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Abstract—Central to the development of computer vision |tav2i¢ AP @ ? @ L3 = b
systems is the collection and use of annotated images spangi ' e upa———
our visual world. Annotations may include information about
the identity, spatial extent, and viewpoint of the objects pesent
in a depicted scene. Such a database is useful for the trairdn
and evaluation of computer vision systems. Motivated by the
availability of images on the internet, we introduced a wehbased
annotation tool that allows online users to label objects adh their
spatial extent in images. To date, we have collected over 400
annotations that span a variety of different scene and objec
classes. In this paper, we show the contents of the databasts
growth over time, and statistics of its usage. In addition,
explore and survey applications of the database in the areasf
computer vision and computer graphics. Particularly, we stow
how to extract the real-world 3D coordinates of images in a
variety of scenes using only the user-provided object annations.
The output 3D information is comparable to the quality produced
by a laser range scanner. We also characterize the space offig. 1. Snapshot of the online application for image anmmtat
the images in the database by analyzing (i) statistics of theo-
occurrence of large objects in the images and (ii) the spatia
layout of the labeled images.

solve specific problems. Therefore, many currently avélab
Index Terms—online annotation tool, image database, object datasets used in computer vision only contain a small number
recognition, object detection, 3D, video annotation, imag statis-  of object classes, and practical solutions exist for a fegsgs
tics (e.g. human faces and cars [78], [49], [56], [77]). Notable
recent exceptions are the Caltech 101 dataset [15], with 101
. INTRODUCTION object classes (later extended to 256 object classes [20]),
the PASCAL collection [12] containing 20 object classes,

N the early days of artificial intelligence, the first chalijen the CBCL-street scenes database [8], comprising 8 object

a gqmputer vision re_s_earcher would encounter would l%%\tegories in street scenes, and the database of scenes from
the difficult task of digitizing a photograph [27]. An exc(arpthe Lotus Hill Research Institute [85]

from [40] illustrates this difficulty:“This figure (-figure not Creating a large number of annotations for thousands of

shown here-) provides a high quality reproduction of the Si&(ifferent object classes can become a time-consuming and

images discussed in the text. a and b were taken W'thcﬁallenging process. Because of this, there have beenasever

con_5|derably modified Information Intgrnat|onal Incor_|amd &/orks that study methods for optimizing labeling tasks. For
Vidissector, and the rest were taken with a Telenmation TMC- . : X .
€xample, given enough annotations for a particular object

2100 vidicon camera attached to a Spatial Data System

I } 1 SYSIeIB S, one can train an algorithm to assist the labelin gI0C
digitizer (Camera Eye 108)Even once a picture was in digital ' . N I, g
; . : The algorithm would detect and segment additional insteince
form, storing a large number of pictures (say six) consumed

: . - 1N new images and be followed by a user-assisted validation
most of the available computational resources. In addition 9 y

the algorithmic advances required to solve object recamnit stage [79]. An implementation of this idea is the Seville

. . p{oject [4], where an incremental, boosting-based detecto
a key component to progress is access to data in order 10 . o . . .
was trained. The pipeline begins by training a coarse object

train computational models for the different object classe

This situation has dramatically changed in the last decac?eeJ[e.(?tor that is good enough to simplifty the gollecnon of
. . . : ) additional examples. Furthermore, the user provides faeedb
especially via the internet, which has given researcheressc

to billions of images and videos. to the system by indicating when an output bounding box is

While larae volumes of pictures are available. buildin a correct detection or a false alarm. Finally, the detector i
! ge volu pictu val » OUIlAING By ained with the enlarged dataset. This process is regeat

Ia_rge dataset of annotated images with many .ObJeCtS St “Quntil reaching the desired humber of labeled images. Amothe
stitutes a costly and lengthy endeavor. Traditionallyadats ork for optimizing label propagation is [80], where a learn

are built by individual research groups and are tailored 9 trained to balance the relative costs for obtaining cf
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by creating learners to recognize and distinguish objestsels > T T T ] 40T T T e T
that can be trained with unlabeled and unsegmented scergps. 8 310° %amﬁ
However, independent of the methods for creating classifieg 21 E 2
ground truth data is always implicitly necessary to vakdat? 2 210° gHo
inferred annotations and to assign names to discoveredtobjg 1’ £ 10 gma
categories. z = 2
|

Web-based annotation tools provide a means of building © Zoos 2067 2005 2009 2006 2067 2008 2009 2006 2007 2008 2009
large annotated datasets by relying on the collaboratfetef ? ) 9
of a large population of users [81], [58], [53], [65], [67].Fig. 2. Evolution of the dataset since the annotation tooheznline in
Recently, such efforts have shown to be successful. Thegust 2005 through 2009. The horizontal axis denotes tieaeH mark is
Open Mind nitiative [67] aims to collect large datasetsiro 1 g o1 I vee, o e et s epiesmiaunter o
web users to develop intelligent algorithms. More spedlfica ¢y Number of unique object descriptions.
common sense facts are recorded (e.g. red is a primary color)
with over 700K facts recorded to date. This project seeks
to extend their dataset with speech and handwriting datm the initial point or with a right click. After the polygon
Flickr [58] is a commercial effort to provide an online imagés closed, a popup dialog box appears querying for the object
storage and organization service. Users often provideiééxtname. Once the name is introduced, the annotation is added to
tags as captions for depicted objects in an image. Anothgr wihe database and becomes available for immediate download
lots of data has been collected is through an online gamésthafior research.
played by many users. The ESPgame [81] pairs two random
online users who view the same target image. The goal js
for them to try to “read each other’s mind” and agree on d?’l
appropriate name for the target image as quickly as possibleFig. 2 plots the evolution of the dataset since it went online
This effort has collected over 10 million image captionssin in 2005. Fig. 2.a shows how the number of annotated objects
2003 for images randomly drawn from the web. While théone annotated object is composed of the polygon outlining
amount of collected data is impressive, only caption datatie object boundary and the object name) has been growing;
acquired. Another game, Peekaboom [82], has been createdatice the constant database growth over time. Fig. 2.b show
provide location information of objects. the number of images with at least one object annotated. As
In 2005 we created LabelMe [53], an online annotation todisers are not required to fully annotate an image, different
that allows sharing and labeling of images for computelovisi images have varying numbers of annotated objects. As we
research. The application exploits the capacity of the veeb ity to build a large dataset, it will be common to have many
concentrate the efforts of a large population of users. TiBages that are only partially annotated. Therefore, dpiey
tool has been online since August 2005 and has accumula@gprithms and training strategies that can cope with tsge
over 400,000 annotated objects. The online tool providedll allow the use of large datasets without having to make
functionalities for drawing polygons to outline the sphtiathe labor-intensive effort of careful image annotation.
extent of object in images, querying for object annotations Fig. 2.c shows the evolution of the number of different
and browsing the database (see Fig. 1). object descriptions present in the database. As users &re no
In this paper we describe the evolution of both LabelMeestricted to only annotate a pre-defined set of classes, the
and its annotation corpus. We demonstrate statisticsataigl dataset contains a rich set of object classes that constant
the ease of use and impact our system has had over @iews as new objects are annotated every day. This is an
course of time. With the aid of collaborative collection anémportant difference between the LabelMe dataset and other
labeling of scenes at a large scale, we present an orderﬂﬂjabases used as benchmarks for computer vision algsrithm
and visualization of scenes in the real world. Finally, wénterestingly, the number does not seem to be saturatirty wit
demonstrate applications of our rich database. For example time. This observation was made in [66] and seems to indicate
developed a method to learn concepts not explicitly anadtathat the number of visual object categories is large.
in scenes, such as support and part-of relationships, whictig. 3.b shows examples of the most frequently annotated
allows us to infer 3D information of scenes. object classes in our database, along with their segmentati
masks. Fig. 3.a shows the distribution of annotated object
classes. The vertical axis denotes the number of polygons
assigned to a particular object class and the horizontal axi
Fig. 1 shows a snapshot of the LabelMe online annotatianrresponds to its rank in the list of sorted objects accaydi
tool. The tool provides a simple drawing interface thatwfio to the number of annotated instances. For instance, the most
users to outline the silhouetes of the objects present ih edequent object class in our datasetvisndow with 25741
image. When the user opens the application, a new imagenotated instances, followed loar, with 20304 instances.
is displayed. The image is randomly selected from a largde distribution of object counts is heavy-tailed. There ar
collection of images available in LabelMe. The user progiddew dozen object classes with thousands of training samples
an annotation by clicking along the boundary of an objeeind thousands of object classes with just a handful of train-
to form a polygon. The user closes the polygon by clickinipg samples (i.e. rare objects are frequent). The distahut

