific features
(Detection and recognition)

Fig. 20. Sharing matrix for face detection and emotion classification. This matrix shows the features selected using 30 rounds of boosting. The (face)
generic features are used to distinguish faces from nonfaces (detection task), while the intraclass specific features perform both detection
(distinguish faces from the background) and recognition (distinguish among face categories). Here, the degree of sharing is larger than the sharing

obtained in the multiclass and multiview experiments.

1
0.8 Shared features
0.96
0.94
g 092
g 09 _
3 0.88 Class-specific
8 features
0.86
0.84
0.82
08 05 T 15 2 25 5 335 4 453
False alarms rate x1073

(@)

True class

AngryCloser 55145 0 0 5 0 0 0 0 059 90
AngryOpenr 9 640 0 5 5 0 0 50 0 5 0 9 0
CalmClosef 0 0 45180 0 0 0 0 0 0 270 0 9
CalmOpenr 0 0 14 320 0 0 9 0 0 5 18230 0
DisgustCloser 145 5 5 459 0 0 0 0 5 0 0 9 5
DisgustOpenr 9 9 5 0 5 500 0 0 9 5 0 0 5 5
FearClosesr 0 0 9 5 0 5 685 0 0 0 5 0 0 5
FearOpent 0 0 0 S 0 0 18550 180 0 5 0 O
HappyCloser 0 0 0 0 5 5 5 0 410 369 0 0 0
SurprisedOpenr 0 0 0 0 0 5 0 235 640 0 5 0 0
HappyOpenr 0 0 0 0 145 0 0 9 0 730 0 0 O
NervousCloser 0 5369 0 55 0 0 0 0 275 9 0
NervousOpent 0 5 5 9 0 5 0 0 0 0 5 36360 0
SadCloser 9 5 0 0 55 9 5 0 0 0 145450
SadOpent 0 0 0 5 5 9 0 0 00 00 9 0 73
2 4 6 8 10 12 14 15

Assigned class

(b)

Fig. 21. This figure evaluates the performances of the joint classifier by splitting both tasks, detection and recognition. (a) ROC for face detection and
(b) confusion matrix for emotion classification with 30 shared features and 15 emotion categories. The numbers correspond to percentages.

detecting mathematical characters on a background com-
posed of other characters. They show that the number of
parts grows logarithmically with respect to the number of
classes, as we have found. However, they do not jointly
optimize the shared features, and they have not applied
their technique to real-world images.

A-related piece of work is by Amitetal. [3]. They describe a
system for multiclass and multipose object detection in a
coarse-to-fine search. They model the joint distribution of
poses between different objects in order to get better results
than using independent classifiers. Their CTF search yields
candidate locations which are then validated using a
generative model.

Fei-Fei et al. [9] propose a model based on the geometric
configuration of parts; each partis represented as a local PCA
template. They impose a prior on the model parameters for
each class, which encourages each class to be similar, and
allows the system to learn from small sample sizes. However,
this is a generative model, not a discriminative one, and has

runtime complexity (), where d is the number of interest
point detections and N is the number of model parts. Hence,
it is too expensive to detect objects in really cluttered images.
LeCun et al. [21] use Convolutional Neural Networks in
order tolearn to classify several toy objects on backgrounds of
moderate complexity. Since the hidden layers are shared by
all the classes, they learn common features. We discuss this in
more detail below, when we discuss multitask learning.
More recently, Bernstein and Amit [5] show that one can
use clustering (EM applied to a mixture of bernoulli-product
models) to discover “features,” or little patches, which can
thenserve as a universal dictionary for subsequent generative
classifiers. In particular, the codebook or dictionary is
constructed by clustering patches of binary oriented-edge
filtered images; new images are then recoded in terms of
which codeword occurs where and a new mixture model, one
per class, is then fitted to this transformed data. However, the
dictionary of patches is shared across classes. They demon-
strate results on handwritten digits, Latex symbols, and the

868 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO.5, MAY 2007

UIUC car-side data set. Transferring knowledge between
objects to improve generalization has also been studied in
several recent papers [4], [17], [34].

