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Abstract

We present a hierarchical classification model that al-

lows rare objects to borrow statistical strength from related

objects that have many training examples. Unlike many of

the existing object detection and recognition systems that

treat different classes as unrelated entities, our model learns

both a hierarchy for sharing visual appearance across 200

object categories and hierarchical parameters. Our exper-

imental results on the challenging object localization and

detection task demonstrate that the proposed model sub-

stantially improves the accuracy of the standard single ob-

ject detectors that ignore hierarchical structure altogether.

1. Introduction

As we move around the world, some objects are encoun-

tered very frequently (everyday, we see many different peo-

ple, cars, trees, buildings, chairs, etc.), other objects are less

frequent (encountering only a few different instances per

day, such as televisions or mugs), other objects are quite

rare (e.g., speakers, teapots, suitcases, docks), or extremely

rare (seen only a few times each year or less, such as ele-

phants, or aircraft carriers). This distribution of learning

data is very different to the distributions generally used

when training object recognition algorithms. Current work

on learning from few examples generally creates a setting

in which there are N object classes, with M training exam-

ples available per class, with M being small. This setting is

artificial as it is becoming increasingly easy to collect large

amounts of training data [23, 18], at least for a subset of

the object classes. In addition, this artificial distribution of

training data is likely to be quite different to the distribution

of data encountered by humans, or by the mobile agents,

moving around the world.

In this work we focus on the more realistic setting in

which we have some classes containing lots of training data

and many classes containing little data. Our goal is to use

frequent classes to help to learn rare classes for which it

is harder to collect the training data. This biased distribu-

tion is quite frequent and emerges in most natural training

domains. One of the most common examples is when look-
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Figure 1. a) Distribution of amount of training data available per

object class. Objects are sorted by decreasing amount of data. The

distribution is similar to the Zipf’s law, with 9 objects out of 200

accounting for 50% of all the available training data. The two im-

ages show the output of a detector trained to detect vans using only

the training data available for the van class. b) Objects are grouped

into clusters of objects with similar visual appearances. In this

plot clusters (denoted by different colors) are sorted by the cluster

mass (sum of all the samples available) and, within each cluster,

objects are sorted by decreasing amount of data. Rare objects are

likely to be inside a cluster with some very frequent objects. The

images show detections of vans on test images without (top) and

with (bottom) sharing.

ing at the frequency of words. The distribution of words

approximates the Zipf’s law [32]. A distribution similar

to Zipf’s law also has been found in several large object

databases (e.g., what and where [26], labelme [23]). Other

datasets have a uniform distribution over available data per

class (e.g. Caltech 101, ImageNet, by making a big effort

during the collection process in order to keep a uniform dis-

tribution over the object samples).

Fig. 1.a shows the distribution of amount of annotated

data available for 200 object categories from the database
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that we will use in this paper, the SUN’09 database [31].

This database has been created by downloading scene im-

ages and then annotating the objects within each scene.

There has been no effort into creating a uniform distribution

over the amount of labeled data per object category. Indeed,

the distribution of objects is similar to the Zipf’s law with

9 objects out of 200 accounting for 50% of all the available

training data. More than 100 object categories have fewer

than 50 training examples each. Learning to recognize rare

objects is a challenging task as we can not rely on a large

amount of training data to build a reliable detector. Interest-

ingly, if we localize a set of visually similar object classes

(e.g., cars, trucks, vans, etc.) we observe that rare objects

are visually similar to very frequent objects. Fig. 1.b shows

the same distribution but now sorted so that similar objects

are nearby (we will explain how this ordering is obtained

in section 4). This new reordered distribution opens the

door for effective transfer of information to better general-

ize from few training examples by borrowing strength from

related object classes that have lots of data available.

