
SUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels

Jianxiong Xiao
Princeton University

Andrew Owens
MIT

Antonio Torralba
MIT

Abstract

Existing scene understanding datasets contain only a
limited set of views of a place, and they lack representations
of complete 3D spaces. In this paper, we introduce SUN3D,
a large-scale RGB-D video database with camera pose and
object labels, capturing the full 3D extent of many places.
The tasks that go into constructing such a dataset are diffi-
cult in isolation – hand-labeling videos is painstaking, and
structure from motion (SfM) is unreliable for large spaces.
But if we combine them together, we make the dataset con-
struction task much easier. First, we introduce an intuitive
labeling tool that uses a partial reconstruction to propa-
gate labels from one frame to another. Then we use the
object labels to fix errors in the reconstruction. For this, we
introduce a generalization of bundle adjustment that incor-
porates object-to-object correspondences. This algorithm
works by constraining points for the same object from dif-
ferent frames to lie inside a fixed-size bounding box, pa-
rameterized by its rotation and translation. The SUN3D
database, the source code for the generalized bundle adjust-
ment, and the web-based 3D annotation tool are all avail-
able at http://sun3d.cs.princeton.edu.

1. Introduction

The popularity of the Microsoft Kinect and other depth-
capturing devices has led to a renewed interest in 3D for
recognition. Researchers have extended traditional object
and scene recognition datasets to incorporate 3D. For exam-
ple, [13] is an evolution of popular 2D object datasets such
as Caltech 101 [5] to 3D objects captured by an RGB-D
camera. The NYU Depth dataset [20] and others [11, 12, 2]
go beyond objects by capturing RGB-D videos of scenes
and labeling the objects within. However, these 3D datasets
inherit many of the limitations of traditional 2D datasets:
they contain a sample of views from the world, but the phys-
ical relationship between these views and the structure of
the space containing them is mostly missing.

What we desire is a dataset that is place-centric rather
than view-based, containing full 3D models of spaces (e.g.
entire apartments) instead of a limited set of views (Fig.

2D view-based SUN database 3D place-centric SUN3D database

Figure 1. View-based vs. place-centric. This example shows the
difference between a view-based scene representation and a place-
centric scene representation. SUN database [24] contains a view
of a living room. SUN3D database contains an RGB-D video for
the whole apartment and 3D models with camera poses.

1). Such a database would allow us to ask questions like:
“what does this object look like from behind?” or “what can
we expect the space to look like beyond the available field
of view?” Such a database would be useful for learning
complete 3D context models to be used for scene parsing
(e.g. learning that there is always a bed in a bedroom); for
obtaining an integrated understanding of a space instead of
individual disconnected snapshots; and for reasoning about
intuitive physics, functionality and human activity.

With this goal in mind, we introduce SUN3D, a place-
centric database. The items in our database are full 3D
models with semantics: RGB-D images, camera poses, ob-
ject segmentations, and point clouds registered into a global
coordinate frame.

This database requires camera poses, but estimating
them reliably for large space from an RGB-D video is a
difficult problem. And despite recent progress in RGB-
D structure-from-motion (SfM), existing automatic recon-
struction methods are not reliable enough for our purposes.
Additionally, we desire a semantic segmentation, but label-
ing every frame in a full video is a painstaking task – for this
reason, existing RGB-D video databases [20] have semantic
annotations only for a sparse subset of their frames.

To address this, we design our 3D reconstruction and ob-
ject labeling tasks so that they mutually support one another
(see Figure 2). Our approach is based on the idea that if the

1

http://sun3d.cs.princeton.edu
http://sun.cs.princeton.edu
http://sun3d.cs.princeton.edu

Semantic	

Object	

Labeling	

Good Reconstruction	
 Semantic Segmentation	

errors	

Bad Reconstruction	

Figure 2. Main idea. Semantic object labeling as a way to correct
pose estimation errors.

3D reconstruction were perfect, then object labeling would
be easy – one would merely need to label an object in one
frame, and the reconstruction could be used to propagate
these annotations to the rest of the images. On the other
hand, if objects were annotated in every frame, then recon-
struction would improve dramatically since consistencies
between frames could be used as constraints in optimiza-
tion. By combining the two tasks, we (a) produce better 3D
reconstructions, and (b) provide an object annotation tool
that makes it easy to label long RGB-D videos.