Dataset evolution and distribution of objects

II. ONLINE ANNOTATION



Lateivie Window (25741)  Car (20304) TTge'(‘17526) Building (16252) Person (13176) Head (8762) _ _Sky (7080)

10 — Streetscenes
Pascal 2008
Caltech 101
10 —— MSRC

Leg (5724) Road (5243)  Arm (4778)  Sidewalk (4771 Wall (4590) _Sign (4587) Plant (4384) Chair (4065)

) B (‘v) ERA <. ~—
| i 250 45 i RS

(3101) Mountain (2750) Streetlight (2414) Wheel (2314) Cabinet (2080)

/

Counts
=)

Door (4041)  Table (3970) Torso
ey

=R G
10 10 10

a) Frequency rank b)

‘

Fig. 3. a) Distribution of annotated objects in the LabelM#lection and comparison with other datasets. b) Exampfethe most frequent objects in
LabelMe. The number in parenthesis denotes the number aft@ed instances. Those numbers continue to evolve as m@et® are annotated every day.
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Man hours for 85860 polygons: 458.40

follows Zipf's law [87], which is a common distribution for * o
ranked data found also in the distribution of word counts in
language. The same distribution has also been found in othé
image databases [66], [73]. £

3000

The above observations suggest two interesting IearniE@
problems that depend on the number of available trainirig

2000

Number of polygons

samplesN:
« Learning from few training samples (N> 1): this is the | v v j
limit when the number of training examples is small. In ™ padiesses © 7 ° ® Cseene®  C @
this case, it is important to transfer knowledge from other, (a) (b)

more frequent, object categories. This is a fundamentFaI 4 (a) Number of , ded by individusers of

. . e s . .+ Fig. 4. a) Number of new annotations provided by individuaers o
prOblem n |eam|n_g theory and artificial |nteII|gence,IW|t the online annotation tool from July 7th, 2008 through Mad%th, 2009
recent progress given by [15], [76], [7], [68], [47], [46],(sorted in descending order, plotted on log-log axes). taltd 1382 unique
[13]’ [31]. IP addresses interacted with the labeling tool, with ove® 2@ferent IP

; ; HTh < thic addresses providing over 100 object labels. Notice that eteagdiverse set

« Learning with millions of samples_(N—» OO) this IS_ the of users who make significant contributions through the tatiom tool. (b)
extreme where the number of training samples is largsistribution of the length of time it takes to label an objéintseconds). Notice
An example of the power of a brute force method is thi&at most objects are labeled in 30 seconds or less, with thderbeing 10

_ onds. Excluding those annotations taking more than &66nsls, a total
text b_ased Golee SearCh, tool. The user can formul 458.4 hours have been spent creating new annotations.
questions to the query engine and get reasonable answers.
The engine, instead of understanding the question, is sim-
ply memorizing billions of web pages and indexing those

pages using the keywords from the query. In Section |

we discuss recent work in computer vision to exploit ,
millions of image examples. Since the database grows when users provide new anno-
. - tations, one way of characterizing the online contribugids
Note, however, as illustrated in Fig. 3.a, that collect .
; s y looking at the number of newly created polygons that each
benchmark datasets do not necessarily follow Zipf's law:
user makes. To analyze the number of new polygons that users

When building a benchmark, it is common to have SImIIacrreated, we stored the actions of an online user at a paticul

Comeniat artfcial disiburions that might not reieat .7 2GS In Fig 4(a), we plot the total number of objecs
9 ﬁreated by each IP address, sorted in descending ordeteplot

guency in which objects are encountered in the real worl@. T ) X
. P . . on log-log axes). We removed from consideration polygons
presence of the heavy tailed distribution of object coumthé . : : i
{%at were deleted during the labeling session, which often

LabelMe dataset is important to encourage the deVek)pmencorresponded to mistakes or from testing of the annotation

algorithms that can learn from few training samples. tool. There were in total 11382 unique IP addresses that
interacted with the labeling tool. During this time, 86828
B. Study of online labelers new objects were added to the database. Notice that over 200
An important consideration is the source of the annotatiorfifferent IP addresses provided over 100 object labelss Thi
For example, are few or many online users providing annguggests that a diverse set of users are making significant
tations? Ideally, we would collect high quality contritarts contributions through the annotation tool.
from many different users since this would make the databaseAnother interesting question is the amount of effort online
more robust to labeling bias. In this section, we study tHabelers spend annotating objects. To answer this, we z@maly
contributions made through the online annotation tool ke length of time it takes a user to label an object. We count

nalyzing the online user activity from July 7th, 2008 tighu
arch 19th, 2009.