2. Previous work

In this paper we will focus on the detection task (local-

izing an object within an image). Most studies on trans-

fer learning for object recognition have focused on multi-

class recognition without a background class (saying if a

crop image contains an object out of M possible classes

[20, 14, 25, 11, 29]). The object localization task re-

quires efficient solutions that can be part of a window scan-

ning. In addition, and more fundamental, the detection task

needs to focus on the problem of distinguishing the ob-

jects from the background class which requires strong dis-

criminative models in order to get good recognition perfor-

mance. Few multiclass object detection systems have been

proposed showing improved performance with respect to

independently trained algorithms (e.g., [15, 30, 21]). In-

dependently of the task being solved, another aspect that

differentiates between multiclass detectors is the type of in-

formation shared across categories:

Sharing parts: Some of the first models in multiclass

object recognition shared information via a global prior

that modeled the distribution of appearance and geometry

of generic object parts [8]. Discriminative voting models

can share the voting components (i.e., parts) across differ-

ent classes [15, 30, 2, 21, 17]. Hierarchical models also

share information across classes by representing objects as

compositions of shared components [13, 27, 25, 1].

Sharing attributes: Representations based on attributes

[16] define a finite vocabulary that is common to all cate-

gories, with each category using a subset of the attributes.

Training each attribute benefits from the data available from

multiple classes, just as it happens with voting schemes that

share parts. However, it is unclear if the best properties to

be shared correspond to meaningful attributes.

Sharing transformations: the distribution of appear-

ances of each object class can be modeled as being caused

by two components: a canonical object appearance, and a

set of transformations that can be applied to the canonical

object to generate new object instances. The transforma-

tion can be shared across different classes. These methods

can be applied for object classes with well defined sets of

transformations such as letters [20, 28], or faces [28].

Regularization of classifier parameters: In these mod-

els there is no emphasis on the representation (objects are

described by long feature vectors). Object classes transfer

information by regularizing the space of classifier parame-

ters [22, 29].

Sharing training examples: a different strategy for

sharing information is, instead of working in the parameter

space of the classifier, to reuse training examples from other

categories to train a new category. Examples borrowed from

other classes are given a lower weight in the cost function

[12]. When objects are organized along a hierarchical tax-

onomy, nodes at different levels in the hierarchy share the

training samples of all the children [19].

When sharing features across classes, one important

challenge is to decide what should be the dependency

among classes, i.e., to decide with which classes a new

class should share information. Reliably deciding with

which classes to share information can be difficult, as

the decision has to be taken from the few training exam-

ples available. Models using a global prior [8, 17, 6] ig-

nore this issue by sharing information across all categories,

which provides only small benefits. Other models use

external non-visual hierarchies such as wordnet [9] (e.g.,

[19, 12, 16]). Other models learn the relations between cat-

egories [30, 21, 22, 1, 25, 13, 29].

3. Detection Model: A Preview

Consider a challenging problem of detecting and local-

izing objects from a wide variety of categories such as cars,

chairs, trees. Many current state-of-the-art object detection

(and object recognition) systems use rather sophisticated

models, based on multiple parts with separate appearance

and shape components, that can cope with changes in il-

lumination, viewpoint, shape and other visual properties.

However, many of these systems [4, 10] detect objects by

testing sub-windows and scoring corresponding test patches

x with a linear function of the form:

y = β⊤Φ(x), (1)

where Φ(x) may represent a vector of different image fea-

tures at multiple scales (e.g. HOG feature pyramid), and β

represents a vector of model parameters.

In this work we focus on training detection systems for

multiple object classes. Our goal is to learn a hierarchi-
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5

Horse Cow Car TruckVan

Animal Vehicle

Level 1

Level 2

Global

Figure 2. Hierarchical Classification Model: Parameters of each

class are given by the sum of parameters along the tree.

cal model so that rare objects can borrow statistical strength

from related frequent objects. Our overall framework for

learning a hierarchical classification model is shown in

Fig. 2, where parameters of each class are given by the sum

of parameters along the tree [24, 5, 7]. For example, the

parameter vector of the ‘van’ class is given by:

β(van) = θ(0) + θ
(1)
2 + θ

(2)
4 , (2)

where θ(0) is the global parameter vector shared across all

classes, θ(1) is the first-level, or super-class, parameter vec-

tor shared between groups of related classes (e.g. ‘vehicle’

and ‘animal’), and θ(2) is the second-level, or class-specific,

parameter vector.