To produce better reconstructions, we incorporate object
labels into our structure-from-motion algorithm and solve
jointly for object locations and camera poses. The result-
ing algorithm is based on standard bundle adjustment, and
the addition of object labels helps to avoid errors due to
drift and loop-closing failures, establishing “long-range”
connections between frames that may be very far apart in
a video but that nevertheless contain the same object in-
stances.

Additionally, we use the 3D reconstruction to help with
object annotation, creating a tool that speeds up the process
of labeling a long video. A user labels an object in one
frame, and the partially completed reconstruction is used to
propagate object labels to other frames.

1.1. Related work

There are several 3D datasets that capture full videos
[20, 21, 12, 2, 7] rather than snapshots [11]. Especially
noteworthy is the NYU Depth dataset [20], which contains
scans of a large number of scenes. Despite the large quan-
tity of scans, it is still very much a view-based dataset.
As an experiment, we reconstructed a large sample of the
sequences in the NYU dataset using our structure-from-
motion pipeline (Section 3) and found the coverage of most
spaces to be incomplete. Figure 3 compares the size of the
spaces scanned in several datasets. We can see that a typical
scan covers only a small portion of each space, e.g. only the
corner of a room.

1 meter

[13] [11] NYU [20] SUN3D (ours)

Figure 3. Space coverage. Top view of the reconstruction results
to illustrate the typical 3D space covered by four different datasets
at the same physical scale (meters). (a) RGB-D Object dataset
[13]: multiple views of a small object; (b) Berkeley 3-D Object
[11]: one view of a scene; (c) NYU Depth [20]: one corner of a
room; (d) Ours: a full apartment including bedroom, living room,
kitchen, and bathroom.

In this paper, our goal is to develop tools that will al-
low us to build an annotated database of full 3D places.
Although there are several easy-to-use tools for annotating
2D images and videos [18, 26, 22], they would be subop-
timal to use for RGB-D sequences because they do not ex-
ploit the 3D structure of the problem in label propagation.
In this paper we introduce a structure-from-motion pipeline
that makes use of RGB, depth, and semantic annotations to
improve the robustness of the 3D reconstructions. The tool
uses 3D structure to propagate object labels to unlabeled
frames and uses object labels to improve the 3D reconstruc-
tion. [25, 7] also use 3D information to help labeling, but
the labeling happens in 3D space, which requires accurate
camera poses to begin with and also 3D knowledge that is
only available to experienced users.

Besides the dataset aspect of our work, there are sev-
eral relevant works. [23] proposed a “place-centric” repre-
sentation for scene understanding, but they only focus on
2D recognition and the place-centric representation built in
[23] is not a complete 3D representation of the full extent
of the space. While there are also several recent works
[3, 6, 25, 19, 8] that combine recognition and 3D recon-
struction, they do not use human annotations: instead, they
jointly recognize objects and solve for 3D models. Our
semantic labeling is much more reliable because it comes
from user annotations and is essentially ground truth. In
this sense, our work is related to match-moving software,
where a user manually specifies correspondences; however
this process is unintuitive, and may be intractable for long
sequences.

apartment conference room conference hall restroom classroom dorm hotel room lab lounge office
57 m2 47 m2 130 m2 23 m2 109 m2 33 m2 41 m2 55 m2 124 m2 49 m2

Figure 4. SUN3D database. Each column contains examples from a place category. The numbers are the median coverage areas.

NYU Depth V2 SUN3D
raw video yes yes

coverage area part of a room whole room or multi-rooms
typical length hundreds of frames tens of thousands frames
camera poses no yes
object label sparse frames whole video

instance label within one frame within the whole video
depth improvement cross-bilateral filtering multi-frame TSDF filling

Table 1. Differences between NYU Depth [20] and SUN3D.

There are several systems that use RGB-D cameras to
produce 3D models of spaces, e.g. [10, 4, 15]. These sys-
tems are oriented toward real-time reconstruction, and they
allow the user to interact with the tool to correct errors as
they appear. However, scanning a big space remains chal-
lenging as reconstruction errors are frequent and the user
needs to understand how to correct errors and rescan the
place, a process that is especially challenging for long-range
errors such as loop-closing failures.

