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ien
esMIT, Cambridge, MA 02139torralba�ai.mit.eduAbstra
tThe most popular algorithms for obje
t dete
tion require the use ofexhaustive spatial and s
ale sear
h pro
edures. In su
h approa
hes,an obje
t is de�ned by means of lo
al features. In this paper weshow that in
luding 
ontextual information in obje
t dete
tion pro-
edures provides an eÆ
ient way of 
utting down the need forexhaustive sear
h. We present results with real images showingthat the proposed s
heme is able to a

urately predi
t likely obje
t
lasses, lo
ations and sizes.1 Introdu
tionAlthough there is growing eviden
e of the role of 
ontextual information in humanper
eption [1℄, resear
h in 
omputational vision is dominated by obje
t-based rep-resentations [5,9,10,15℄. In real-world s
enes, intrinsi
 obje
t information is oftendegraded due to o

lusion, low 
ontrast, and poor resolution. In su
h situations, theobje
t re
ognition problem based on intrinsi
 obje
t representations is ill-posed. Amore 
omprehensive representation of an obje
t should in
lude 
ontextual informa-tion [11,13℄: Obj: representation = fintrisi
 obj: model; 
ontextual obj: modelg.In this representation, an obje
t is de�ned by 1) a model of the intrinsi
 proper-ties of the obje
t and 2) a model of the typi
al 
ontexts in whi
h the obje
t isimmersed. Here we show how in
orporating 
ontextual models 
an enhan
e targetobje
t salien
y and provide an estimate of its likelihood and intrinsi
 properties.2 Target salien
y and obje
t likelihoodImage information 
an be partitioned into two sets of features: lo
al features, ~vL,that are intrinsi
 to an obje
t, and 
ontextual features, ~v
 whi
h en
ode stru
turalproperties of the ba
kground. In a statisti
al framework, obje
t dete
tion requiresevaluation of the likelihood fun
tion (target salien
y fun
tion): P (O j~vL; ~vC) whi
hprovides the probability of presen
e of the obje
t O given a set of lo
al and 
ontex-tual measurements. O is the set of parameters that de�ne an obje
t immersed in as
ene: O = fon; x; y;~tg with on=obje
t 
lass, (x,y)=lo
ation in image 
oordinates



and ~t=obje
t appearan
e parameters. By applying Bayes rule we 
an write:P (O j~vL; ~vC) = 1P (~vL j~vC)P (~vL jO; ~vC)P (O j~vC) (1)Those three fa
tors provide a simpli�ed framework for representing three levels of at-tention guidan
e when looking for a target: The normalization fa
tor, 1=P (~vL j~vC),does not depend on the target or task 
onstraints, and therefore is a bottom-up fa
-tor. It provides a measure of how unlikely it is to �nd a set of lo
al measurements ~vLwithin the 
ontext ~vC . We 
an de�ne lo
al salien
y as S(x; y) = 1=P (~vL(x; y) j~vC).Salien
y is large for unlikely features in a s
ene. The se
ond fa
tor, P (~vL jO; ~vC),gives the likelihood of the lo
al measurements ~vL when the obje
t is present at su
hlo
ation in a parti
ular 
ontext. We 
an write P (~vL jO; ~vC) ' P (~vL jO), whi
h is a
onvenient approximation when the aspe
t of the target obje
t is fully determinedby the parameters given by the des
ription O. This fa
tor represents the top-downknowledge of the target appearan
e and how it 
ontributes to the sear
h. Regionsof the image with features unlikely to belong to the target obje
t are vetoed andregions with attended features are enhan
ed. The third fa
tor, the PDF P (O j~vC),provides 
ontext-based priors on obje
t 
lass, lo
ation and s
ale. It is of 
apitalimportan
e for insuring reliable inferen
es in situations where the lo
al image mea-surements ~vL produ
e ambiguous interpretations. This fa
tor does not depend onlo
al measurements and target models [8,13℄. Therefore, the term P (O j~vC) mod-ulates the salien
y of lo
al image properties when looking for an obje
t of the 
lasson. Contextual priors be
ome more evident if we apply Bayes rule su

essively inorder to split the PDF P (O j~vC) into three fa
tors that model three kinds of 
ontextpriming on obje
t sear
h:P (O; j~vC) ' P (~t j~vC ; on)P (x; y j~vC ; on)P (on; j~vC) (2)A

