
Special-Purpose Hardware for Factoring:

the NFS Sieving Step

Adi Shamir Eran Tromer

Weizmann Institute of Science
{shamir, tromer}@wisdom.weizmann.ac.il

Abstract

In the quest for factorization of larger integers, the present bottleneck is the sieving
step of the Number Field Sieve algorithm. Several special-purpose hardware architec-
tures have been proposed for this step: TWINKLE (based on electro-optics), mesh
circuits (based on two-dimensional systolic arrays) and TWIRL (based on parallel pro-
cessing pipelines). For 1024-bit composites, the use of such special-purpose hardware
has reduced the predicted cost of factorization by 5-6 orders of magnitude. We review
the proposed architectures, their cost, and their various approaches to exploiting the
flexibility of custom hardware.

1 Introduction

The hardness of factoring large integers drawn from appropriate distributions is a central
assumption in cryptography, and underlies many public-key cryptosystems and protocols.
The most efficient algorithm known for factoring large integers is the Number Field Sieve
(NFS) algorithm [12]. Thus, barring theoretical breakthroughs, the security of cryptosys-
tems such as RSA practically relies on the feasibility of the NFS algorithms for the relevant
input sizes.

The time and space complexities of NFS are subexponential in the size of the input
composite, though the analysis is heuristic in parts and leaves considerable uncertainty in
regard to concrete estimates. Several concrete factorization experiments have been per-
formed, most notably the factorization of a 512-bit RSA key in 1999 [4] and the factorization
of a 576-bit RSA key in 2003 [1]. Extrapolating from such experiments, it was predicted
that factoring 1024-bit composites by similar means would presently require trillions of

Invited talk at the Workshop on Special Purpose Hardware for Attacking Cryptographic Systems (SHARCS)
2005, February 2005.

dollars. Consequentially, it was often claimed that 1024-bit RSA keys are safe for the next
15 to 20 years (e.g., [3, 21] and a NIST guideline draft [17]).

However, while the above experiments have employed large workstation clusters and
Cray supercomputers, they have always used general-purpose computer hardware. When
the workload is sufficiently high (either because the composites are large or because there
are many of them to factor), there arises the prospect of employing special-purpose hard-
ware that is tailored to the task.

An obvious benefit of special-purpose hardware is that the cost of any algorithm can be
reduced compared to a software implementation, by eliminating intermediate abstraction
layers and discarding irrelevant peripheral hardware. One example of this approach is the
EFF DES Cracker [6], which employed 36,864 dedicated chips to perform exhaustive search
on a DES key, and did so at a small fraction of the cost (per unit of throughput) compared
to similar experiments that used general-purpose computers.

However, special-purpose hardware can go beyond efficient implementation of standard
algorithms. Custom circuit designs allows for specialized data paths, flexible partitioning
of resources, enormous parallelism, and even for the use non-electric physical phenomena.
Taking advantage of these requires new algorithms or adaptation of existing ones.1

Such special-purpose devices have been proposed for two steps of the NFS algorithms,
which together dominate its cost:
The sieving step. The goal of this step is to find many “relations”, i.e., integers of a
certain form that have only small prime divisors. Hardware devices for sieve-like algorithms
date back to Lehmer’s bicycle chain device [13] from 1926, but the first modern proposal
in the context of the Number Field Sieve is the TWINKLE device [19, 15]. Subsequent
proposals include mesh-based sieving [8, 10] and TWIRL [20].
The linear algebra (matrix) step. The goal of this step is to find linear relations among
columns of a large but sparse matrix over GF(2), whose columns represent the relations
found in the sieving step or combinations thereof. Special-purpose hardware for this was
devised by Bernstein [2] (and inspired some of the aforementioned sieving devices). It was
subsequently analyzed and improved in several works [16, 9, 7, 11].