The distinction between view-based and place-centric
representations has been studied in human vision. Notably,
neuroscience studies (e.g. [17]) found that the parahip-
pocampal place area (PPA), a brain area known to rep-
resent scenes and spatial layout properties, has a view-
specific representation. In contrast, the retrosplenial cortex
(RSC), a brain area that underpins episodic memory, navi-
gation, route learning, imagination and planning, exhibited
place-centric view-invariant representation. The comple-
mentary roles of these two scene-sensitive regions concep-
tually match the complementary functions of view-based
databases (e.g. SUN [24]) and place-centric databases (e.g.
SUN3D).

Device Capturing Pose Immediate Visual Feedback
Figure 5. Data capturing setup. A operator carries an RGB-D
sensor mounted on a laptop, mimicking natural exploration.

1.2. Overview

We describe our process of capturing the SUN3D
database in Section 2. To obtain the camera pose, we pro-
pose a system that allows a human to help with pose estima-
tion for an RGB-D video. The first step of this system is to
build an initial reconstruction with an RGB-D SfM (Section
3). This reconstruction usually has errors, but it is still use-
ful for the object annotation task (Section 4). Our system
then uses these object annotations as constraints in a gener-
alized bundle adjustment procedure (Section 5) to refine the
camera pose.

2. SUN3D: A Place-centric 3D Database

We introduce a dataset of full 3D spaces, scanned with an
RGB-D sensor. Our database offers RGB-D frames with se-
mantic object segmentations and camera pose. These pieces
can be put together in interesting ways. For example, they
can be used to obtain: (a) A point cloud for the whole space
(Figure 4); (b) 3D object models (Figure 14); (c) All of the
viewpoints of an object, and their poses relative to that ob-
ject; (d) A map of a room, showing all of the objects and
their semantic labels from a bird’s-eye view.

0 10000 20000
0%

5%

10%

15%

number of frames (30 fps)
0 100 200 300 400 500

0%

5%

10%

15%

20%

area coverage (meter2)
−90 −60 −30 0 30 60 90

0%

5%

10%

camera tilt angle (degree)
−90 −60 −30 0 30 60 90

0%

5%

10%

camera roll angle (degree)
0 0.5 1 1.5 2 2.5

0%

5%

10%

15%

20%

camera height (meter)
0 1000 2000 3000 4000 5000

0%

5%

10%

15%

20%

frames taken within 1m

0 1 2 3 4 5 6 7 8 9 10
0%

5%

10%

15%

20%

25%

distance to surface (meter)
0 1 2 3 4 5 6 7 8 9 10

0%

5%

10%

15%

20%

25%

mean distance to surface (meter)
0% 25% 50% 75% 100%

0%

5%

10%

15%

20%

area explored by the observer
0 1000 2000 3000 4000

0%

10%

20%

30%

40%

frames that a cell is visible
0 10 20 30 40 50 60 70

0%

5%

10%

15%

20%

25%

viewing directions
0% 25% 50% 75% 100%

0%

10%

20%

30%

40%

pixels with valid depth

Figure 6. Geometric statistics of SUN3D.
others

corridor(5%)
restroom(5%)

classroom(6%)
office(6%)

dorm(6%)
lounge(9%)

hotel(9%)
lab(9%)

apartment(17%)

conference room(19%)

dorm room(3%)
corridor(2%)
kitchen(2%)

playroom(3%)
living room(3%)

staircase(4%)

bedroom(13%)

bathroom(20%)
others

conference room(8%)
restroom(6%)

escalator(6%)cubicle office(5%)
basement(4%)

attic(2%)
laundromat(2%)

Place category distribution. View category distribution.

Figure 7. Semantic statistics of SUN3D.