7.2 Multiclass Classification
As mentioned in the introduction, the insight that learning to
solve multiple tasks at once is easier than solving them
separately has been exploited in the field of “multiple task
learning” [6] or “inductive transfer” [32]. The vast majority of
this work has focused on the case where the classifier to be
learned is a feedforward neural network. In this case, the
hidden layer is naturally shared amongst the output classes.’

The algorithm proposed in this paper is also related to
the idea of error correcting output codes (ECOC) developed
by Dietterich and Bakiri [7]. This is a way of converting
binary classifiers into multiclass classifiers [2]. The idea of
ECOC is to construct a code matrix pu with entries in
{—1,0,+1}. There is one row per class and one column for
each subset being considered. A binary classifier is fit for
each column; the 1s in the column specify which classes to
group together as positive examples, and the —1s specify
which classes to treat as negative examples; the 0 classes are
ignored. Given an example v, each column classifier is
applied to produce a bit-vector, (f1(v),..., f,(v)), where n is
the number of columns. The estimated class label is the one
corresponding to the row which is closest in Hamming
distance to this bit-vector.

The goal is to design encodings for the classes that are
resistant to errors (misclassifications of the individual bits).
There are several possible code matrices:

1. phassize C' x C and has +1 on the diagonal and —1
everywhere else; this corresponds to one-against-all
classification.

2. p has size € x (§) in which each column corre-
sponds to a distinct pair of labels z;,z; for this
column, p has +1 in row z;, —1 in row z,, and 0 in all
other rows; this corresponds to building all pairs of :
versus j classifiers [15].

3. phas size C x 2¢ — 1 and has one column for every
nonempty subset; this is the complete case.

4. pis designed randomly and is chosen to ensure that
the rows are maximally dissimilar (i.e., so the
resulting code has good error-correcting properties).

Allwein et al. [2] show that the popular one-against-all
approach is often suboptimal, but that the best code matrix is
problem dependent. Our algorithm learns the best possible
subset to use at each round. Another difference between our
approach and the ECOC framework is how we use the
column (subset) classifiers. In ECOC, they classify an
example by running each column classifier and looking for
the closest matching row in the code matrix. In our algorithm,
we add the output of the individual column (subset)
classifiers together as in a standard additive model.

3. An additive model of boosted stumps is like a two layer perceptron,
where the mth hidden unit acts like a weighted linear threshold unit:
hy(v) = ad(v/ > @) +b. The main difference from standard multilayer
perceptrons is the learning procedure: Instead of learning all parameters
at once using backpropagation (gradient descent), the parameters are
learned sequentially using weighted least squares plus exhaustive search
(although boosting can be viewed as gradient descent in a function space
[13].) In practice, boosting is orders of magnitude faster than backprop. It is
also more general in the sense that the weak learners do not have to be
simple linear threshold units (decision stumps).

8 CONCLUSION

We have introduced an algorithm for multiclass object
detection that shares features across objects. The result is a
classifier that runs faster (since it computes fewer features)
and requires less data to train (since it can share data across
classes) than independently trained classifiers. In particular,
the number of features required to reach a fixed level of
performance grows sublinearly with the number of classes,
as opposed to the linear growth observed with indepen-
dently trained classifiers.

We have applied the algorithm to the problem of
multiclass, multiview object detection in clutter. The jointly
trained classifier significantly outperforms standard boost-
ing (which is a state-of-the-art method for this problem)
when we control for computational cost (by ensuring that
both methods use the same number of features). We believe
the computation of shared features will be an essential
component of object recognition algorithms as we scale up
to large numbers of object classes.

ACKNOWLEDGMENTS

The authors acknowledge support from US National
Science Foundation contract 1IS-0413232, the National
Geospatial-Intelligence Agency (NGA-NEGI), DARPA con-
tract DABT63-99-1-0012, and the Nippon Telegraph and
Telephone Corporation as part of the NTT/MIT Collabora-
tion Agreement.

REFERENCES

[1] S. Agarwal, A. Awan, and D. Roth, “Learning to Detect Objects in
Images via a Sparse, Part-Based Representation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475-
1490, Nov. 2004.

[2] E. Allwein, R. Schapire, and Y. Singer, “Reducing Multiclass to
Binary: A Unifying Approach for Margin Classifiers,” J. Machine
Learning Research, pp. 113-141, 2000.