Sharing the common super-class parameters allows us to

introduce prior correlations between parameters of nearby

classes in the hierarchy. Classes that share a common par-

ent node are likely to have more similar parameter vectors

a-priori. Observe that setting θ(0) and θ(1) to zero would

recover the standard classification setting of Eq. 1. As we

demonstrate in our experimental results, learning how to or-

ganize visually related objects into a coherent hierarchy can

substantially improve model performance.

4. Hierarchical Classification Model

We now introduce a general Bayesian framework for

learning hierarchical classification models and learning how

to group classes into super-classes for parameter sharing.

4.1. Learning Separate Classification Models

Consider a classification problem where we observe a

dataset D of N labeled training examples and we do not

assume any hierarchical structure. Each example belongs

to one of K classes (e.g. 200 object classes), and each

class k ∈ {1, ...,K} contains a set of nk labeled examples:

D(k) = (x
(k)
1 , y

(k)
1 ), ..., (x

(k)
nk

, y
(k)
nk

). We let x
(k)
i ∈ RD

denote the input feature vector of length D for the training

case i that belongs to class k, and y
(k)
i be the correspond-

ing class label. We further assume a binary representation

for class labels1, i.e. y
(k)
i ∈ {−1, 1}, indicating whether a

1This is a standard ‘1 vs. all’ classification setting.

training example i belongs to class k.

For binary classification problems, we can use a simple

logistic regression model. In particular, for each class k we

model the probability of a positive instance as:

p(y
(k)
i = 1|β(k)) =

exp(β(k)⊤
x
(k)
i )

1 + exp(β(k)⊤
x
(k)
i )

, (3)

where k = 1, ...,K ranges over classes, and β(k) ∈ RD

is the vector of length D of unknown parameters, or re-

gression coefficients, for class k. We further place zero-

mean spherical Gaussian priors over model parameters β =
{β(1), ...,β(K)}:

p(β) =

K
∏

k=1

p(β(k)) =

K
∏

k=1

N
(

0,
1

λ
I
)

, (4)

where N (µ,Σ) denotes a Gaussian distribution with mean

µ and covariance Σ. The log of the posterior distribution

over the unknown parameters is proportional to:

log p(β|D) ∝
K
∑

k=1

nk
∑

i=1

log p(y
(k)
i |x

(k)
i ,β(k)) + log p(β(k)).

It is informative to make an explicit connection between

our approach and other commonly used non-probabilistic

models. It can be easily verified that maximizing the log-

posterior over parameters β (or finding a MAP estimate)

is equivalent to minimizing the cross-entropy loss function

with quadratic regularization terms:

E =

K
∑

k=1

[

nk
∑

i=1

Loss(y
(k)
i ,x

(k)
i ,β(k)) +

λ

2
||β(k)||2

]

, (5)

where the cross entropy objective is given by:

Loss(y,x, β) = −
∑

j∈{−1,1}

I{y = j} log p(y = j|x,β). (6)

The cross-entropy objective is convex and can be optimized

efficiently using standard convex optimization solvers. The

formulation of Eq. 5 is quite general. If, instead of proba-

bilistic log-loss, we were to use a hinge-loss:

Loss(y,x, β) = max(0, 1− yβ⊤
x), (7)

then we would recover the classical SVM objective.

The above probabilistic classification model, which we

call SingleClass, treats classes as unrelated entities without

introducing any hierarchical structure. Indeed, the objective

of Eq. 5 decomposes into K sub-problems, which amounts

to fitting K separate binary classification models without

borrowing any information between related classes.
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4.2. Learning when Class Hierarchy is Available

Suppose that our original K classes are partitioned into

S higher-level classes, or super-classes, e.g. ‘horse’ and

‘sheep’ belong to the ‘animal’ super-category, whereas ‘car’

and ‘truck’ belong to the ‘vehicle’ super-class (see Fig. 2).

