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Using the Forest to See the  
Trees: Exploiting Context  
for Visual Object Detection  
and Localization
By A. Torralba, K.P. Murphy, and W.T. Freeman

Abstract
Recognizing objects in images is an active area of research 
in computer vision. In the last two decades, there has been 
much progress and there are already object recognition sys-
tems operating in commercial products. However, most of 
the algorithms for detecting objects perform an exhaustive 
search across all locations and scales in the image compar-
ing local image regions with an object model. That approach 
ignores the semantic structure of scenes and tries to solve 
the recognition problem by brute force. In the real world, 
objects tend to covary with other objects, providing a rich 
collection of contextual associations. These contextual asso-
ciations can be used to reduce the search space by looking 
only in places in which the object is expected to be; this also 
increases performance, by rejecting patterns that look like 
the target but appear in unlikely places.

Most modeling attempts so far have defined the context 
of an object in terms of other previously recognized objects. 
The drawback of this approach is that inferring the context 
becomes as difficult as detecting each object. An alternative 
view of context relies on using the entire scene information 
holistically. This approach is algorithmically attractive since 
it dispenses with the need for a prior step of individual object 
recognition. In this paper, we use a probabilistic framework 
for encoding the relationships between context and object 
properties and we show how an integrated system provides 
improved performance. We view this as a significant step 
toward general purpose machine vision systems.

1. Introduction
Visual object detection, such as finding cars and people in 
images, is an important but challenging task. It is impor-
tant because of its inherent scientific interest (understand-
ing how to make machines see may shed light on biological 
vision), and because it is useful for many applications, such 
as content-based image retrieval, robotics, etc. It is challeng-
ing because the appearance of objects can vary a lot from 
instance to instance, and from image to image, due to fac-
tors such as variation in pose, lighting, style, articulation, 
occlusion, low quality imaging, etc.

Over the last two decades, much progress has 
been made in visual object detection using machine 

learning techniques. Most of these approaches rely on 
using supervised learning to train a classifier to dis-
tinguish between instances of the object class and the 
background. The trained classifier is then applied to 
thousands of small overlapping patches or windows of 
each test image, and the locations of the high-confidence 
detections are returned. The features computed inside 
each patch are usually the outputs of standard image 
processing operations, such as a histogram of responses 
to Gabor filters at different scales and orientations.  
The classifiers themselves are standard supervised learn-
ing models such as SVMs, neural networks, or boosted 
decision stumps.20

This “sliding window classifier” technique has been 
quite successful in certain domains such as detecting cars, 
pedestrians, and faces. Indeed most contemporary digi-
tal cameras imply such a technique to detect faces, which 
they use to set the auto-focus. Also, some cars now come 
equipped with pedestrian detection systems based on simi-
lar principles.

One major problem with the standard approach is that 
even a relatively low false-positive rate per class can be unac-
ceptable when there are many classes or categories. For 
example, if each detector generates about 1 false alarm every 
10 images, and there are 1000 classes, we will have 100 false 
alarms per image. An additional problem is that running 
every detector on every image can be slow. These are both 
fundamental obstacles to building a general purpose vision 
system.

One reason for the relatively high false alarm rate of stan-
dard approaches is that most object detection systems are 
“myopic,” in the sense that they only look at local features 
of the image. One possible remedy is to leverage global fea-
tures of the image, and to use these to compute the “prior” 
probability that each object category is present, and if so, 
its likely location and scale. Previous work (e.g., Torralba17) 

An early version of this paper, entitled “Using the for-
est to see the trees: a graphical model relating features, 
objects and scenes,” was published in Neural Information 
Processing Systems, 2003, MIT Press. Ref. [9].
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egg problem: to detect an object of type 1 you first have to 
detect an object of type 2. By contrast, we propose a hierar-
chical approach, in which we define the context in terms of 
an overall scene category. This can be reliably inferred using 
global images features. Conditioned on the scene category, 
we assume that objects are independent. While not strictly 
true, this results in a simple yet effective approach, as we will 
show below.

In the following sections, we describe the different com-
ponents of our model. We will start by showing how we can 
represent contextual information without using objects as 
an intermediate representation. Then we will show how that 
representation can be integrated with an object detector.