Capturing setup For capturing, we mount an ASUS
Xtion PRO LIVE sensor to a laptop (Figure 5). To make a
database that closely matches the human visual experience,
we want the RGB-D video to be taken at a height and view-
ing angle similar to that of a human. Therefore, as shown
in Figure 5, the operator carries the laptop with the Xtion
sensor on his or her shoulder with a viewing angle that is
mostly horizontal but tilted slightly toward the ground. We
use OpenNI to record the video for both RGB and depth at
640× 480 resolution, and at 30 frames per second. We use
the default factory sensor calibration for the registration be-
tween the depth and image. We scan only indoor spaces,
because our depth cameras do not work under direct sun-
light.

Capturing procedure Each operator is told to mimic hu-
man exploration of the space while capturing. They are told
to walk through the entire space, thoroughly scanning each
room, including the floor and walls and every object. Guide-
lines include walking slowly, keeping the sensor upright,
avoiding textureless shots of walls and floors, and walking
carefully between rooms to avoid reconstructions with dis-
connected components.

Dataset analysis We have 415 sequences captured for
254 different spaces, in 41 different buildings. Operators
capture some places for multiple times, at different times of
day when possible. Geographically, the places scanned are
mainly distributed across North America, Europe and Asia.
Statistics are shown in Figure 7.

3. Data-driven bruce-force SfM
We now describe our automatic SfM algorithm, which

we use to obtain initial camera pose estimates. These es-
timates will then be used as part of the object annotation
tool. Our SfM algorithm is based on traditional bundle ad-
justment, but we take advantage of the content of our in-
put videos to close loops more effectively. Standard SfM

Raw Depth

Improved Depth

Image

Difference Depth

Raw Normals

Improved Normals

Raw Phong

Improved Phong

Figure 8. Multi-view depth improvement. A TSDF is accumu-
lated using nearby frames to provide more stable depth estimation.

often fails to close loops because view-invariance feature
matching fails. We take a “data-driven” bruce-force ap-
proach to SfM. We set a very conservative threshold for
our key-point descriptor matching, and therefore our loop
closure will have very high precision with low recall. But
we have purposely designed our capturing procedure so that
the user makes many passes over the same scene. In some
scans, many of the viewpoints essentially appear twice or
more, and the distances between key-point descriptors are
so small that the key-point matching works. Since so many
of the same views appear multiple times, we can match all
the pairs of near-identical frames during loop closure. This
idea is a natural extension of data-driven approach from
other vision tasks, such as scene completion [9]. The fol-
lowing describes the details of our 2D+3D automatic SfM
system.

Registering neighboring frames We match each consec-
utive pair of frames and compute a relative transformation
between them. We begin by matching key-points using
SIFT and remove poor matches using the ratio test [14].
Within the set of SIFT key-points, we choose the ones with
valid depth values, and use a 3-point-algorithm inside a
RANSAC loop to find the relative transformation between
pairs of frames.

Loop closure To detect loops, we use a Bag of Words
model to compute a feature vector for each frame. For each
video, we uses k-means to train a codebook for the bag of
words model. For a given frame, we compute SIFT fea-
tures and then compute a visual word histogram, weighted
by their inverse frequency in the video (in the standard tf-idf
manner). We then compute the dot product between all pairs
of feature vectors to obtain the score matrix for possible
loop closure pairs. With the score matrix, we use Gaussian
smoothing, non-maximum suppression, and then dilation to
pick the list of possible pairs. For each pair, we run the pair-
wise frame-to-frame registration discussed above. If there
are more than 25 SIFT key-point correspondences found in
the matching, we merge the feature tracks. Since this is a
conservative threshold, our loop closure usually has very
high precision with low recall, which is desirable in our
case, since match errors are difficult to deal with in bundle

Raw TSDF (Ours) Cross-bilateral Filter

Figure 9. Comparision of depth improvement algorithms. The
cross-bilateral filtering introduces large artifacts, e.g. it smooths
over occlusion boundaries, as the 3D point cloud shows.

adjustment.
Joint 2D+3D bundle adjustment We obtain an initial
pose estimate by multiplying the relative transformations
together in succession. Then, we use the time ordering of
frames and the inlier SIFT correspondences to link key-
point tracks for bundle adjustment. Note that the SIFT
feature tracks are linked across multiple frames when they
share the same location at each frame, and this allows us
to have longer feature tracks. We use a joint 2D and 3D
objective function for our bundle adjustment as follows:

min
∑
c

∑
p∈V(c)