We will represent such partition by a vector z of length K,

each entry of which is zk ∈ {1, ..., S}. Hence zk specifies

which super-category the basic-level class k belongs to.

Our overall approach for modelling this structure is to as-

sign to each node in the hierarchy a separate parameter vec-

tor. We then associate each class with one of the leaf nodes

in the tree, whose parameter vector is given by the sum of

all parameters along the tree leading to that leaf node:

β(k) = θ(0) + θ(2)
zk

+ θ
(2)
k , (8)

where θ(0),θ(1)
s ,θ

(2)
k ∈ RD represent the global, super-

class, and class-specific parameter vectors. For each class,

we model the probability of a positive instance using Eq. 3.

We further place zero-mean spherical Gaussian priors over

hierarchical parameters β = {θ(0),θ(1),θ(2)}:

p(θ0) = N
(

0,
1

λ0
I
)

, p(θ(1)
s ) = N

(

0,
1

λ1
I
)

, (9)

p(θ
(2)
k ) = N

(

0,
1

λ2
I
)

,

where s = 1, ..., S and k = 1, ...K. Observe that in this

probabilistic model, that we call SharedClass, classes that

belong to the same super-category are likely to have more

similar parameter vectors.

Drawing on connection to the SingleClass model, the pa-

rameter learning problem can be formulated as minimizing

the negative of the log-posterior with respect to β:

E = Loss(Y,X,β, z) +
λ0

2
||θ(0)||2

+
λ1

2

S
∑

s=1

||θ(1)
s ||2 +

λ2

2

K
∑

k=1

||θ
(2)
k ||2, (10)

where the Loss(Y,X,β, z) function is given by Eq. 6 but

with parameters β respecting the given fixed tree structure.

4.3. Modelling the number of supercategories

So far we have assumed that our model is presented with

a partition vector z, that defines a fixed two-level tree hi-

erarchy. This model corresponds to a standard hierarchical

Bayesian model that assumes a fixed hierarchy for sharing

parameters. If, however, we are not given a predefined tree

structure, we need to infer the distribution over the possible

partitions of the basic-level categories into super-categories.

To this end, we place a nonparametric Chinese Restaurant

Prior (CRP) over z, which allows the flexibility of having an

unknown and potentially unbounded number of groups, or

super-classes, over the basic-level classes. In particular, the

CRP prior recursively extends a partition over k− 1 objects

to a new object as follows:

P (zk = s|z1, ..., zk−1) =

{

mk

k−1+γ
mk > 0

γ
k−1+γ

k is new
, (11)

where mk is the number of object classes previously as-

signed to super-category s and γ is the concentration param-

eter that controls the probability of creating a new super-

category. Unlike many conventional hierarchical Bayesian

models, here we infer both the model parameters as well as

the hierarchy for sharing those parameters.

In this work, due to computational reasons, we primarily

focus on learning two-level tree hierarchies. However, ex-

tension to learning multi-level tree structured model can be

accomplished using a nested CRP prior [3], which extends

CRP to nested sequence of partitions, one for each level of

the tree.

5. Model Learning

Within our hierarchical framework, inferences about

model parameters at all levels of hierarchy as well as the

partition structure z can be made by running a Markov

chain whose stationary distribution is the posterior distri-

bution over the model parameters and the partition vector:

p(θ, z|X,Y). In many application domains, such as the

one considered in this paper, we will be interested in finding

the most probable tree structure and the most probable con-

figuration of the model parameters (maximum a-posteriori

(MAP) solution). When the tree structure z is unknown,

our inference process will alternate between fixing the tree

z and maximizing over the model parameters β and then

fixing β while maximizing over the tree structure.