Object Average labeling time  Total labeling time (hours) F - -
window 9.52 11.08 LM‘I R
door 9.98 2.23 R
sign 10.35 2.16 = 1
lamp 11.47 6.93 skievali
bottle 14.42 2.02 roac
head 14.79 8.40 bullding __ static =) moving
plant 16.12 2.22 sky What is it deing?
arm 17.04 14.92 e W biaiia foivea
car 17.99 5.49 tree Done | Beiete
wall 18.54 19.65 —
grass 18.54 2.99 e
floor 19.27 7.95 . 1
ceiling 20.57 6.43 S
table 20.88 3.14
sidewalk 21.09 4.26
shelves 22.57 2.41
leg 22.77 24.04
building 23.16 14.83
person 23.40 2.94
road 23.44 4.17
torso 23.80 14.14
chair 24.16 4.18
tree 25.94 11.85
sky 29.37 10.76
plate 34.42 3.69
fork 34.60 2.75
wineglass 41.52 2.00
TABLE |

AVERAGE TIME TO LABEL A GIVEN OBJECT CLASS ALONG WITH THE
TOTAL NUMBER OF HOURS SPENT LABELING THE CLASSNOTICE THAT
CERTAIN OBJECT CLASSES ARE EASIER TO LABEKE.G. WINDOWS),
WHICH REQUIRE FEWER CONTROL POINTSOTHERS ARE HARDER(E.G. Fig. 5. A snapshot of our video annotation tool exemplifyadully labeled
ROAD, SKY), WHICH ARE REGIONS AND REQUIRE MORE CONTROL POINTS example and some select key frames. Static objects arezedan the same
way as in LabelMe and moving objects require some minimal inservention
(manually edited frames are denoted by the red squares imidee track).

the time starting from when the user clicks the first control - - .

point until the user closes the polygon and finishes entéhiag containing many hours of television or surveillance dai [6
object name. Fig. 4(b) shows the distribution of the amodint [?]- [3]3 [17], [59]. . .

time (in seconds) to create an object. Notice that most tbjec NSPired by the concept of an online annotation tool, we
are labeled in under 30 seconds, with a mode of 10 secong&ated an openly accessible annotation tool for videochvhi

Considering only annotations taking less than 100 secorfd§ates @ medium for researchers and volunteers to easily up

to produce, the database contains 458.4 hours (19.1 daysiofi‘fj and/or annotate moving objects and events, with piatent

annotation time across all users during this time period. Vv@@Plications in research areas like motioE estimatir(])nea:tbj
wish to note that this analysis does not include the amount®fent and action fe,°99f|““°”' among;st others. We haverbegu
time spent looking at the image or editing other annotation8Y contributing an initial database of over 1500 videos and
We further look at the difficulty of labeling particular obfe 2notated over 1903 objects, spanning over 238 object and
classes. In Table I, we show the average time (in seconds)@; action classes. Fig. 5 shows a scr_eenshot_ of our labeling
label an obiject for a particular class, along with the totahm (00! @nd a sample annotation for a video. With an evolved
hours devoted to labeling that object. We exclude annatatif@t@set, we expect to help develop new algorithms for video
times exceeding 100 seconds from our analysis. Windov\l,@derstandlng similar to the contribution of LabelMe in the

which often require only four control points, are easiest fFatic image domain.
label. Region-based objects, such as sky and ground, am mor
difficult. I1l. FROM ANNOTATIONS TO 3D

) In the previous section we described the annotation tool and

C. Video annotation analyzed the content of the database. In the online anaotati

The introduction of annotated image databases like LabelNt®l we ask users to only provide outlines and names for the
has contributed to the advancement of various areas in coobjects present in each picture. However, there are mamy oth
puter vision, such as object, scene, and category recogniti  different types of information that could be requested.His t
the video domain, there have been efforts to collect datasséction we will show that object outlines and names from a
for benchmark and training purposes. Most of the currentlgrge number of images are sufficient to infer many othersype
available video datasets fall into one of two categories: @f information, such as object-part hierarchies or reaspni
moderately annotated small datasets containing a rich, wdiout occlusions, despite not being explicitly providedtoy
small set of actions [33], [32], [36], [57], and (ii) veryuser. Furthermore, we will discuss how to recover a full 3D
specialized or minimally annotated, large databases ynodtlescription of the scene, as shown in Fig. 6. Our system can
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Fig. 6. We can recover 3D information from the user annatatidVe show outputs for two input images. Top-left: Input gmaTop-right: User annotations
provided for the image. Middle-left: Recovered polygon auhe types. Polygons are eittgmound (green),standing(red), orattached(yellow). Edges are
contact (white), occludedblack or attached(gray). Middle-right: Recovered depth map in real-worldbnates (a color key, in log scale, appears on the
right). Bottom: A visualization of the scene from a diffetariewpoint.

reconstruct the 3D structure of the scene, as well as estimabout geometry, as all of the 3D information is automatycall
the real-world distances between the different depictgelatdr  inferred from the annotations. For instance, the method wil
As an added benefit, the quality of the reconstruction teadsknow that aroad is a horizontal surface and thatcar is
improve as the user improves the annotation of the image.supported by theoad. All of this information is learned by
Previous work has explored ways of associating 3D infoanalyzing all the other labels already present in the databa
mation to images. For example, there are existing databasegt first glance, it may seem impossible to recover the ab-
captured with range scanners or stereo cameras [55], [54dlute 3D coordinates of an imaged scene simply from object
However, these databases tend to be small and constraineghi@ls alone. However, the object tags and polygons prdvide
specific locations due to the lack of widespread use of suglp online labelers contain much implicit information about
apparatuses. Recent efforts have attempted to overcosie the 3D layout of the scene. For example, information about
by manually collecting data from around the globe [1].  which objects tend to be attached to each other or support one
Instead of manually gathering data with specialized equignother can be extracted by analyzing the overlap between
ment, other approaches have looked at harnessing the \gisiect boundaries across the entire database of annatation
amount of images available on the internet. For examplghese object relationships are important for recovering 3D
recent work has looked at learning directly the dependefcyigformation and, more generally, may be useful for a generic
image brightness on depth from photographs registered wiene understanding system.
range data [55] or the orientation of major scene componentsgyr reconstructions are approximations to the real 3D struc
such as walls or ground surfaces, from a variety of imaggre as we make a number of strong simplifying assumptions
features [24], [25], [26]. Since only low and mid level visuagpoyt the object geometries. Here we summarize all the
cues are used, these techniques tend to have limited agcuigagrmation that is needed by our system in order to provide a
across a large number of scenes. Other work has lookedsgf reconstruction of the scene. Our reconstructions aredbas

using large collections of images from the same location g, the following components, which are inspired from early
produce 3D reconstructions [64]. While this line of reséaec ok in line-drawing analysis [5], [9], [6], [29], [69].

promising, at present, producing 3D reconstructions igtdich
to a small number of sites in the world. Finally, there aresoth
recent relevant methods to recover geometric information f

o Object types We simplify the 3D recovery problem by
considering three simple geometric models for the objects

images [23], [61], [11], [48], [70], [35), [21], [41], [86]. that compose each scene:

An alternative approach is to ask humans to explicitly label — Ground objects: we assume that ground objects are
3D information [28], [10], [42]. However, this informaticzan horizontal surfaces (e.g. road, sidewalk, grass, sea).
be difficult and unintuitive to provide. Instead, we devebp — Standing objects: we assume that standing objects

method that does not require from the user any knowledge are modeled as a set of piecewise-connected planes
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Fig. 7. Snapshot of the 3D measuring tool. Once we compute3ihe

coordinates for a depicted scene, we can make measuremerdseioe o .

components. Here, we show the height and width of the cahwisi 13.68  C) building, road, cars d) wrong labeling

meters away from the camera center. We can also compute $tencié

between any two points in the scene, such as the selectes poithe building

and the truck. Fig. 8. As we the user adds more annotations, the qualityeofebonstruction
improves. a) input image, b) 3D model after the user annttite road and
the building, ¢) model obtained after adding tlwar to the list of annotated

; bjects. d) Reconstructed model when the labels are iratiyriatroduced so
oriented ortthona”y to the ground pIane (e'g' pel)hat the building is labeled as a road and vice versa.
son, car, boat, table).

— Attached objects: we assume that attached objects are

part-of other objects (e.g. hand, window, road marksijgings, whenever windows and buildings co-occur in a
ing), with their 3D position completely determinedscene, it is quite likely that the polygon defining a windowll wi
by their parent object. completely overlap with the polygon defining the buildingy O
« Relations between objectsin addition to the object the other hand, street lamps are not part of buildings, so one
types described above, we also consider two types \gbuld expect that the polygons do not systematically operla
relationships between pairs of objects: In a similar manner, we can reason about the supported-by
— Supported-by relationship: we assume that standinglationships. Objects that are supported by another tend t
objects in the scene are supported by a groutdhve the bottom part of its polygon live inside the suppagrtin
object, with the relationship extracted at the categonbject. For instance, we can make a list of all the object
level. For instance, we expect that sidewalks supparategories that overlap with the bottom part of the polygon
people, fire hydrants, and parking meters. defined by all thestreet lampsn the database. If the object is
— Part-of relationship: attached objects are part-of otharsupported object, we will see that this list is relativeip.
objects, with the relationship extracted at the cate- Once the learning is done and we have collected all the
gory level. For instance, heads are attached to peopte-occurrence statistics between object category pags;am
windows are attached to buildings, and manholgse the discovered relationships to recover 3D models of new
covers are attached to roads. images. Given an annotated image, we will use the polygons
In our model, we assume that a scene consists of a numbed object names, along with the discovered relationships,
of objects that stand on the ground. This assumption holdecide the object types (standing, ground, attached) fafal
true for many different imaged scenes (e.g. streets, ratutfze annotations in the image. For this, we extract the cues fo
landscapes, lakes, indoors). In addition, we assume tleat the supported-by and part-of relationships (polygon @yer!
horizon line is parallel to the horizontal axis of the camerand distance to ground objects) and use the recovered co-
(this is true for most normal pictures). occurrence statistics to infer the object types. We show the
There are two steps for obtaining the 3D information: (i) thi@ferred polygon types in Fig. 6, where standing objects are
learning stage, where the system learns from all the aretbtatolored red, ground objects are green, and attached olajexts
objects in the database the relationships that hold betweetlow. Notice that the recovered object types agree welh wi
all the object classes (part-of and supported-by) and f{#) tthe objects present in the scene.
reconstruction stage, where, given an annotated imagellnd aln addition to knowing the support relationship between
the learned relationships, the system builds a 3D model fdifferent object categories, it is also important to knowiath
the input image. part of the object makes contact with the ground. For example
We start by describing the learning stage to recover the pdtie contact points with the ground plane for standing object
of and supported-by relationships that hold between objesiil provide information about the relative distance of the
classes. To decide when an object category is part-of anottedbject to the camera. For this, we label edges into threestype
we evaluate the frequency of overlap between polygons adntact attached occlusion We assume that attached and
the two categories. For instance, as windows are part gound objects have all of their edges labeled as attached.
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Standing objects can have contact or occlusion edges. C@@b@m
that are important for finding contact edges are edge lengr————
orientation, and distance to a support object. Fig. 6 shc
the edges labeled into the different types, with white line
corresponding to contact edges, black lines corresponting
occlusion edges, and gray lines corresponding to attact
edges. By recovering the polygon and edge types, we (p=z
already pop-up the scene by placing standing objects on -
ground objects and letting attached objects remain on t
objects they are attached to, as illustrated in Fig. 6. .

We wish to also extract absolute 3D coordinates. Importa|
for this is to (i) produce 3D coordinates such that objec}
keep consistent heights across the database and (ii) enfc
constraints on the image imposed by the camera throu
perspective projection. More specifically, as in [30], warte
the distribution of object heights across the database s
the camera parameters corresponding to each image in
database. This is achieved in an iterative fashion by fit
estimating the camera parameters given the current gueksef
the heights of the objects in the image. Then, the objectieig £
are updated using the estimated camera parameters. The en@)
process is seeded by providing the mean and variance of the,
height of people. For the camera, we assume that it is he;;
level with the ground, with the parameters being the horizo, ‘
line (the image location of where the ground plane vanish '
to infinity), camera height from the ground, and focal length, U ‘
Once we recover the camera parameters for an image, itg
straightforward to obtain the 3D information of the scene
Please see [30], [50] for more details.

We show output depth maps of our system in Fig. 6. Th
distance (in meters) is given by the color key, which is gldtt
in log scale. In addition, we can interact with the scene b
taking measurements of the scene components. In Fig. 7,
show the height and width of a depicted car. We also shot
the distance between two points in the scene. Notice that tl
measured points appear to be consistent with the perceiv
distances.

We measured the accuracy of our system output depth ma
on a dataset that simultaneously utilized both camera a®d la
range scanner apparatuses [55]. The dataset was gatherec
the Stanford University campus and primarily depicts oatdo =
scenes. We provided dense object labels for 62 images b)
the dataset, with each image having 256x192 pixel resalutio
The system output was then compared with the output of the _ _ _ )
laser range scanner using mean per-pixel relative errer (i'% 9. Automatically generated instructions for a "doturseif pop-up

. *book” that can be constructed with paper, glue, and scissors
absolute difference between the two depth maps normalized
by the output of the laser range scanner). Due to noise in the
range data, we only considered ground truth and system butpu
depths in the 5-70 meter range. To overcome bias in the dd@§er range scanner and were able to produce visually plausi
we performed cross-validation, with training sets coirsist Output depths beyond the 5-70 meter range. Furthermore,
of 20 images and validation sets consisting of 42 image¥e Were able to overcome errors resulting from the range
and found linear regressors that minimized the mean petpigcanner that were caused by object reflection (e.g. mirrors,
relative error over the training sets. shiny surfaces) and transparency (windows, tree leaves).

