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Abstract

There has been a growing interest in exploiting con-
textual information in addition to local features to detect
and localize multiple object categories in an image. Con-
text models can ef�ciently rule out some unlikely combina-
tions or locations of objects and guide detectors to produce
a semantically coherent interpretation of a scene. How-
ever, the performance bene�t from using context models has
been limited because most of these methods were tested on
datasets with only a few object categories, in which most
images contain only one or two object categories. In this
paper, we introduce a new dataset with images that contain
many instances of different object categories and propose
an ef�cient model that captures the contextual information
among more than a hundred of object categories. We show
that our context model can be applied to scene understand-
ing tasks that local detectors alone cannot solve.

1. Introduction

Standard single-object detectors [3, 5] focus on locally
identifying a particular object category. In order to detect
multiple object categories in an image, we need to run a
separate detector for each object category at every spatiallo-
cation and scale. Since each detector works independently
from others, the outcome of these detectors may be seman-
tically incorrect.

Even if we have perfect local detectors that correctly
identify all object instances in an image, some tasks in scene
understanding require an explicit context model, and cannot
be solved with local detectors alone. An example of this is
detecting unexpected objects that are out of their normal
context. Figure1 shows one example of images in which
an object is out of context. These scenes attract a human's
attention since they don't occur often in daily settings. Un-
derstanding how objects relate to each other is important to
answer queries such as�nd some funny picturesor where
can I leave the keys so that I can �nd them later?

A simple form of contextual information is a co-
occurrence frequency of a pair of objects. Rabinovich et
al. [19] use local detectors to �rst assign an object label to
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a) Input b) Raw detector outputs

c) Context model output d) Most unexpected object

Figure 1. Detecting objects in and out of context. a) Input image,
b) Output of 107 class detectors. With so many classes many false
alarms appear on the image providing a useless scene interpreta-
tion. c) Output of our context model. d) Most unexpected object
in the image. This output can not be produced by object detectors
alone, even if they are perfect. Detecting out of context objects
requires modeling what the expected scene con�gurations are.

each image segment, and adjusts these labels using a condi-
tional random �eld. [7] and [8] extend this approach to en-
code spatial relationships between a pair of objects. In [7],
spatial relationships are quantized to four prototypical rela-
tionships - above, below, inside and around, whereas in [8]
a non-parametric map of spatial priors are learned for each
pair of objects. Torralba et al. [24] combine boosting and
CRF's to �rst detect easy objects (e.g., a monitor) and pass
the contextual information to detect other more dif�cult ob-
jects (e.g., a keyboard). [25] uses both image patches and
their probability maps estimated from classi�ers to learn a
contextual model, and iteratively re�nes the classi�cation
results by propagating the contextual information. [4] com-
bines individual classi�ers by using spatial interactionsbe-
tween object detections in a discriminative manner.

Contextual information may be obtained from coarser,
global features as well. Torralba [23] demonstrates that a
global image feature called a “gist” can predict the presence
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or absence of objects and their locations without running an
object detector. [16] extend this approach to combine patch-
based local features and the gist feature. Heitz and Koller
[11] combine a sliding window method and unsupervised
image region clustering to leverage “stuff” such as the sea,
the sky, or a road to improve object detection. [10] intro-
duces a cascaded classi�cation model, which links scene
categorization, multi-class image segmentation, object de-
tection, and 3D reconstruction.

Hierarchical models can incorporate both local and
global images features. [9] uses multiscale conditional ran-
dom �elds to combine local classi�ers with regional and
global features. Sudderth et al. [22] model the hierarchy of
scenes, objects and parts using hierarchical Dirichlet pro-
cesses, which encourage scenes to share objects, objects to
share parts, and parts to share features. Parikh and Chen
[17] learn a hierarchy of objects in an unsupervised man-
ner, under the assumption that each object appears exactly
once in all images. Hierarchical models are also common
within grammar models for scenes [18, 14] and they have
been shown to be very �exible to represent complex re-
lationships. Bayesian hierarchical models also provide a
powerful mechanism to build generative scene models [15].