At present, for 1024-bit and using the most efficient architectures proposed, the sieving
step is more expensive than the linear algebra step even if the NFS parameters are optimized
for minimal sieving cost.2 Thus, for estimating the total cost of factoring 1024-bit integers,
the sieving step discussed here is the prime concern. In the following, we describe the sieving
step, and survey the aforementioned special-purpose hardware architectures devised for it.

1Several upper and lower bounds for arbitrary physical devices were given by Wiener [22].
2See [16], but note that the specific cost estimates mentioned there are superseded by the above works.

2

2 Preliminaries

2.1 The NFS Sieving Step

We begin by briefly reviewing the NFS sieving step, after significant simplification of non-
essential details (for an introduction to the NFS algorithm the reader is referred to [18],
and for a detailed account, to [12]). For simplicity, we assume the use of line sieving.

The inputs of the sieving problem are R ∈ Z (sieve line width), T > 0 (threshold) and a
set of pairs (pi, ri) where the pi are the prime numbers smaller than some factor base bound
B. There is, on average, one pair per such prime, and thus roughly B/ lnB pairs in total.
Each pair (pi, ri) corresponds to an arithmetic progression Pi = {a : a ≡ ri (mod pi)}. We
are interested in identifying the sieve locations a ∈ {0, . . . , R − 1} that are members of
many progressions Pi with large pi:

g(a) > T where g(x) =
∑

i:a∈Pi

logh pi

for some small constant h. It is permissible to have “small” errors in this threshold check;
in particular, we round all logarithms to the nearest integer. For each a that exceeds the
threshold, we also need to find the set {i : a ∈ Pi} of progressions that contribute to g(a).
Out of the H sieve locations, only (6/π2)H on average are potentially useful and the rest
can be ignored.

We need to perform 2H such sieving tasks, partitioned into H instances of the rational
sieve with B = Br, and H instances of the algebraic sieve with B = Ba, where generally
the latter is more expensive since Ba > Br.3

1024-bit parameters. For concreteness, we mention (and occasionally assume) the
following choice of parameters for 1024-bit composites: Br = 3.5 · 109, Ba = 2.6 · 1010,
R = 1.1 · 1015, and H = 2.7 · 108. Thus, each of the two sieves inspects a total of
(6/π2) ·R ·H ≈ 1.8 · 1023 sieve locations.4

2.2 Traditional Sieving

The traditional method of performing the sieving task is a variant of Eratosthenes’s sieve
algorithm for finding primes. It proceeds as follows. An array of accumulators C[a] is
initialized to 0. Then, the progressions Pi are considered one by one, and for each Pi the
indices a ∈ Pi are calculated and the value logh pi is added to every such C[a]. Finally, the
array is scanned to find the a values where C[a] > T . When looking at a specific Pi its
members can be enumerated very efficiently, so the amortized cost of a logh pi contribution
is low.

3In TWIRL the rational sieve dominates the cost, due to these of cascaded sieves.
4The choice of parameters in NFS has several degrees of freedom, and is not fully understood other than

asymptotically. This specific choice was analyzed in [14] and assumed for TWIRL in [20].

3

When this algorithm is implemented on a PC, we cannot apply it to the full range
a = 0, . . . , R−1 since there would not be enough RAM to store R accumulators. Thus, the
range is broken into smaller chunks, each of which is processed as above. However, if the
chunk size is not much larger than B then most progressions make very few contributions
(if any) to each chunk, so the amortized cost per contribution increases. Thus, a large
amount of memory is required, both for the accumulators and for storing the input (that
is, the list of progressions). As Bernstein [2] observed, this is inherently inefficient because
each memory bit is accessed very infrequently.
Cost for 768-bit composites. Completing the sieving for 768-bit composites in 1 year
using traditional sieving has been estimated to require 90,000 PC computers with 5GB
each [15]. In today’s prices and assuming a fivefold improvement in the relevant PC
performance criteria since [15], this would cost about US$ 13M.5