(
∥∥x̃c

p−K [Rc|tc]Xp

∥∥2+λ∥∥∥X̃c
p−[Rc|tc]Xp

∥∥∥2)
where K is a fixed intrinsics matrix read from device mid-
dleware, Rc and tc are the rotation matrix and camera cen-
ter for the camera corresponding to c-th frame, Xp is the
3D location of a 3D point visible from the c-th camera (i.e.
p ∈ v(c)), and x̃c

p and X̃c
p are the observed 2D pixel lo-

cation and 3D location in the camera coordinate system re-
spectively.
Depth map improvement The raw depth maps are usu-
ally noisy, with many holes. While improving the depth
map is useful in itself, it also is helpful when we re-
construct the object polygon during object annotation (de-
scribed in the next section). To fill in the holes, [20] uses
cross-bilateral filtering, which produces a visually pleasing
depth map, but it introduces many artifacts (Figure 9). In-
stead (Figure 8), we improve the depth map using a Trun-
cated Signed Distance Function (TSDF) [15] to voxelize the
space, accumulating the depth map from nearby frames (e.g.
40 closest frames) using the camera poses obtained above.
By using only frames that are nearby in time, the local cam-
era poses are usually easy to obtain reliably. Finally, we use
ray casting to get a reliable depth map for each frame.

4. Multi-view object annotation
After the automatic SfM procedure, we have a recon-

struction, but that reconstruction will often contain errors.

hotel_umd/maryland_hotel3 (JSON XML) Loaded

 0
374

Image Depth Hybrid Clear Delete pillow: 2
pillow: 1
pillow: 3
bed headboard: 1
bed headboard: 2
bed: 1
bed: 2
wall: 1
pillow: 4
lamp: 1
night stand: 1
telephone: 1
sofa chair
floor
wall: window side
wall: pillar 1
wall: pillar 2
curtain: 1
test
wall: window 2
wall: window 3

Figure 10. Online user interface. It provides the user a polygon-
based tool to outline objects. The tool reconstructs the 3D polygon
outlines for an object in the browser, and propagates the results in
real time to other frames based on their initial camera poses.

However, many of these errors are long-range in nature, the
result of small errors accumulating over time, and for any
given subsequence the reconstruction is usually quite accu-
rate. We take advantage of this fact to create a LabelMe-
style [18] object-annotation interface. And these labels are
then used to improve the reconstruction in Section 5.

Users are shown a video player with object annotations
superimposed on the image frame, and they can advance the
video using a regular video control bar, as shown in Figure
10. They then label objects by clicking on control points
along the object’s boundary. Upon completion, a popup di-
alog will appear asking for the object’s name. The user can
choose an existing name if it is the same instance being la-
belled in a previous frame, or create a new name if the object
appears for the first time.

Whenever a user labels or corrects a frame, the object an-
notation will be propagated automatically to other frames,
so it will be unnecessary to label them if the propagation is
correct. The task is finished when the user is satisfied with
the annotations in all frames.

Interaction at each frame When the user scrolls to an
unlabeled frame, the 3D-based label propagation algorithm
will try to propagate labels from frames that have already
been labeled (which we call keyframes) to this new frame.
Now, they can correct all mistakes if there are any, or just
continue to other frames. If the user decides to correct the
frame, then they are required to fully correct all of the misla-
belings (i.e. one object mistakenly labeled as another). Such
errors can be due to problems with camera pose or from ap-
proximations made by our propagation algorithm. When
the user finishes and continues to navigate, the frame auto-
matically becomes a keyframe, and its annotations will be
propagated to other frames. Otherwise, if the user chooses
to “ignore” the frame, then it means that they did not want

Key Frame Key FramePropagation Result

Frame 76 Frame 121Frame 96

More Propagation Results
Figure 11. 3D label propagation. Annotation of each frame is
automatically populated from nearby key frames.

to provide any feedback, and the algorithm does nothing.

