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Abstract—With the advent of the Internet, billions of images are now freely available online and constitute a dense sampling of the

visual world. Using a variety of nonparametric methods, we explore this world with the aid of a large data set of 79,302,017 images

collected from the Web. Motivated by psychophysical results showing the remarkable tolerance of the human visual system to

degradations in image resolution, the images in the data set are stored as 32 � 32 color images. Each image is loosely labeled with

one of the 75,062 nonabstract nouns in English, as listed in the Wordnet lexical database. Hence, the image database gives

comprehensive coverage of all object categories and scenes. The semantic information from Wordnet can be used in conjunction with

the nearest neighbor methods to perform object classification over a range of semantic levels, minimizing the effects of labeling noise.

For certain classes that are particularly prevalent in the data set, such as people, we are able to demonstrate a recognition

performance comparable to class-specific Viola-Jones style detectors.

Index Terms—Object recognition, tiny images, large data sets, Internet images, nearest neighbor methods.
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1 INTRODUCTION

WITH overwhelming amounts of data, many problems
can be solved without the need for sophisticated

algorithms. One example in the textual domain is Google’s
“Did you mean?” tool, which corrects errors in search queries,
not through a complex parsing of the query but by
memorizing billions of query-answer pairs and suggesting
the one closest to the user’s query. In this paper, we explore a
visual analog to this tool by using a large data set of 79 million
images and the nearest neighbor matching schemes.

When very many images are available, simple image

indexing techniques can be used to retrieve images with

similar object arrangements to the query image. If we have a

big enough database, then we can find, with high

probability, images visually close to a query image,

containing similar scenes with similar objects arranged in

similar spatial configurations. If the images in the retrieval

set are partially labeled, then we can propagate the labels to

the query image, thus performing classification.

Nearest neighbor methods have been used in a variety of

computer vision problems, primarily for interest point

matching [5], [19], [28]. They have also been used for global

image matching (e.g., estimation of human pose [36]),

character recognition [4], and object recognition [5], [34]. A

number of recent papers have used large data sets of images

in conjunction with purely nonparametric methods for

computer vision and graphics applications [22], [39].

Finding images within large collections is the focus of the

content-based image retrieval (CBIR) community. Their

emphasis on really large data sets means that the chosen

image representation is often relatively simple, e.g., color

[17], wavelets [42], or crude segmentations [9]. This enables

very fast retrieval of images similar to the query, for

example, the Cortina system [33] demonstrates real-time

retrieval from a 10 million image collection, using a

combination of texture and edge histogram features; see

Datta et al. for a survey of such methods [12].
The key question that we address in this paper is: How

big does the image data set need to be to robustly perform

recognition using simple nearest neighbor schemes? In fact,

it is unclear whether the size of the data set required is at all

practical since there are an effectively infinite number of

possible images the visual system can be confronted with.

What gives us hope is that the visual world is very regular

in that real-world pictures occupy only a relatively small

portion of the space of possible images.

Studying the space occupied by natural images is hard

due to the high dimensionality of the images. One way of

simplifying this task is by lowering the resolution of the

images. When we look at the images in Fig. 6, we can

recognize the scene and its constituent objects. Interestingly,

though, these pictures have only 32 � 32 color pixels (the

entire image is just a vector of 3,072 dimensions with 8 bits

per dimension), yet, at this resolution, the images already

seem to contain most of the relevant information needed to

support reliable recognition.
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An important benefit of working with tiny images is that it

becomes practical to store and manipulate data sets orders of

magnitude bigger than those typically used in computer

vision. Correspondingly, we introduce and make available to

researchers a data set of 79 million unique 32 � 32 color

images gathered from the Internet. Each image is loosely

labeled with one of 75,062 English nouns, so the data set

covers a very large number of visual object classes. This is

in contrast to existing data sets that provide a sparse

selection of object classes. In this paper, we will study the

impact on having very large data sets in combination with

simple techniques for recognizing several common object

and scene classes at different levels of categorization.

The paper is divided into three parts. In Section 2, we

establish the minimal resolution required for scene and

object recognition. In Sections 3 and 4, we introduce our

data set of 79 million images and explore some of its

properties. In Section 5, we attempt scene and object

recognition using a variety of nearest neighbor methods.

We measure performance at a number of semantic levels,

obtaining impressive results for certain object classes.

2 LOW-DIMENSIONAL IMAGE REPRESENTATIONS

A number of approaches exist for computing the gist of an

image, a global low-dimensional representation that cap-

tures the scene and its constituent objects [18], [32], [24]. We

show that very low-resolution 32 � 32 color images can be

used in this role, containing enough information for scene

recognition, object detection, and segmentation (even when

the objects occupy just a few pixels in the image).

2.1 Scene Recognition

Studies on face perception [1], [21] have shown that only
16 � 16 pixels are needed for robust face recognition. This
remarkable performance is also found in a scene recognition
task [31].