In this work, we model object co-occurrences and spa-
tial relationships using a tree graphical model. We combine
this prior model of object relationships with local detector
outputs and global image features to detect and localize all
instances of multiple object categories in an image. Enforc-
ing tree-structured dependencies among objects allows us
to learn our model for more than a hundred of object cate-
gories and apply it to images ef�ciently. Even though we do
not explicitly impose a hierarchical structure in our learning
procedure, the tree organizes objects in a natural hierarchy.

In order to exploit contextual information, it is important
to have many different object categories present simultane-
ously in an image, with a large range of dif�culties (from
large to small objects). Here we introduce a new dataset
(SUN 09), with more than 200 object categories in a wide
range of scene categories, which is suitable for contextual
information.

2. A new dataset for context based recognition

We introduce a new dataset (SUN 09) suitable for lever-
aging the contextual information. The dataset contains
12,000 annotated images covering a large number of scene
categories (indoor and outdoors) with more than 200 object
categories and 152,000 annotated object instances. SUN 09
has been annotated using LabelMe [21] by a single annota-
tor and veri�ed for consistency.

Figure 2 shows statistics of out dataset and compares
them with PASCAL 07. The PASCAL dataset provides an
excellent framework for evaluating object detection algo-
rithms. However, this dataset, as shown in Figure2, is not
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Figure 2. Comparison PASCAL 07 and our dataset (SUN 09). a)
Histogram of number of object categories present in each image.
b) Distribution of training and test samples per each object cate-
gory. c) 4 examples from the set of typical PASCAL images. A
typical pascal image contains two instances of a single object cat-
egory, and objects occupy20% of the image. d) 4 examples from
the set of typical SUN images. A typical SUN image has 7 object
categories (with around 14 total annotated objects) and occupy a
wide range of sizes (average5%).

suitable to test context-based object recognition algorithms.
The PASCAL dataset contains 20 object classes, but more
than 50% of the images contain only a single object class.
MSRC [26] provides more co-ocurring objects but it only
contains 23 object classes. Contextual information is most
useful when many object categories are present simultane-
ously in an image, with some object instances that are easy
to detect (i.e. large objects) and some instances that are hard
to detect (i.e. small objects). The average PASCAL bound-
ing box occupies20%of the image. On the other hand, in
our dataset, the average object size is5% of the image size,
and a typical image contains 7 different object categories.
Figure2.(c,d) show typical images from each dataset.

3. Tree-structured contextual model

We use a tree graphical model to learn dependencies
among object categories. [19] uses a fully-connected CRF
to model object dependencies, which is computationally ex-
pensive for modeling relationships among many object cat-
egories. [16] models dependencies among objects using
scene-object relationships, and assumes that objects are in-
dependent conditioned on the scene type, which may ignore
direct dependencies among objects. Our tree provides a
richer representation of object dependencies and enables ef-
�cient inference and learning algorithms. In this section,we



describe a prior model that captures co-occurrence statistics
and spatial relationships among objects, and explain how
global image features and local detector outputs can be in-
tegrated into the framework as measurements.

3.1. Prior model

3.1.1 Co-occurrences prior

A simple yet effective contextual information is the co-
occurence of object pairs. We encode the co-occurrence
statistics using a binary tree model. Each nodebi in a tree
represents whether the corresponding objecti is present or
not in an image. The joint probability of all binary variables
are factored according to the tree structure:

p(b) = p(broot )
Y

i

p(bi jbpa( i ) ) (1)

wherepa(i ) is the parent of nodei . Note that the parent-
child pairs may have either positive (e.g.,floor andwall
co-occur often) or negative (e.g.,floor never appears with
sky ) relationships.