2. GLOBAL IMAGE FEATURES: THE GIST OF AN IMAGE
In the same way that an object can be recognized without 
decomposing it into a set of nameable parts (e.g., the most 
successful face detectors do not try to detect the eyes and 
mouth first, instead they search for less semantically mean-
ingful features), scenes can also be recognized without nec-
essarily decomposing them into objects. The advantage of 
this is that it provides an additional source of information 
that can be used to provide contextual information for object 
recognition. As suggested in Oliva and Schyns and Oliva and 
Torralba,10, 11 it is possible to build a global representation of 
the scene that bypasses object identities, in which the scene 
is represented as a single entity. Recent work in computer 
vision has highlighted the importance of global scene repre-
sentations for scene recognition1, 7, 11 and as a source of con-
textual information.3, 9, 17 These representations are based 
on computing statistics of low level features (similar to rep-
resentations available in early visual areas such as oriented 
edges, vector quantized image patches, etc.) over fixed image 
regions. One example of a global image representation is the 

has shown that simple global image features, known as the 
“gist” of the image, are sufficient to provide robust predic-
tions about the presence and location of different object 
categories. Such features are fast to compute, and provide 
information that is useful for many classes and locations 
simultaneously.

In this paper, which is an extension of our previous  
work,8, 9, 17 we present a simple approach for combining stan-
dard sliding-window object detection systems, which use 
local, “bottom up” image features, with systems that pre-
dict the presence and location of object categories based 
on global, or “top-down,” image features. These global fea-
tures serve to define the context in which the object detec-
tion is happening. The importance of context is illustrated 
in Figure 1, which shows that the same black “blob,” when 
placed in different surroundings, can be interpreted as a 
plate or bottle on the table, a cell phone, a pedestrian or car, 
or even a shoe. Another example is shown in Figure 2: it is 
easy to infer that there is very probably a computer monitor 
behind the blacked out region of the image.

We are not the first to point out the importance of con-
text in computer vision. For example, Strat and Fischler 
emphasized its importance in their 1991 paper.16 However, 
there are two key differences between our approach and 
previous work. First, in early work, such as16 the systems 
consist of hand-engineered if–then rules, whereas more 
recent systems rely on statistical models that are fit to data. 
Second, most other approaches define the context in terms 
of other objects6, 13, 14, 18; but this introduces a chicken-and-

Figure 1. In presence of image degradation (e.g., blur), object 
recognition is strongly influenced by contextual information. The 
visual system makes assumptions regarding object identities based 
on its size and location in the scene. In these images, the same black 
blob can be interpreted as a plate, bottle, cell phone, car, pedestrian, 
or shoe, depending on the context. (Each circled blob has identical 
pixels, but in some cases has been rotated.)

Figure 2. What is hidden behind the mask? In this example, context 
is so strong that one can reliably infer that the hidden object is a 
computer monitor.

?
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information needed for categorizing scenes into categories 
(e.g., classifying an image as being a beach scene, a street 
or a living-room). As reported in Quattoni and Torralba,12 
when trying to discriminate across 15 different scene cat-
egories, the gist descriptor classifies correctly 75% of the 
images. Recognizing the scene depicted by a picture is an 
important task on its own, but in addition it can be used 
to provide strong contextual priors as we will discuss in the 
next section.

3. JOINT SCENE CLASSIFICATION AND OBJECT  
DETECTION
In this section, we describe our approach in more detail. 
In Section 3.1, we briefly describe the standard approach 
to object detection and localization using local features. In 
Sections 3.3 and 3.2 we describe how to use global features 
for object localization and detection respectively. In Section 
3.4 we discuss how to integrate these local and global fea-
tures. A comparison of the performance of local and global 
features is deferred until Section 4.

3.1. Object presence detection and localization 
using local features
In our previous paper,9 we considered detecting four differ-
ent types or classes of objects: cars, people, keyboards, and 
screens (computer monitors). In this paper, we will mostly 
focus on cars, for brevity. We use a subset of the LabelMe 
dataset11, 15 for training and testing (details are in Section 4).

There are two tasks that we want to address: object pres-
ence detection (where the goal is to predict if the object 
is present or absent in the image, i.e., to answer the ques-
tion: is there any car in this image?) and object localization 
(where the goal is to precisely locate all the instances of an 
object class within each image). Solving the object presence 
detection task can be done even if the object localization is 
not accurate.

We can formalize the object presence detection and local-
ization problem as follows. Let Pt = 1 if one or more objects of 
type t are present anywhere in the image, and Pt = 0 otherwise. 
The goal of object presence detection is to estimate the prob-
ability p(Pt = 1|I), where I is the image. Later we will general-
ize this slightly by trying to estimate the number of instances 
of the object class that might be present, p(Nt|I), where  
Nt Î {0, 1, 2, 3–5, 5–10, >10}. We call this object counting.