We evaluate the scene recognition performance of
humans as the image resolution is decreased. We used a
data set of 15 scenes that was taken from those in [14], [24],
[32]. Each image was shown at one of five possible
resolutions (82, 162, 322, 642, and 2562 pixels) and the
participant task was to assign the low-resolution picture to
one of the 15 different scene categories (bedroom, suburban,
industrial, kitchen, living room, coast, forest, highway,
inside city, mountain, open country, street, tall buildings,
office, and store).1 Fig. 1a shows human performance on
this task when presented with gray scale and color images2

of varying resolution. For gray-scale images, humans need
around 64 � 64 pixels. When the images are in color,
humans need only 32 � 32 pixels to achieve more than
80 percent recognition rate. Below this resolution, the
performance rapidly decreases. Therefore, humans need
around 3,000 dimensions of either color or gray-scale data
to perform this task. In Section 3, we show that 32 � 32 color
images also preserve a great amount of local information
and that many objects can still be recognized even when
they occupy just a few pixels.

2.2 Object Recognition

Recently, the PASCAL object recognition challenge evalu-
ated a large number of algorithms in a detection task for
several object categories [13]. Fig. 1b shows the perfor-
mances (ROC curves) of the best performing algorithms in
the car classification task (i.e., is there a car present in the
image?). These algorithms require access to relatively high-
resolution images. We studied the ability of human
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1. Experimental details: Six participants classified 585 color images as
belonging to one of the 15 scene categories from those in [14], [24], [32].
Images were presented at five possible resolutions (82, 162, 322, 642, and
2562). Each image was shown at five possible sizes using bicubic
interpolation to reduce pixelation effects that impair recognition. Interpola-
tion was applied to the low-resolution image with 8 bits per pixel and color
channel. Images were not repeated across conditions. Six additional
participants performed the same experiment, but with gray-scale images.

2. A recognition rate of 100 percent cannot be achieved in this data set as
there is no perfect separation between the 15 categories.

Fig. 1. (a) Human performance on scene recognition as a function of resolution. The green and black curves show the performance on color and

gray-scale images, respectively. For color 32 � 32 images, the performance only drops by 7 percent relative to full resolution, despite having 1/64th

the pixels. (b) Car detection task on the PASCAL 2006 test data set. The colored dots show the performance of four human subjects classifying tiny

versions of the test data. The ROC curves of the best vision algorithms (running on full resolution images) are shown for comparison. All lie below the

performance of humans on the tiny images, which rely on none of the high-resolution cues exploited by the computer vision algorithms. (c) Humans

can correctly recognize and segment objects at very low resolutions, even when (d) the objects in isolation cannot be recognized.



participants to perform the same detection task but using
very low-resolution images. Human participants were
shown color images from the test set scaled to have 32 pixels
on the smallest axis, preserving their aspect ratio. Fig. 1b
shows some examples of tiny PASCAL images. Each
participant classified between 200 and 400 images selected
randomly. Fig. 1b shows the performances of four human
observers that participated in the experiment. Although
around 10 percent of cars are missed, the performance is
still very good, significantly outperforming the computer
vision algorithms using full resolution images. This shows
that, even though the images are very small, they contain
sufficient information for accurate recognition.

Fig. 1c shows some representative 322 images segmented
by human subjects. Despite the low resolution, sufficient
information remains for reliable segmentation (more than
80 percent of the segmented objects are correctly recog-
nized), although any further decrease in resolution drama-
tically affects segmentation performance. Fig. 1d shows
crops of some of the smallest objects correctly recognized
when shown within the scene. Note that, in isolation, the
objects cannot be identified since the resolution is so low;
hence, the recognition of these objects within the scene is
almost entirely based on context.

Clearly, not all visual tasks can be solved using such low-
resolution images. But, the experiments in this section
suggest that 32 � 32 color images are the minimum viable
size for recognition tasks—the focus of the paper.

3 A LARGE DATA SET OF 32 � 32 IMAGES

As discussed in the previous sections, 32 � 32 color images
contain the information needed to perform a number of
challenging recognition tasks. One important advantage of
very low-resolution images is that it becomes practical to
work with millions of images. In this section, we will
describe a data set of 108 tiny images.

Current experiments in object recognition typically use
102-104 images spread over a few different classes, the
largest available data set being one with 256 classes [20].
Other fields, such as speech, routinely use 106 data points
for training since they have found that large training sets
are vital for achieving low errors rates in testing [2]. As the
visual world is far more complex than the aural one, it
would seem natural to use a very large set of training
images. Motivated by this and by the ability of humans to
recognize objects and scenes in 32 � 32 images, we have
collected a database of nearly 108 such images.

3.1 Collection Procedure

We use Wordnet [15], likely to have any kind of visual
consistency. We do this by extracting all nonabstract nouns
from the database, 75,062 of them in total. In contrast to
existing object recognition data sets that use a sparse
selection of classes, by collecting images for all nouns, we
have dense coverage of all visual forms.

