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Abstract

Current object recognition systems can only recognize a limited number of object
categories; scaling up to many categories is the next challenge. We seek to build
a system to recognize and localize many different object categories in complex
scenes. We achieve this through a simple approach: by matching the input im-
age, in an appropriate representation, to images in a large training set of labeled
images. Due to regularities in object identities across similar scenes, the retrieved
matches provide hypotheses for object identities and locations. We build a prob-
abilistic model to transfer the labels from the retrieval set to the input image. We
demonstrate the effectiveness of this approach and study algorithm component
contributions using held-out test sets from the LabelMe database.

1 Introduction

The recognition of objects in a scene often consists of matching representations of image regions
to an object model while rejecting background regions. Recent examples of this approach include
aligning pictorial cues [4], shape correspondence [1], andmodeling the constellation of parts [5].
Other models, exploiting knowledge of the scene context in which the objects reside, have proven
successful in boosting object recognition performance [18, 20, 15, 7, 13]. These methods model the
relationship between scenes and objects and allow information transfer across the two.

Here, we exploit scene context using a different approach: we formulate the object detection prob-
lem as one of aligning elements of the entire scene to a large database of labeled images. The
background, instead of being treated as a set of outliers, isused to guide the detection process. Our
approach relies on the observation that when we have a large enough database of labeled images, we
can find with high probability some images in the database that are very close to the query image
in appearance, scene contents, and spatial arrangement [6,19]. Since the images in the database
are partially labeled, we can transfer the knowledge of the labeling to the query image. Figure 1
illustrates this idea. With these assumptions, the problemof object detection in scenes becomes a
problem of aligning scenes. The main issues are: (1) Can we find a big enough dataset to span the
required large number of scene configurations? (2) Given an input image, how do we find a set of
images that aligns well with the query image? (3) How do we transfer the knowledge about objects
contained in the labels?

The LabelMe dataset [14] is well-suited for this task, having a large number of images and labels
spanning hundreds of object categories. Recent studies using non-parametric methods for computer
vision and graphics [19, 6] show that when a large number of images are available, simple indexing
techniques can be used to retrieve images with object arrangements similar to those of a query image.

The core part of our system is the transfer of labels from the images that best match the query image.
We assume that there are commonalities amongst the labeled objects in the retrieved images and we
cluster them to form candidate scenes. These scene clustersgive hints as to what objects are depicted
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Figure 1: Overview of our system. Given an input image, we search for images having a similar scene
configuration in a large labeled database. The knowledge contained in the object labels for the best matching
images is then transfered onto the input image to detect objects. Additional information, such as depth-ordering
relationships between the objects, can also be transferred.

Figure 2:Retrieval set images. Each of the two rows depicts an input image (on the left) and 30 images from
the LabelMe dataset [14] that best match the input image using the gist feature [12] and L1 distance (the images
are sorted by their distances in raster order). Notice that the retrieved images generally belong to similar scene
categories. Also the images contain mostly the same object categories, with the larger objects often matching
in spatial location within the image. Many of the retrieved images share similar geometric perspective.

in the query image and their likely location. We describe a relatively simple generative model for
determining which scene cluster best matches the query image and use this to detect objects.

The remaining sections are organized as follows: In Section2, we describe our representation for
scenes and objects. We formulate a model that integrates theinformation in the object labels with
object detectors in Section 3. In Section 4, we extend this model to allow clustering of the retrieved
images based on the object labels. We show experimental results of our system output in Section 5,
and conclude in Section 6.

2 Matching Scenes and Objects with the Gist Feature

We describe the gist feature [12], which is a low dimensionalrepresentation of an image region
and has been shown to achieve good performance for the scene recognition task when applied to an
entire image. To construct the gist feature, an image regionis passed through a Gabor filter bank
comprising 4 scales and 8 orientations. The image region is divided into a 4x4 non-overlapping grid
and the output energy of each filter is averaged within each grid cell. The resulting representation
is a 4 × 8 × 16 = 512 dimensional vector. Note that the gist feature preserves spatial structure
information and is similar to applying the SIFT descriptor [9] to the image region.