3.1.2 Spatial prior

Spatial location representation Objects often appear at
speci�c relative positions to one another. For example, a
computer screen, a keyboard, and a mouse generally appear
in a �xed arrangement. We capture such spatial relation-
ships by adding location variables to the tree model. Let
`x , `y be the x,y coordinate of the center of the bounding
box, and̀ w , `h be the width and height of the box. We as-
sume that the image height is normalized to one, and that
`x = 0 ; `y = 0 is the center of the image. The expected dis-
tance between centers of objects depends on the size of the
objects - if a keyboard and a mouse are small, the distance
between the centers should be small as well. Constellation
model [6] achieves scale invariance by transforming the po-
sition information to a scale invariant space. Hoiem et al.
[13] relate scale changes to an explicit 3D information. We
take Hoeim et.al 's approach and apply the following coor-
dinate transformations to represent object locations in the
3D-world coordinate:

L x =
`x

`h
H i ; L y =

`y

`h
H i ; L z =

f
`h

H i (2)

wheref is the distance from observer to the image plane,
which we set to1, andL z is the distance between the ob-
server and the object.H i is the physical height of an object
i , which is assumed to be constant. These constants could
be inferred from the annotated data using the algorithm in
[12]. Instead, we model the object sizes by manually en-
coding real object sizes (e.g., person = 1.7m, car = 1.5m).
We assume that all objects have �xed aspect ratios.
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Figure 3. (Left) Prior model relating object presence variablesbi 's
and location variablesL i . (Right) Measurement model for object
i . The gist descriptorg represents global image features, and local
detector provides candidate window locationsWik and scoressik .
cik indicates whether the window is a correct detection or not.

Prior on spatial locations The x-coordinates of objects
varies considerably from one image to another, and is un-
informative in general [23]. Thus, we ignoreL x and only
considerL y andL z to capture vertical location and scale re-
lationships. We assume thatL y 's andL z 's are independent,
i.e., the vertical location of an object is independent from
its distances from the image plane. While we modelL y as
jointly Gaussian, we modelL z as a log-normal distribution
since it is always positive and is more heavily distributed
around small values. We can rede�ne a location variable
for object categoryi asL i = ( L y ; logL z ) and modelL i 's
as jointly Gaussian. If there are multiple instances of object
categoryi in an image,L i represents the median location of
all instances.

We assume that when conditioned on the presence vari-
ableb, the dependency structure of theL i 's has the same
tree structure as our binary tree:

p(L jb) = p(L root jbroot )
Y

i

p(L i jL pa( i ) ; bi ; bpa( i ) ); (3)

where each edge potentialp(L i jL pa( i ) ; bi ; bpa( i ) ) encodes
the distribution of a child location conditioned on its parent
location and the presence/absence of both child and parent
objects. We use three different Gaussian distributions to de-
�ne p(L i jL pa( i ) ; bi ; bpa( i ) ) for each parent-child pair. When
both child and parent objects are present (bi = 1 ; bpa( i ) =
1), the expected location of the child objecti is determined
by the location of its parentL pa( i ) . When the object is
present but its parent object is not (bi = 1 ; bpa( i ) = 0 ),
thenL i is independent fromL pa( i ) . When an object is not
present (bi = 0 ), we assume that its location is indepen-
dent from all other object locations and letL i represent the
average location of the objecti across all images.

Figure3 shows the graphical model of the presence vari-
ableb and the location variableL . Combining (1) and (3),
the joint distribution of all binary and Gaussian variables
can be represented as follows:

p(b; L) = p(b)p(L jb) = p(broot )p(L root ) (4)

�
Y

i

p(bi jbpa( i ) )p(L i jL pa( i ) ; bi ; bpa( i ) ):



If we combinebi andL i as a single variableOi , we observe
that p(O) also has a tree structure. Even though the full
graphical model with respect tob andL is not a tree, the
dependency between objects forms a tree structure. In the
rest of the paper, we refer to this model as a prior tree model,
assuming that each node in the tree corresponds toOi .