Cost for 1024-bit composites. The cost of traditional sieving for 1024-bit composites
is prohibitive, as shown the following simple lower bound. In the algebraic (resp., rational)
sieves, on average each sieve location gets a contribution from 7 (resp., 3) progressions
with odd pi. Suppose that each such contribution takes just 1ns on average to process (in
practice it take significantly longer, due to the chunking described above and the non-local
memory access pattern). Then the total running time is (6/π2) ·R ·H · (7 + 3) · 1ns ≈ 57
million years. To implement this on a commodity PC computers we would need 10GB of
main memory just for storing the pairs representing the progressions, and additional DRAM
for storing the accumulators, for a total cost of about US$ 2,000 per PC in today’s prices.
Thus, the cost of employing enough PCs in parallel to complete the sieving in 1 year would
be over US$ 1011 with these parameters.6 This lower bound is consistent with predication
by extrapolation [21], which yields cost on the order of US$ 1012 in current terms.

3 TWINKLE

The TWINKLE sieving device [19, 15] consists of a wafer containing numerous independent
electronic cells, each in charge of a single progression Pi. After initialization, the device
operates synchronously for R clock cycles, corresponding to the sieving range {0 ≤ a < R}.
At clock cycle a, the cell in charge of the progression Pi “emits” the value loghpi iff a ∈ Pi.
The values emitted at each clock cycle are summed to obtain g(a), and if this sum exceeds
the threshold T then the integer a is reported. This event is announced back to the cells,
so that the i values of the pertaining Pi is also reported.

The global summation is done by analog electro-optical means: in order to “emit” the
value log pi, a cell flashes an internal LED whose intensity is proportional to log pi. A
light sensor above the wafer measures the total light intensity in each clock cycle, which

5A similar figure can be obtained analogously to the next paragraph, using the concrete line-sieving
parameters from [20, 14] instead of the extrapolated special-q sieving used in [15].

6A different NFS parameter choice may somewhat reduce the cost, as may the use of special-q lattice
sieving [12], but neither is expected to dramatic increase the feasibility.

4

)(

+0(

) +0(

) +0(

) +0() +1(

) +1(

) +1(

) +1(

+1() +2(

) +2(

) +2(

) +2(

) +2(

) +1(

) +1(

) +1(

) +1(

) +1(

)

)+0t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

−3

−4

−1

−2

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

p1

p3

p5

p2

p4

p1

p3

p5

p2

p4

(a) (b)

s()−1

s()−1

s()−1

s()−1

s()−1

Figure 1: Flow of sieve locations through the device in (a) pipeline-of-adders TWINKLE
(b) TWIRL.

is proportional to g(a), and reports a success when this exceeds a given threshold. The
cells themselves are implemented by simple registers and ripple adders. To support the
optoelectronic operations, it was originally proposed to use implement the cells on Gallium
Arsenide wafers (rather than standard silicon wafers). The physical structure and the
details of the efficient cell designs, as well as various optimizations, are given in [19, 15].

Compared to traditional sieving, TWINKLE exchanges the roles of space and time:

Traditional TWINKLE
Sieve locations Space (accumulators) Time
Progressions Time Space (cells)

Pipeline-of-adders TWINKLE. A different variant of the TWINKLE device replaces
the electro-optics in with standard electronic circuits.7 This variant also operates at a rate
of one sieve location per clock cycle, but does so using a pipelined systolic chain of electronic
adders. It consists of a long unidirectional bus, log2 h bits wide, that connects millions of
conditional adders in series. Each conditional adder is in charge of one progression Pi;
when activated by an associated timer, it adds the value loghpi to the bus. At time t, the
z-th adder handles sieve location t− z. The first value to appear at the end of the pipeline
is g(0), followed by g(1), . . . , g(R), one per clock cycle. See Fig. 1(a).
Cost for 768-bit composites. The cost of TWINKLE for 768-bit composites was ana-
lyzed in [15]. It is estimated, that to complete the factorization in 1 year, one can employ
2,500 TWINKLE devices (using an optimized variant of the design). However, these de-
vices would need to be supported by auxiliary computation that, when performed using
standard PCs, would require about 40,000 PCs with 5GB of memory each. In today’s

7This variant of TWINKLE was considered in [15], and deemed inferior in that context. We recall it
here as a predecessor (and a suboptimal special case) of TWIRL.

