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ABSTRACT
Third-party cloud computing represents the promise of out-
sourcing as applied to computation. Services, such as Mi-
crosoft’s Azure and Amazon’s EC2, allow users to instanti-
ate virtual machines (VMs) on demand and thus purchase
precisely the capacity they require when they require it.
In turn, the use of virtualization allows third-party cloud
providers to maximize the utilization of their sunk capital
costs by multiplexing many customer VMs across a shared
physical infrastructure. However, in this paper, we show
that this approach can also introduce new vulnerabilities.
Using the Amazon EC2 service as a case study, we show that
it is possible to map the internal cloud infrastructure, iden-
tify where a particular target VM is likely to reside, and then
instantiate new VMs until one is placed co-resident with the
target. We explore how such placement can then be used to
mount cross-VM side-channel attacks to extract information
from a target VM on the same machine.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: UNAUTHORIZED AC-
CESS

General Terms
Security, Measurement, Experimentation

Keywords
Cloud computing, Virtual machine security, Side channels

1. INTRODUCTION
It has become increasingly popular to talk of “cloud com-

puting” as the next infrastructure for hosting data and de-
ploying software and services. In addition to the plethora of
technical approaches associated with the term, cloud com-
puting is also used to refer to a new business model in which
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core computing and software capabilities are outsourced on

demand to shared third-party infrastructure. While this
model, exemplified by Amazon’s Elastic Compute Cloud
(EC2) [5], Microsoft’s Azure Service Platform [20], and Rack-
space’s Mosso [27] provides a number of advantages— in-
cluding economies of scale, dynamic provisioning, and low
capital expenditures— it also introduces a range of new risks.

Some of these risks are self-evident and relate to the new
trust relationship between customer and cloud provider. For
example, customers must trust their cloud providers to re-
spect the privacy of their data and the integrity of their
computations. However, cloud infrastructures can also in-
troduce non-obvious threats from other customers due to
the subtleties of how physical resources can be transparently
shared between virtual machines (VMs).

In particular, to maximize efficiency multiple VMs may
be simultaneously assigned to execute on the same physi-
cal server. Moreover, many cloud providers allow “multi-
tenancy” — multiplexing the virtual machines of disjoint
customers upon the same physical hardware. Thus it is con-

ceivable that a customer’s VM could be assigned to the same
physical server as their adversary. This in turn, engenders
a new threat — that the adversary might penetrate the iso-
lation between VMs (e.g., via a vulnerability that allows
an “escape” to the hypervisor or via side-channels between

VMs) and violate customer confidentiality. This paper ex-
plores the practicality of mounting such cross-VM attacks
in existing third-party compute clouds.

The attacks we consider require two main steps: place-
ment and extraction. Placement refers to the adversary ar-
ranging to place their malicious VM on the same physical
machine as that of a target customer. Using Amazon’s EC2
as a case study, we demonstrate that careful empirical“map-
ping”can reveal how to launch VMs in a way that maximizes
the likelihood of an advantageous placement. We find that
in some natural attack scenarios, just a few dollars invested
in launching VMs can produce a 40% chance of placing a
malicious VM on the same physical server as a target cus-
tomer. Using the same platform we also demonstrate the
existence of simple, low-overhead, “co-residence” checks to
determine when such an advantageous placement has taken
place. While we focus on EC2, we believe that variants
of our techniques are likely to generalize to other services,
such as Microsoft’s Azure [20] or Rackspace’s Mosso [27], as
we only utilize standard customer capabilities and do not
require that cloud providers disclose details of their infras-
tructure or assignment policies.



Having managed to place a VM co-resident with the tar-
get, the next step is to extract confidential information via
a cross-VM attack. While there are a number of avenues
for such an attack, in this paper we focus on side-channels:
cross-VM information leakage due to the sharing of physical
resources (e.g., the CPU’s data caches). In the multi-process
environment, such attacks have been shown to enable ex-
traction of RSA [26] and AES [22] secret keys. However, we
are unaware of published extensions of these attacks to the
virtual machine environment; indeed, there are significant
practical challenges in doing so.

We show preliminary results on cross-VM side channel at-
tacks, including a range of building blocks (e.g., cache load
measurements in EC2) and coarse-grained attacks such as
measuring activity burst timing (e.g., for cross-VM keystroke
monitoring). These point to the practicality of side-channel
attacks in cloud-computing environments.

Overall, our results indicate that there exist tangible dan-
gers when deploying sensitive tasks to third-party compute
clouds. In the remainder of this paper, we explain these
findings in more detail and then discuss means to mitigate
the problem. We argue that the best solution is for cloud
providers to expose this risk explicitly and give some place-
ment control directly to customers.

2. THREAT MODEL
As more and more applications become exported to third-

party compute clouds, it becomes increasingly important to
quantify any threats to confidentiality that exist in this set-
ting. For example, cloud computing services are already
used for e-commerce applications, medical record services [7,
11], and back-office business applications [29], all of which
require strong confidentiality guarantees. An obvious threat
to these consumers of cloud computing is malicious behav-
ior by the cloud provider, who is certainly in a position to
violate customer confidentiality or integrity. However, this
is a known risk with obvious analogs in virtually any in-
dustry practicing outsourcing. In this work, we consider
the provider and its infrastructure to be trusted. This also
means we do not consider attacks that rely upon subverting
a cloud’s administrative functions, via insider abuse or vul-
nerabilities in the cloud management systems (e.g., virtual
machine monitors).

In our threat model, adversaries are non-provider-affiliated
malicious parties. Victims are users running confidentiality-
requiring services in the cloud. A traditional threat in such a
setting is direct compromise, where an attacker attempts re-
mote exploitation of vulnerabilities in the software running
on the system. Of course, this threat exists for cloud appli-
cations as well. These kinds of attacks (while important) are
a known threat and the risks they present are understood.

We instead focus on where third-party cloud computing
gives attackers novel abilities; implicitly expanding the at-

tack surface of the victim. We assume that, like any cus-
tomer, a malicious party can run and control many instances
in the cloud, simply by contracting for them. Further, since
the economies offered by third-party compute clouds derive
from multiplexing physical infrastructure, we assume (and
later validate) that an attacker’s instances might even run
on the same physical hardware as potential victims. From
this vantage, an attacker might manipulate shared physical
resources (e.g., CPU caches, branch target buffers, network
queues, etc.) to learn otherwise confidential information.

In this setting, we consider two kinds of attackers: those
who cast a wide net and are interested in being able to attack
some known hosted service and those focused on attacking a
particular victim service. The latter’s task is more expensive
and time-consuming than the former’s, but both rely on the
same fundamental attack.

In this work, we initiate a rigorous research program aimed
at exploring the risk of such attacks, using a concrete cloud
service provider (Amazon EC2) as a case study. We address
these concrete questions in subsequent sections:

• Can one determine where in the cloud infrastructure an
instance is located? (Section 5)

• Can one easily determine if two instances are co-resident
on the same physical machine? (Section 6)

• Can an adversary launch instances that will be co-resident
with other user’s instances? (Section 7)

• Can an adversary exploit cross-VM information leakage
once co-resident? (Section 8)

Throughout we offer discussions of defenses a cloud provider
might try in order to prevent the success of the various at-
tack steps.

3. THE EC2 SERVICE
By far the best known example of a third-party compute

cloud is Amazon’s Elastic Compute Cloud (EC2) service,
which enables users to flexibly rent computational resources
for use by their applications [5]. EC2 provides the ability
to run Linux, FreeBSD, OpenSolaris and Windows as guest
operating systems within a virtual machine (VM) provided
by a version of the Xen hypervisor [9].1 The hypervisor
plays the role of a virtual machine monitor and provides
isolation between VMs, intermediating access to physical
memory and devices. A privileged virtual machine, called
Domain0 (Dom0) in the Xen vernacular, is used to manage
guest images, their physical resource provisioning, and any
access control rights. In EC2 the Dom0 VM is configured
to route packets for its guest images and reports itself as a
hop in traceroutes.