We selected seven independent image search engines:
Altavista, Ask, Flickr, Cydral, Google, Picsearch, and
Webshots (others have outputs correlated with these). We
automatically download all the images provided by each
engine for all 75,846 nonabstract nouns. Running over

8 months, this method gathered 97,245,098 images in total.
Once intraword duplicates and uniform images (images
with zero variance) are removed, this number is reduced to
79,302,017 images from 75,062 words (around 1 percent of
the keywords had no images). Storing this number of
images at full resolution is impractical on the standard
hardware used in our experiments, so we downsampled the
images to 32 � 32 as they were gathered.3 The data set fits
onto a single hard disk, occupying 760 Gbytes in total. The
data set may be downloaded from http://people.csail.mit.
edu/torralba/tinyimages.

Fig. 2a shows a histogram of the number of images per
class. Around 10 percent of the query words are obscure, so
no images can be found on the Internet, but, for the majority of
words, a reasonable number of images are found. We place an
upper limit of 3,000 images/word to keep the total collection
time to a reasonable level. Although the gathered data set is
very large, it is not necessarily representative of all natural
images. Images on the Internet have their own biases (e.g.,
objects tend to be centered and fairly large in the image).
However, Web images define an interesting visual world for
developing computer vision applications [16], [37].

3.2 Characterization of Labeling Noise

Despite a number of recent efforts at image annotation [35],
[43], collecting images from the Web provides a powerful
mechanism for building large image databases orders of
magnitude larger than is possible with manual methods.
However, the images gathered by the engines are loosely
labeled in that the visual content is often unrelated to the
query word (for example, see Fig. 10). In this section, we
characterize the noise present in the labels. Among other
factors, the accuracy of the labels depends on the engine
used and the specificity of the term used for querying.

In Fig. 2b, we quantify the labeling noise using 3,526 hand-
labeled images selected by randomly sampling images out of
the first 250 images returned by each online search engine for
each word. A recall-precision curve is plotted for each search
engine, in which the horizontal axis represents the rank in
which the image was returned and the vertical axis is the
percentage of images that corresponded to the query.
Accuracy drops after the 100th image and then stabilizes at
around 44 percent correct on average.

The accuracy of online searchers also varies depending
on which terms were used for the query. Fig. 2c shows that
the noise varies for different levels of the Wordnet tree,
being more accurate when getting close to the leaves of the
tree. Fig. 2d shows a subset of the Wordnet tree used to
build our data set (the full tree contains > 40,000 leaves).
The number and color at each node correspond to the
percentage of images correctly assigned to the leaves of
each node. The more specific the terms are, the more likely
the images are to correspond to the query.
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3. Further comments. 1) Wordnet is a lexical dictionary, meaning that it
gives the semantic relations between words in addition to the information
usually given in a dictionary. 2) The tiny database is not just about objects. It
is about everything that can be indexed with Wordnet and this includes
scene-level classes such as streets, beaches, mountains, as well as category-
level classes, and more specific objects such as US presidents, astronomical
objects, and Abyssinian cats. 3) At present, we do not remove interword
duplicates since identifying them in our data set is nontrivial.



Various methods exist for cleaning up the data by
removing images visually unrelated to the query word.
Berg and Forsyth [7] have shown a variety of effective
methods for doing this with images of animals gathered
from the Web. Berg et al. [6] showed how text and visual
cues could be used to cluster faces of people from cluttered
news feeds. Fergus et al. [16] have shown the use of a
variety of approaches for improving Internet image search
engines. Li et al. [26] show further approaches to decreasing
label noise. However, due to the extreme size of our data
set, it is not practical to employ these methods. In Section 5,
we show that reasonable recognition performances can be
achieved despite the high labeling noise.

4 STATISTICS OF VERY LOW-RESOLUTION IMAGES

Despite 32 � 32 being very low resolution, each image lives
in a space of 3,072 dimensions. This is a very large space—if
each dimension has 8 bits, there are a total of 107;400 possible
images. This is a huge number, especially if we consider
that a human in 100 years only gets to see 1011 frames (at
30 frames/second). However, natural images only corre-
spond to a tiny fraction of this space (most of the images
correspond to white noise) and it is natural to investigate
the size of that fraction. A number of studies [10], [25] have
been devoted to characterizing the space of natural images
by studying the statistics of small image patches. However,
low-resolution scenes are quite different from patches
extracted by randomly cropping small patches from images.

Given a similarity measure, the question that we want to
answer is: How many images are needed so that, for any given
query image, we can always find a neighbor with the same class
label? Note that we are concerned solely with recognition
performance, not with issues of intrinsic dimensionality or
the like as explored in other studies of large collection of
image patches [10], [25]. In this section, we explore how the
probability of finding images with a similar label nearby
increases with the size of the data set. In turn, this tells us

how big the data set needs to be to give a robust recognition
performance.