Polygon reconstruction For a given manually annotated
object polygon, we robustly estimate the 3D locations of
the control points – these 3D control points are later used to
define a new polygon. For each control point, we collect all
of the 3D points that fall within 25 pixels of its incident edge
(the one connecting with the previous control point) and fit
a plane using RANSAC. If there are too few points to do
this, e.g. if the object is small or depth is missing around the
boundary, we fit a plane to all of the object’s points. The
control point’s 3D location is then obtained by intersecting
the corresponding camera ray with the plane. This simple
scheme can be achieved in real time and implemented in
JavaScript running on a standard web browser.

Annotation propagation For an unlabeled frame, we re-
trieve the closest two keyframes based on frame number.
For each of these keyframes, we reproject the 3D object
polygons into the current frame using the estimated camera
poses, and check for visibility by comparing with the RGB-
D depth value in the projected area. Multiple polygons are
merged together by the union of the polygons from multiple
frames. With this simple propagation scheme, we observe
that the results are usually stable when the camera poses are
correct, as we can see in the example shown in Figure 11.

Conflict list The major source of propagation error comes
from camera pose errors. The user can correct the errors
produced in one frame, but it is tedious to correct the er-
rors of every nearby frame as well. Therefore, we maintain
a conflict list between pairs of frames: when a user cor-
rects a major mistake in a frame, the algorithm checks to
see which keyframes the wrong label is propagated from,
and places them into the conflict list with the current frame.
All nearby frames will exclude frames from the conflict list
during propagation. This mechanism significantly reduces
the effect of camera pose error.

Instance naming For naming the object, we ask the user
to name an object first for its object category, followed by
a short description of where it is located, so that they can
specify if the same object appears twice in another frame

R2,t2

R1,t1

Frame 1

Frame 2

Frame 3
R3,t3

X1

X2

X3

Frame 1 Frame 2 Frame 3
R3,t3

X1

X2 X3

R2,t2 R1,t1

Bounding Box
Constraints

Without Object Constraint With Object-to-object Correspondences

Figure 12. Generalized bundle adjustment. The object-to-object
correspondence constraint essentially pulls a set of points belong-
ing to the same object so that they fit into one 3D bounding box
for that object. Together with constraints from other objects and
key-points, the camera pose can be estimated more reliably.

(e.g. “chair: next to the laptop”). For object categories with
many instances close together or that the user cannot differ-
entiate, e.g. hundreds of indistinguishable chairs in a class-
room, the user will name them with “object category: *”,
and we do not use them in the subsequent generalized bun-
dle adjustment.

Discussion The annotation task is intuitive because it re-
quires no knowledge of 3D and geometry, so it can be used
easily by general users. Most of the labeling time is spent
on increasing the coverage of a space, rather than correct-
ing errors. This is because the RGB-D depth map and local
camera pose estimation are usually reliable, and the con-
flict list effectively deletes bad source keyframes when the
camera poses are inconsistent. We have also considered al-
ternative methods, such as drawing bounding boxes in 3D,
but all these approaches require the user to work in 3D with
potentially wrong camera poses, which requires significant
training and geometric knowledge.

5. Generalized bundle adjustment
The object segmentations obtained in the previous sec-

tion can be used to correct camera pose errors. For example,
if the same object instance appears twice in different loca-
tions, it signals that the camera pose estimation is incorrect.
We desire a way to allow the user to fix these errors.

One way to do this would be to use the annotations to
match features between pairs of frames that view the same
objects, and to register them as in Section 3. In our expe-
rience, this is not usually effective, since most matchable
pairs have already been detected during the automatic loop-
closing step. Another alternative would be to ask users to
supply correspondences by hand, as in match-moving soft-
ware. However, this is unintuitive and may be intractable
for long sequences.