5

prices, and assuming a fivefold increase since [15] in the performance of all components,
the total cost for completion in 1 year would be on the order of US$ 8M (excluding the
non-recurring R&D cost).
Notes. Despite the novel and effective use of non-electronic physical phenomena, TWIN-
KLE offers a relatively modest improvement over traditional sieving for large composites.
TWINKLE relies on auxiliary computers for continuously preparing and reloading its input
(especially for large composites, where there is not even room enough cells to represent all
the progressions), and these auxiliary computers turn out to form a bottleneck.

4 TWIRL

4.1 Approach

The TWIRL sieving device [20] is a purely electronic device, which follows the time-space
reversal of TWINKLE but increases the throughput by simultaneously processing thou-
sands of sieve locations at each clock cycle. Since this is done without duplication of
the input progressions (i.e., the pairs (pi, ri)), the cost per unit of throughput decreases
dramatically. Equivalently stated, the cost of storing the huge input is amortized across
many parallel processes. Moreover, TWIRL uses an extremely compact representation of
the input progressions; specifically, it stores them in DRAM memory (as opposed to the
registers employed by prior designs) while ensuring a purely sequentially access pattern to
avoid large memory access latencies.

Achieving the above requires a more complex architecture, whose main ideas will be
sketched in the following by starting with the pipeline-of-adders TWINKLE described
above and applying a series of changes. For concreteness, throughout this section we will
concentrate on the rational sieve of 1024-bit factorization, with the parameters given in
Section 2.1 and the corresponding optimized TWIRL parameters from [20].

Compared to the pipeline-of-adders TWINKLE, TWIRL’s parallelization is obtained
by handling the sieve range {0, . . . , R − 1} in consecutive chunks of length s = 4096.8 To
do so, the bus is thickened by a factor of s and now contains s logical lines, where each line
carries 10-bit numbers. At time t, the z-th stage of the pipeline handles the sieve locations
(t − z)s + i, i ∈ {0, . . . , s − 1}. The first values to appear at the end of the pipeline are
{g(0), . . . , g(s− 1)}; they appear simultaneously, followed by successive disjoint groups of
size s, one group per clock cycle. See Fig. 1(b).

We now have to add the loghpi contributions to all s lines in parallel. Obviously, the
naive solution of duplicating all the adders s times gains nothing in terms of equipment cost
per unit of throughput. If we try to use the TWINKLE-like circuitry without duplication,
we encounter difficulties in scheduling and communicating the contributions across the thick
bus: the sieve locations flow down the bus (in Fig. 1(b), vertically), and the contributions

8s = 4096 applies to the rational sieve. For the algebraic sieve (see Section 4.3) we use even higher
parallelism: s = 32, 768.

6

should somehow travel across the bus (horizontally) and reach an appropriate adder at
exactly the right time.

Accordingly, the simple TWINKLE-like cells are replaced by other units that perform
scheduling and routing. Each such unit, called a station, handles some small portion of
the progressions; its interface consists of bus input, bus output, clock and some circuitry
for loading the inputs. Many stations are connected serially in a pipeline, and at the end
of the pipeline (i.e., at the output of the last station) there lies a threshold check unit that
produces the device output.

While the purpose of all the stations is identical, the device employs a heterogeneous
architecture that contains three different station designs — the progression intervals pi come
in a very large range of sizes, and different sizes involve very different design tradeoffs. The
progressions are partitioned into stations according to the size of their intervals pi, and the
optimal station design is employed in each case. The most important station design is that
used for the “largish primes” — those above some threshold (here, 5.2 · 105 < pi < B). It
is described in the following.