[3] Y. Amit, D. Geman, and X. Fan, “Computational Strategies for
Model-Based Scene Interpretation for Object Detection,” 2003.

[4] E. Bart and S. Ullman, “Cross-Generalization: Learning Novel
Classes from a Single Example by Feature Replacement,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2005.

[5S] E.Bernstein and Y. Amit, “Part-Based Statistical Models for Object
Classification and Detection,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2005.

[6] R.Caruana, “Multitask Learning,” Machine Learning, vol. 28, no. 1,
pp. 41-75, 1997.

[71 T.G. Dietterich and G. Bakiri, “Solving Multiclass Learning
Problems via ECOCs,”]. AI Research, vol. 2, pp. 263-286, 1995.

[8] M. Everingham, A. Zisserman, C. Williams, L. Van Gool, M. Allan,
C. Bishop, O. Chapelle, N. Dalal, T. Deselaers, G. Dorko, S.
Dulffner, J. Eichhorn, J. Farquhar, M. Fritz, C. Garcia, T. Griffiths,
F. Jurie, D. Keysers, M. Koskela, J. Laaksonen, D. Larlus, B. Leibe,
H. Meng, H. Ney, B. Schiele, C. Schmid, E. Seemann,]. Shawe-
Taylor, A. Storkey, S. Szedmak, B. Triggs, I. Ulusoy, V. Viitaniemi,
and J. Zhang, “The 2005 Pascal Visual Object Classes Challenge,”
Proc. First PASCAL Challenges Workshop, 2005.

[9] L. Fei-Fei, R. Fergus, and P. Perona, “A Bayesian Approach to
Unsupervised One-Shot Learning of Object Categories,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2003.

[10] P. Felzenszwalb and D. Huttenlocher, “Pictorial Structures for
Object Recognition,” Int’l |. Computer Vision, vol. 61, no. 1, 2005.

[11] R. Fergus, “Visual Object Category Recognition,” PhD thesis,
Univ. of Oxford, 2005.

[12] R.Fergus, P. Perona, and A. Zisserman, “Object Class Recognition
by Unsupervised Scale-Invariant Learning,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2003.

[13] J. Friedman, “Greedy Function Approximation: A Gradient
Boosting Machine,” Annals of Statistics, vol. 29, pp. 1189-1232, 2001.

TORRALBA ET AL.: SHARING VISUAL FEATURES FOR MULTICLASS AND MULTIVIEW OBJECT DETECTION 869

(14]

[15]

[16]

(17

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic
Regression: A Statistical View of Boosting,” Annals of Statistics,
vol. 28, no. 2, pp. 337-374, 2000.

T. Hastie and R. Tibshirani, “Classification by Pairwise Coupling,”
Annals of Statistics, vol. 26, pp. 451-471, 1998.

B. Heisele, T. Serre, S. Mukherjee, and T. Poggio, “Feature
Reduction and Hierarchy of Classifiers for Fast Object Detection
in Video Images,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2001.

M. Fink, K. Levi, and Y. Weiss, “Learning from a Small Number of
Training Examples by Exploiting Object Categories,” Proc. Work-
shop Learning in Computer Vision, 2004.

S. Krempp, D. Geman, and Y. Amit, “Sequential Learning of
Reusable Parts for Object Detection,” technical report, CS Johns
Hopkins, 2002, http:/ /cis.jhu.edu/cis-cgi/cv/cisdb/pubs/
query?id=geman.

T. Kubota and C.O. Alford, “Computation of Orientational Filters
for Real-Time Computer Vision Problems I: Implementation and
Methodology,” Real-Time Imaging, vol. 1, pp. 261-281, 1995.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

Y. LeCun, F.-J. Huang, and L. Bottou, “Learning Methods for
Generic Object Recognition with Invariance to Pose and Lighting,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2004.

B. Leibe and B. Schiele, “Analyzing Appearance and Contour
Based Methods for Object Categorization,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, June 2003.

R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical Analysis
of Detection Cascades of Boosted Classifiers for Rapid Object
Detection,” Proc. DAGM 25th Pattern Recognition Symp., 2003.
D.G. Lowe, “Object Recognition from Local Scale-Invariant
Features,” Proc. Int’l Conf. Computer Vision, pp. 1150-1157, 1999.
H. Murase and S. Nayar, “Visual Learning and Recognition of 3-D
Objects from Appearance,” Int’l |. Computer Vision, vol. 14, pp. 5-24,
1995.