We consider the task of retrieving a set of images (which we refer to as theretrieval set) that closely
matches the scene contents and geometrical layout of an input image. Figure 2 shows retrieval sets
for two typical input images using the gist feature. We show the top 30 closest matching images
from the LabelMe database based on the L1-norm distance, which is robust to outliers. Notice that
the gist feature retrieves images that match the scene type of the input image. Furthermore, many
of the objects depicted in the input image appear in the retrieval set, with the larger objects residing
in approximately the same spatial location relative to the image. Also, the retrieval set has many
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images that share a similar geometric perspective. Of course, not every retrieved image matches
well and we account for outliers in Section 4.
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Figure 3: Evaluation of the goodness of the retrieval set by
how well it predicts which objects are present in the input im-
age. We build a simple classifier based on object counts in the
retrieval set as provided by their associated LabelMe object la-
bels. We compare this to detection based on local appearance
alone using an SVM applied to bounding boxes in the input im-
age (the maximal score is used). The area under the ROC curve
is computed for many object categories for the two classifiers.
Performance is shown as a scatter plot where each point repre-
sents an object category. Notice that the retrieval set predicts
well object presence and in a majority cases outperforms the
SVM output, which is based only on local appearance.

We evaluate the ability of the retrieval
set to predict the presence of objects in
the input image. For this, we found a
retrieval set of 200 images and formed
a normalized histogram (the histogram
entries sum to one) of the object cate-
gories that were labeled. We compute
performance for object categories with
at least 200 training examples and that
appear in at least 15 test images. We
compute the area under the ROC curve
for each object category. As a com-
parison, we evaluate the performance
of an SVM applied to gist features by
using the maximal score over a set of
bounding boxes extracted from the im-
age. The area under ROC performance
of the retrieval set versus the SVM is
shown in Figure 3 as a scatter plot, with
each point corresponding to a tested ob-
ject category. As a guide, a diagonal
line is displayed; those points that re-
side above the diagonal indicate better
SVM performance (and vice versa). No-
tice that the retrieval set predicts well
the objects present in the input image
and outperforms the detectors based on
local appearance information (the SVM)
for most object classes.

3 Utilizing Retrieval Set
Images for Object Detec-
tion

In Section 2, we observed that the set of labels corresponding to images that best match an input
image predict well the contents of the input image. In this section, we will describe a model that
integrates local appearance with object presence and spatial likelihood information given by the
object labels belonging to the retrieval set.

We wish to model the relationship between object categorieso, their spatial locationx within an
image, and their appearanceg. For a set ofN images, each havingMi object proposals overL
object categories, we assume a joint model that factorizes as follows:

p(o, x, g|θ, φ, η) =

N∏

i=1

Mi∏

j=1

1∑

hi,j=0

p(oi,j |hi,j , θ) p(xi,j |oi,j , hi,j , φ) p(gi,j |oi,j , hi,j , η) (1)

We assume that the joint model factorizes as a product of three terms: (i)p(oi,j |hi,j = m, θm), the
likelihood of which object categories will appear in the image, (ii) p(xi,j |oi,j = l, hi,j = m,φm,l),
the likely spatial locations of observing object categoryl in the image, and (iii)p(gi,j |oi,j = l, hi,j =
m, ηm,l), the appearance likelihood of object categoryl. We lethi,j = 1 indicate whether object
categoryoi,j is actually present in locationxi,j (hi,j = 0 indicates absence). Figure 4 depicts the
above as a graphical model. We use plate notation, where the variable nodes inside a plate are
duplicated based on the counts depicted in the top-left corner of the plate.

We instantiate the model as follows. The spatial location ofobjects are parameterized as bounding
boxesxi,j = (cx
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height (bounding boxes are extracted from object labels by tightly cropping the polygonal annota-
tion). Each component ofxi,j is normalized with respect to the image to lie in[0, 1]. We assumeθm

are multinomial parameters andφm,l = (µm,l,Λm,l) are Gaussian means and covariances over the
bounding box parameters. Finally, we assumegi,j is the output of a trained SVM applied to a gist
featureg̃i,j . We letηm,l parameterize the logistic function(1 + exp(−ηm,l [1 gi,j ]

T ))−1.
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Figure 4: Graphical model that integrates informa-
tion about which objects are likely to be present in the
imageo, their appearanceg, and their likely spatial lo-
cationx. The parameters for object appearanceη are
learned offline using positive and negative examples for
each object class. The parameters for object presence
likelihood θ and spatial locationφ are learned online
from the retrieval set. For all possible bounding boxes
in the input image, we wish to inferh, which indicates
whether an object is present or absent.