3.2. Measurement model

3.2.1 Incorporating global image features

In addition to incorporating relationships among objects,
we introduce gist [23] as a measurement for each presence
variablebi , to incorporate global image features into our
model. Since the gist is a high-dimensional vector, we use
logistic regression to �tp(bi jg) [16], from which we es-
timate the likelihoodsp(gjbi ) indirectly usingp(gjbi ) =
p(bi jg)p(g)=p(bi ) to avoid over�tting.

3.2.2 Integrating local detector outputs

In order to detect and localize object instances in an image,
we �rst apply off-the-shelf single-object detectors and ob-
tain a set of candidate windows for each object category.
Let i denote an object category andk index candidate win-
dows generated by baseline detectors. Each detector output
provides a scoresik and a bounding box, to which we ap-
ply the coordinate transformation in (2) to get the location
variableWik = ( L y ; logL z ). We assign a binary variable
cik to each window to represent whether it is a correct de-
tection (cik = 1 ) or a false positive (cik = 0 ). Figure3
shows the measurement model for objecti to integrate gist
and baseline detector outputs into our prior model, where
we used plate notations to representK i different candidate
windows.

We sort the baseline scores for each object category and
assign candidate window indexk so thatsik is the k-th high-
est score for categoryi . The probability of correct detection
p(cik = 1 jbi = 1) is trained from the training set. If object
i is not present, then all the candidate windows are false
positives:p(cik = 1 jbi = 0) = 0 .

The distribution of scores depends on whether the win-
dow is a correct detection or a false positive. We could
�t a truncated Gaussian distribution forp(sik jcik = 0)
and for p(sik jcik = 1) . Estimating parameters can be
unreliable if there are only few samples with the correct
detection. To address this issue, we use logistic regres-
sion to trainp(cik jsik ) and compute the likelihood using
p(sik jcik ) = p(cik jsik )p(sik )=p(cik ).

If a candidate window is a correct detection of objecti
(cik = 1 ), then its locationWik is a Gaussian vector with
meanL i , the expected location of objecti :

p(Wik jcik = 1 ; L i ) = N (Wik ; L i ; � i ) (5)

where� i is the covariance around the predicted location
[16]. If the window is a false positive (cik = 0 ), Wik is
independent fromL i and has a uniform distribution.

4. Alternating inference on trees

Given the gistg, candidate window locationsW �
f Wik g and their scoress � f sik g, we infer the presence
of objectsb � f bi g, the correct detectionsc � f cik g, and
expected locations of all objectsL � f L i g, by solving the
following optimization problem:

b̂;ĉ; L̂ = argmax
b;c;L

p(b; c; Ljg; W; s) (6)

Although our overall model is a tree if we considerbi and
L i as a single node, the exact inference is complicated since
there are both binary and Gaussian variables in the model.
For ef�cient inference, we leverage the tree structures em-
bedded in the prior model. Speci�cally, conditioned onb
andc, the location variablesL forms a Gaussian tree. On
the other hand, conditioned onL, the presence variablesb
and the correct detection variablesc together form a binary
tree. For each of these trees, there exists ef�cient inference
algorithms [1]. Therefore, we inferb; candL in an alternat-
ing manner.

In our �rst iteration, we ignore the location information
W , and sample1 b and c conditioned only on the gistg
and the candidate windows scoress: b̂;ĉ � p(b; cjs; g).
Conditioned on these samples, we infer the expected lo-
cations of objectŝL = argmaxL p(L jb̂;ĉ; W) using be-
lief propagation on the resulting Gaussian tree. Then con-
ditioned on the estimate of locationŝL , we re-sampleb
and c conditioned also on the window locations:b̂;ĉ �
p(b; cjs; g;L̂; W ), which is equivalent to sampling from a
binary tree with node and edge potentials modi�ed by the
likelihoodsp(L̂; W jb; c). In this step, we encourage pairs
of objects or windows in likely spatial arrangements to be
present in the image.