ording to this de
omposition of the PDF, the 
ontextual modulation of targetsalien
y is a fun
tion of three main fa
tors:Obje
t likelihood: P (on j~vC) provides the probability of presen
e of the obje
t 
lasson in the s
ene. If P (on j~vC) is very small, then obje
t sear
h need not be initiated(we do not need to look for 
ars in a living room).Contextual 
ontrol of fo
us of attention: P (x; y j on; ~vC). This PDDF gives themost likely lo
ations for the presen
e of obje
t on given 
ontext information, andit allo
ates 
omputational resour
es into relevant s
ene regions.Contextual sele
tion of lo
al target appearan
e: P (~t j~vC ; on). This gives the likely(prototypi
al) shapes (point of views, size, aspe
t ratio, obje
t aspe
t) of the obje
ton in the 
ontext ~vC . Here ~t = f�; pg, with �=s
ale and p=aspe
t ratio. Otherparameters des
ribing the appearan
e of an obje
t in an image 
an be added.The image features most 
ommonly used for des
ribing lo
al stru
tures are theenergy outputs of oriented band-pass �lters, as they have been shown to be relevantfor the task of obje
t dete
tion [9,10℄ and s
ene re
ognition [2,4,8,12℄. Therefore,the lo
al image representation at the spatial lo
ation (~x) is given by the ve
tor~vL(~x) = fv(~x; k)gk=1;N with:v(~x; k) = �����X~x0 i(~x0)gk(~x� ~x0)����� (3)



1 2 3 40

1

1 2 3 40

1

1 2 3 40

1

p(
o n

|v
c)

p(
o n

|v
c)

p(
o n

|v
c)

Figure 1: Contextual obje
t priming of four obje
ts 
ategories (1-people, 2-furniture, 3-vehi
les and 4-trees)where i(~x) is the input image and gk(~x) are oriented band-pass �lters de�ned bygk(~x) = e�k~xk2=�2ke2�j<~fk;~x>. In su
h a representation [8℄, v(~x; k) is the outputmagnitude at the lo
ation ~x of a 
omplex Gabor �lter tuned to the spatial fre-quen
y ~fk. The variable k indexes �lters tuned to di�erent spatial frequen
ies andorientations.On the other hand, 
ontextual features have to summarize the stru
ture of thewhole image. It has been shown that a holisti
 low-dimensional en
oding of thelo
al image features 
onveys enough information for a semanti
 
ategorization ofthe s
ene/
ontext [8℄ and 
an be used for 
ontextual priming in obje
t re
ognitiontasks [13℄. Su
h a representation 
an be a
hieved by de
omposing the image featuresinto the basis fun
tions provided by PCA:an =X~x Xk v(~x; k) n(~x; k) v(~x; k) ' NXn=1 an n(~x; k) (4)We propose to use the de
omposition 
oeÆ
ients ~vC = fangn=1;N as 
ontext fea-tures. The fun
tions  n are the eigenfun
tions of the 
ovarian
e operator given byv(~x; k). By using only a redu
ed set of 
omponents (N = 60 for the rest of thepaper), the 
oeÆ
ients fangn=1;N en
ode the main spe
tral 
hara
teristi
s of thes
ene with a 
oarse des
ription of their spatial arrangement. In essen
e, fangn=1;Nis a holisti
 representation as all the regions of the image 
ontribute to all the 
o-eÆ
ients, and obje
ts are not en
oded individually [8℄. In the rest of the paper weshow the eÆ
a
y of this set of features in 
ontext modeling for obje
t dete
tiontasks.3 Contextual obje
t primingThe PDF P (on j~vC) gives the probability of presen
e of the obje
t 
lass on given
ontextual information. In other words, the PDF P (on j~vC) evaluates the 
on-sisten
y of the obje
t on with the 
ontext ~vC . For instan
e, a 
ar has a highprobability of presen
e in a highway s
ene but it is in
onsistent with an indoorenvironment. The goal of P (on j~vC) is to 
ut down the number of possible ob-je
t 
ategories to deal with before expending 
omputational resour
es in the obje
tre
ognition pro
ess. The learning of the PDF P (on j~vC) = P (~vC j on)P (on)=p(~vC)with p(~vC) = P (~vC j on)P (on) + P (~vC j :on)P (:on) is done by approximating thein-
lass and out-of-
lass PDFs by a mixture of Gaussians:P (~vC j on) = LXi=1 bi;nG(~vC ;~vi;n;Vi;n) (5)