When first registering with EC2, each user creates an ac-
count—uniquely specified by its contact e-mail address—
and provides credit card information for billing compute and
I/O charges. With a valid account, a user creates one or
more VM images, based on a supplied Xen-compatible ker-
nel, but with an otherwise arbitrary configuration. He can
run one or more copies of these images on Amazon’s network
of machines. One such running image is called an instance,
and when the instance is launched, it is assigned to a single
physical machine within the EC2 network for its lifetime;
EC2 does not appear to currently support live migration of
instances, although this should be technically feasible. By
default, each user account is limited to 20 concurrently run-
ning instances.

In addition, there are three degrees of freedom in specify-
ing the physical infrastructure upon which instances should
run. At the time of this writing, Amazon provides two
“regions”, one located in the United States and the more
recently established one in Europe. Each region contains
three “availability zones” which are meant to specify in-
frastructures with distinct and independent failure modes

1We will limit our subsequent discussion to the Linux ker-
nel. The same issues should apply for other guest operating
systems.



(e.g., with separate power and network connectivity). When
requesting launch of an instance, a user specifies the re-
gion and may choose a specific availability zone (otherwise
one is assigned on the user’s behalf). As well, the user
can specify an “instance type”, indicating a particular com-
bination of computational power, memory and persistent
storage space available to the virtual machine. There are
five Linux instance types documented at present, referred
to as ‘m1.small’, ‘c1.medium’, ‘m1.large’, ‘m1.xlarge’, and
‘c1.xlarge’. The first two are 32-bit architectures, the latter
three are 64-bit. To give some sense of relative scale, the
“small compute slot” (m1.small) is described as a single vir-
tual core providing one ECU (EC2 Compute Unit, claimed to
be equivalent to a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon
processor) combined with 1.7 GB of memory and 160 GB
of local storage, while the “large compute slot” (m1.large)
provides 2 virtual cores each with 2 ECUs, 7.5GB of mem-
ory and 850GB of local storage. As expected, instances with
more resources incur greater hourly charges (e.g., ‘m1.small’
in the United States region is currently $0.10 per hour, while
‘m1.large’ is currently $0.40 per hour). When launching an
instance, the user specifies the instance type along with a
compatible virtual machine image.

Given these constraints, virtual machines are placed on
available physical servers shared among multiple instances.
Each instance is given Internet connectivity via both an
external IPv4 address and domain name and an internal
RFC 1918 private address and domain name. For example,
an instance might be assigned external IP 75.101.210.100,
external name ec2-75-101-210-100.compute-1.amazonaws
.com, internal IP 10.252.146.52, and internal name domU-
12-31-38-00-8D-C6.compute-1.internal. Within the cloud,
both domain names resolve to the internal IP address; out-
side the cloud the external name is mapped to the external
IP address.

Note that we focus on the United States region— in the
rest of the paper EC2 implicitly means this region of EC2.

4. NETWORK PROBING
In the next several sections, we describe an empirical mea-

surement study focused on understanding VM placement
in the EC2 system and achieving co-resident placement for
an adversary. To do this, we make use of network probing
both to identify public services hosted on EC2 and to pro-
vide evidence of co-residence (that two instances share the
same physical server). In particular, we utilize nmap, hping,
and wget to perform network probes to determine liveness
of EC2 instances. We use nmap to perform TCP connect

probes, which attempt to complete a 3-way hand-shake be-
tween a source and target. We use hping to perform TCP

SYN traceroutes, which iteratively sends TCP SYN pack-
ets with increasing time-to-lives (TTLs) until no ACK is
received. Both TCP connect probes and SYN traceroutes
require a target port; we only targeted ports 80 or 443. We
used wget to retrieve web pages, but capped so that at most
1024 bytes are retrieved from any individual web server.

We distinguish between two types of probes: external

probes and internal probes. A probe is external when it
originates from a system outside EC2 and has destination
an EC2 instance. A probe is internal if it originates from
an EC2 instance (under our control) and has destination
another EC2 instance. This dichotomy is of relevance par-
ticularly because internal probing is subject to Amazon’s

acceptable use policy, whereas external probing is not (we
discuss the legal, ethical and contractual issues around such
probing in Appendix A).

We use DNS resolution queries to determine the external
name of an instance and also to determine the internal IP
address of an instance associated with some public IP ad-
dress. The latter queries are always performed from an EC2
instance.

5. CLOUD CARTOGRAPHY
In this section we ‘map’ the EC2 service to understand

where potential targets are located in the cloud and the
instance creation parameters needed to attempt establish-
ing co-residence of an adversarial instance. This will speed
up significantly adversarial strategies for placing a malicious
VM on the same machine as a target. In the next section we
will treat the task of confirming when successful co-residence
is achieved.

To map EC2, we begin with the hypothesis that different
availability zones are likely to correspond to different inter-
nal IP address ranges and the same may be true for instance
types as well. Thus, mapping the use of the EC2 internal
address space allows an adversary to determine which IP ad-
dresses correspond to which creation parameters. Moreover,
since EC2’s DNS service provides a means to map public IP
address to private IP address, an adversary might use such a
map to infer the instance type and availability zone of a tar-
get service—thereby dramatically reducing the number of
instances needed before a co-resident placement is achieved.

We evaluate this theory using two data sets: one created
by enumerating public EC2-based web servers using external
probes and translating responsive public IPs to internal IPs
(via DNS queries within the cloud), and another created by
launching a number of EC2 instances of varying types and
surveying the resulting IP address assigned.

To fully leverage the latter data, we present a heuristic
algorithm that helps label /24 prefixes with an estimate of
the availability zone and instance type of the included Inter-
nal IPs. These heuristics utilize several beneficial features
of EC2’s addressing regime. The output of this process is a
map of the internal EC2 address space which allows one to
estimate the availability zone and instance type of any tar-
get public EC2 server. Next, we enumerate a set of public
EC2-based Web servers

Surveying public servers on EC2. Utilizing WHOIS
queries, we identified four distinct IP address prefixes, a /16,
/17, /18, and /19, as being associated with EC2. The last
three contained public IPs observed as assigned to EC2 in-
stances. We had not yet observed EC2 instances with public
IPs in the /16, and therefore did not include it in our sur-
vey. For the remaining IP addresses (57 344 IP addresses),
we performed a TCP connect probe on port 80. This re-
sulted in 11 315 responsive IPs. Of these 9 558 responded
(with some HTTP response) to a follow-up wget on port
80. We also performed a TCP port 443 scan of all 57 344 IP
addresses, which resulted in 8 375 responsive IPs. Via an ap-
propriate DNS lookup from within EC2, we translated each
public IP address that responded to either the port 80 or
port 443 scan into an internal EC2 address. This resulted in
a list of 14 054 unique internal IPs. One of the goals of this
section is to enable identification of the instance type and
availability zone of one or more of these potential targets.
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Figure 1: (Top) A plot of the internal IP addresses assigned to instances launched during the initial mapping exper-

iment using Account A. (Bottom) A plot of the internal IP addresses of instances launched in Zone 3 by Account A

and, 39 hours later, by Account B. Fifty-five of the Account B IPs were repeats of those assigned to instances for

Account A.

Instance placement parameters. Recall that there are
three availability zones and five instance types in the present
EC2 system. While these parameters could be assigned in-
dependently from the underlying infrastructure, in practice
this is not so. In particular, the Amazon EC2 internal IP ad-
dress space is cleanly partitioned between availability zones
(likely to make it easy to manage separate network con-
nectivity for these zones) and instance types within these
zones also show considerable regularity. Moreover, different
accounts exhibit similar placement.

To establish these facts, we iteratively launched 20 in-
stances for each of the 15 availability zone/instance type
pairs. We used a single account, call it “Account A”. The top
graph in Figure 1 depicts a plot of the internal IP address
assigned to each of the 300 instances, partitioned according
to availability zone. It can be readily seen that the sam-
ples from each zone are assigned IP addresses from disjoint
portions of the observed internal address space. For ex-
ample, samples from Zone 3 were assigned addresses within
10.252.0.0/16 and from discrete prefixes within 10.253.0.0/16.
If we make the assumption that internal IP addresses are
statically assigned to physical machines (doing otherwise
would make IP routing far more difficult to implement), this
data supports the assessment that availability zones use sep-
arate physical infrastructure. Indeed, none of the data gath-
ered in the rest of the paper’s described experiments have
cast doubt on this conclusion.