Our system has relative error @29 40.02, with 40% 2% Because our system uses only user annotations, the quality
of the pixels used in the evaluation. As a baseline, wef the output is heavily dependant on the quality of the Isbel
compared against the harmonic mean of the depth maps cofer example, consider Fig. 8, which shows outputs for dif-
sponding to the training images. The baseline has relatiee e ferent labelings of the same scene. If few objects are ldbele
of 0.33+0.04. Overall, we obtained less noisy outputs than thiae output is less reliable since there are few constraons f
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Fig. 10. a) Distribution of n-grams in LabelMe. Each n-graomresponds to the list ot largest objects on each scene. b) Examples of scenes araoing-gr

estimating the camera parameters. As more objects arethbethere are as many scenes as pictures we can take. In cog-
the estimates improve. If a user enters incorrect objed, tagitive psychology, studies on scene perception suggeats th
then this may result in poor outputs. Moreover, the estichata representation of the scene might be composed of the
3D coordinates can be greatly affected by the placementssfene category and 4 or 5 objects. In [72], it was shown
the control points. This can have a noticeable effect oradtst that observers can recognize images at low resolution.dn th
objects since they occupy fewer pixels in the image and te&treme case where images have just 32x32 pixels, observers
change in depth increases as one moves closer to the horiaon able to recognize the scene category, together with 4-5
line in the image. objects, with an accuracy of 80 Therefore, we will define
Another output of our system is a set of instructions fdwo images as being the same scene if the 4 largest objects
building a "do-it-yourself pop-up book”, shown in Fig. 9. ih depicted in an image belong to the same object categories
is automatically generated and allows the user to cut anel glwve will provide a more precise definition of image similgrit
the picture (with all the objects’ perspective correcteddider later). Our goal now is to study how many configurations of 4

to build a physical model of their picture. objects are present in the LabelMe database. This is sitoilar
studies in language that build probabilistic models of gi©u
IV. THE SPACE OFLABELME IMAGES of n words.

A number of recent papers have used large datasets 0!‘:ig. 10 shows the distribution af-grams obtained as the
) pap ve U g n-words that describe the largest objects in each image.

images in conjunction with non-parametric methods for com- - . .
outer vision [75], [38], [37], [39], [11] and graphics aped Mhese statistics are derived from the analysis of 12201escen

. . o containing a total of 180391 annotated objects. For each
tions [64], [22], [61]. The main observation is that whergiar image, we sort all the objects according to the percentage of

amounts of images are available, image indexing techniqL{ﬁ% image covered by each polygon. We only considenthe

can be used to retrieve images with similar object arranglg—rgest objects. The figure shows the distribution of scénes

ments as the query image. This observation suggests a norna-ms) forn — 1,2.4.8. For all the tested values of, the

parametric approach for scene understanding. With a Ial'gﬁgtribution appears to follow a power law [60]. Adncreases,

enough database, we can find some images in the datahase : ' : :
. L humber of different scene configurations increases alyd o
that are close to a query image, such as similar scenes wi
S . R . . . a small percentage of scenes seem to co-occur often. In the
similar objects arranged in similar spatial configuratidhthe :
; . . . case ofn = 4, Fig. 10.b shows some of the most frequent 4-
images in the retrieval set are partially labeled, then we c

a . .
transfer the knowledge of the labeling to the query image. g:gmn?c',rael()tﬂgf'ltgoaz_e?:nr?slﬁ];?zgeJZ: igct?m4e-gr§:1r:nyr1:rii
In section Il we studied the number of different object cat 9 P

: : : ODJECt Calfhe database. Therefore, one can expect that, as the databas
gories available in the LabelMe dataset and the distribubio . o ' P e
. increases in size, the most common scenes will have many
annotated examples for each category. Here, we are irgdres : e .
. . . . Instances. The heavy tail of the distribution also pointth®
in how many different scenes there are. In this section,

. . W t that, independent of how large the database is, thdle wi
study the space of different scenes in the database. Thro %ays be a large number of scene configurations for which

our studies, an |mpo_rtantquest|on arises: dogs the dajpaet we will have only a handful of training examples.
a large number of different scene configurations?
B. The space of images
A. Distribution of scenes In the previous section we discretized the space of scenes
Here, we require a definition of what a scene is and whéay defining a scene as being a collection of 4 large objects
two scenes are considered similar. Without any constraingsd ignoring their spatial organization. However, the spac



Fig. 11. The images are arranged according to semanticasityibetween images (nearby images will contain similgects in similar spatial configurations).
Each thumbnail shows the object segments of each image cotid. Although there are some easily identifiable clustetbe space, most of the images
are organized across a continuous space in which trarsitioross images are smooth.

of images is a continuous surface. Here, we will use image. Each object class has a unique color

representation that will incorporate spatial informatiatong There are a number of methods that can be used to obtain
with all the objects present in the scene, in order to gat2D visualization of the space of images from the matrix of
a continuous organization of scenes. What we need firstsismantic similarities defined above. For the visualizatbn

to define the semantic distance between two images usifig. 11 we used kernelized sorting [44]. The advantage sf thi
the annotations. Ideally, two images are semanticallylaimitechnique is that it allows specifying the form of the output
if their segmentations and object labels are intercharigeabpace (in this case a rectangular grid). Kernelized soxtiiig
across the two images. try to find the best correspondence between the images and

Our definition of semantic distance between two imagdle locations in the rectangular grid, while trying to prese

is based on the histogram of object labels in the two imagl¥ Same neighborhood structure. .~ _

[74]. For this, we use spatial pyramid matching [34], [19kov Although there are some easily |dgnt|f|able clusters in the
object labels. This results in a simple similarity measinatt SPace, most of the images are organized across a continuous
takes into account the objects present in the image, iniadditSPace in which transitions across images are smooth. The
to their spatial organization. Two images that have the sa/f§sters that are visible in the figure correspond to regions
object labels in similar spatial locations are rated aserlof the image space that are not appropriately sampled in
than two images with the same objects but in different spatif® LabelMe dataset (e.g. a collection of flower photographs

locations. Furthermore, this is rated closer than two irsagBictures of specific monuments, or a collection of pictures o
with different object classes. silverware). However, there is a large portion of the spheg¢ t