Figure 2: Contextual 
ontrol of fo
us of attention when the algorithm is looking for
ars (upper row) or heads (bottom row).The model parameters (bi;n; ~vi;n; Vi;n) for the obje
t 
lass on are obtained using theEM algorithm [3℄. The learning requires the use of few Gaussian 
lusters (L = 2provides very good performan
es). For the learning, the system is trained witha set of examples manually annotated with the presen
e/absen
e of four obje
ts
ategories (1-people, 2-furniture, 3-vehi
les and 4-trees). Fig. 1 shows some typi
alresults from the priming model on the four superordinate 
ategories of obje
tsde�ned. Note that the probability fun
tion P (on j~vC) provides information aboutthe probable presen
e of one obje
t without s
anning the pi
ture. If P (on j~vC) > 1�th then we 
an predi
t that the target is present. On the other hand, if P (on j~vC) <th we 
an predi
t that the obje
t is likely to be absent before exploring the image.The number of s
enes in whi
h the system may be able to take high 
on�den
ede
isions will depend on di�erent fa
tors su
h as: the strength of the relationshipbetween the target obje
t and its 
ontext and the ability of ~vC for eÆ
iently 
hara
-terizing the 
ontext. Figure 1 shows some typi
al results from the priming model fora set of super-ordinate 
ategories of obje
ts. When for
ing the model to take binaryde
isions in all the images (by sele
ting an a

eptan
e threshold of th = 0:5) thepresen
e/absen
e of the obje
ts was 
orre
tly predi
ted by the model on 81% of thes
enes of the test set. For ea
h obje
t 
ategory, high 
on�den
e predi
tions (th = :1)were made in at least 50% of the tested s
ene pi
tures and the presen
e/absen
eof ea
h obje
t 
lass was 
orre
tly predi
ted by the model on 95% of those images.Therefore, for those images, we do not need to use lo
al image analysis to de
ideabout the presen
e/absen
e of the obje
t.4 Contextual 
ontrol of fo
us of attentionOne of the strategies that biologi
al visual systems use to deal with the analysisof real-world s
enes is to fo
us attention (and, therefore, 
omputational resour
es)onto the important image regions while negle
ting others. Current 
omputationalmodels of visual attention (salien
y maps and target dete
tion) rely ex
lusively onlo
al information or intrinsi
 obje
t models [6,7,9,14,16℄. The 
ontrol of the fo
usof attention by 
ontextual information that we propose here is both task driven(looking for obje
t on) and 
ontext driven (given global 
ontext information: ~vC).However, it does not in
lude any model of the target obje
t at this stage. In ourframework, the problem of 
ontextual 
ontrol of the fo
us of attention involves the
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Figure 3: Estimation results of obje
t s
ale and pose based on 
ontextual features.evaluation of the PDF P (~xj on; ~vC). For the learning, the joint PDF is modeledas a sum of gaussian 
lusters. Ea
h 
luster is de
omposed into the produ
t oftwo gaussians modeling respe
tively the distribution of obje
t lo
ations and thedistribution of 
ontextual features for ea
h 
luster:P (~x;~vC j on) = LXi=1 bi;nG(~x; ~xi;n;Xi;n)G(~vC ;~vi;n;Vi;n) (6)The training set used for the learning of the PDF P (~x;~vC j on) is a subset of thepi
tures that 
ontain the obje
t on. The training data is f~vtgt=1;Nt and f~xtgt=1;Ntwhere ~vt are the 
ontextual features of the pi
ture t of the training set and ~xt isthe lo
ation of obje
t on in the image. The model parameters are obtained usingthe EM algorithm [3,13℄. We used 1200 pi
tures for training and a separate set of1200 pi
tures for testing. The su