While it is perhaps not surprising that availability zones
enjoy disjoint IP assignment, what about instance type and
accounts? We launched 100 instances (20 of each type, 39
hours after terminating the Account A instances) in Zone
3 from a second account, “Account B”. The bottom graph
in Figure 1 plots the Zone 3 instances from Account A and
Account B, here using distinct labels for instance type. Of
the 100 Account A Zone 3 instances, 92 had unique /24
prefixes, while eight /24 prefixes each had two instances,
though of the same type. Of the 100 Account B instances,

88 had unique /24 prefixes, while six of the /24 prefixes had
two instances each. A single /24 had both an m1.large and
an m1.xlarge instance. No IP addresses were ever observed
being assigned to more than one instance type. Of the 100
Acount B IP’s, 55 were repeats of IP addresses assigned to
instances for Acount A.

A fuller map of EC2. We would like to infer the instance
type and availability zone of any public EC2 instance, but
our sampling data is relatively sparse. We could sample
more (and did), but to take full advantage of the sampling
data at hand we should take advantage of the significant
regularity of the EC2 addressing regime. For example, the
above data suggests that /24 prefixes rarely have IPs as-
signed to distinct instance types. We utilized data from
4 499 instances launched under several accounts under our
control; these instances were also used in many of the exper-
iments described in the rest of the paper. These included
977 unique internal IPs and 611 unique Dom0 IPs associated
with these instances.

Using manual inspection of the resultant data, we derived
a set of heuristics to label /24 prefixes with both availability
zone and instance type:

• All IPs from a /16 are from the same availability zone.

• A /24 inherits any included sampled instance type. If there
are multiple instances with distinct types, then we label the
/24 with each distinct type (i.e., it is ambiguous).

• A /24 containing a Dom0 IP address only contains Dom0
IP addresses. We associate to this /24 the type of the
Dom0’s associated instance.

• All /24’s between two consecutive Dom0 /24’s inherit the
former’s associated type.

The last heuristic, which enables us to label /24’s that have
no included instance, is derived from the observation that
Dom0 IPs are consistently assigned a prefix that immedi-
ately precedes the instance IPs they are associated with.
(For example, 10.250.8.0/24 contained Dom0 IPs associated



with m1.small instances in prefixes 10.254.9.0/24 and
10.254.10.0/24.) There were 869 /24’s in the data, and ap-
plying the heuristics resulted in assigning a unique zone and
unique type to 723 of these; a unique zone and two types to
23 of these; and left 123 unlabeled. These last were due to
areas (such as the lower portion of 10.253.0.0/16) for which
we had no sampling data at all.

While the map might contain errors (for example, in areas
of low instance sample numbers), we have yet to encounter
an instance that contradicts the /24 labeling and we used
the map for many of the future experiments. For instance,
we applied it to a subset of the public servers derived from
our survey, those that responded to wget requests with an
HTTP 200 or 206. The resulting 6 057 servers were used as
stand-ins for targets in some of the experiments in Section 7.
Figure 7 in the appendix graphs the result of mapping these
servers.

Preventing cloud cartography. Providers likely have in-
centive to prevent cloud cartography for several reasons, be-
yond the use we outline here (that of exploiting placement
vulnerabilities). Namely, they might wish to hide their in-
frastructure and the amount of use it is enjoying by cus-
tomers. Several features of EC2 made cartography signif-
icantly easier. Paramount is that local IP addresses are
statically (at least over the observed period of time) as-
sociated to availability zone and instance type. Changing
this would likely make administration tasks more challeng-
ing (and costly) for providers. Also, using the map requires
translating a victim instance’s external IP to an internal
IP, and the provider might inhibit this by isolating each
account’s view of the internal IP address space (e.g. via
VLANs and bridging). Even so, this would only appear to
slow down our particular technique for locating an instance
in the LAN—one might instead use ping timing measure-
ments or traceroutes (both discuss more in the next section)
to help “triangulate” on a victim.

6. DETERMINING CO-RESIDENCE
Given a set of targets, the EC2 map from the previous

section educates choice of instance launch parameters for
attempting to achieve placement on the same physical ma-
chine. Recall that we refer to instances that are running
on the same physical machine as being co-resident. In this
section we describe several easy-to-implement co-residence
checks. Looking ahead, our eventual check of choice will be
to compare instances’ Dom0 IP addresses. We confirm the
accuracy of this (and other) co-residence checks by exploit-
ing a hard-disk-based covert channel between EC2 instances.

Network-based co-residence checks. Using our expe-
rience running instances while mapping EC2 and inspect-
ing data collected about them, we identify several poten-
tial methods for checking if two instances are co-resident.
Namely, instances are likely co-resident if they have

(1) matching Dom0 IP address,

(2) small packet round-trip times, or

(3) numerically close internal IP addresses (e.g. within 7).

As mentioned, an instance’s network traffic’s first hop is the
Dom0 privileged VM. An instance owner can determine its
Dom0 IP from the first hop on any route out from the in-
stance. One can determine an uncontrolled instance’s Dom0
IP by performing a TCP SYN traceroute to it (on some open

port) from another instance and inspecting the last hop. For
the second test, we noticed that round-trip times (RTTs) re-
quired a “warm-up”: the first reported RTT in any sequence
of probes was almost always an order of magnitude slower
than subsequent probes. Thus for this method we perform
10 probes and just discard the first. The third check makes
use of the manner in which internal IP addresses appear to
be assigned by EC2. The same Dom0 IP will be shared by in-
stances with a contiguous sequence of internal IP addresses.
(Note that m1.small instances are reported by CPUID as
having two CPUs each with two cores and these EC2 in-
stance types are limited to 50% core usage, implying that
one such machine could handle eight instances.)

Veracity of the co-residence checks. We verify the cor-
rectness of our network-based co-residence checks using as
ground truth the ability to send messages over a cross-VM
covert channel. That is, if two instances (under our control)
can successfully transmit via the covert channel then they
are co-resident, otherwise not. If the checks above (which do
not require both instances to be under our control) have suf-
ficiently low false positive rates relative to this check, then
we can use them for inferring co-residence against arbitrary
victims. We utilized for this experiment a hard-disk-based
covert channel. At a very high level, the channel works as
follows. To send a one bit, the sender instance reads from
random locations on a shared disk volume. To send a zero
bit, the sender does nothing. The receiver times reading
from a fixed location on the disk volume. Longer read times
mean a 1 is being set, shorter read times give a 0.

We performed the following experiment. Three EC2 ac-
counts were utilized: a control, a victim, and a probe. (The
“victim” and “probe” are arbitrary labels, since they were
both under our control.) All instances launched were of
type m1.small. Two instances were launched by the control
account in each of the three availability zones. Then 20 in-
stances on the victim account and 20 instances on the probe
account were launched, all in Zone 3. We determined the
Dom0 IPs of each instance. For each (ordered) pair (A, B)
of these 40 instances, if the Dom0 IPs passed (check 1) then
we had A probe B and each control to determine packet
RTTs and we also sent a 5-bit message from A to B over
the hard-drive covert channel.

We performed three independent trials. These generated,
in total, 31 pairs of instances for which the Dom0 IPs were
equal. The internal IP addresses of each pair were within 7
of each other. Of the 31 (potentially) co-resident instance
pairs, 12 were ‘repeats’ (a pair from a later round had the
same Dom0 as a pair from an earlier round).

The 31 pairs give 62 ordered pairs. The hard-drive covert
channel successfully sent a 5-bit message for 60 of these
pairs. The last two failed due to a single bit error each, and
we point out that these two failures were not for the same
pair of instances (i.e. sending a message in the reverse direc-
tion succeeded). The results of the RTT probes are shown
in Figure 2. The median RTT for co-resident instances was
significantly smaller than those to any of the controls. The
RTTs to the controls in the same availability zone as the
probe (Zone 3) and victim instances were also noticeably
smaller than those to other zones.