] ) o ) has no clearly defined boundaries. For instance, we can start
Fig. 11 shows a visualization of 12201 images that ag, 5 picture of a busy downtown center and continue moving

fully annotated from the LabelMe dataset. The images gf¢ e space by reducing the size of the buildings and adding
organized according to semantic similarity: two nearbyges

are likely to contain the same object categories in similaripy, interactive  version of the tool is available at
spatial configurations. Each tile shows the segmentati@anof http:/people.csail. mit.edu/torralba/research/LitedlabelmeMap/
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Fig. 12. Examples of input images and their nearest neighlbothe dataset using the GIST descriptor. For each panagaimshowing the query image
(red box) and its 8 nearest neighbors. The objects withith émage and the LabelMe map showing the location of the 1,008est images among the
12,201 images that compose this test set.

more sky until we get a highway scene. Furthermore, we céris possible to get very tight matches. However, in general
reduce the size of the road until the picture becomes a fielde will work at the category level. We want to find images
Finally, we can add mountains in the background until theorresponding to visually similar places (i.e. contairsigilar
scene becomes a mountainous landscape. This transformadibjects roughly with the same spatial configuration) but tha
can take place by traversing the space of images, as showddnnot necessarily correspond to the same world location or

the bottom of Fig. 11. even the same city. As shown in Fig. 12, for several of the
input images, the images in the database that have clos& visu
C. Recognition by scene alignment similarity (as captured by the GIST descriptor) also falthii

As illustrated in Fig. 11, some regions of the scene Spaaéocalized region of the map organized by semantic distance

seem to be covered by a large humber of examples. The g ap- 11).
now is, given a new image, to extract a set of image featuresThis property provides the basis for several approaches for
to locate the region of the space that is the closest, at tteEognition that use the retrieved images to make proposals
semantic level, to the input image [22], [74], [73]. about possible object categories that can be present in the
In the examples used here, we use the GIST descriptor [43put image [22], [74], [73], [38], [37]. To illustrate theopver
to estimate the similarity between two images. To compute thf large scale databases, we evaluate the following simple
GIST descriptor, the image is first decomposed by a bank alfjorithm: given an image and an annotated database, search
multiscale-oriented filters (tuned to six orientations dadr for the image in the database that is closest to the inputémag
scales). Then, the output magnitude of each filter is averageising GIST to measure image similarity). Then, output the
over 16 nonoverlapping windows arranged on & 4 spatial annotation of the nearest neighbor as a labeling of the input
grid. The resulting image representation is a 512 dimemsionmage. As a performance metric, we use the percentage of
feature vector. The distance between two images is computexkls that are correctly labeled. To test the algorithm wile
as the euclidian distance between GIST descriptors. use as input the set of 12,201 images used in Fig. 12. For
Fig. 12 shows examples of 8 input images and their neardésis algorithm, we can also provide an upper bound for the
neighbors in the dataset using the GIST descriptor. For eaeftognition rate. Since the input image is also annotated, w
panel, we show the query image (red box), the 8 nearesin search for the image in the database that has the largest
neighbors, the annotations of the neighbors and the latatioumber of pixels with the same label as the input. As our goal
of the 1,000 closest images among the 12,201 images tlsto predict the labels of all the pixels of the input imagangs
compose this test set, as shown in Fig. 11. When searchmgingle nearest neighbor, this measure will give us an upper
for pictures of specific places, such as a picture of Nottwund to the performance. Notice how the bound increases
Dame, if the database contains many exemplars of that plapgeyportionally to the size of the database.
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Fig. 13. a) Recognition performance as a function of datsiget b) Distribution of the recognition performance in tlifierent regions of the image space
defined in Fig. 11.

In fig. 13 we demonstrate how the performance of nearest V. CONCLUSION
neighbors improves as we enlarge the dataset. We also show _
how errors are distributed in the map of Fig. 11. In this work, we developed a web-based annotation tool

In order to test the dependency of the database size, W@t allows the labeling of objects and their location in gres.
randomly sampled our database of 12,201 images to creatghzfough the tool,lwe have cc_>||ected alarge annotatgd dséaba
image databases of different sizes: 12, 122, 1220, and 1228f1/Mages spanning many different scenes and object classes
For testing, we exclude the query image from the database’, 5 have observed_co_n_stant grovyth .Of the databa;e over
avoid overfitting. Despite the simplicity of the nearestgidior time and, recently, significant contributions from a vayief

algorithm, we observe performance increases proportitmalon“ne users. The database is intended as a resource for the
the datab’ase size, as shown in Fig 13.a computer vision and computer graphics communities, wigh th

images and annotations immediately available for download

The perfomance of this algorithm depends on the sampli&}f addition, search tools have been developed to interabt wi

density of the space images. Therefore, one can expect Al yatabase online

the perfoma_nce will vary depending on the_ regions of theIn creating this database, we also intended that its use
space. In this study we can use the organization of scenes

from Fig. 11 to visualize the distribution of errors. Fig (3. glo (\)A:ﬁ::n?sey?rthﬁ:;nri/lv%is agenfer!gﬁ:g dfo:eizr:tpl:irumss'%?\
shows how the performance is distributed in the map of scen ' ' P

: (flrr]ections that move toward this goal. Namely, we inveséda
as we change the size of the database. As we can see, [hé ) .
‘the nature of the space of the images in the database and

erformance appears to smoothly vary across differenonsgi i, : . )
P PP yvary g gooked at how to recover additional information not dirgctl

of the image space. This suggests that d'ffere’?t reglonlseqf pr?vided by the online users. We demonstrated how to recover
space are harder to recognize and require higher den5|tyﬂ%)e 3D description of an image depicting a variety of scenes
image samples. Moreover, the distribution of performarsce j '

very similar between the algorithm using GIST descriptors aMoreover, we showed that the output quality is similar to the
- output produced by a laser range scanner. We also analyzed th
the upper bound for each image.

) . : space of the images and observed properties of the distnibut
The region with highest performance corresponds 10 g the objects (e.g. Zipf's and power laws for the distribati

region of the space that contains many pictures of SPecifi 5iact |abels present and scemgrams, respectively).
mongt:?erlts fL.méjer S|m|llar V|ewpt0|rr]1ts. In_tiui:: a cas?, t!t Sin addition, there has been other recent work in computer
possible: 1o 1ind very close matches, wit € annotalioi,n ang computer graphics that have utilized the datbas
between the input and retrieved Images b_elng almost 'dﬂm'ﬁn creative ways. A recent trend has been to find, given a
The worst perfomam_:es are fou_nd in the indoor scenes reg!&gery image, other images with objects in a similar spatial
Ind?or scenesb r_emfiun c_hallenglniq Z(z_)r many algorithms, wi nfiguration and to transfer the information associateith wi
per .ormance e'”g owin Qe”era [ . ] . the retrieved images onto the query image. This has been used
Fig. 13.a also gives a hint to an important question: Hoy texture in-painting [22], intelligent insertion of ahts into
many more images do we need to label? The figure shows thgcene [30] or object recognition in scenes [52], [73], [37]

upper bound of the extrapolated performance as we inCreasye pelieve that further creative uses of this databasegalon
the database size (here we assume that, by increasing the

) ! ; ith the extension into video, offer promising directiorms f
databa;e size we do not introduce new kinds of scenes). c%?nputer vision and computer graphics.

shown in the graph, performance reache% 36r a database of

8x 10% images. If we had x 10 images, then, on average, for

an image we can find another image that h&& @®the pixels ACKNOWLEDGMENT

labeled with the same object category. Although increasing

LabelMe will require a significative labeling effort, thiarget Funding for this research was provided by National Science

database size is feasible. Foundation Career award (IS 0747120).