The goal of object localization is to specify the location  
and size of each of the object instances. More precisely, let 
Ot

i  be a binary random variable representing whether image 
patch i contains an object of type t or not, for i Î {1, …, N}, 
where N ~ 1000 is the number of image patches. (The size 
and shape of the image patches varies according to the object 
type; for side views of cars, we use patches of size 30 × 80; to 
handle cars of different sizes, we apply the technique to mul-
tiple versions of the image at different scales.) One way to 
perform localization is to compute the log-likelihood ratio

	 	 (2)

for each i and t, and then to return all the locations where 
this log likelihood ratio is above some threshold. Here f t

i   is 

gist descriptor.11 The gist descriptor is a vector of features g, 
where each individual feature gk is computed as

	 	 (1)

where Ä denotes image convolution and × is a pixel-wise 
multiplication. I(x, y) is the luminance channel of the input 
image, hk(x, y) is a filter from a bank of multiscale-oriented 
Gabor filters (six orientations and four scales), and wk(x, y) is 
a spatial window that will compute the average output energy 
of each filter at different image locations. The windows  
wk(x, y) divide the image in a grid of 4 × 4 nonoverlapping 
windows. This results in a descriptor with a dimensionality 
of 4 × 4 × 6 × 4 = 384.

Figure 3 illustrates the amount of information preserved 
by the gist descriptor. The middle column shows the average 
of the output magnitude of the multiscale-oriented filters on 
a polar plot (note that the orientation of each plot is ortho
gonal to the direction of the edges in the image). The aver-
age response of each filter is computed locally by splitting 
the image into 4 × 4 windows. Each different scale is color 
coded (red for high spatial frequencies, and blue for the low 
spatial frequencies), and the intensity is proportional to 
the energy for each filter output. In order to illustrate the 
amount of information preserved by this representation, 
the right column of Figure 3 shows noise images that are 
coerced to have the same gist features as the target image, 
using the texture synthesis method of Heeger and Bergen.2 
As shown in Figure 3, the gist descriptor provides a coarse 
description of the textures present in the image and their 
spatial organization. The gist descriptor preserves relevant 

Figure 3. This figure illustrates the information encoded by the gist 
features for three different images. See text for details.
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where J is the number of mixture components for each class 
conditional density. Some examples of scene classification 
are shown in Figure 4. As shown in Quattoni and Torralba,12 
this technique classifies 75% of the images correctly across 
15 different scene categories. Other classifiers give similar 
performance.

Once we have estimated the scene category, we can pre-
dict the number of objects that are present using

	 	 (3)

where p(Nt = n|S = s) is estimated by simple counting.

3.3. Object localization using global image features
The gist captures the overall spatial layout of the image, and 
hence can be used to predict the expected vertical location of 
each object class before running any detectors; we call this 
location priming. However, the gist is not useful for predict-
ing the horizontal locations of objects, which are usually not 
very constrained by the overall structure of the scene (except 
possibly by the horizontal location of other objects, a pos-
sibility we ignore in this paper).

We can use any nonlinear regression function to learn the 
mapping from gist to expected vertical location. We used a 
mixture of experts model,4 which is a simple weighted average 
of locally linear regression models. More precisely, we define

a set of local features extracted from image I at patch i for 
class t. The details of the features and classifier that we used 
can be found in Torralba et al.19

For simplicity, in this paper, we select the D most confi-
dent detections (after performing local nonmaximum sup-
pression); let their locations be denoted by t

i , for i Î {1, …, D}.  
Figure 6a gives an illustration of the output of our system on 
a typical image. For the results in this paper, we set D = 10 
so that no correct detections are discarded and still small 
enough to be efficient. In the figure we show the top D = 4 
detections to avoid clutter. The locations of each detection t

i  
are indicated by the position and scale of the box, and their 
confidences ct

i  are indicated by the thickness of the bor-
der. In Figure 6b (top), we see that although the system has 
detected the car, it has also detected three false positives. 
This is fairly typical of this kind of approach. Below we will 
see how to eliminate many of these false positives by using 
global context.