Discussion. From this experiment we conclude an effec-
tive false positive rate of zero for the Dom0 IP co-residence
check. In the rest of the paper we will therefore utilize the



Count Median RTT (ms)

Co-resident instance 62 0.242
Zone 1 Control A 62 1.164
Zone 1 Control B 62 1.027
Zone 2 Control A 61 1.113
Zone 2 Control B 62 1.187
Zone 3 Control A 62 0.550
Zone 3 Control B 62 0.436

Figure 2: Median round trip times in seconds for probes

sent during the 62 co-residence checks. (A probe to

Zone 2 Control A timed out.)

following when checking for co-residence of an instance with
a target instance we do not control. First one compares the
internal IP addresses of the two instances, to see if they are
numerically close. (For m1.small instances close is within
seven.) If this is the case, the instance performs a TCP
SYN traceroute to an open port on the target, and sees if
there is only a single hop, that being the Dom0 IP. (This
instantiates the Dom0 IP equivalence check.) Note that this
check requires sending (at most) two TCP SYN packets and
is therefore very “quiet”.

Obfuscating co-residence. A cloud provider could likely
render the network-based co-residence checks we use moot.
For example, a provider might have Dom0 not respond in
traceroutes, might randomly assign internal IP addresses at
the time of instance launch, and/or might use virtual LANs
to isolate accounts. If such precautions are taken, attack-
ers might need to turn to co-residence checks that do not
rely on network measurements. In Section 8.1 we show ex-
perimentally that side-channels can be utilized to establish
co-residence in a way completely agnostic to network con-
figuration. Even so, inhibiting network-based co-residence
checks would impede attackers to some degree, and so de-
termining the most efficient means of obfuscating internal
cloud infrastructure from adversaries is a good potential av-
enue for defense.

7. EXPLOITING PLACEMENT IN EC2
Consider an adversary wishing to attack one or more EC2

instances. Can the attacker arrange for an instance to be
placed on the same physical machine as (one of) these vic-
tims? In this section we assess the feasibility of achieving
co-residence with such target victims, saying the attacker is
successful if he or she achieves good coverage (co-residence
with a notable fraction of the target set). We offer two adver-
sarial strategies that make crucial use of the map developed
in Section 5 and the cheap co-residence checks we introduced
in Section 6. The brute-force strategy has an attacker sim-
ply launch many instances over a relatively long period of
time. Such a naive strategy already achieves reasonable suc-
cess rates (though for relatively large target sets). A more
refined strategy has the attacker target recently-launched
instances. This takes advantage of the tendency for EC2
to assign fresh instances to the same small set of machines.
Our experiments show that this feature (combined with the
ability to map EC2 and perform co-residence checks) repre-
sents an exploitable placement vulnerability: measurements
show that the strategy achieves co-residence with a specific
(m1.small) instance almost half the time. As we discuss be-
low, an attacker can infer when a victim instance is launched

or might even trigger launching of victims, making this at-
tack scenario practical.

Towards understanding placement. Before we describe
these strategies, we first collect several observations we ini-
tially made regarding Amazon’s (unknown) placement algo-
rithms. Subsequent interactions with EC2 only reinforced
these observations.

A single account was never seen to have two instances
simultaneously running on the same physical machine, so
running n instances in parallel under a single account results
in placement on n separate machines. No more than eight
m1.small instances were ever observed to be simultaneously
co-resident. (This lends more evidence to support our earlier
estimate that each physical machine supports a maximum of
eight m1.small instances.) While a machine is full (assigned
its maximum number of instances) an attacker has no chance
of being assigned to it.

We observed strong placement locality. Sequential place-
ment locality exists when two instances run sequentially (the
first terminated before launching the second) are often as-
signed to the same machine. Parallel placement locality
exists when two instances run (from distinct accounts) at
roughly the same time are often assigned to the same ma-
chine. In our experience, launched instances exhibited both
strong sequential and strong parallel locality.

Our experiences suggest a correlation between instance
density, the number of instances assigned to a machine, and
a machine’s affinity for having a new instance assigned to
it. In Appendix B we discuss an experiment that revealed a
bias in placement towards machines with fewer instances al-
ready assigned. This would make sense from an operational
viewpoint under the hypothesis that Amazon balances load
across running machines.

We concentrate in the following on the m1.small instance
type. However, we have also achieved active co-residence
between two m1.large instances under our control, and have
observed m1.large and c1.medium instances with co-resident
commercial instances. Based on the reported (using CPUID)
system configurations of the m1.xlarge and c1.xlarge in-
stance types, we assume that these instances have machines
to themselves, and indeed we never observed co-residence of
multiple such instances.

7.1 Brute-forcing placement
We start by assessing an obvious attack strategy: run nu-

merous instances over a (relatively) long period of time and
see how many targets one can achieve co-residence with.
While such a brute-force strategy does nothing clever (once
the results of the previous sections are in place), our hypoth-
esis is that for large target sets this strategy will already
allow reasonable success rates.

The strategy works as follows. The attacker enumerates
a set of potential target victims. The adversary then infers
which of these targets belong to a particular availability zone
and are of a particular instance type using the map from
Section 5. Then, over some (relatively long) period of time
the adversary repeatedly runs probe instances in the target
zone and of the target type. Each probe instance checks if
it is co-resident with any of the targets. If not the instance
is quickly terminated.

We experimentally gauged this strategy’s potential effi-
cacy. We utilized as “victims” the subset of public EC2-
based web servers surveyed in Section 5 that responded with



HTTP 200 or 206 to a wget request on port 80. (This re-
striction is arbitrary. It only makes the task harder since
it cut down on the number of potential victims.) This left
6 577 servers. We targeted Zone 3 and m1.small instances
and used our cloud map to infer which of the servers match
this zone/type. This left 1 686 servers. (The choice of zone
was arbitrary. The choice of instance type was due to the
fact that m1.small instances enjoy the greatest use.) We
collected data from numerous m1.small probe instances we
launched in Zone 3. (These instances were also used in the
course of our other experiments.) The probes were instru-
mented to perform the cheap co-residence check procedure
described at the end of Section 6 for all of the targets. For
any co-resident target, the probe performed a wget on port
80 (to ensure the target was still serving web pages). The
wget scan of the EC2 servers was conducted on October 21,
2008, and the probes we analyzed were launched over the
course of 18 days, starting on October 23, 2008. The time
between individual probe launches varied, and most were
launched in sets of 20.

We analyzed 1 785 such probe instances. These probes
had 78 unique Dom0 IPs. (Thus, they landed on 78 different
physical machines.) Of the 1 686 target victims, the probes
achieved co-residency with 141 victim servers. Thus the
“attack” achieved 8.4% coverage of the target set.

Discussion. We point out that the reported numbers are
conservative in several ways, representing only a lower bound
on the true success rate. We only report co-residence if the
server is still serving web pages, even if the server was ac-
tually still running. The gap in time between our survey of
the public EC2 servers and the launching of probes means
that new web servers or ones that changed IPs (i.e. by being
taken down and then relaunched) were not detected, even
when we in fact achieved co-residence with them. We could
have corrected some sources of false negatives by actively
performing more internal port scans, but we limited our-
selves to probing ports we knew to already be serving public
web pages (as per the discussion in Section 4).

Our results suggest that even a very naive attack strategy
can successfully achieve co-residence against a not-so-small
fraction of targets. Of course, we considered here a large
target set, and so we did not provide evidence of efficacy
against an individual instance or a small sets of targets. We
observed very strong sequential locality in the data, which
hinders the effectiveness of the attack. In particular, the
growth in target set coverage as a function of number of
launched probes levels off quickly. (For example, in the data
above, the first 510 launched probes had already achieved
co-residence with 90% of the eventual 141 victims covered.)
This suggests that fuller coverage of the target set could
require many more probes.