C. Papageorgiou and T. Poggio, “A Trainable System for Object
Detection,” Int’l]. Computer Vision, vol. 38, no. 1, pp. 15-33, 2000.
B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman,
“Labelme: A Database and Web-Based Tool for Image Annotation,”
Technical Report 025, Massachusetts Inst. of Technology, Al Lab,
2005.

R. Schapire, “The Boosting Approach to Machine Learning: An
Overview,” Proc. MSRI Workshop Nonlinear Estimation and Classi-
fication, 2001.

R. Schapire and Y. Singer, “BoosTexter: A Boosting-Based System
for Text Categorization,” Machine Learning, vol. 39, nos. 2/3,
pp. 135-168, 2000.

H. Schneiderman and T. Kanade, “A Statistical Model for 3D
Object Detection Applied to Faces and Cars,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2000.

S. Lazebnik, C. Schmid, and J. Ponce, “Affine-Invariant Local
Descriptors and Neighborhood Statistics for Texture Recognition,”
Proc. Int’l Conf. Computer Vision, 2003.

Machine Learning, special issue on inductive transfer, S. Thrun and
L. Pratt, eds., 1997.

A. Torralba, K.P. Murphy, and W. Freeman, “Sharing Features:
Efficient Boosting Procedures for Multiclass Object Detection,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 762-
769, 2004.

E. Sudderth, A. Torralba, W.T. Freeman, and A. Willsky,
“Learning Hierarchical Models of Scenes, Objects, and Parts,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005.

S. Treitel and J. Shanks, “The Design of Multistage Separable
Planar Filters,” IEEE Trans. Geoscience Electronics, vol. 9, no. 1,
pp. 10-27, 1971.

M. Vidal-Naquet and S. Ullman, “Object Recognition with
Informative Features and Linear Classification,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2003.

P. Viola and M. Jones, “Robust Real-Time Object Detection,” Int’l
J. Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

Antonio Torralba is a research scientist in the
Department of Computer Science and Atrtificial
Intelligence at the Massachusetts Institute of
Technology (MIT). After he received a degree in
telecommunications engineering, from the Uni-
versidad Politécnica de Cataluia, Spain, he was
awarded the PhD degree in signal, image, and
speech processing from the Institut National
Polytechnique de Grenoble, France. Thereafter,
he received postdoctoral training in the Brain
and Cognitive Science Department and the Computer Science and
Artificial Intelligence Laboratory at MIT. His research focuses on
probabilistic methods for scene and object recognition.

Kevin P. Murphy received the PhD degree in
computer science from the University of Califor-
nia, Berkeley in 2002. He has been an assistant
professor in the Departments of Computer
Science and Statistics at the University of British
Columbia (UBC) since 2004. Prior to joining
UBC, he worked at the Massachusetts Institute
of Technology as a postdoctoral researcher for
two years.

William T. Freeman received the PhD degree
in computer vision in 1992 from the Massachu-
setts Institute of Technology (MIT), and the BS
degree in physics and the MS degree in
electrical engineering from Stanford in 1979,
and the MS degree in applied physics from
Cornell in 1981. He is a professor of electrical
engineering and computer science at the Com-
puter Science and Artificial Intelligence Labora-
tory (CSAIL) at MIT, joining the faculty in 2001.
From 1992-2001, he worked at Mitsubishi Electric Research Labs
(MERL), in Cambridge, Massachusetts, most recently as a senior
research scientist and associate director. His current research interests
include machine learning applied to computer vision, Bayesian models
of visual perception, and computational photography. In 1997, he
received the Outstanding Paper prize at the Conference on Computer
Vision and Pattern Recognition for work on applying bilinear models to
“separating style and content.” Previous research topics include
steerable filters and pyramids, the generic viewpoint assumption, color
constancy, and computer vision for computer games. He holds
25 patents. From 1981-1987, he worked at the Polaroid Corporation,
and during 1987-1988, was a foreign expert at the Taiyuan University of
Technology, China. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