We iterate between sampling on the binary tree and infer-
ence on the Gaussian tree, and select samplesb̂ andĉ with
the highest likelihood. We use 4 different starting samples
each with 3 iterations in our experiments. Our inference
procedure is ef�cient even for models with hundreds of ob-
jects categories and thousands of candidate windows. For
the SUN dataset, it takes about 0.5 second in MATLAB to
produce estimates from one image.

5. Learning

We learn the dependency structure among objects from
a set of fully labeled images. The Chow-Liu algorithm [2]

1We can also compute the MAP estimates of these binary variables
ef�ciently, but starting from the MAP estimates and iterating between the
binary and Gaussian trees typically leads to a local maximum that is close
to the initial MAP estimates.



is a simple and ef�cient way to learn a tree structure that
maximizes the likelihood of the data: the algorithm �rst
computes empirical mutual information of all pairs of vari-
ables using their sample values. Then, it �nds the maximum
weight spanning tree with edge weights equal to the mutual
information. We learn the tree structure using the samples
of bi 's in a set of labeled images. We pick a root node arbi-
trarily once a tree structure is learned. Even with more than
100objects and thousands of training images, a tree model
can be learned in a few seconds in MATLAB.

Figure 7 shows a tree structure learned from the SUN
09 dataset. We selectedsky to be the root of the tree. It
is interesting to note that even though the Chow-Liu algo-
rithm is simply selecting strong pairwise dependencies, our
tree organizes objects in a natural hierarchy. For example,a
subtree rooted atbuilding has many objects that appear
in street scenes, and the subtree rooted atsink contains ob-
jects that commonly appear in a kitchen. Thus, many non-
leaf nodes act as if they are representing coarser scale meta-
objects or scene categories. In other words, the learned tree
captures the inherent hierarchy among objects and scenes,
resulting in signi�cant improvements in object recognition
and scene understanding as demonstrated in Section6.

6. Results

6.1. Recognition performance on PASCAL 07

Context learned from training images We train the con-
text model on 4367 images from the training set. Figure4.a
shows the tree learned for this dataset. The model correctly
captures important contextual relationships among objects
(co-ocurrences and relative spatial locations). Figure4.b
shows a few samples from the joint model of 3D locations,
illustrating the relative spatial relationship among objects.
Our model correctly learns that most training images con-
tain one or few objects, and that the spatial information em-
bedded in PASCAL 07 data is limited.

Object recognition performance Table 1 provides the
average precision-recall (APR) for the object localization
task, and compares the results with one of the state of the
art models at this task that also incorporates contextual in-
formation [4]. For the baseline detector, we use the detec-
tor in [5], which is based on the mixture of multiscale de-
formable part model. There is a slight advantage in incor-
porating context, but not a huge improvement. As discussed
in Section2, this dataset contains very little contextual in-
formation among objects and the performance bene�t from
incorporating the contextual information is small. We show
in the next section that the contextual information does im-
prove the performance signi�cantly when we use the new
dataset SUN 09. One thing to note is that the best achievable
performance is limited by the recall of the detector since
context models are only used to enhance the scores of the
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Figure 4. a) Model learned from PASCAL 07. Red edges corre-
spond to negative correlations between classes. The thickness of
each edge represents the strength of the link. b) 3D samples gen-
erated from the context model.

bounding boxes (or segments) proposed by a detector.
Figure 5.a compares the performance of our context

model to that of the baseline detector for the localization
task (i.e., detecting the correct bounding box). We look at N
most con�dent detections in each image and check whether
they are all correct. For the baseline detector, we use a lo-
gistic regression to compute the probability of correct detec-
tion based on the detector score. For the context model, we
compute the probability of correct detection given gist and
detector outputs (i.e.p(cik = 1 js; g; W)) using the ef�cient
inference algorithm described in Section4. The numbers on
top of the bars indicate the number of images that contain
at least N ground-truth object instances.