Learning parameters: Given the current tree struc-

ture z, the problem of parameter learning is the same as

the one discussed in section 4.2 when the tree hierarchy is

known. Indeed, we can write down the objective we want

to minimize using Eq. 10. This objective can optimized

efficiently using an iterative coordinate-descend procedure,

summarized in Algorithm 1. Observe that optimizing super-

class (and class-specific) parameters can be performed in

parallel. For example, given the global and super-class pa-

rameters {θ(0),θ(1)}, the objective of Eq. 10 decomposes

into K separate problems (as was the case for the Single-

Class model), and can optimized in parallel. This signifi-

cantly speeds up model training, particularly when dealing

with a large number of classes.

Learning the tree structure: Consider inferring the as-

signment zk, or inferring which super-category the basic-

level class k should be assigned to (see Fig. 3). Given the

current setting of the model parameters β and combining
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Algorithm 1 Parameter Optimization.

1: Given z: the tree structure, S: the number of super-categories,

and K: the number of basic-level categories.

2: repeat

3: Optimize θ
(0) using Eq. 10, given θ

(1) and θ
(2).

4: for s = 1 : S (run in parallel) do

Optimize θ
(1)
s using Eq. 10, given θ

(0) and θ
(2).

5: end for

6: for k = 1 : K (run in parallel) do

Optimize θ
(2)
k

using Eq. 10, given θ
(0) and θ

(1).

7: end for

8: until Converged

the likelihood term with the CRP(γ) prior, the posterior

over the assignment zk is proportional to:

p(zk|β, z−k,Y
(k),X(k)) ∝

p(Y(k)|β(k), zk,X
(k))p(zk|z−k), (12)

where z−k denotes a vector z but with zk omitted. The

prior term p(zk|z−k) is given by the CRP of Eq. 11 and the

likelihood for class k takes the following form:

p(Y(k)|β(k), zk,X
(k)) =

nk
∏

i

p(y
(k)
i |x

(k)
i , zk,β

(k)). (13)

For faster inference, instead of running a Markov chain

Monte Carlo, we simply compute the most probable assign-

ment of zk ∈ {1, ..., S + 1}:

z∗k = argmax
zk

log p(zk|β, z−k,Y
(k),X(k)) (14)

= argmax
zk

[

log p(Y(k)|β(k), zk,X
(k)) + log p(zk|z−k)

]

.

We note that the basic-level class can either be placed under

one of the existing S super-categories, or create its own new

super-category, S + 1, if it is sufficiently different from all

of the remaining classes. With a nonparametric prior, the

number of super-classes may grow or shrink, which allows

us to automatically search over the number of super-classes.

Ideally, in order to allow a more efficient search over

the possible structures, we would want to integrate over the

model parameters β: p(Y|z,X) =
∫

β
p(Y|β, z,X)p(β).

However, integrating over the model parameters can be

computationally intractable (as is the case in this paper). A

simpler alternative, which we adopt in this work, is to re-

place the intractable integration with a single point estimate

that maximizes the log-posterior of the label. In this case,

the most probable assignment of zk ∈ {1, ..., S + 1}:

z∗k = argmax
zk

[

max
β(k)

[

log p(Y(k)|β(k), zk,X
(k)) + (15)

log p(β(k))
]

+ log p(zk|z−k)

]

,

CarCowHorse Van Truck

Animal Vehicle

Chair Chair Chair

Figure 3. Learning a tree hierarchy. The ‘chair’ node can be

attached to one of the existing super-categories: ‘animal’ or ‘vehi-

cle’, or create its own novel super-category.

where the inner maximization over parameters β(k) can

be performed efficiently using Eq. 10 (see Algorithm 1).

The above formula has a very intuitive interpretation.

It is composed of three terms: The log-likelihood term

log p(Y|β, z,X) that measures the data fit, the log-prior

term log p(β) that measures the complexity of model pa-

rameters (parameter regularization), and the log-prior term

log p(z) that measures the complexity of tree structures

(prefers simpler trees).