4.1 Distribution of Neighbors as a Function of
Data Set Size

As a first step, we use the sum of squared differences (SSD)
to compare two images. We will later define other similarity

measures that incorporate invariances to translations and
scaling. The SSD between two images I1 and I2 (normalized

to have zero mean and unit norm)4 is

D2
ssd ¼

X

x;y;c

I1ðx; y; cÞ � I2ðx; y; cÞð Þ2: ð1Þ

Computing similarities among 7:9� 107 images is

computationally expensive. To improve speed, we index
the images using the first 19 principal components of the
7:9� 107 images (19 is the maximum number of compo-

nents per image such that the entire index structure can
be held in memory). The 1=f2 property of the power

spectrum of natural images means that the distance
between two images can be approximated using few
principal components (alternative representations using

wavelets [42] could also be used in place of the PCA
representation). We compute the approximate distance

D̂2
ssd ¼ 2� 2

PC
n¼1 v1ðnÞv2ðnÞ, where viðnÞ is the nth princi-

pal component coefficient for the ith image (normalized so
that

P
n viðnÞ

2 ¼ 1) and C is the number of components

used to approximate the distance. We define SN as the set of
N exact nearest neighbors and ŜM as the set of

M approximate nearest neighbors.
Fig. 3a shows the probability that an image, of index i

from the set SN is also inside ŜM : P ði 2 ŜM ji 2 SNÞ. The plot

corresponds to N ¼ 50. For the experiments in this section,
we used 200 images randomly sampled from the data sets
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4. Normalization of each image is performed by transforming the image
into a vector concatenating the three color channels. The normalization does
not change image color, only the overall luminance.

Fig. 2. Statistics of our database of tiny images. (a) A histogram of images per keyword collected. Around 10 percent of keywords have very few

images. (b) Performance of the various search engines (evaluated on hand-labeled ground truth). (c) Accuracy of the labels attached at each image

as a function of the depth in the Wordnet tree (deeper corresponds to more specific words). (d) Accuracy of labeling for different nodes of a portion of

the Wordnet tree.



and for which we computed the exact distances to all the

7:9� 107 images. Many images on the Web appear multiple

times. For the plots in these figures, we have manually

removed all of the image pairs that were duplicates.
Fig. 3b shows the number of approximate neighbors ðMÞ

that need to be considered as a function of the desired

number of exact neighbors ðNÞ in order to have a

probability of 0.8 of finding N exact neighbors. As the data

set becomes larger, we need to collect more approximate

nearest neighbors in order to have the same probability of

including the first N exact neighbors.
For the experiments in this paper, we use the following

procedure: First, we find the closest 16,000 images per

image. In Fig. 3a, we know that more than 80 percent of the

exact neighbors will be part of this approximate neighbor

set. Then, within the set of 16,000 images, we compute the

exact distances to provide the final rankings of neighbors.

Exhaustive search, used in all of our experiments, takes

30 seconds per image using the principle components

method. This can be dramatically improved through the use

of a kd tree to 0.3 seconds per query, if fast retrieval

performance is needed. The memory overhead of the

kd tree means that only 17 of the 19 PCA components can

be used. Devising efficient indexing methods for large

image databases [30], [19], [40] is a very important topic of

active research, but it is not the focus of this paper.
Fig. 4 shows several plots measuring various properties as

the size of the data set is increased. The plots use the

normalized correlation � between images (note that

D2
ssd ¼ 2ð1� �Þ). In Fig. 4a, we show the probability that the

nearest neighbor has a normalized correlation exceeding a

certain value. Each curve corresponds to a different data set

size. Fig. 4b shows a vertical section through Fig. 4a at the

correlations 0.8 and 0.9, plotting the probability of finding a

neighbor as the number of images in the data set grows. In

Fig. 4b, we see that a third of the images in the data set are

expected to have a neighbor with correlation > 0:8.
In Fig. 4c, we explore how the plots shown in Figs. 4a

and 4b relate to recognition performance. Three human

subjects labeled pairs of images as belonging to the same

visual class or not (pairs of images that correspond to

duplicate images are removed). The plot shows the

probability that two images are labeled as belonging to

the same class as a function of image similarity. As the

normalized correlation exceeds 0.8, the probability of

belonging to the same class grows rapidly. Hence, a simple

K-nearest neighbor approach might be effective with our

size of data set. We will explore this further in Section 5.
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Fig. 3. Evaluation of the method for computing the approximate nearest neighbors. These curves correspond to the similarity measure Dssd.
(a) Probability that an image from the set of exact nearest neighbors SN , with N ¼ 50, is inside the approximate set of nearest neighbors ŜM as a
function of M. (b) Number of approximate neighbors ðMÞ that need to be considered as a function of the desired number of exact neighbors ðNÞ in
order to have a probability of 0.8 of finding N exact neighbors. Each graph corresponds to a different data set size, indicated by the color code.
(c) Number of approximate neighbors ðMÞ that need to be considered as we reduce the number of principal components ðCÞ used for the indexing
(with N ¼ 50).