Figure5.b compares the baseline and the context model
for the presence predication task (i.e., is the object present
in the scene?). We compute the probability of each object
category being present in the image, and check whether the
top N object categories are all correct. The most con�dent
detection for each object category is used for the baseline
detector. For the context model, we compute the proba-
bility of each object class being present in the image (i.e.
p(bi = 1 js; g; W)). The numbers on top of the bars indi-
cate the number of images that contain at least N different
ground-truth object categories. Note that the number of im-
ages drops signi�cantly as N gets larger since most images
in PASCAL contain only one or two object categories.

6.2. Recognition performance on SUN 09 dataset

We divide the SUN 09 dataset into two sets of equal
sizes, one for training and the other for testing. Each set
has the same number of images per scene category. In order
to have enough training samples for the baseline detectors
[5], we annotated an additional set of 26,000 objects using
Amazon Mechanical Turk. This set consists of images with
a single annotated object, and it was used only for training
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Baseline
in [4]

aeroplane 28.12 31.30 32.05 27.80 28.80 50.88
bicycle 51.52 50.79 50.56 55.90 56.20 58.76

bird 1.93 0.75 0.89 1.40 3.20 27.45
boat 13.85 15.06 14.90 14.60 14.20 28.14
bottle 23.44 25.58 25.28 25.70 29.40 40.51
bus 38.87 35.83 36.98 38.10 38.70 47.89
car 47.01 46.74 46.74 47.00 48.70 65.95
cat 14.73 16.72 18.93 15.10 12.40 48.60

chair 16.01 17.91 18.12 16.30 16.00 49.08
cow 18.24 18.07 18.22 16.70 17.70 36.89

diningtable 21.01 23.18 22.93 22.80 24.00 30.58
dog 10.73 11.26 12.43 11.10 11.70 46.22

horse 43.22 45.32 47.29 43.80 45.00 69.54
motorbike 40.27 40.99 41.87 37.30 39.40 59.69

person 35.46 34.77 35.46 35.20 35.50 58.92
pottedplant 14.90 16.55 15.67 14.00 15.20 43.75

sheep 19.37 21.77 21.81 16.90 16.10 35.13
sofa 20.56 19.43 20.40 19.30 20.10 42.67
train 37.74 37.43 38.80 31.90 34.20 61.35

tvmonitor 37.00 34.27 35.75 37.30 35.40 54.87
AVERAGE 26.70 27.19 27.75 26.41 27.10 47.84

[4] BoundCategory Baseline Gist Context

Table 1. Average precision-recall. Baseline) baseline detector [5];
Gist) baseline and gist [20]; Context) our context model; [4]) re-
sults from [4] (the baseline in [4] is the same as our baseline, but
performances slightly differ); Bound) Maximal APR that can be
achieved given current max recall.

the baseline detector and not for learning the tree model.
In this experiment we use 107 object detectors. These

detectors span from regions (e.g., road, sky, buildings) to
well de�ned objects (e.g., car, sofa, refrigerator, sink, bowl,
bed) and highly deformable objects (e.g., river, towel, cur-
tain). The database contains 4317 test images. Objects have
a large range of dif�culties due to variations in shape, but
also in sizes and frequencies. The distribution of objects in
the test set follows a power law (the number of instances for
object k is roughly1=k) as shown in Figure2.

Context learned from training images Figure7 shows
the learned tree relating the 107 objects. A notable differ-
ence from the tree learned for PASCAL 07 (Figure4) is that
the proportion of positive correlations is larger. In the tree
learned from PASCAL 07,10 out of 19 edges, and4 out
of the top10 strongest edges have negative relationships.
In contrast,25 out of 106 edges and7 out of 53 (� 13%)
strongest edges in the SUN tree model have negative rela-
tionships. In PASCAL 07, most objects are related by re-
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Figure 5. Image annotation results for PASCAL 07 and SUN 09.
a-b) Percentage of images in which the top N most con�dent de-
tections are all correct. The numbers on top of the bars indicate
the number of images that contain at least N ground-truth object
instances. c-d) Percentage of images in which the top N most con-
�dent object presence predictions are all correct. The numbers on
top of the bars indicate the number of images that contain at least
N different ground-truth object categories.
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Figure 6. Improvement of context model over the baseline. Object
categories are sorted by the improvement in the localization task.