Given that exact point-to-point correspondences are very
hard to obtain either automatically or manually, we propose
a novel approach to generalize standard bundle adjustment
from point-to-point correspondences to one with object-to-
object correspondences. We parameterize each object in-

−4−3−2−101234

−4

−3

−2

−1

0

1

2

3

4

44

45

46

42

40

43

36

50

58

57

13
60

30

59

292564

32

20

34

3

23

4

35

16

27

56

3331

6

22

15

26
11

1

10

24

5

9

17

7
54

8

37

12

39

62
63

38

2
61

14

53

19

52

18

4749

41

48

28

51

21

Figure 13. Object constraints in generalized bundle adjust-
ment. Each box visualizes a constraint introduced by the user
annotation.

stance (recall that annotators specify both the type of object
and distinguish between instances) by its 3D location, rota-
tion, and the size of its 3D bounding box. As shown in Fig-
ure 12, the 3D point cloud of an object from a view should
lie inside the object’s inferred 3D bounding box. There-
fore, when the same object appears in a different location
in the space, the bundle adjustment optimization will pull
them together close enough to fit in the same 3D bounding
box (since there is only one, limited-size bounding box per
object instance). We call this new algorithm generalized
bundle adjustment, as it generalizes an infinitely small 3D
point to a 3D box with certain size and orientation.

More technically, for each object, the 6DOF location
to and rotation Ro are unknown variables to be estimated
by the bundle adjustment. The physical size so of the
3D bounding box is provided automatically by the sys-
tem based on the object category1. Encoding the object-
to-object correspondences in 3D, together with the origi-
nal bundle adjustment constraints based on point-to-point
tracks, our new objective function is

min
∑
c

∑
p∈V(c)

(
∥∥x̃c

p−K [Rc|tc]Xp

∥∥2+λ0∥∥∥X̃c
p−[Rc|tc]Xp

∥∥∥2)
+ λ1

∑
o

∑
c

∑
p∈L(o,c)

Ψ([Ro|to] [Rc|tc]−1 X̃c
p, so)2,

where

Ψ(X, s) =
∥∥∥max

(
0,X− s

2
,−X− s

2

)∥∥∥
is a loss function that has zero value inside a 3D cuboid with
size s, and goes linearly outside the cuboid. This means that

1We manually construct a table of object size upper bounds for a list of
common object categories.

wall	
 painting	
 suitcase	
 toilet	

headboard	
 chair	
 pillow	
 bathtub	

curtain	
 bed	
 door	
 cabinet	

Figure 14. Object gallery. Segmented object point cloud merged
from different viewpoints.

given a 3D point X̃c
p from the c-th camera being labelled as

the o-th object (i.e. p ∈ L (o, c)), we transform it from the
local camera coordinate system to the world coordinate sys-
tem using [Rc|tc]−1, and transform it from the world coor-
dinate system to the object coordinate system using [Ro|to];
we see how far this point is from the canonical 3D cuboid
centered at the origin with size s. This Ψ function is ba-
sically an extension of the quadratic loss function typically
used for point-to-point correspondences.

Special semantics We use the same framework to place
further restrictions on objects that have special semantics.
For walls and floors, we make the bounding box constraint
into a planarity constraint by making the box very thin in
one dimension. We further constrain floors so that their
bounding boxes are at y = 0, and we force walls to be or-
thogonal to the x-z plane by only allowing rotations around
the y axis. We constrain other axis-aligned objects, such
as beds and cabinets, in the same way as well. These con-
straints result in a more accurate, rectified reconstruction.

Object context We note that our general framework can
also be used to model contextual object relationships. For
example, if one object is parallel with the other object, we
can add hard constraints to let the two objects share the
same rotation variables. If an object is attached on the other
object, not only they are parallel, the bounding box for the
smaller object (e.g. a painting) should lie inside the bound-
ing box for the bigger object (e.g. a wall). Orthogonality
(e.g. walls meet at right angles) and other angle constraints
can be encoded as a relationship between the rotation ma-
trices of two objects. While we do not currently use such
constraints, they could easily be added to the optimization
under our framework to provide additional regularization.

Optimization We use the Levenberg-Marquardt algo-
rithm to optimize our objective function with automatic dif-
ferentiation in Ceres solver [1]. In our implementation, we
use an angle-axis representation for general 3D rotations,

Figure 15. Annotation and reconstruction correction result. The 3D point cloud is colored based on their semantic object categories.

except for axis-aligned bounding boxes, where it suffices to
use a single angle parameter.
Discussion Although the generalized bundle adjustment
is used here with manual annotation, it could potentially be
extended to work with automatic object detection as well
[3, 6]. Just as the standard bundle adjustment requires most
of the point-to-point correspondences to be correct, the
generalized bundle adjustment also requires high-quality
object-to-object correspondences. And it would be inter-
esting as future work to apply existing methods for dealing
with outliers to this new domain (e.g. outlier removal and
robust loss functions for Ψ, such as cauchy, arctan etc.).