Fig. 4. Exploring the data set using Dssd. (a) Cumulative probability that the nearest neighbor has a correlation greater than �. Each of the colored

curves shows the behavior for a different size of data set. (b) Cross section of figure (a) plots the probability of finding a neighbor with correlation

> 0:9 as a function of data set size. (c) Probability that two images belong to the same category as a function of pixelwise correlation (duplicate

images are removed). Each curve represents a different human labeler.



4.2 Image Similarity Metrics

We can improve recognition performance using better
measures of image similarity. We now introduce two
additional similarity measures between a pair of normal-
ized images, I1 and I2, which incorporate invariances to
simple spatial transformations:

. In order to incorporate invariance to small transla-
tions, scaling, and image mirror, we define the
similarity measure:

D2
warp ¼ min

�

X

x;y;c

I1ðx; y; cÞ � T� I2ðx; y; cÞ½ �ð Þ2:

In this expression, we minimize the similarity by
transforming I2 (horizontal mirror; translations and
scaling up to 10 pixel shifts) to give the minimum
SSD. The transformation parameters � are optimized
by gradient descent [29].

. We allow for additional distortion in the images
by shifting every pixel individually within a 5 � 5
window to give minimum SSD. This registration
can be performed with more complex representa-
tions than pixels (e.g., Berg et al. [5]). In our case,
the minimum can be found by exhaustive evaluation
of all shifts, only possible due to the low resolution
of the images:

D2
shift ¼ min

jDx;yj�w

X

x;y;c

I1ðx; y; cÞ � Î2ðxþDx; yþDy; cÞ
� �2

:

In order to get better matches, we initialize I2 with
the warping parameters obtained after the optimiza-
tion of Dwarp, Î2 ¼ T�½I2�.

Fig. 5 shows a pair of images being matched using the
three metrics and shows the resulting neighbor images
transformed by the optimal parameters that minimize each
similarity measure. The figure shows two candidate
neighbors: one matching the target semantic category and
another one that corresponds to a wrong match. For Dwarp

and Dshift, we show the closest manipulated image to the
target. Dwarp looks for the best translation, scaling, and
horizontal mirror of the candidate neighbor in order to
match the target. Dshift further optimizes the warping

provided by Dwarp by allowing pixels to move in order to
minimize the distance with the target.

Fig. 5b shows two examples of query images and the
retrieved neighbors (sibling set) out of 79,302,017 images using
Dssd and Dshift. For speed, we use the same low-dimensional
approximation as described in the previous section by
evaluatingDwarp andDshift only on the first 16,000 candidates.
This is a good indexing scheme for Dwarp, but it results in a
slight decrease of performance for Dshift, which would
require more neighbors to be considered. Despite this, both
measures provide good matches, but Dshift returns closer
images at the semantic level. This observation will be
quantified in Section 5. Fig. 6 shows examples of query
images and sets of neighboring images, from our data set of
79,302,017 images, found using Dshift.

5 RECOGNITION

5.1 Wordnet Voting Scheme

We now attempt to use our data set for object and scene
recognition. While an existing computer vision algorithm
could be adapted to work on 32 � 32 images, we prefer to
use a simple nearest neighbor scheme based on one of the
distance metrics Dssd, Dwarp, or Dshift. Instead of relying on
the complexity of the matching scheme, we let the data to
do the work for us: The hope is that there will always be
images close to a given query image with some semantic
connection to it. The goal of this section is to show that the
performance achieved can match that of sophisticated
algorithms which use much smaller training sets.

An additional factor in our data set is the labeling noise.
To cope with this, we propose a voting scheme based
around the Wordnet semantic hierarchy. Wordnet [15]
provides semantic relationships between the 75,062 nouns
for which we have collected images. For simplicity, we
reduce the initial graph-structured relationships between
words to a tree-structured one by taking the most common
meaning of each word. The result is a large semantic tree
whose nodes consist of the 75,062 nouns and their
hypernyms, with all of the leaves being nouns Fig. 7c
shows the unique branch of this tree belonging to the nouns
“vise” and “chemist.”
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Fig. 5. (a) Image matching using distance metrics Dssd, Dwarp, and Dshift. Top row: After transforming each neighbor by the optimal transformation,

the sunglasses always result in a poor match. However, for the car example on the bottom row, the matched image approximates the pose of the

target car. (b) Sibling sets from 79,302,017 images found with distance metrics Dssd and Dshift. Dshift provides better matches than Dssd.