To gain some intuition as to how the tree structure learn-

ing proceeds, consider attaching the ‘chair’ class to one of

the existing branches in the tree (see Fig. 3). The ‘chair’

node can be attached to one of the existing super-categories:

‘animal’ or ‘vehicle’, or create its own new super-category2.

We can then evaluate the log-posterior of the ‘chair’ class

belonging to each super-class using Eq. 15. This in turn

will allow us to either assign ‘chair’ to one of the existing

super-classes, or create a new super-class.

The inference process continues to alternate between re-

learning the tree structure, given all objects classes, and re-

fitting model parameters until convergence. This alternating

joint optimization will allow us to reach the local maximum

of the log-posterior probability. As we show in our experi-

ments, this algorithm can discover a coherent tree hierarchy

for sharing parameters across 200 visual categories.

6. Experimental results

Our proposed hierarchical classification framework can

be directly applied to learning an object detection model

of [4, 10]. In particular, [10] use a binary classification

model that scores an example x with a linear function:

y = β⊤Φ(x), where Φ(x) represents a concatenation of

the HOG feature pyramid plus part displacement features,

and β represents model parameters. To get a probabilistic

prediction, we use the logistic regression model of Eq. 3:

p(y = 1|β) =
exp(β⊤Φ(x))

1 + exp(β⊤Φ(x))
, (16)

2For faster inference, we fit class-specific parameters θ(2) to each one

of three super-classes, while holding the other parameters fixed.
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Figure 4. Learned hierarchical parameters for the ‘truck’, ‘van’,

and ‘bucket’ object categories (only the root filter is shown). Im-

age intensity was normalized for better visualization.

In [10], optimization over β is performed using a linear

SVM objective with a standard hinge-loss3 as in Eq. 7.

By modelling probabilistic predictions as in Eq. 16,

learning the tree hierarchy can be performed as described

in section 5. However, since we are optimizing, rather than

computing the full posterior, we can undergo a probabilis-

tic interpretation, and replace the maximization of the log-

posterior with minimization of the hinge-loss. This allows

us to reuse an efficient C++ implementation of [10] with

minimal changes. The regularization parameters λ (Eq. 10)

and CRP parameter γ (Eq. 11) are set to one. We evalu-

ate our model using the PASCAL VOC 2008 protocol. It

took three iterations for our algorithm to converge, which

is about five times more expesive compared to training a

SingleClass model.

6.1. Details of the Dataset

We divide SUN’09 dataset [31] into two sets: one for

training and the other one for testing. The training set

contains 4,082 images with 32,855 training examples, and

the test set contains 9,518 images with 75,362 test exam-

ples. The 200 object categories used in our experiments

(see Fig. 1) contain a wide variety of classes ranging from

from regions (e.g., road, sky, field) to well defined objects

(e.g., car, sofa, refrigerator, sink, mug, bed) and highly de-

formable objects (e.g., river, towel, curtain). Nine objects

(out of 200) account for 50% and 83 objects account for

90% of all the training examples. There are 17 classes with

more than 300 examples, and 14 with more than 500, and

109 classes containing less than 50 training examples.

6.2. Results

In all of our experiments we compare performance of our

hierarchical SharedClass model to the following three base-

3The actual objective involves so-called deformable parts that are

learned using a latent SVM framework. But his difference is transparent

for our formulation.
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Figure 5. Left: Improvement of the SharedClass, WordnetTree

and GlobalPrior models over the SingleClass model. Object cate-

gories are sorted sorted by the improvement in the detection task.

Right: The average of the AP improvement of all objects within

each of the 24 learned clusters. Clusters are sorted by the improve-

ment in the detection task.

Table 1. AP averaged over all 200 object categories for the Sin-

gleClass, SharedClass, WordnetTree and GlobalPrior models.