pulsion because most images contain only few categories.
In SUN 09, there is a lot more opportunities to learn posi-
tive correlations between objects. From the learned tree, we
can see that some objects take the role of dividing the tree
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toilet

Figure 9. Four examples of objects out of context (wrong pose,
wrong scale, wrong scene wrong co-occurrence). The segments
show the objects selected by the contextual model (the input of the
system are the true segmentations and labels, and the model task
is to select which objects are out of context).

according to the scene category as described in Section5.
For instance,floor separates indoor and outdoor objects.

Object recognition performance Despite the high vari-
ance in object appearances, the baseline detectors have a
reasonable performance. Figure5.(b,d) show localization
and presence prediction results on SUN 09. Note that the
context model improve the image annotation results signi�-
cantly: as shown in Figure5.d, among the 3757 images that
contain at least three different object categories, the three
most con�dent objects are all correct for38% of images
(and only15%without context).

Figure 6 show the improvement in average precision-
recall (APR) for each object category. Due to the large num-
ber of objects in our database, there are many objects that
bene�t in different degrees from context. Six objects with
the largest improvement with context for the localization
task are �oor (+11.88), refrigerator (+11.58), bed (+8.46),
seats(+7.34), monitor (+6.57), and road (+6.55). The over-
all localization APR averaged over all object categories is
7.06 for the baseline and 8.37 for the context model. Fig-
ure8 shows some image annotation results. For each image,
only the six most con�dent detections are shown.

6.3. Detecting images out of context

Figure9 shows some images with one or more objects in
an unusual setting such as scale, position, or scene. Objects
that are out-of-context generally have different appearances
or viewpoints from typical training examples, making local
detectors perform poorly. Even if we have perfect local de-
tectors, or ground-truth labels, we need contextual informa-
tion to identify out-of-context scenes, which is not available
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Figure 10. Performance on detecting objects out of context.

from local detector outputs.
In this section, we present preliminary results in de-

tecting objects out-of-context. For this task, we created a
database of26 images with one or more objects that are out
of their normal context. In each test, we assume that we
have ground-truth object labels for all objects in the scene,
except for the one under the test. Among all objects present
in the image, we picked an object label with the lowest prob-
ability conditioned on all other (ground-truth) object labels
in the scene using our context model. Figure9 shows some
examples where the context model correctly identi�es ob-
jects that are the most unexpected object in the scene.

Figure10 shows the number of images that at least one
out-of-context object was included in the top N unexpected
objects estimated by the context model. It is interesting to
note that using gist may hurt the performance of detecting
images out of context. This is due to the fact that those
objects may change global features of an image, biasing gist
to favor that object.

7. Conclusion

We present a new dataset and an ef�cient methodology
to model contextual information among over 100 object cat-
egories. The new dataset SUN 09 contains richer contextual
information compared to PASCAL 07, which was originally
designed for training object detectors. We demonstrate that
the contextual information learned from SUN 09 signi�-
cantly improves the accuracy of object recognition tasks,
and can even be used to identify out-of-context scenes. The
tree-based context model enables an ef�cient and coher-
ent modeling of regularities among object categories, and
can easily scale to capture dependencies of over 100 object
categories. Our experiments provide compelling evidence
that rich datasets and modeling frameworks that incorporate
contextual information can be more effective at a variety of
computer vision tasks such as object classi�cation, object
detection, and scene understanding.