7.2 Abusing Placement Locality
We would like to find attack strategies that do better than

brute-force for individual targets or small target sets. Here
we discuss an alternate adversarial strategy. We assume
that an attacker can launch instances relatively soon after
the launch of a target victim. The attacker then engages
in instance flooding : running as many instances in parallel
as possible (or as many as he or she is willing to pay for)
in the appropriate availability zone and of the appropriate
type. While an individual account is limited to 20 instances,
it is trivial to gain access to more accounts. As we show,

running probe instances temporally near the launch of a
victim allows the attacker to effectively take advantage of the
parallel placement locality exhibited by the EC2 placement
algorithms.

But why would we expect that an attacker can launch
instances soon after a particular target victim is launched?
Here the dynamic nature of cloud computing plays well into
the hands of creative adversaries. Recall that one of the
main features of cloud computing is to only run servers
when needed. This suggests that servers are often run on in-
stances, terminated when not needed, and later run again.
So for example, an attacker can monitor a server’s state
(e.g., via network probing), wait until the instance disap-
pears, and then if it reappears as a new instance, engage
in instance flooding. Even more interestingly, an attacker
might be able to actively trigger new victim instances due
to the use of auto scaling systems. These automatically grow
the number of instances used by a service to meet increases
in demand. (Examples include scalr [30] and RightGrid [28].
See also [6].) We believe clever adversaries can find many
other practical realizations of this attack scenario.

The rest of this section is devoted to quantifying several
aspects of this attack strategy. We assess typical success
rates, whether the availability zone, attacking account, or
the time of day has some bearing on success, and the effect
of increased time lag between victim and attacker launches.
Looking ahead, 40% of the time the attacker (launching just
20 probes) achieves co-residence against a specific target in-
stance; zone, account, and time of day do not meaningfully
impact success; and even if the adversary launches its in-
stances two days after the victims’ launch it still enjoys the
same rate of success.

In the following we will often use instances run by one of
our own accounts as proxies for victims. However we will
also discuss achieving co-residence with recently launched
commercial servers. Unless otherwise noted, we use m1.small
instances. Co-residence checks were performed via compar-
ison of Dom0 IPs.

The effects of zone, account, and time of day. We
start with finding a base-line for success rates when run-
ning probe instances soon (on the order of 5 minutes) af-
ter victims. The first experiment worked as follows, and
was repeated for each availability zone. A victim account
launched either 1, 10, or 20 instances simultaneously. No
sooner than five minutes later, a separate attacker account
requested launch of 20 instances simultaneously. The num-
ber of collisions (attacker instances co-resident with a victim
instance) are reported in the left table of Figure 3. As can
be seen, collisions are quickly found for large percentages of
victim instances. The availability zone used does not mean-
ingfully affect co-residence rates.

We now focus on a single availability zone, Zone 1, for
the next experiment. We repeated, at three different time
periods over the course of a day, the following steps: A sin-
gle victim instance was launched. No more than 5 minutes
later 20 probe instances were launched by another account,
and co-residence checks were performed. This process was
repeated 10 times (with at least 5 minutes in between con-
clusion of one iteration and beginning of the next). Each
iteration used a fresh victim; odd iterations used one ac-
count and even iterations used another. The right table in
Figure 3 displays the results. The results show a likelihood
of achieving co-residence as 40%—slightly less than half the



# victims v # probes p coverage

Zone 1
1 20 1/1
10 20 5/10
20 20 7/20

Zone 2
1 20 0/1
10 18 3/10
20 19 8/20

Zone 3
1 20 1/1
10 20 2/10
20 20 8/20

Account
Trial A B Total

Midday
2 / 5 2 / 5 4/10

(11:13 – 14:22 PST)

Afternoon
1 / 5 3 / 5 4/10

(14:12 – 17:19 PST)

Night
2 / 5 2 / 5 4/10

(23:18 – 2:11 PST)

Figure 3: (Left) Results of launching p probes 5 minutes after the launch of v victims. The rightmost column specifies

success coverage: the number of victims for which a probe instance was co-resident over the total number of victims.

(Right) The number of victims for which a probe achieved co-residence for three separate runs of 10 repetitions of

launching 1 victim instance and, 5 minutes later, 20 probe instances. Odd-numbered repetitions used Account A;

even-numbered repetitions used Account B.

time a recently launched victim is quickly and easily “found”
in the cloud. Moreover, neither the account used for the vic-
tims nor the portion of the day during which the experiment
was conducted significantly affected the rate of success.

The effect of increased time lag. Here we show that
the window of opportunity an attacker has for launching
instances is quite large. We performed the following exper-
iment. Forty victim instances (across two accounts) were
initially launched in Zone 3 and continued running through-
out the experiment. These were placed on 36 unique ma-
chines (8 victims were co-resident with another victim). Ev-
ery hour a set of 20 attack instances (from a third account)
were launched in the same zone and co-residence checks were
performed. These instances were terminated immediately
after completion of the checks. Figure 4 contains a graph
showing the success rate of each attack round, which stays
essentially the same over the course of the whole experiment.
(No probes were reported upon for the hours 34–43 due to
our scripts not gracefully handling some kinds of EC2-caused
launch failures, but nevertheless reveals useful information:
the obvious trends were maintained regardless of continuous
probing or not.) Ultimately, co-residence with 24 of the 36
machines running victim instances was established. Addi-
tionally, probes were placed on all four machines which had
two victim instances, thus giving three-way collisions.

The right graph in Figure 4 shows the cumulative num-
ber of unique Dom0 IP addresses seen by the probes over
the course of the experiment. This shows that the growth
in the number of machines probes were placed on levels off
rapidly—quantitative evidence of sequential placement lo-
cality.

On targeting commercial instances. We briefly exper-
imented with targeted instance flooding against instances
run by other user’s accounts. RightScale is a company that
offers “platform and consulting services that enable compa-
nies to create scalable web solutions running on Amazon
Web Services” [28]. Presently, they provide a free demon-
stration of their services, complete with the ability to launch
a custom EC2 instance. On two separate occasions, we setup
distinct accounts with RightScale and used their web inter-
face to launch one of their Internet appliances (on EC2).
We then applied our attack strategy (mapping the fresh in-
stance and then flooding). On the first occasion we sequen-
tially launched two rounds of 20 instances (using a single
account) before achieving co-residence with the RightScale
instance. On the second occasion, we launched two rounds of

38 instances (using two accounts). In the second round, we
achieved a three-way co-residency: an instance from each
of our accounts was placed on the same machine as the
RightScale server.

rPath is another company that offers ready-to-run Inter-
net appliances powered by EC2 instances [29]. As with
RightScale, they currently offer free demonstrations, launch-
ing on demand a fresh EC2 instance to host systems such
as Sugar CRM, described as a “customer relationship man-
agement system for your small business or enterprise” [29].
We were able to successfully establish a co-resident instance
against an rPath demonstration box using 40 instances. Sub-
sequent attempts with fresh rPath instances on a second oc-
casion proved less fruitful; we failed to achieve co-residence
even after several rounds of flooding. We believe that the
target in this case was placed on a full system and was there-
fore unassailable.

Discussion. We have seen that attackers can frequently
achieve co-residence with specific targets. Why did the strat-
egy fail when it did? We hypothesize that instance flooding
failed when targets were being assigned to machines with
high instance density (discussed further in Appendix B) or
even that became full. While we would like to use network
probing to better understand this effect, this would require
port scanning IP addresses near that of targets, which would
perhaps violate (the spirit of) Amazon’s AUP.

7.3 Patching placement vulnerabilities
The EC2 placement algorithms allow attackers to use rel-

atively simple strategies to achieve co-residence with victims
(that are not on fully-allocated machines). As discussed ear-
lier, inhibiting cartography or co-residence checking (which
would make exploiting placement more difficult) would seem
insufficient to stop a dedicated attacker. On the other hand,
there is a straightforward way to “patch” all placement vul-
nerabilities: offload choice to users. Namely, let users re-
quest placement of their VMs on machines that can only be
populated by VMs from their (or other trusted) accounts.
In exchange, the users can pay the opportunity cost of leav-
ing some of these machines under-utilized. In an optimal
assignment policy (for any particular instance type), this
additional overhead should never need to exceed the cost of
a single physical machine.
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Figure 4: Results for the experiment measuring the effects of increasing time lag between victim launch and probe

launch. Probe instances were not run for the hours 34–43. (Left) “Total co-resident” corresponds to the number of

probe instances at the indicated hour offset that were co-resident with at least one of the victims. “New co-resident”

is the number of victim instances that were collided with for the first time at the indicated hour offset. (Right) The

cumulative number of unique Dom0 IP addresses assigned to attack instances for each round of flooding.