Model Shared GlobalPrior Single WordNet

AP 8.34 6.87 6.98 6.76

line models. The first model, SingleClass, ignores hierar-

chical structure altogether and is trained using ‘1 vs. all’ set-

ting. The second model, called WordnetTree, uses wordnet

[9] to define a fixed tree hierarchy4. The third model, called

GlobalPrior, uses a single global prior θ(0) shared across all

visual categories without learning a hierarchy for parameter

sharing. This model, similar in spirit to [8], could learn a

set of useful features common to all object categories.

We first tested the ability of our model to learn coherent

super-categories. Figure 1 shows 200 basic-level categories

along with a typical partition that our model discovers Ob-

serve that many of the super-categories contain semantically

similar basic-level categories. For example, some of the

discovered clusters contain: {‘chair’, ‘armchair’, ‘seats’,

‘swivel chair’, ‘deck chair’}; {‘table’, ‘side table’, ‘coffee

table’, ‘desk’, ‘stand’,’stool’}; {‘car’, ‘bus’, ‘truck’, ‘van’,

‘airplane’} Fig. 4 visualizes a hierarchical structure of the

learned models for the ‘truck’, ‘van’, and ‘bucket’ objects.

Figure 5 (left panel) displays the improvement in aver-

age precision-recall (AP) of SharedClass, WordnetTree, and

GlobalPrior models for all object categories over the Sin-

gleClass model. Observe that over 150 categories benefit

in different degrees from learning a hierarchy for parameter

sharing. Five objects with the largest improvement in AP

are: ‘shop window’ (+8.46), ‘double door’ (+8.40), ‘van’

(+8.32), ‘armchair’ (+8.22) and ‘coffee table’ (+8.07). We

note that all of these objects borrow visual appearance from

other frequent objects, including ‘window’, ‘door’, ‘chair’,

‘car’, and ‘table’. Five objects with the largest decrease in

AP are: ‘umbrella’ (-3.16), ‘merchandise’ (-3.14), ‘toy’ (-

3.05), ‘meat’ (-2.98), and ‘fruits’ (-2.81). Many of these

4For fair comparison, we constructed 24 semantically similar super-

categories using the WordNet
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Table 2. AP improvement of the SharedClass over the SingleClass

model as a function of the number of the training examples.

Number of Training Number of Average AP

Examples Objects improvement

1-10 9 1.24

11-20 29 1.62

20-50 73 1.89

51-100 32 1.86

101-300 40 1.41

> 301 17 0.83

objects are abstract, and their visual appearance is very dif-

ferent from other object categories. They often get attached

to the ‘wrong’ clusters which introduces a negative transfer.

Fig. 5, right panel, shows that for each of the 24 learned

clusters, sharing detectors improves over the SingleClass

baseline. The WordnetTree and GlobalPrior models, on the

other hand, perform far worse compared to the SharedClass

model. Table 1 further reveals that the use of WordNet actu-

ally decreases model performance. This is hardly surprising

as semantically similar objects may not share visual simi-

larity. Using a single global prior, on the other hand, only

marginally improves upon SingleClass. This result clearly

demonstrates that it is crucial to learn the hierarchy.

Table 2 shows improvement of the SharedClass as a

function of the number of the training examples. Even

though most of the performance gains occur for the non-

frequent objects (containing 20-50 training examples), we

also see substantial improvements for the frequent objects

(containing over 300 object categories). This is quite sur-

prising as it shows that even frequent objects can benefit

from sharing visual appearance between similar objects.

Figure 6 displays a 200 × 200 confusion matrix for the

SingleClass and SharedClass models. The confusion matrix

of the SharedClass model is more block-structured, indicat-

ing that sharing objects is more likely to introduce errors

between objects that belong to the same super-class (e.g.

confuse trucks with cars, deck-chairs with chairs, etc.). Ta-

bles 3 and 4 precisely illustrate this point.