6. Conclusion
We introduce SUN3D, a RGB-D video database of big

spaces for place-centric scene understanding. We have pro-
posed a 3D reconstruction and labeling tool: it incorporates
semantic labels to obtain an accurate 3D reconstruction, and
uses the 3D reconstruction to make an efficient annotation
tool. We propose a novel generalized bundle adjustment al-
gorithm to incorporate object-to-object correspondences as
constraints. We believe that many new algorithms and ap-
plications are enabled by our SUN3D database (e.g. [16]).
All source code, labeling tool, and data are publicly avail-
able to facilitate further research.

Acknowledgments We thank Erika Lee, Tianfan Xue,
Deqing Sun for help in data collection. We thank the
area chairs for valuable feedback. This work was partially
funded by a NDSEG fellowship to A.O and ONR MURI
N000141010933 to A.T.

References
[1] S. Agarwal and K. Mierle. Ceres Solver: Tutorial & Reference.

Google Inc. 7
[2] A. Aydemir, R. Göransson, and P. Jensfelt. Kinect@Home, 2012. 1,

2
[3] S. Y. Bao and S. Savarese. Semantic structure from motion. In CVPR,

2011. 2, 8
[4] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-

gard. An evaluation of the RGB-D SLAM system. In ICRA, 2012.
3

[5] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual mod-
els from few training examples: An incremental bayesian approach
tested on 101 object categories. CVIU, 2007. 1

[6] N. Fioraio and L. Di Stefano. SLAM++: Simultaneous localisation
and mapping at the level of objects. In CVPR, 2013. 2, 8

[7] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR, 2012. 2

[8] C. Hane, C. Zach, A. Cohen, R. Angst, and M. Pollefeys. Joint 3d
scene reconstruction and class segmentation. In CVPR, 2013. 2

[9] J. Hays and A. A. Efros. Scene completion using millions of pho-
tographs. SIGGRAPH, 2007. 4

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D map-
ping: Using depth cameras for dense 3d modeling of indoor environ-
ments, 2010. 3

[11] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and
T. Darrell. A category-level 3-d object dataset: Putting the kinect to
work. In ICCV Workshop, 2011. 1, 2

[12] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic label-
ing of 3d point clouds for indoor scenes. In NIPS, 2011. 1, 2

[13] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-
view RGB-D object dataset. In ICRA, 2011. 1, 2

[14] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 2004. 4

[15] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
fusion: Real-time dense surface mapping and tracking. In ISMAR,
2011. 3, 5

[16] A. Owens, J. Xiao, A. Torralba, and W. T. Freeman. Shape anchors
for data-driven multi-view reconstruction. In ICCV, 2013. 8

[17] S. Park and M. M. Chun. Different roles of the parahippocampal
place area (ppa) and retrosplenial cortex (rsc) in panoramic scene
perception. NeuroImage, 47(4):1747–1756, 2009. 3

[18] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. La-
belMe: A database and web-based tool for image annotation. IJCV,
2008. 2, 5

[19] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison. Joint detection, tracking and mapping by semantic
bundle adjustment. In CVPR, 2013. 2

[20] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmenta-
tion and support inference from rgbd images. In ECCV, 2012. 1, 2,
3, 5

[21] S. Song and J. Xiao. Tracking revisited using RGBD camera: Unified
benchmark and baselines. In ICCV, 2013. 2

[22] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scaling up
crowdsourced video annotation. IJCV, 2012. 2

[23] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba. Recognizing scene
viewpoint using panoramic place representation. In CVPR, 2012. 2

[24] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN
database: Large-scale scene recognition from abbey to zoo. In
CVPR, 2010. 1, 3

[25] J. Xiao and L. Quan. Multiple view semantic segmentation for street
view images. In ICCV, 2009. 2

[26] J. Yuen, B. C. Russell, C. Liu, and A. Torralba. Labelme video:
Building a video database with human annotations. In ICCV, 2009.
2