Recognition of a test image can be performed at multiple

semantic levels. Given the large number of classes in our data

set (75,062) and their highly specific nature, it is not practical

or desirable to classify each of the classes separately. Instead,

using the Wordnet hierarchy, we can perform classification at

a variety of different semantic levels. Therefore, instead of just

trying to recognize the noun “yellowfin tuna,” we may also

perform recognition at the level of “tuna,” “fish,” or “animal.”

This is in contrast to the current approaches to recognition

that only consider a single manually imposed semantic

meaning of an object or scene.

If classification is performed at some intermediate

semantic level, for example, using the noun “person,” we

need not only consider images gathered from the Internet

using “person.” Using the Wordnet hierarchy tree, we can

also draw on all images belonging to nouns whose

hypernyms include “person” (for example, “arithmeti-

cian”). Hence, we can massively increase the number of

images in our training set at higher semantic levels. Near

the top of the tree, however, the nouns are so generic (e.g.,

“object”) that the child images recruited in this manner

have little visual consistency, so their extra numbers may be

of little use in classification.5

Our classification scheme uses the Wordnet tree in the
following way: Given a query image, the neighbors are
found using some similarity measure (typically, Dshift). Each
neighbor in turn votes for its branch within the Wordnet
tree. Votes from the entire sibling set are accumulated
across a range of semantic levels, with the effects of the
labeling noise being averaged out over many neighbors.
Classification may be performed by assigning the query
image the label with the most votes at the desired height
(i.e., semantic level) within the tree, the number of votes
acting as a measure of confidence in the decision. In Fig. 7a,
we show two examples of this procedure, showing how
precise classifications can be made despite significant
labeling noise and spurious siblings. Using this scheme,
we now address the task of classifying images of people.
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Fig. 6. As we increase the size of the data set from 105 to 108 images, the quality of the retrieved set increases dramatically. However, note that we

need to increase the size of the data set logarithmically in order to have an effect. These results are obtained using Dshift as a similarity measure

between images.

5. The use of Wordnet tree in this manner implicitly assumes that
semantic and visual consistency are tightly correlated. While this might be
the case for certain nouns (for example, “poodle” and “dachshund”), it is
not clear how true this is in general. To explore this issue, we constructed an
interactive poster that may be viewed at http://csail.mit.edu.

Fig. 7. This figure shows two examples. (a) Query image. (b) First 16 of 80 neighbors found using Dshift. (c) Ground truth Wordnet branch describing

the content of the query image at multiple semantic levels. (d) Subtree formed by accumulating branches from all 80 neighbors. The number in each

node denotes the accumulated votes. The red branch shows the nodes with the most votes. Note that this branch substantially agrees with the

branch for vise and for person in the first and second examples, respectively.



5.2 Person Detection

In this experiment, our goal is to label an image as

containing a person or not, a task with many applications

on the Web and elsewhere. A standard approach would be

to use a face detector, but this has the drawback that the

face has to be large enough to be detected and must

generally be facing the camera. While these limitations

could be overcome by running multiple detectors, each

tuned to different view (e.g., profile faces, head and

shoulders, and torso), we adopt a different approach.
As many images on the Web contain pictures of people, a

large fraction (23 percent) of the 79 million images in our

data set have people in them. Thus, for this class, we are

able to reliably find a highly consistent set of neighbors, as

shown in Fig. 8. Note that most of the neighbors match not

only the category but also the location and size of the body

in the image, which varies considerably in the examples.
To classify an image as containing people or not, we use

the scheme introduced in Section 5.1, collecting votes from

the 80 nearest neighbors. Note that the Wordnet tree allows

us make use of hundreds of other words that are also

related to “person” (e.g., artist, politician, kid, taxi driver,

etc.). To evaluate performance, we used two different sets of

test images. The first consisted of a random sampling of

images from the data set. The second consisted of images

returned by Altavista using the query “person.”

5.2.1 Evaluation Using Randomly Drawn Images

There were 1,125 images randomly drawn from the data set
of 79 million (Fig. 8 shows six of them, along with some of
their sibling set). For evaluation purposes, any people
within the 1,125 images were manually segmented.6

Fig. 9b shows the classification performance as the size of
the person in the image varies. When the person is large in
the image, the performance is significantly better than when
the person is small. This occurs for two reasons: First, when
the person is large, the picture become more constrained
and, hence, finding good matches becomes easier. Second,
the weak labels associated with each image in our data set
typically refer to the largest object in the image. Figs. 9c and
9d show precision-recall curves for different similarity
measures and varying data set size, respectively, with the
full 79 million images and Dshift yielding the best
performance.

5.2.2 Evaluation Using Altavista Images

Our approach can also be used to improve the quality of
Internet image search engines. We gathered 1,018 images
from Altavista image search using the keyword “person.”
Each image was classified using the approach described in
Section 5.1. The set of 1,018 images was then reordered
according to the confidence of each classification. Fig. 10a
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Fig. 8. Some examples of test images belonging to the “person” node of the Wordnet tree, organized according to body size. Each pair shows the

query image and the 25 closest neighbors out of 79 million images using Dshift with 32 � 32 images. Note that the sibling sets contain people in

similar poses, with similar clothing to the query images.