8. CROSS-VM INFORMATION LEAKAGE
The previous sections have established that an attacker

can often place his or her instance on the same physical
machine as a target instance. In this section, we show the
ability of a malicious instance to utilize side channels to
learn information about co-resident instances. Namely we
show that (time-shared) caches allow an attacker to measure
when other instances are experiencing computational load.
Leaking such information might seem innocuous, but in fact
it can already be quite useful to clever attackers. We intro-
duce several novel applications of this side channel: robust
co-residence detection (agnostic to network configuration),
surreptitious detection of the rate of web traffic a co-resident
site receives, and even timing keystrokes by an honest user
(via SSH) of a co-resident instance. We have experimentally
investigated the first two on running EC2 instances. For the
keystroke timing attack, we performed experiments on an
EC2-like virtualized environment.

On stealing cryptographic keys. There has been a long
line of work (e.g., [10, 22, 26]) on extracting cryptographic
secrets via cache-based side channels. Such attacks, in the
context of third-party compute clouds, would be incredibly
damaging—and since the same hardware channels exist, are
fundamentally just as feasible. In practice, cryptographic
cross-VM attacks turn out to be somewhat more difficult to
realize due to factors such as core migration, coarser schedul-
ing algorithms, double indirection of memory addresses, and
(in the case of EC2) unknown load from other instances
and a fortuitous choice of CPU configuration (e.g. no hy-
perthreading). The side channel attacks we report on in
the rest of this section are more coarse-grained than those
required to extract cryptographic keys. While this means
the attacks extract less bits of information, it also means
they are more robust and potentially simpler to implement
in noisy environments such as EC2.

Other channels; denial of service. Not just the data
cache but any physical machine resources multiplexed be-
tween the attacker and target forms a potentially useful
channel: network access, CPU branch predictors and in-
struction cache [1, 2, 3, 12], DRAM memory bus [21], CPU
pipelines (e.g., floating-point units) [4], scheduling of CPU
cores and timeslices, disk access [16], etc. We have imple-

mented and measured simple covert channels (in which two
instances cooperate to send a message via shared resource)
using memory bus contention, obtaining a 0.006bps channel
between co-resident large instances, and using hard disk con-
tention, obtaining a 0.0005bps channel between co-resident
m1.small instances. In both cases no attempts were made
at optimizing the bandwidth of the covert channel. (The
hard disk contention channel was used in Section 6 for estab-
lishing co-residence of instances.) Covert channels provide
evidence that exploitable side channels may exist.

Though this is not our focus, we further observe that the
same resources can also be used to mount cross-VM per-
formance degradation and denial-of-service attacks, analo-
gously to those demonstrated for non-virtualized multipro-
cessing [12, 13, 21].

8.1 Measuring cache usage
An attacking instance can measure the utilization of CPU

caches on its physical machine. These measurements can
be used to estimate the current load of the machine; a high
load indicates activity on co-resident instances. Here we
describe how to measure cache utilization in EC2 instances
by adapting the Prime+Probe technique [22, 32]. We also
demonstrate exploiting such cache measurements as a covert
channel.

Load measurement. We utilize the Prime+Probe tech-
nique [22, 32] to measure cache activity, and extend it to
the following Prime+Trigger+Probe measurement to sup-
port the setting of time-shared virtual machines (as present
on Amazon EC2). The probing instance first allocates a con-
tiguous buffer B of b bytes. Here b should be large enough
that a significant portion of the cache is filled by B. Let s
be the cache line size, in bytes. Then the probing instance
performs the following steps to generate each load sample:

(1) Prime: Read B at s-byte offsets in order to ensure it is
cached.

(2) Trigger: Busy-loop until the CPU’s cycle counter jumps
by a large value. (This means our VM was preempted by
the Xen scheduler, hopefully in favor of the sender VM.)

(3) Probe: Measure the time it takes to again read B at
s-byte offsets.

When reading the b/s memory locations in B, we use a
pseudorandom order, and the pointer-chasing technique de-



scribed in [32], to prevent the CPU’s hardware prefetcher
from hiding the access latencies. The time of the final step’s
read is the load sample, measured in number of CPU cycles.
These load samples will be strongly correlated with use of
the cache during the trigger step, since that usage will evict
some portion of the buffer B and thereby drive up the read
time during the probe phase. In the next few sections we
describe several applications of this load measurement side
channel. First we describe how to modify it to form a robust
covert channel.

Cache-based covert channel. Cache load measurements
create very effective covert channels between cooperating
processes running in different VMs. In practice, this is not
a major threat for current deployments since in most cases
the cooperating processes can simply talk to each other over
a network. However, covert channels become significant
when communication is (supposedly) forbidden by informa-
tion flow control (IFC) mechanisms such as sandboxing and
IFC kernels [34, 18, 19]. The latter are a promising emerg-
ing approach to improving security (e.g., web-server func-
tionality [18]), and our results highlight a caveat to their
effectiveness.

In the simplest cache covert-channel attack [15], the sender
idles to transmit “0” and frantically accesses memory to
transmit “1”. The receiver accesses a memory block of his
own and observes the access latencies. High latencies are in-
dicative that the sender is evicting the receiver’s data from
the caches, i.e., that “1” is transmitted. This attack is ap-
plicable across VMs, though it tends to be unreliable (and
thus has very low bandwidth) in a noisy setting.

We have created a much more reliable and efficient cross-
VM covert channel by using finer-grained measurements.
We adapted the Prime+Trigger+Probe cache measurement
technique as follows. Recall that in a set-associative cache,
the pool of cache lines is partitioned into associativity sets,
such that each memory address is mapped into a specific
associativity set determined by certain bits in the address
(for brevity, we ignore here details of virtual versus physi-
cal addresses). Our attack partitions the cache sets into two
classes, “odd sets” and“even sets”, and manipulates the load
across each class. For resilience against noise, we use differ-

ential coding where the signal is carried in the difference
between the load on the two classes. Noise will typically
be balanced between the two classes, and thus preserve the
signal. (This argument can be made rigorous by using a
random-number generator for the choice of classes, but the
following simpler protocol works well in practice.)

The protocol has three parameters: a which is larger
than the attacked cache level (e.g., a = 221 to attack the
EC2’s Opteron L2 cache), b which is slightly smaller than
the attacked cache level (here, b = 219), and d which is
the cache line size times a power of 2. Define even ad-

dresses (resp. odd addresses) as those that are equal to
0 mod 2d (resp. d mod 2d). Define the class of even cache

sets (resp. odd cache sets) as those cache sets to which even
(resp. odd) addresses are mapped.

The sender allocates a contiguous buffer A of a bytes. To
transmit“0”(resp. 1) he reads the even (resp. odd) addresses
in A. This ensures that the one class of cache sets is fully
evicted from the cache, while the other is mostly untouched.

The receiver defines the difference by the following mea-
surement procedure:

(1) Allocate a contiguous buffer B of b bytes

(2) Sleep briefly (to build up credit with Xen’s scheduler).

(3) Prime: Read all of B to make sure it’s fully cached.

(4) Trigger: Busy-loop until the CPU’s cycle counter jumps
by a large value. (This means our VM was preempted by
the Xen scheduler, hopefully in favor of the sender VM.)

(5) Probe: Measure the time it takes to read all even ad-
dresses in B, likewise for the odd addresses. Decide “0”
iff the difference is positive.