Acknowledgment

This research was partially funded by Shell International
Exploration and Production Inc., by NSF Career Award (ISI
0747120), and by the Air Force Of�ce of Scienti�c Re-
search under Award No.FA9550-06-1-0324. Any opinions,
�ndings, and conclusions or recommendations expressed in



sky
skybuilding

 oor

person person

person

 oor

shelves bookcase

desk
person

skybuilding

 oor

wall
wall

wall

skybuilding

window

window

tree

window

sky

road

wall

building

wall

 oor

sky

road

building

streetlight

streetlight

tree

sky

road

building

 oor

wall
cabinet

sky

road

building

grass

tree

car

skysea
sea

mountain
sand

mountain

sky

road

 oor

wall

 oor

tree

wall

cupboard

stovedishwasher

cupboard

refrigerator

skywall

dishwasher

truck

cupboard
building

B
as

el
in

e
W

Ith
 C

on
te

xt

Figure 8. Examples of scenes showing the six most con�dent detectionswith and without context. The �gure shows successful examples
of using context as well as failures.

this publication are those of the author(s) and do not neces-
sarily re�ect the views of the Air Force.

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.4

[2] C. K. Chow and C. N. Liu. Approximating discrete proba-
bility distributions with dependence trees.IEEE TIT, 1968.
4

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. InCVPR, 2005.1

[4] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative mod-
els for multi-class object layout. InICCV, 2009.1, 5, 6

[5] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
CVPR, 2008.1, 5, 6

[6] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. InCVPR,
2003.3

[7] C. Galleguillos, A. Rabinovich, and S. Belongie. Object cat-
egorization using co-occurrence, location and appearance. In
CVPR, 2008.1

[8] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.
Multi-class segmentation with relative location prior.IJCV,
80(3):300–316, 2007.1

[9] X. He, R. S. Zemel, and M. A. C.-P. nán. Multiscale condi-
tional random �elds for image labeling. InIEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition (CVPR'04), 2004.2

[10] G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded
classi�cation models: Combining models for holistic scene
understanding. InNIPS, 2008.2

[11] G. Heitz and D. Koller. Learning spatial context: Using stuff
to �nd things. In Proc. 10th European Conference on Com-
puter Vision, 2008.2

[12] D. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-
up. InSIGGRAPH, 2005.3

[13] D. Hoiem, A. Efros, and M. Hebert. Putting objects in per-
spective. InCVPR, 2006.3

[14] Y. Jin and S. Geman. Context and hierarchy in a probabilistic
image model. InCVPR, pages 2145–2152, Washington, DC,
USA, 2006. IEEE Computer Society.2

[15] L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene un-
derstanding:classi�cation, annotation and segmentation in an
automatic framework. InCVPR, 2009.2

[16] K. P. Murphy, A. Torralba, and W. T. Freeman. Using the
forest to see the trees: a graphical model relating features,
objects and scenes. InNIPS, 2003.2, 4

[17] D. Parikh and T. Chen. Hierarchical semantics of objects
(hsos). InIEEE International Conference in Computer Vi-
sion (ICCV), volume 2008, 2007.2

[18] J. Porway, K. Wang, B. Yao, and S. C. Zhu. A hierarchical
and contextual model for aerial image understanding.CVPR,
pages 1–8, 2008.2

[19] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora,
and S. Belongie. Objects in context. InCVPR, 2007. 1,
2

[20] B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. T. Free-
man. Object recognition by scene alignment. InNIPS, 2007.
6

[21] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. LabelMe: a database and web-based tool for image
annotation.IJCV, 77(1-3):157–173, May 2008.2

[22] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Will-
sky. Learning hierarchical models of scenes, objects, and
parts. InICCV, 2005.2

[23] A. Torralba. Contextual priming for object detection.IJCV,
53:2, 2003.1, 3, 4

[24] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual
models for object detection using boosted random �elds. In
NIPS, 2005.1

[25] Z. Tu. Auto-context and its application to high-level vision
tasks. InCVPR, 2008.1

[26] J. Winn, A. Criminisi, and T. Minka. Object categorization
by learned universal visual dictionary. InICCV, 2005.2