Fig. 9. (a) Examples showing the fraction of the image occupied by the head. (b)-(d) ROC curves for people detection (not localization) in images

drawn randomly from the data set of 79 million as a function of (b) head size, (c) similarity metrics, and (d) data set size using Dshift.

6. The images and segmentations are available at http://labelme.csail.
mit.edu/browseLabelMe/static_web_tinyimages_testset.html.



shows the initial Altavista ranking, while Fig. 10b shows the

reordered set, showing a significant improvement in quality.
To quantify the improvement in performance, the

Altavista images were manually annotated with bounding
boxes around any people present. Out of the 1,018 images,

544 contained people and of these 173 images contained

people occupying more than 20 percent of the image.
Fig. 10 shows the precision-recall curves for the people

detection task. Fig. 10c shows the performance for all
Altavista images, while Fig. 10d shows the performance

on the subset where people occupy at least 20 percent of

the image. Note that the raw Altavista performance is the

same, irrespective of the person’s size (in both plots, by
5 percent, recall the precision is at the level of chance).

This illustrates the difference between indexing an image

using nonvisual versus visual cues. Fig. 10 also shows the

results obtained when running a frontal face detector (an
OpenCV implementation of Viola and Jones boosted

cascade [27], [41]). We run the face detector on the

original high-resolution images. Note that the perfor-

mance of our approach working on 32 � 32 images is
comparable to that of the dedicated face detector on high-

resolution images. For comparison, Fig. 10 also shows the

results obtained when running the face detector on low-

resolution images. (We downsampled each image so that

the smallest axis has 32 pixels; we then upsampled the
images again to the original resolution using bicubic

interpolation. The upsampling operation was to allow the

detector to have sufficient resolution to be able to scan the

image.) The performance of the OpenCV detector drops
dramatically with low-resolution images.

5.3 Person Localization

While the previous section was concerned with an object

detection task, we now address the more challenging

problem of object localization. Even though the tiny image

data set has not been labeled with the location of objects in
the images, we can use the weakly labeled (i.e., only a single

label is provided for each image) data set to localize objects.

Much of the recent work in object recognition uses explicit

models that labels regions of images as being object/
background. In contrast, we use the tiny image data set to

localize without learning an explicit object model. It is

important to emphasize that this operation is performed

without manual labeling of images: All of the information
comes from the loose text label associated with each image.

The idea is to extract multiple putative crops of the high-
resolution query image (Figs. 11a, 11b, and 11c). For each
crop, we resize it to 32 � 32 pixels and query the tiny image
database to obtain its siblings set (Fig. 11d). When a crop
contains a person, we expect the sibling set to also contain
people. Hence, the most prototypical crops should get have
a higher number of votes for the person class. To reduce the
number of crops that need to be evaluated, we first segment
the image using normalized cuts [11], producing around
10 segments (segmentation is performed on the high-
resolution image). Then, all possible combinations of
contiguous segments are considered, giving a set of
putative crops for evaluation. Fig. 11 shows an example of
this procedure. Fig. 11d shows the best scoring bounding
box for images from the Altavista test set.

5.4 Scene Recognition

Many Web images correspond to full scenes, not individual
objects. In Fig. 12, we attempt to classify the 1,125 randomly
drawn images (containing objects, as well as scenes) into
“city,” “river,” “field,” and “mountain” by counting the
votes at the corresponding node of the Wordnet tree. Scene
classification for the 32 � 32 images performs surprisingly
well, exploiting the large weakly labeled database.

5.5 Automatic Image Annotation and Data Set Size

Here, we examine the classification performance at a variety
of semantic levels across many different classes as we
increase the size of the database. For evaluation, we use the
test set of 1,125 randomly drawn tiny images, with each
image being fully segmented and annotated with the objects
and regions that compose each image. To give a distinctive
test set, we only use images for which the target object is
absent or occupies at least 20 percent of the image pixels.
Using the voting tree described in Section 5.1, we classified
them using K ¼ 80 neighbors at a variety of semantic levels.
To simplify the presentation of results, we collapsed the
Wordnet tree by hand (which had 19 levels) down to three
levels (see Fig. 13 for the list of categories at each level).

In Fig. 13, we show the average ROC curve area (across
words at that level) at each of the three semantic levels for
Dssd and Dshift as the number of images in the data set is
varied. Note that 1) the classification performance increases
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Fig. 10. (a) The first 70 images returned by Altavista when using the query “person” (out of 1,018 total). (b) The first 70 images after reordering using

our Wordnet voting scheme with the 79,000,000 tiny images. (c) Comparison of the performance of the initial Altavista ranking with the reordered

images using the Wordnet voting scheme and also a Viola and Jones-style frontal face detector. (c) Shows the recall-precision curves for all

1,018 images gathered from Altavista and (d) shows curves for the subset of 173 images, where people occupy at least 20 percent of the image.



as the number of images increases, 2) Dshift outperforms
Dssd, and 3) the performance drops off as the classes become
more specific. A similar effect of data set size has already
been shown by the language understanding community [2].