The parametersηm,l are learned offline by first
training SVMs for each object class on the set
of all labeled examples of object classl and a
set of distractors. We then fit logistic functions
to the positive and negative examples of each
class. We learn the parametersθm and φm,l

online using the object labels corresponding to
the retrieval set. These are learned by sim-
ply counting the object class occurrences and
fitting Gaussians to the bounding boxes corre-
sponding to the object labels.

For the input image, we wish to infer the latent
variableshi,j corresponding to a dense sam-
pling of all possible bounding box locations
xi,j and object classesoi,j using the learned
parametersθm, φm,l, andηm,l. For this, we
compute the postierior distributionp(hi,j =
m|oi,j = l, xi,j , gi,j , θm, φm,l, ηm,l), which is
proportional to the product of the three learned distributions, form = {0, 1}.

The procedure outlined here allows for significant computational savings over naive application of
an object detector. Without finding similar images that match the input scene configuration, we
would need to apply an object detector densely across the entire image for all object categories. In
contrast, our model can constrain which object categories to look for and where. More precisely,
we only need to consider object categories with relatively high probability in the scene model and
bounding boxes within the range of the likely search locations. These can be decided based on
thresholds. Also note that the conditional independences implied by the graphical model allows us
to fit the parameters from the retrieval set and train the object detectors separately.

Note that for tractability, we assume Dirichlet and Normal-Inverse-Wishart conjugate prior distrib-
utions overθm andφm,l with hyperparemtersβ andγ = (κ, ϑ, ν,∆) (expected meanϑ, κ pseudo-
counts on the scale of the spatial observations,ν degrees of freedom, and sample covariance∆).
Furthermore, we assume a Bernoulli prior distribution overhi,j parameterized byξ = 0.5. We
hand-tuned the remaining parameters in the model. Forhi,j = 0, we assume the noninformative
distributionsoi,j ∼ Uniform(1/L) and each component ofxi,j ∼ Uniform(1).

4 Clustering Retrieval Set Images for Robustness to Mis-
matches

While many images in the retrieval set match the input image scene configuration and contents,
there are also outliers. Typically, most of the labeled objects in the outlier images are not present
in the input image or in the set of correctly matched retrieval images. In this section, we describe
a process to organize the retrieval set images into consistent clusters based on the co-occurrence of
the object labels within the images. The clusters will typically correspond to different scene types
and/or viewpoints. The task is to then automatically choosethe cluster of retrieval set images that
will best assist us in detecting objects in the input image.

We augment the model of Section 3 by assigning each image to a latent clustersi. The cluster as-
signments are distributed according to the mixing weightsπ. We depict the model in Figure 5(a).
Intuitively, the model finds clusters using the object labels oi,j and their spatial locationxi,j within
the retrieved set of images. To automatically infer the number of clusters, we use a Dirichlet Process
prior on the mixing weightsπ ∼ Stick(α), whereStick(α) is the stick-breaking process of Grif-
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Figure 5: (a) Graphical model for clustering retrieval set images using their object labels. We extend the
model of Figure 4 to allow each image to be assigned to a latent clustersi, which is drawn from mixing weights
π. We use a Dirichlet process prior to automatically infer the number of clusters. We illustrate the clustering
process for the retrieval set corresponding to the input image in (b). (c) Histogram of the number of images
assigned to the five clusters with highest likelihood. (d) Montages of retrieval set images assigned to each
cluster, along with their object labels (colors show spatial extent), shown in(e). (f) The likelihood of an object
category being present in a given cluster (the top nine most likely objects are listed). (g) Spatial likelihoods for
the objects listed in (f). Note that the montage cells are sorted in raster order.

fiths, Engen, and McCloskey [8, 11, 16] with concentration parameterα. In the Chinese restaurant
analogy, the different clusters correspond to tables and the parameters for object presenceθk and
spatial locationφk are the dishes served at a given table. An image (along with its object labels)
corresponds to a single customer that is seated at a table.

We illustrate the clustering process for a retrieval set belonging to the input image in Figure 5(b).
The five clusters with highest likelihood are visualized in the columns of Figure 5(d)-(g). Figure 5(d)
shows montages of retrieval images with highest likelihoodthat were assigned to each cluster. The
total number of retrieval images that were assigned to each cluster are shown as a histogram in
Figure 5(c). The number of images assigned to each cluster isproportional to the cluster mixing
weights,π. Figure 5(e) depicts the object labels that were provided for the images in Figure 5(d),
with the colors showing the spatial extent of the object labels. Notice that the images and labels
belonging to each cluster share approximately the same object categories and geometrical config-
uration. Also, the cluster that best matches the input imagetends to have the highest number of
retrieval images assigned to it. Figure 5(f) shows the likelihood of objects that appear in the cluster
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(the nine objects with highest likelihood are shown). This corresponds toθ in the model. Figure 5(g)
depicts the spatial distribution of the object centroid within the cluster. The montage of nine cells
correspond to the nine objects listed in Figure 5(f), sortedin raster order. The spatial distributions
illustrateφ. Notice that typically at least one cluster predicts well the objects contained in the input
image, in addition to their location, via the object likelihoods and spatial distributions.