3.2. Object presence detection using global image 
features
To determine if an object class is present in an image given 
the gist, we could directly learn a binary classifier of the 
form p(Pt = 1|g). Similarly, to predict the number of objects, 
we could learn an ordinal regression function of the form 
p(Nt|g). Instead, we choose a two-step approach in which we 
first estimate the category or type of scene, p(S = s|g), and then 
use this to predict the number of objects present, p(Nt|S = s).  
This approach has the benefit of having an explicit represen-
tation of the scene category (e.g., a street, a highway, a forest) 
which is also an important desired output of an integrated 
model.

We can classify the scene using a simple Parzen-window 
based density estimator

Figure 4. Predicting the presence/absence of cars in images and their locations using gist. The outputs shown here do not incorporate any 
information coming from a car detector and are only based on context. Note that in the dataset used to fit the distributions of object counts 
for each scene category, it is more common to find cars in street scenes (with many cars circulating and parked) than in highway scenes, 
where there are many shots of empty roads. Hence the histogram for highway shows p(Ncar = 0) = 0.6.
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If the gist strongly suggests that the object class is absent, 
then p(Nt = 0|g) » 1, so we turn all the object bits off in the pos-
terior regardless of the detector scores, . 
If the gist strongly indicates that one object is present, then 
p(Nt = 1|g) » 1, and only one Ot

i bit will be turned on in the pos-
terior; this will be the one with the highest detector score. 
And so on.

Now we discuss how to integrate location information.  
Let t

i  be the location of the i’th detection for class t. Since  
Yt represents the expected location of an object of class t, we 
define another local likelihood term p(t

i |Ot
i = 1, Yt) = N (t

i |Yt, t t),  
where t t is the variance around the predicted location.  
If the object is absent, we use a uniform distribution  
p(t

i |Ot
i = 0, Yt) µ 1. Of course, Yt is not observed directly, but  

we can predict it based on the gist; this yields

which can be solved in closed form, since it is the convolu-
tion of two Gaussians. We can now combine expected loca-
tion and detections as follows:

To see the effect of this, suppose that the gist strongly sug-
gests that only one object of type t is present, p(Nt = 1|g) » 1;  
in this case, the object bit which is turned on will be the one 
that has the highest score and which is in the most likely 
location. Thus confident detections in improbable locations 
are suppressed; similarly, unconfident detections in likely 
locations are boosted.

Finally, we discuss how to combine multiple types of 
objects. Intuitively, the presence of a car makes the presence 
of a pedestrian more likely, but the presence of a computer 
monitor less likely. However, it is impractical to encode 
a joint distribution of the form p(P1, …, PT) directly, since 
this would require O(2T) parameters. (Encoding p(N1, …, NT) 
directly would be even worse.) Instead, we introduce the 
scene category latent variable S, and assume that the pres-
ence (and number) of object types is conditionally indepen-
dent given the scene category:

Given this assumption, we can perform inference for multi-
ple object types in parallel as follows: for each possible scene 
category, compute the posterior p(Ot

1:D|ct
1:D, t

1:D, g, S = s) as 
described above, and then combine them using a weighted 
average with p(S = s|g) as the weights.

In summary, our whole model is the following joint prob-
ability distribution:

where Yt is the vertical location of class t, K is the number of 
experts or mixture components, N represents a Gaussian or 
normal distribution, bk are the regression weights for mix-
ture component k, s 2

k is the residual variance, and wk(g) is the 
weight or “responsibility” of expert k, given by the softmax or 
multinomial logistic function:

We illustrate the predictions made by this model in  
Figure 6b, where we scale the intensity of each image pixel  
by the probability density function p(Yt|g). We see that the 
effect is to “mask out” regions of the image which are unlikely 
to contain the object of interest. Some more examples can 
be seen in Figure 4.

3.4. Integrated model
We now discuss how to combine the various pieces described 
above. The basic idea is to use the global features to make 
“top-down” predictions about how many object instances 
should be present, and where, and then to use the local 
patch classifiers to provide “bottom-up” signals.