By way of illustrating the quality of the recognition
achieved by using the 79 million weakly labeled images, we
show in Fig. 14, for categories at three semantic levels, the
images that were more confidently assigned to each class.
Note that, despite the simplicity of the matching procedure
presented here, the recognition performance achieves reason-
able levels even for relatively fine levels of categorization.

6 THE IMPORTANCE OF SOPHISTICATED METHODS

FOR RECOGNITION

The plot in Fig. 15 shows the frequency of objects in the tiny
images database (this distribution is estimated using the
hand labeled set of 1,148 images). This distribution is
similar to word frequencies in text (Zipf’s law). The vertical

axis shows the percentage of annotated polygons for each

object category. The horizontal axis is the object rank

(objects are sorted by frequency). The four most frequent

objects are people (29 percent), plant (16 percent), sky

(9 percent), and building (5 percent). In the same plot, we

show the distribution of objects in the LabelMe data set [35].

Similar distributions are also obtained from data sets

collected by other groups [38].
As the distribution in Fig. 15 reveals, even when

collecting extremely large databases, there will always be

a large number of categories with very few training samples

available. For some classes, a large amount of training data

will be available and, as we discuss in this paper, the

nearest neighbor methods can be very effective. However,

for many other classes, learning will have to be performed

with small data sets (for which we need to use sophisticated

object models and transfer learning techniques).
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Fig. 12. Scene classification using the randomly drawn 1,125 image test set. Note that the classification is “mountain” versus all classes present in

the test set (which includes many kinds of objects), not “mountain” versus “field,” “city,” and “river” only. Each quadrant shows some examples of

high scoring images for that particular scene category, along with an ROC curve (yellow ¼ 7; 900 image training set, red ¼ 790; 000 images,

blue ¼ 79; 000; 000 images).

Fig. 11. Localization of people in images. (a) Input image. (b) Normalized-cuts segmentation. (c) Three examples of candidate crops. (d) The six

nearest neighbors of each crop in (c), accompanied by the number of votes for the person class obtained using 80 nearest neighbors under similarity

measure Dshift. (e) Localization examples.



7 CONCLUSIONS

This paper makes the following important contributions:

1) the compilation of a data set of 79 million 32 � 32 color

images, each with a weak text label and link to the original

image, which is available for download, 2) the character-

ization of the manifold of 32 � 32 images, showing that

Internet sized data sets ð108-109Þ yield a reasonable density

over the manifold of natural images, at least for the

purposes of object recognition, and 3) the demonstration

that simple nonparametric methods, in conjunction with a

large data set, can give reasonable performance on object

recognition tasks. For richly represented classes, such as

people, the performance is comparable to leading class-

specific detectors.
Previous usage of nonparametric approaches in recogni-

tion have been confined to more limited domains (e.g., pose

recognition [36]) compared with the more general problems

tackled in this paper, the limiting factor being the need for

very large amounts of training data. The results obtained

using our tiny image data set are an encouraging sign that

the data requirements may not be insurmountable. Indeed,

search engines such as Google index another 2-3 orders of

magnitude more images, which could yield a significant

improvement in performance.
In summary, all methods in object recognition have two

components: the model and the data. The vast majority of

the effort in recent years has gone into the modeling part—

seeking to develop suitable parametric representations for

recognition. In contrast, this paper moves in other direction,

exploring how the data itself can help to solve the problem.

We feel the results in this paper warrant further exploration

in this direction.
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Fig. 14. (a) Test images assigned to words, ordered by confidence. The images are ordered by voting confidence. The number indicates the total

number of positive examples in the test set out of the 1,148 images. The color of the bounding box indicates if the image was correctly assigned

(black) or not (red). (b) Shows the ROC curves for three data set sizes (yellow ¼ 7; 900 image training set, red ¼ 790; 000 images, blue ¼ 79; 000; 000
images). (c) The corresponding precision-recall graphs.

Fig. 15. Distribution of labels in image data sets. The vertical axis gives

the percentage of polygons in the two data sets containing each object

category (objects are sorted by frequency rank). The plot is in log-log

axis.

Fig. 13. Classification at multiple semantic levels using 1,125 randomly
drawn tiny images. Each plot shows a different manually defined
semantic level, increasing in selectivity from left to right. The curves
represent the average (across words at that level) ROC curve area as a
function of the number of images in the data set (red ¼ Dssd,
blue ¼ Dshift). Words within each of the semantic levels are shown in
each subplot, accompanied by the ROC curve area when using the full
data set. The red dot shows the expected performance if all images in
Google image search were used (� 2 billion), extrapolating linearly.
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