ess of the PDF in narrowing the region of thefo
us of attention will depend on the 
onsisten
y of the relationship between theobje
t and the 
ontext. Fig. 2 shows several examples of images and the sele
tedregions based on 
ontextual features when looking for 
ars and fa
es. From thePDF P (~x;~vC j on) we sele
ted the region with the highest probability (33% of theimage size on average). 87% of the heads present in the test pi
tures were insidethe sele
ted regions.5 Contextual sele
tion of obje
t appearan
e modelsOne major problem for 
omputational approa
hes to obje
t dete
tion is the largevariability in obje
t appearan
e. The 
lassi
al solution is to explore the spa
e ofpossible shapes looking for the best mat
h. The main sour
es of variability in obje
tappearan
e are size, pose and intra-
lass shape variability (deformations, style, et
.).We show here that in
luding 
ontextual information 
an redu
e at least the �rsttwo sour
es of variability. For instan
e, the expe
ted size of people in an imagedi�ers greatly between an indoor environment and a perspe
tive view of a street.Both environments produ
e di�erent patterns of 
ontextual features ~vC [8℄. Forthe se
ond fa
tor, pose, in the 
ase of 
ars, there is a strong relationship betweenthe possible orientations of the obje
t and the s
ene 
on�guration. For instan
e,looking down a highway, we expe
t to see the ba
k of the 
ars, however, in a streetview, looking towards the buildings, lateral views of 
ars are more likely.The expe
ted s
ale and pose of the target obje
t 
an be estimated by a regressionpro
edure. The training database used for building the regression is a set of 1000images in whi
h the target obje
t on is present. For ea
h training image the target



Figure 4: Sele
tion of prototypi
al obje
t appearan
es based on 
ontextual 
ues.obje
t was sele
ted by 
ropping a re
tangular window. For fa
es and 
ars we de�nethe � = s
ale as the height of the sele
ted window and the p = pose as the ratio be-tween the horizontal and verti
al dimensions of the window (�y=�x). On average,this de�nition of pose provides a good estimation of the orientation for 
ars but notfor heads. Here we used regression using a mixture of gaussians for estimating the
onditional PDFs between s
ale, pose and 
ontextual features: P (� j~vC ; on) andP (p j~vC ; on). This yields the next regression pro
edures [3℄:� = Pi �i;nbi;nG(~vC ;~vi;n;Vi;n)Pi bi;nG(~vC ;~vi;n;Vi;n) p = Pi pi;nbi;nG(~vC ;~vi;n;Vi;n)Pi bi;nG(~vC ;~vi;n;Vi;n) (7)The results summarized in �g. 3 show that 
ontext is a strong 
ue for s
ale sele
-tion for the fa
e dete
tion task but less important for the 
ar dete
tion task. Onthe other hand, 
ontext introdu
es strong 
onstraints on the prototypi
al point ofviews of 
ars but not at all for heads. On
e the two parameters (pose and s
ale)have been estimated, we 
an build a prototypi
al model of the target obje
t. In the
ase of a view-based obje
t representation, the model of the obje
t will 
onsist ofa 
olle
tion of templates that 
orrespond to the possible aspe
ts of the target. Forea
h image the system produ
es a 
olle
tion of views, sele
ted among a databaseof target examples that have the s
ale and pose given by eqs. (7). Fig. 4 showssome results from this pro
edure. In the statisti
al framework, the obje
t dete
-tion requires the evaluation of the fun
tion P (~vL jO; ~vC). We 
an approximate
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Figure 5: S
hemati
 layout of the model for obje
t dete
tion (here 
ars) by inte-gration of 
ontextual and lo
al information. The bottom example is an error indete
tion due to in
orre
t 
ontext identi�
ation.P (~vL jO; ~vC) ' P (~vL j on; �; p). Fig. 5 and 6 show the 
omplete 
hain of opera-tions and some dete
tion results using a simple 
orrelation te
hnique between theimage and the generated obje
t models (100 exemplars) at only one s
ale. The lastimage of ea
h row shows the total obje
t likelihood obtained by multiplying theobje
t salien
y maps (obtained by the 
orrelation) and the 
ontextual 
ontrol ofthe fo
us of attention. The result shows how the use of 
ontext helps redu
e falsealarms. This results in good dete
tion performan
es despite the simpli
ity of themat
hing pro
edure used.6 Con
lusionThe 
ontextual s
hema of a s
ene provides the likelihood of presen
e, typi
al lo
a-tions and appearan
es of obje
ts within the s
ene. We have proposed a model forin
orporating su
h 
ontextual 
ues in the task of obje
t dete
tion. The main aspe
tsof our approa
h are: 1) Progressive redu
tion of the window of fo
us of attention:the system redu
es the size of the fo
us of attention by �rst integrating 
ontextualinformation and then lo
al information. 2) Inhibition of target like patterns thatare in in
onsistent lo
ations. 3) Faster dete
tion of 
orre
tly s
aled targets thathave a pose in agreement with the 
ontext. 4) No requirement of parsing a s
eneinto individual obje
ts. Furthermore, on
e one obje
t has been dete
ted, it 
anintrodu
e new 
ontextual information for analyzing the rest of the s
ene.A
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