The key issue is how to combine these two information 
sources. The approach we take is as follows (this differs 
slightly from the method originally described in Murphy 
et al.9). Let us initially ignore location information. We 
treat the confidence score of the detector (ct

i , defined in 
Equation 2) as a local likelihood term, and fit a model of the  
form p(ct

i |Ot
i  = o) = N (ct

i |mt
o , s t

o) for o Î {0, 1}. We can learn 
the parameters of this Gaussian by computing the empirical 
mean and variance of the scores when the detector is applied 
to a set of patches which do contain the object (so o = 1) and 
which do not contain the object (so o = 0). If we have a uni-
form prior over whether each detection is a true or false 
positive, p(Ot

i  = 1) = 0.5, we can compute the posterior using 
Bayes rule as follows:

However, the detections are not all independent, since we 
have the constraint that , where Nt is the 
number of objects of type t. If we have top-down informa-
tion about Nt from the gist, based on Equation 3, then we can 
compute the posterior distribution over detections in O(2D) 
time, given the gist, as follows:

Here the term p(Ot
1:D|n) is 1 only if the bit vector Ot

1:D of length 
D has precisely n elements turned on. For compactness, we 
use the notation 1: D to denote the indices 1, …, D. We can 
combine this with the local detectors as follows:
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4. RESULTS
Examples of the integrated system in action are shown in 
Figure 6c: We see that location priming, based on the gist, 
has down-weighted the scores of the detections in improb-
able locations, thus eliminating false positives. In the sec-
ond row, the local detector is able to produce a confident 
detection, but the second car produces a low confidence 
detection. As the low confident detection falls inside the 
predicted region, the confidence of the detection increases. 
Note that in this example there are two false alarms that 
happen to also fall within the prediction region. In this case, 
the overall system will increase the magnitude of the error. 
If the detector produces errors that are contextually correct, 
the integrated model will not be able to discard those. The 
third row shows a different example of failure of the inte-
grated model. In this case, the structure of the scene makes 
the system think that this is a street scene, and then mixes 
the boats with cars. Despite these sources of errors, the per-
formances of the integrated system are substantially better 
than the performances of the car detectors in isolation.

For a more quantitative study of the performance of 
our method, we used the scenes dataset from Oliva and 
Torralba11 consisting of 2688 images covering 8 scene catego-
ries (streets, building facades, skyscrapers, highways, moun-
tainous landscapes, coast, beach, and fields). We use half of 
the dataset to train the models and the other half for testing.

Figure 7 shows performances at two tasks: object local-
ization and object presence detection. The plots correspond 
to precision–recall plots: the horizontal axis denotes the 
percentage of cars in the database that have been detected 
for a particular detection threshold and the vertical axis is 
the percentage of correct detections for the same threshold. 
Different points in the graph are achieved by varying the deci-
sion threshold. For both tasks, the plot shows the perfor-
mances using an object detector alone, the performances of 
the integrated model, and the performance of an integrated 
model with an oracle that tells for each image the true context. 

This is illustrated as a probabilistic graphical model (see 
e.g., Koller and Friedman5) in Figure 5. There is one node 
for each random variable: the shaded nodes are observed 
(these are deterministic functions of the image), and the 
unshaded nodes are hidden or unknown, and need to be 
inferred. There is a directed edge into each node from all 
the variables it directly depends on. For example, the g ® S  
are reflects the scene classifier; the g ® Yt arc reflects the 
location priming based on the gist; the S ® Nt arc reflects 
the object counts given the scene category; the Ot

i  ® ct
i  arc 

reflects the fact that the presence or absence of an object 
of type t in patch i affects the detector score or confidence 
ct

i ; the Ot
i  ® lt

i  arc is a deterministic link encoding of the 
location of patch i; the Y t ® lt

i  arc reflects the p(lt
i |Y t, Ot

i ) 
term; finally, there are the Ot

i  ® St and Nt ® St arcs, which is 
simply a trick for enforcing the Nt = SD

i=1 I(Ot
i  = 1) constraint. 

The St node is a dummy node used to enforce the constraint 
between the Nt nodes and the Ot

i  nodes. Specifically, it is 
“clamped” to a fixed state, and we then define p(St|Ot

1:D,  
Nt = n) = I(Si O

t
i  = n) (conditional on the observed child St, all 

the parent nodes, Nt and Ot
i , become correlated due to the 

“explaining away” phenomenon5).
From Figure 5, it is clear that by conditioning on S, we 

can perform inference on each type of object independently 
in parallel. The time complexity for exact inference in this 
model is O(ST2D), ignoring the cost of running the detec-
tors. (Techniques for quickly evaluating detectors on large 
images, using cascades of features, are discussed in Viola 
and Jones20.) We can speed up inference in several ways. For 
example, we can prune out improbable object categories 
(and not run their detectors) if p(Nt > 0|g) is too low, which 
is very effective since g is fast to compute. Of the categories 
that survive, we can just run their detectors in the primed 
region, near E(Yt|g). This will reduce the number of detec-
tions D per category. Finally, if necessary, we can use Monte 
Carlo inference (such as Gibbs sampling) in the resulting 
pruned graphical model to reduce time complexity.