To provide a more intuitive understanding for why

our hierarchical learning succeeds in discovering meaning-

ful super-categories, consider a stand-alone car detector,

trained on 185 training examples. Table 3 shows that the

car detector achieves a very good AP of 59.02. However,

a car detector is also able to detect other related, but rare

object categories (e.g. ‘van’, ‘bus’, ‘truck’). This is exactly

what allows us to learn coherent clusters for parameter shar-

ing. A stand-alone truck detector, on the other hand, con-

fuses trucks with completely unrelated objects (e.g. ‘sky’,

‘floor’). Of course, this is not surprising – there are just

not enough training examples to learn a good truck detec-

tor. Learning a hierarchy, however, allows us achieve a far

better AP (see table 4).

Finally, Fig. 7 shows detection results on some of the test

images, where for each image we show a single most confi-

dent detection according to the SingleClass (top panel) and
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Figure 6. Confusion matrix for the SingleClass (left) and Shared-

Class (right) models.

Table 3. SingleClass 10 sample objects categories along with the

three most confused object classes. Test AP is shown in parenthe-

sis. Objects in bold represent frequent classes.

Object Category Three Most Confused Objects

car (59.02) van (1.97) truck (1.84) bus (0.81)

bus (0.87) wall (0.69) building (0.22) pot (0.10)

truck (2.88) sky (1.82) floor (1.53) road (0.51)

van (8.19) car (13.86) truck (0.59) tree (0.40)

chair (21.15) armchair (0.91) stool (0.67) deck chair (0.35)

deck chair (2.31) rug (0.46) tree (0.16) chair (0.11)

armchair (9.23) chair (1.40) floor (0.21) table (0.19)

table (8.65) desk (1.16) stool (0.65) coffee table (0.54)

coffee table (1.12) table (9.21) sofar (0.42) floor (0.18)

desk (1.31) floor (9.09) building (4.55) door (4.54)

Table 4. SharedClass 10 sample objects categories along with

the three most confused object classes.

Object Category Three Most Confused Objects

car (59.21) van (2.82) truck (2.23) bus (0.92)

bus (4.18) car (4.65) van (2.12) truck (1.21)

truck (10.18) car (12.56) van (1.87) bus (1.12)

van (16.51) car (11.32) truck (0.78) bus (0.75)

chair (22.34) armchair (1.33) stool (0.51) deck chair (0.29)

deck chair (8.56) chair (2.37) table (0.27) armchair (0.19)

armchair (17.45) chair (4.61) deck chair (1.45) desk (1.18)

table (11.24) stool (2.12) desk (1.91) coffee table (0.63)

coffee table (9.19) table (4.76) side table (0.67) sofar (0.36)

desk (6.14) stand (2.27) table (1.52) armchair (1.43)

SharedClass (bottom panel) models. In many cases, the hi-

erarchical model accurately localizes the correct object, but

fails to place a bounding around the full object. We argue

that this type of failure is much more tolerable compared to

the SingleClass model, that often produces false detections

of completely unrelated objects.

7. Conclusion

In this paper we presented a hierarchical classification

model that allows rare objects to borrow statistical strength

from related objects that may have many training instances.

Our experimental results show that our model, in addition

to efficient learning hierarchical parameters, is able to dis-

cover coherent super-categories from 200 object classes.

We further demonstrated that our model substantially im-

proves the accuracy of the stand-alone object detectors that

do not learn the hierarchy for sharing parameters.

Our proposed framework is general and can be directly

applied to many other vision tasks, such as object recogni-
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Figure 7. Detection examples of the SingleClass (top) and Shared-

Class (bottom) models. Each row contains 6 images: 2 most con-

fident detection by SingleClass, 2 most confident detections by

SharedClass, and 2 random;y sampled images among test images

containing that particular class.

tion, and can be further extended to learning multi-layer hi-

erarchies. We believe that these more flexible models com-

bined with many more object categories will be able to fur-

ther improve upon the current state-of-the-art.
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