(1]
(2]
(3]
(4]
(5]

(6]

(7]

8]
El

[20]
[11]

[12]

[13]
[14]

[15]

[16]

[17]
(18]

[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]

[27]
(28]

[29]
[30]
(31]
[32]
(33]
[34]

REFERENCES

http://www.maps.google.com.

PETS 2001 Benchmark Dat®nline, 2001.

PETS 2006 Benchmark Dat®nline, 2006.

Y. Abramson and Y. Freund. Semi-automatic visual leagn{seville): a
tutorial on active learning for visual object recognitidn.Intl. Conf. on

Computer Vision and Pattern Recognition (CVPRO05), San ®i2g05.

D. Ballard and C. Brown.Computer Vision Prentice-Hall, Englewood
Cliffs, NJ, 1982.

H. Barrow and J. Tenenbaum. Recovering intrinsic scdraacteristics

[35]
[36]
[37]
[38]
[39]
[40]

from images. InComputer Vision Systemsages 3—-26. Academic Press,[41]

N.Y., 1978.

E. Bart and S. Ullman. Cross-generalization: learningei classes from
a single example by feature replacement.CiPR 2005.

CBCL. Streetscenes. Technical report.

M. Clowes. On seeing thingsAtrtificial Intelligence Journgl 2(1):79—
116, 1971.

A. Criminisi, |. Reid, and A. Zisserman. Single view nmadbgy. Intl.
J. Computer Vision40(2):123-148, 2000.

S. K. Divvala, A. A. Efros, and M. Hebert. Can similar ses help
surface layout estimation?
associated with CVPR2008.
M. Everingham, A. Zisserman, C. Williams, L. V. Gool, Millan,
C. Bishop, O. Chapelle, N. Dalal, T. Deselaers, G. Dorko, Sffrigr,
J. Eichhorn, J. Farquhar, M. Fritz, C. Garcia, T. Griffiths, Jarie,
D. Keysers, M. Koskela, J. Laaksonen, D. Larlus, B. Leibe Méng,
H. Ney, B. Schiele, C. Schmid, E. Seemann, J. Shawe-Tayldtdxkey,
S. Szedmak, B. Triggs, I. Ulusoy, V. Viitaniemi, and J. Zhamge 2005
pascal visual object classes challenge. First PASCAL Challenges
Workshop Springer-Verlag, 2005.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Desoghobjects by
their attributes. InCVPR 2009.

L. Fei-Fei, R. Fergus, and P. Perona. A bayesian appréacunsu-
pervised one-shot learning of object categories|BEE Intl. Conf. on
Computer Vision2003.

L. Fei-Fei, R. Fergus, and P. Perona. Learning genveraisual models
from few training examples: an incremental bayesian ambréested on

IFEEE Workshop on Internet Vision,

[42]
[43]

[44]

[45]
[46]

[47]

(48]
[49]
[50]
[51]

[52]

101 object categories. IflEEE. CVPR 2004, Workshop on Generative-

Model Based Vision2004.

R. Fergus, P. Perona, and A. Zisserman. Object classgnidon by
unsupervised scale-invariant learning. GWPR 2003.

R. Fisher. CAVIAR Test Case Scenario®nline Book, October 2004.
K. Grauman and T. Darrell. Unsupervised learning ofgaties from
sets of partially matching image features. GVPR 2006.

K. Grauman and T. Darrell. Pyramid match hashing: Snédr time
indexing over partial correspondences.QNWPR 2007.

G. Griffin, A. Holub, and P. Perona. The Caltech-256. Hrécal report,
California Institute of Technology, 2006.

A. Gupta and L. S. Davis. Beyond nouns: Exploiting pr&fons and
comparative adjectives for learning visual classifiersE@CV, 2008.
J. Hays and A. A. Efros. Scene completion using milliasfspho-
tographs.ACM Transactions on Graphic®6, 2007.

J. Hays and A. A. Efros. IM2GPS: estimating geographimimation
from a single image. I'CVPR 2008.
D. Hoiem, A. Efros, and M. Hebert.
SIGGRAPH 2005.

D. Hoiem, A. Efros, and M. Hebert. Geometric contextnfra single
image. InlEEE Intl. Conf. on Computer Visior2005.

D. Hoiem, A. Stein, A. Efros, and M. Hebert. Recoveringcloision
boundaries from a single image. IBEE Intl. Conf. on Computer Vision
2007.

B. Horn. The image dissector eyes. Technical reportsddahusetts In-
stitute of Technology, 1971. Project MAC, Vision Flash 1@&nibridge.
Y. Horry, K.-I. Anjyo, and K. Arai. Tour into the pictureusing a spidery
mesh interface to make animation from a single ima@GGRAPH
pages 225-232, 1997.

D. Huffman. Realizable configurations of lines in pies of polyhedra.
Machine Intelligence8:493-509, 1977.

J. F. Lalonde, D. Hoiem, A. Efros, J. Winn, C. Rother, aadCriminisi.
Photo clip art. INSIGGRAPH 2007.

C. Lampert, H. Nickisch, and S. Harmeling. Learning &tett unseen
object classes by between-class attribute transfeEVRR 2009.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeldatreng realistic
human actions from movies. I8VPR 2008.

I. Laptev and P. Perez. Retrieving actions in moviesHRE Intl. Conf.
on Computer Vision2007.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags dfifiesit Spatial
pyramid matching for recognizing natural scene categoribs cvpr,
pages 2169-2178, 2006.

Automatic photo pop-u In

(53]

[54]

[55]

[56]
[57]

[58]
[59]

[60]
[61]

[62]

(63]

(64]
(65]

[66]

[67]
(68]

12

B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool. Dynan8d scene
analysis from a moving vehicle. IBVPR 2007.

C. Liu, W. Freeman, E. Adelson, and Y. Weiss. Humansasdi motion
annotation. INCVPR pages 1-8, 2008.

C. Liu, J. Yuen, and A. Torralba. Dense scene alignmeirigusift flow
for object recognition. ICVPR 2009.

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. FreemaSift flow:
dense correspondence across different sceneECIV, 2008.