Figure 5. Integrated system represented as a directed graphical model. We show two object types, t and t', for simplicity. The observed 
variables are shaded circles, the unknown variables are clear circles. Variables are defined in the text. The Ât node is a dummy node used 
to enforce the constraint between the Nt nodes and the Ot

i nodes. Ot
i = indicator of presence of object class t in box i; Yt = vertical location of 

object class t; Nt = number of instances of object class t; lt
i = location of box i for object class t; ct

i = score of box i for object class i; D = number 
of high-confidence detections; g = gist descriptor; S = scene category.
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The performance of the integrated model has to be within the 
performance of the detector alone and the context oracle.

Figure 7 (right) shows a precision–recall curve which quan-
tifies the performance of three different systems for detecting 
object presence. The worst one is based on an object detector 
using local features alone; the middle one is our integrated 
system which uses local and global features; and the best one 
is an oracle system based on using the true scene category 
label. We see that our integrated model does much better 
than just using a detector, but it is clear that better scene clas-
sification would improve the results further. It is important to 
note that detecting if an object is present in an image can be 
done with good accuracy even without object localization. The 
knowledge of the scene depicted by the image can be enough. 
For instance, in a picture of a street it is quite certain that a 
car will appear in the picture, while it is unlikely that a car will 
appear on a beach scene. Therefore, the relation between the 
scene category and the object can provide a lot of information 
even when the detector fails to locate the object in the image.

Figure 7 (left) shows a precision–recall curve which quan-
tifies the performance of three different systems for local-
izing objects. Again the worst one is based on an object 

detector using local features alone; the middle one is our 
integrated system which uses local and global features; and 
the best one is a oracle system based on using the true scene 
category label. In this case, knowing the true scene cate-
gory does not help as much: it can eliminate false positives 
such as cars in indoor scenes, but it cannot eliminate false 

 

(a) Input image (b) Car detector output (c) Location priming (d) Integrated model output

Figure 6. (a) Three input images. (b) Top four detections from an object detector based on local features. The thickness of the boxes is related 
to the confidence of the detection. (c) Predicted location of the car based on global features. (d) Combining local and global features.

Figure 7. Performance on car localization (left) and car presence 
detection (right).
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positives such as cars detected in a street scene but up in the 
sky. (Of course, the gist-based location priming system tries 
to eliminate such spatial outliers, but knowing the scene 
category label does not help with localization.)

Object localization is a much harder task than merely 
detecting the presence of an object. This is evident from the 
horizontal scale in Figure 7 (left): the recall never goes beyond 
about 30%, meaning that about 70% of cars are missed by 
the detector, mostly due to occlusion. Even if context can be 
used to narrow down the search space and to remove false 
alarms that occur outside the relevant image region, still, if 
the detector is not able to localize the object, context informa-
tion will not be able to precisely localize the object. The use 
of global context (even with the oracle) does not increase the 
recall (as this requires the detector to work), however context 
is able to increase the precision as it is able to remove false 
alarms in scenes in which cars are not expected. It is possible 
that a finer grained notion of context, perhaps based on other 
objects, could help in such cases. Note, however, that for 
image retrieval applications (e.g., on the web), object presence 
detection is sufficient. For speed reasons, we could adopt the 
following two stage approach: first select images that are pre-
dicted to contain the object based on the gist alone, since this 
is much faster than applying a sliding window classifier; then 
apply the integrated model to further reduce false positives.

5. CONCLUSION
We have discussed one approach for combining local and 
global features in visual object detection and localization. 
Of course, the system is not perfect. For example, sometimes 
objects appear out of context and may be accidently elimi-
nated if the local evidence is ambiguous (see Figure 8). The 
only way to prevent this is if the local detector gives a suffi-
ciently strong bottom-up signal. Conversely, if the detector 
makes a false-positive error in a contextually plausible loca-
tion, it will not be ruled out by our system. But even people 
can also suffer from such “hallucinations.”

In more general terms, we see our system as a good exam-
ple of probabilistic information fusion, an approach which 
is widely used in other areas such as speech recognition, 
which combines local acoustic models which longer-range 
language models. Since computer vision is inherently a dif-
ficult inverse problem, we believe it will be necessary to com-
bine as many sources of evidence as possible when trying to 
infer the true underlying scene structure.

Figure 8. An object which is out of context may be falsely eliminated 
by our system.
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