To learnθk andφk, we use a Rao-Blackwellized Gibbs sampler to draw samples from the posterior
distribution oversi given the object labels belonging to the set of retrieved images. We ran the
Gibbs sampler for 100 iterations. Empirically, we observedrelatively fast convergence to a stable
solution. Note that improved performance may be achieved with variational inference for Dirichlet
Processes [10, 17]. We manually tuned all hyperparameters using a validation set of images, with
concentration parameterα = 100 and spatial location parametersκ = 0.1, ϑ = 0.5, ν = 3, and
∆ = 0.01 across all bounding box parameters (with the exception of∆ = 0.1 for the horizontal
centroid location, which reflects less certainty a priori about the horizontal location of objects). We
used a symmetric Dirichlet hyperparameter withβl = 0.1 across all object categoriesl.

For final object detection, we use the learned parametersπ, θ, andφ to inferhi,j . Sincesi andhi,j

are latent random variables for the input image, we perform hard EM by marginalizing overhi,j to
infer the best clusters∗i . We then in turn fixs∗i and inferhi,j , as outlined in Section 3.

5 Experimental Results

In this section we show qualitative and quantitative results for our model. We use a subset of the
LabelMe dataset for our experiments, discarding spurriousand nonlabeled images. The dataset is
split into training and test sets. The training set has 15691images and 105034 annotations. The
test set has 560 images and 3571 annotations. The test set comprises images of street scenes and
indoor office scenes. To avoid overfitting, we used street scene images that were photographed in
a different city from the images in the training set. To overcome the diverse object labels provided
by users of LabelMe, we used WordNet [3] to resolve synonyms.For object detection, we extracted
3809 bounding boxes per image. For the final detection results, we used non-maximal suppression.

Example object detections from our system are shown in Figure 6(b),(d),(e). Notice that our system
can find many different objects embedded in different scene type configurations. When mistakes
are made, the proposed object location typically makes sense within the scene. In Figure 6(c), we
compare against a baseline object detector using only appearance information and trained with a
linear kernel SVM. Thresholds for both detectors were set toyield a 0.5 false positive rate per image
for each object category (∼1.3e-4 false positives per window). Notice that our system produces
more detections and rejects objects that do not belong to thescene. In Figure 6(e), we show typical
failures of the system, which usually occurs when the retrieval set is not correct or an input image is
outside of the training set.

In Figure 7, we show quantitative results for object detection for a number of object categories.
We show ROC curves (plotted on log-log axes) for the local appearance detector, the detector from
Section 3 (without clustering), and the full system with clustering. We scored detections using the
PASCAL VOC 2006 criteria [2], where the outputs are sorted from most confident to least and the
ratio of intersection area to union area is computed betweenan output bounding box and ground-
truth bounding box. If the ratio exceeds 0.5, then the outputis deemed correct and the ground-truth
label is removed. While this scoring criteria is good for someobjects, other objects are not well
represented by bounding boxes (e.g. buildings and sky).

Notice that the detectors that take into account context typically outperforms the detector using local
appearance only. Also, clustering does as well and in some cases outperforms no clustering. Finally,
the overall system sometimes performs worse for indoor scenes. This is due to poor retrieval set
matching, which causes a poor context model to be learned.

6 Conclusion

We presented a framework for object detection in scenes based on transferring knowledge about
objects from a large labeled image database. We have shown that a relatively simple parametric
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Figure 6: (a) Input images. (b) Object detections from our system combining scene alignment with local
detection. (c) Object detections using appearance information only with anSVM. Notice that our system
detects more objects and rejects out-of-context objects. (d) More outputs from our system. Notice that many
different object categories are detected across different scenes.(e) Failure cases for our system. These often
occur when the retrieval set is incorrect.

model, trained on images loosely matching the spatial configuration of the input image, is capable
of accurately inferring which objects are depicted in the input image along with their location. We
showed that we can successfully detect a wide range of objects depicted in a variety of scene types.
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