On EC2 we need to deal with the noise induced by the fact
that each VM’s virtual CPU is occasionally migrated be-
tween the (m1.small) machine’s four cores. This also leads
to sometimes capturing noise generated by VMs other than
the target (sender). Due to the noise-cancelling property of
differential encoding, we can use a straightforward strategy:
the receiver takes the average of multiple samples for making
his decision, and also reverts to the prime stage whenever it
detects that Xen scheduled it to a different core during the
trigger or probe stages. This simple solution already yields
a bandwidth of approximately 0.2bps, running on EC2.

8.2 Load-based co-residence detection
Here we positively answer the following question: can one

test co-residence without relying on the network-based tech-
niques of Section 6? We show this is indeed possible, given
some knowledge of computational load variation on the tar-
get instance. This condition holds when an adversary can
actively cause load variation due to a publicly-accessible ser-
vice running on the target. It might also hold in cases where
an adversary has a priori information about load variation
on the target and this load variation is (relatively) unique
to the target.

Consider target instances for which we can induce compu-
tational load— for example, an instance running a (public)
web server. In this case, an attacker instance can check for
co-residence with a target instance by observing differences
in load samples taken when externally inducing load on the
target versus when not. We experimentally verified the effi-
cacy of this approach on EC2 m1.small instances. The target
instance ran Fedora Core 4 with Apache 2.0. A single 1 024-
byte text-only HTML page was made publicly accessible.
Then the co-residence check worked as follows. First, the
attacker VM took 100 load samples. (We set b = 768 ∗ 1024
and s = 128. Taking 100 load samples took about 12 sec-
onds.) We then paused for ten seconds. Then we took 100
further load samples while simultaneously making numer-
ous HTTP get requests from a third system to the target
via jmeter 2.3.4 (a utility for load testing HTTP servers).
We set jmeter to simulate 100 users (100 separate threads).
Each user made HTTP get requests as fast as possible.

The results of three trials with three pairs of m1.small
instances are plotted in Figure 5. In the first trial we used
two instances known to be co-resident (via network-based
co-residence checks). One can see the difference between
the load samples when performing HTTP gets and when
not. In the second trial we used a fresh pair of instances
co-resident on a different machine, and again one can easily
see the effect of the HTTP gets on the load samples. In the
third trial, we used two instances that were not co-resident.
Here the load sample timings are, as expected, very similar.
We emphasize that these measurements were performed on
live EC2 instances, without any knowledge of what other
instances may (or may not) have been running on the same
machines. Indeed, the several spikes present in Trial 2’s
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Figure 5: Results of executing 100 Prime+Trigger+Probe cache timing measurements for three pairs of
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and Trial 2 were co-resident on distinct physical machines. Instances in Trial 3 were not co-resident.

load measurements were likely due to a third co-resident
instance’s work load.

8.3 Estimating traffic rates
In theory load measurement might provide a method for

estimating the number of visitors to a co-resident web server
or even which pages are being frequented. In many cases this
information might not be public and leaking it could be dam-
aging if, for example, the co-resident web server is operated
by a corporate competitor. Here we report on initial exper-
imentation with estimation, via side channel measurements,
of HTTP traffic rates to a co-resident web server.

We utilized two m1.small instances, as in the trials dis-
cussed above. We then instructed one of the instances to
perform four separate runs of 1 000 cache load measurements
in which we simultaneously (1) sent no HTTP requests, (2)
sent HTTP requests at a rate of 50 per minute, (3) 100
per minute, or (4) 200 per minute. As before we used jme-
ter to make the requests, this time with 20 users and the
rate maintained across all users. Taking 1 000 load mea-
surements takes about 90 seconds. The requested web page
was a 3 megabyte text file, which amplified server load per
request compared to a smaller page. We repeated this ex-
periment three times (with the same instances). The graph
in Figure 6 reports the mean load samples from these three
trials, organized according to traffic rate. Note that among
the 12 000 samples taken, 4 were extreme outliers (2 orders
of magnitude larger than all other samples, for reasons un-
clear); we omitted these outliers from the calculations.

Figure 6 shows a clear correlation between traffic rate and
load sample. This provides evidence that an attacker might
be able to surreptitiously estimate traffic rates in some cases.

8.4 Keystroke timing attack
In this section we describe progress on the use of cache-

based load measurements as a means for mounting keystroke
timing attacks [31]. In such an attack, the adversary’s goal
is to measure the time between keystrokes made by a victim
typing a password (or other sensitive information) into, for
example, an SSH terminal. The gathered inter-keystroke
times (if measured with sufficient resolution) can then be
used to perform recovery of the password. In prior work [31],
the attacker was assumed to have a network tap to time
packet arrivals. In third-party compute clouds, we can re-
place network taps with co-residence and load measurements:
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Figure 6: Mean cache load measurement timings
(over 1 000 samples) taken while differing rates of
web requests were made to a 3 megabyte text file
hosted by a co-resident web server.

when the user of a co-resident instance types sensitive infor-
mation into the shell, the malicious VM can observe the
keystroke timings in real time via cache-based load mea-
surements. Our hypothesis is that, on an otherwise idle ma-
chine, a spike in load corresponds to a letter being typed into
the co-resident VM’s terminal. We experimentally validated
this hypothesis on an EC2-like virtualized environment, de-
scribed next.

Experimental setup. For what comes below, we ran our
experiments not on EC2 but on a local testbed, running a
configuration of Opteron CPUs, Xen hypervisor and Linux
kernels that is very similar (to the extent that we could
discern) to that used to host EC2 m1.small instances—but
with the VMs pinned to specific cores. EC2, in contrast,
occasionally migrates the instances’ virtual CPUs between
the machine’s four cores. We refer to our testbed as the
pinned Xen machine.

The pinned Xen machine avoids two technical complica-
tions in conducting the attacks on EC2: it ensures that the
machine is completely idle other than the test code, and it
allows us to know the relation between VMs involved in the
attack (i.e., whether they timeshare the same core, are as-
signed to two cores in the same physical chip, or neither).
Machines in EC2 might indeed be idle (or at least have
one idle core, which suffices for our attack) during a non-
negligible fraction of their time, especially during off-peak



hours; and the assignment of virtual CPUs changes often
enough on EC2 that any desired combination will be oc-
casionally achieved. That we were able to establish reliable
covert channels via the cache in EC2 already testifies to this.
A patient attacker might just wait for the requisite condi-
tion to come up, and detect them by adding redundancy to
his transmission.

Note also that the pinned Xen machine is by itself a real-
istic setup for virtualized environments. In fact, in a cloud
data center that never over-provisions CPU resources, pin-
ning VMs to CPUs may improve performance due to caches
and NUMA locality effects. We thus feel that these attacks
are of interest beyond their being progress towards an attack
within EC2.

Keystroke activity side channel. We utilize the Prime+
Trigger+Probe load measurement technique to detect mo-
mentary activity spikes in an otherwise idle machine. In
particular, we repeatedly perform load measurements and
report a keystroke when the measurement indicates momen-
tarily high cache usage. Further analysis of which cache
sets were accessed might be used to filter out false positives,
though we found that in practice it suffices to use simple
thresholding, e.g., reporting a keystroke when the probing
measurement is between 3.1µs and 9µs (the upper threshold
filters out unrelated system activity).

We have implemented and evaluated this attack on the
pinned Xen machine, with variants that exploit either L1 or
L2 cache contention. The attacking VM is able to observe a
clear signal with 5% missed keystrokes and 0.3 false triggers
per second. The timing resolution is roughly 13ms. There
is also a clear difference between keys with different effects,
e.g., typing a shell command vs. pressing Enter to execute
it. While the attacker does not directly learn exactly which
keys are pressed, the attained resolution suffices to conduct
the password-recovery attacks on SSH sessions due to Song
et al. [31].

The same attack could be carried over to EC2, except that
this measurement technique applies only to VMs that time-
share a core. Thus, it can only reliably detect keystrokes
during periods when EC2’s Xen hypervisor assigns the at-
tacker and victim to the same core. Assuming uniformly ran-
dom assignment, this is about 25% of the time (and changes
at most every 90ms, typically much slower). Statistical anal-
ysis of measurements might be used to identify periods of
lucky allocation. We conjecture that measuring not just the
overall momentary load, but also the use of individual cache
associativity sets during the trigger stage, might further help
identify the target VM.