T. Malisiewicz and A. A. Efros. Recognition by assomatvia learning
per-exemplar distances. DVPR 2008.

D. Marr. Early processing of visual information. IRhilosophical
Transactions of the Royal Society of Londpages 483-519, 1976.
V. Nedovic, A. Smeulders, A. Redert, and J.-M. Geusekro Depth
information by stage classification. IEEE Intl. Conf. on Computer
Vision, 2007.

B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-basedeiing
and photo editing SIGGRAPH 012001.

A. Oliva and A. Torralba. Modeling the shape of the sceae
holistic representation of the spatial envelopal. J. Computer Vision
42(3):145-175, 2001.

N. Quadrianto, L. Song, and A. J. Smola. Kernelizedisgrtin NIPS
2008.

A. Quattoni and A.Torralba. Recognizing indoor scerasCVPR 2009.
A. Quattoni, M. Collins, and T. Darrell. Transfer learg for image
classification with sparse prototype representationsepdg8, 2008.
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Selfght learn-
ing: transfer learning from unlabeled data.|@ML '07: Proceedings of
the 24th international conference on Machine learnipgges 759-766,
New York, NY, USA, 2007. ACM.

X. Ren, C. C. Fowlkes, and J. Malik. Figure/ground assignt in
natural images. IEECCV, 2006.

H. A. Rowley, S. Baluja, and T. Kanade. Human face dé&edn visual
scenes. IMdvances in Neural Info. Proc. Systermslume 8, 1995.

B. Russell and A. Torralba. Building a database of 3chesefrom user
annotations. ICVPR 2009.

B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, andZsserman.
Using multiple segmentations to discover objects and tegtent in
image collections. IlCVPR 2006.

B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. Teéman.
Object recognition by scene alignment. Advances in Neural Info.
Proc. Systems2007.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. FreeméaabelMe:
a database and web-based tool for image annotatiih.J. Computer
Vision, 77(1-3):157-173, 2008.

A. Saxena, M. Sun, and A. Ng. Learning 3-d scene strecfoom
a single still image. InICCV workshop on 3D Representation for
Recognition 2007.

A. Saxenaa, S. H. Chung, and A. Y. Ng. Learning depth from
single monocular images. lAdvances in Neural Info. Proc. Systems
volume 18, 2005.

H. Schneiderman and T. Kanade. A statistical model fbr dbject
detection applied to faces and cars.GWPR 2000.

C. Schuldt, I. Laptev, and B. Caputo. Recognizing huraations: A
local SVM approach. IHCPR, 2004.

F. P. S. Service. http://www.flickr.com.

L. Sigal and M. Black. Humaneva: Synchronized video andtion
capture dataset for evaluation of articulated human motR06.

H. Simon. On a class of skew distribution function8iometrika
42:425-440, 1955.

J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and W. T. émean.
Creating and exploring a large photorealistic virtual gpadn First
IEEE Workshop on Internet Vision, associated with CYR808.

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W.Freeman.
Discovering objects and their location in images. IEHEE Intl. Conf.
on Computer Vision2005.

A. F. Smeaton, P. Over, and W. Kraaij. Evaluation cargpsiand
trecvid. InMIR '06: Proceedings of the 8th ACM International Workshop
on Multimedia Information Retrieval006.

N. Snavely, S. M. Seitz, and R. Szeliski. Photo touri&rploring photo
collections in 3d ACM Transactions on Graphic25(3):137-154, 2006.
A. Sorokin and D. Forsyth. Utility data annotation witimazon
mechanical turk. IrFirst IEEE Workshop on Internet Vision at CVPR
08, 2008.

M. Spain and P. Perona. Measuring and predicting ingmoe of objects
in our visual world. Technical report, California Instéubf Technology,
2007.

D. G. Stork. The open mind initiative|EEE Intelligent Systems and
Their Applications 14(3):19-20, 1999.

E. Sudderth, A. Torralba, W. T. Freeman, and W. Willskyearning
hierarchical models of scenes, objects, and partslEEE Intl. Conf.



[69]
[70]

[71]
[72]
(73]

[74]
[75]
[76]
[77]
[78]
[79]
(80]

(81]

(82]
(83]
(84]
(85]

(86]
[87]

on Computer Vision2005.

K. Sugihara. An algebraic approach to the shape-froragie-problem.
Artificial Intelligence Journal 23:59-95, 1984.

A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, and L.Gbol. Depth-
from-recognition: Inferring meta-data by cognitive feadk. InICCV
Workshop on 3d Representation for Recognitid@07.

S. Todorovic and N. Ahuja. Extracting subimages of arkngwn
category from a set of images. @VPR 2006.

A. Torralba. How many pixels make an imagé&/fsual Neuroscienge
26:123-131, 2009.

A. Torralba, R. Fergus, and W. T. Freeman. 80 milliorytimages: a
large database for non-parametric object and scene reimognlEEE
PAMI, 30(11):1958-1970, November 2008.

A. Torralba, R. Fergus, and Y. Weiss. Small codes andelamage
databases for recognition. @VPR 2008.

A. Torralba and W. Fergus, R. Freeman. Tiny images, 2007

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharingueisfeatures
for multiclass and multiview object detectionEEE Transactions on
Pattern Analysis and Machine Intelligencg9(5):854-869, 2007.

A. Torralba and P. Sinha. Detecting faces in impovershmages.
Technical Report 028, MIT Al Lab, 2001.

M. Turk and A. Pentland. Eigenfaces for recognitioh. of Cognitive
Neuroscience3(1):71-86, 1991.

T. Vetter, M. Jones, and T. Poggio. A bootstrapping Hthm for
learning linear models of object classes.GVPR 1997.

S. Vijayanarasimhan and K. Grauman. Multi-level agtprediction of
useful image annotations for recognition. Agvances in Neural Info.
Proc. Systems2008.

L. von Ahn and L. Dabbish. Labeling images with a compigame.
In Proc. SIGCHI conference on Human factors in computing syste
2004.

L. von Ahn, R. Liu, and M. Blum. Peekaboom: A game for lticg
objects in images. Itn ACM CHI, 2006.

M. Weber, M. Welling, and P. Perona. Towards automatscavery of
object categories. ICVPR pages 101-109, 2000.

J. Winn and N. Jojic. Locus: Learning object classewitsupervised
segmentation. IMEEE Intl. Conf. on Computer Visior2005.

Z. Yao, X. Yang, and S. Zhu. Introduction to a large scglken-
eral purpose groundtruth database: methodology, anootatiols, and
benchmarks. Ir6th Int'l Conf on EMMCVPR, Ezhou, Chin2007.

L. Zhang, G. Dugas-Phocion, J.-S. Samson, and S. Mz.S&ingle
view modeling of free-form scenes. @BVPR 2001.

G. K. Zipf. The Psychobiology of Languageloughton Mifflin, 1935.

13