8.5 Inhibiting side-channel attacks
One may focus defenses against cross-VM attacks on pre-

venting the side-channel vulnerabilities themselves. This
might be accomplished via blinding techniques to minimize
the information that can be leaked (e.g., cache wiping, ran-
dom delay insertion, adjusting each machine’s perception of
time [14], etc.). Countermeasures for the cache side channels
(which appear to be particularly conducive to attacks) are
extensively discussed, e.g., in [23, 24, 10, 26, 25, 22]. These
countermeasures suffer from two drawbacks. First, they are
typically either impractical (e.g., high overhead or nonstan-
dard hardware), application-specific, or insufficient for fully
mitigating the risk. Second, these solutions ultimately re-
quire being confident that all possible side-channels have

been anticipated and disabled— itself a tall order, especially
in light of the deluge of side channels observed in recent
years. Thus, at the current state of the art, for uncondi-
tional security against cross-VM attacks one must resort to
avoiding co-residence.

9. CONCLUSIONS
In this paper, we argue that fundamental risks arise from

sharing physical infrastructure between mutually distrustful
users, even when their actions are isolated through machine
virtualization as within a third-party cloud compute service.
However, having demonstrated this risk the obvious next
question is “what should be done?”.

There are a number of approaches for mitigating this risk.
First, cloud providers may obfuscate both the internal struc-
ture of their services and the placement policy to complicate
an adversary’s attempts to place a VM on the same physi-
cal machine as its target. For example, providers might do
well by inhibiting simple network-based co-residence checks.
However, such approaches might only slow down, and not
entirely stop, a dedicated attacker. Second, one may focus
on the side-channel vulnerabilities themselves and employ
blinding techniques to minimize the information that can be
leaked. This solution requires being confident that all pos-
sible side-channels have been anticipated and blinded. Ulti-
mately, we believe that the best solution is simply to expose
the risk and placement decisions directly to users. A user
might insist on using physical machines populated only with
their own VMs and, in exchange, bear the opportunity costs
of leaving some of these machines under-utilized. For an
optimal assignment policy, this additional overhead should
never need to exceed the cost of a single physical machine, so
large users—consuming the cycles of many servers—would
incur only minor penalties as a fraction of their total cost.
Regardless, we believe such an option is the only foolproof
solution to this problem and thus is likely to be demanded
by customers with strong privacy requirements.
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APPENDIX

A. LEGAL, ETHICAL, AND
CONTRACTUAL OBLIGATIONS

Network probing is central to our study and while we note
that remote probing of Internet servers and devices is a com-
mon technique, both in practice and in the networking and
security research literature, it is also sometimes controver-
sial. While we cannot hope to cover this controversy in its
full complexity, we attempt to sketch its broad outlines as
it applies to our own work.

In this discussion, we separate between legal obligations
under statute, ethical concerns, and our contractual obliga-
tions under the customer agreement provided by Amazon,
considering each in turn.

In the United States, the prevailing statute concerning in-
teracting with computer systems is the Computer Fraud and
Abuse Act (CFAA) which requires, roughly speaking, that
computer system access must be authorized. As with many
such statutes, the wording is quite broad and there is consid-
erable ambiguity in the terms authorization and access (we
refer the reader to Kerr [17] for an elaboration on these com-
plexities and associated legal decisions). We are unaware
of any case law covering the topic of network probing writ
large, however on the more controversial issue of external
“port scanning” (that is, scanning a range of networks ports,
absent explicit permission, particularly in search of poten-
tial network-accessible vulnerabilities) we are informed by
Moulton v VC3 (2000). This decision provided that port
scanning, by itself, does not create a damages claim (i.e.,
that direct harm must be shown to establish damages under
the CFAA).

However, we are also sensitive to the ethical issues re-
sulting from the perception of a threat, especially when no
greater good is achieved, and thus we are careful to re-
strict our network probes to services that are designed to
be publicly facing—TCP port 80 (the standard port for
HTTP Web service) and TCP port 443 (the standard port
for HTTPS Web service). We operate under the assump-
tion that providing a service designed to be accessed by the
public is an implicit authorization to do so (in the same
sense that having a doorbell provides an implicit authoriza-
tion to ring it). We believe that the counterfactual theory,
that addresses themselves are private and that it is unethical
to visit a Web server absent an explicit advance invitation
to do so, seems difficult to reconcile with how much of the
Internet actually works. Finally, we should be clear that
we make no attempt to interact with these sites beyond es-
tablishing their presence and, in some cases, downloading
the public home page they export; there were no vulner-
abilities searched for, discovered, or exposed through our
measurements and we implicitly respect any access control
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Figure 7: A plot of the internal IP addresses of public EC2 servers.

mechanisms put in place.
Our internal probes originate from within the Amazon

EC2 service (i.e., from instances under our control). As such
they are additionally subject to contractual obligations un-
der Amazon’s terms of service [8] at the time of this study.
Particularly salient in the AWS Web Services Agreement
is subsection 5.5.5 on the use of the Network in the EC2
service: “You may make network connections from Amazon
EC2 hosted servers to other hosts only with the permission
and authorization of the destination hosts and networks”.
While, unlike the CFAA, this seems clearer on the topic of
access (making a network connection) it remains ambiguous
concerning what constitutes authorization. However, some
guidance can be found in the subsequent examples of un-
acceptable traffic provided in the same subsection, includ-
ing“Unauthorized probes and port scans for vulnerabilities.”
and“Web crawling which is not restricted in a rate so as not
to impair or otherwise disrupt the servers being crawled.”
The first example makes it clear that creating network con-
nections to discover vulnerabilities is circumscribed, but the
second indicates that connecting to Web servers is implic-
itly authorized (since this is what Web crawlers do) so long
as they do not impair their function. Thus, we operate un-
der the interpretation that connecting to Web servers from
within EC2 is implicitly authorized so long as we are not
disrupting them nor attempting to discover vulnerabilities
therein (which we do not).

Finally, we wish to be clear that we made no attempt to
disrupt, impair or acquire private information from any cus-
tomer or client of the EC2 service. Thus, any “attacks”, as
described in this paper, are mounted between EC2 instances
under our control (either directly, or via a third-party ser-
vice) and should have in no way impacted any third party.

B. INSTANCE DENSITY AND PLACEMENT
We conducted a TCP connect scan on the EC2 address

space for ports 80 and 443, and translated these to a list
of internal IP addresses using DNS lookups from within the
cloud. (This was a separate scan from the one discussed
in Section 5, but performed in the same manner.) We re-
peated the following ten times. Twenty “victim” instances

were launched. These instances then determined a (very
loose) lower-bound on the number of co-resident instances by
determining the number of co-resident servers from the pub-
lic servers list. These instances were left running while 20
further probe instances were launched. Each probe checked
whether it was co-resident with one of the victims. Figure 8
displays the results. The average (over 10 iterations) mean
number of co-resident servers for the victims for which a
probe was co-resident was 1.2. The average mean number
of co-resident servers for the victims for which no probe was
co-resident was 1.7. This suggests a slight bias towards as-
signment of new instances to lightly loaded machines. We
expect that with better measurement techniques one would
see an even stronger bias, however we avoided measurement
techniques that could be seen as having violated (the spirit
of) Amazon’s AUP.

Found Missed
Iteration count mean count mean

1 18 1.22 2 2
2 16 1 4 1.75
3 17 1.18 3 1.33
4 8 1.13 12 1.75
5 18 1.44 2 1.5
6 12 1.33 8 1.63
7 17 1.29 3 1.66
8 11 0.91 9 1.66
9 16 1.31 4 1.75
10 16 1.18 4 2.25

Figure 8: Instance density averages for runs of 20 victim

instances and then 20 probe instances, over 10 iterations.

The ‘count’ columns specify (respectively) the number of

victims which were found by (co-resident with) a probe

or missed by the probes. The ‘mean’ columns report

the average number of other instances running on the

victim instances’ physical machines (before the probes

were launched).