4.2 Largish primes

For every prime smaller than B = 3.5 · 109 there is (on average) one progression. Thus
the majority of progressions have intervals pi that are much larger than s = 4096, so they
produce loghpi contributions very seldom. For 1024-bit composites there is a huge number
(about 1.6 · 108) of such progressions; even with TWINKLE’s simple emitter cells, these
cannot be fitted into a single silicon wafer. The primary consideration is thus to store these
progressions as compactly as possible, while maintaining a low cost per contribution. An
important characteristic of this station design is that it holds its progressions in compact
DRAM-type memory using only sequential (and thus very efficient) read/write access. This
efficient allows fitting 4 independent 1024-bit TWIRL devices (each of which is s = 4096
times faster than TWINKLE) into a single 30cm silicon wafer using well-established chip
manufacturing technology (e.g., 130nm process).

The station design for these progressions is shown in Fig. 2 (after some simplifications).
The progressions are partitioned into 8, 490 memory banks, so that each bank contains
many progressions. Each progression is stored in one of these memory banks, where at
any given time it is represented by an event of the form (pi, `i, τi), whose meaning is: “at
time τi, send a loghpi contribution to bus line `i.”

Each memory bank is connected to a special-purpose processor, which continuously
processes these events and sends corresponding emissions of the form “add loghpi to bus

line `i” to attached delivery lines, which span the bus. Each delivery line acts as a
shift register that carries the emissions across the bus. Additionally, at every intersection
between a delivery line and a bus line there is a conditional adder; when the emission reaches
its destination bus line `i, the value loghpi is added to the value that passes through that
point of the bus pipeline at that moment.

Thus, sieve locations are (logically) flowing down the bus at a constant velocity, and

7

Pr
oc

es
so

r
Pr

oc
es

so
r

Memory

Pr
oc

es
so

r

Memory

Memory

Figure 2: Schematic structure of a (simplified) largish station.

emissions are being sent across the bus at a constant velocity. To ensure that each emission
“hits” its target at the right time, the two perpendicular flows must be perfectly synchro-
nized, which requires a lot of care. However, the benefit is that the cost per contribution
is very low: most of the time the event is stored very compactly in the form of an event
in DRAM; then, for a brief moment it occupies the processor, and finally it occupies a
delivery line for the minimum possible duration — the amount of time needed to travel
across the bus to the destination bus line.

It is the processor’s job to ensure accurate scheduling of emissions.9 The ideal way to
achieve this would be to store the events in a priority queue that is sorted by the emission
time τi. Then, the processor would simply repeat the following loop:10

1. Pop the next event (pi, `i, τi) from the priority queue.

2. Wait until time τi and then send an emission to the delivery line, addressed to bus
line `i.

3. Compute the next event (pi, `′i, τ ′
i) of this progression, and push it into the priority

queue.

Standard implementations of priority queues (e.g., the heap data structure) are un-
suitable for our purposes, due to the passive nature of standard DRAM and high latency.
First, the processor would need to make a logarithmic number of memory accesses at each
iteration. Worse yet, these memory accesses occur at unpredictable places, and thus incur
a high random-access overhead. This is addressed by the following.
Sequential-access priority queue. By taking advantage of the unique properties of
the sieving problem we can get a good approximation of a priority queue that is highly

9In the full design [20], there is an additional component, called a buffer, which performs fine-tuning
and load balancing.

10For simplicity, here we ignore the possibility of collisions.

8

efficient. Briefly, the idea is as follows. The events are read sequentially from memory
(step 1 above) in a cyclic order, at constant rate. When the new calculated event is
written back to memory (step 3 above), it is written to a memory address that will be
read just before its schedule time τ ′

i . Since both τ ′
i and the read schedule are known, this

memory address is easily calculated by the processor. In this way, after a short stabilization
period the processor always reads imminent events,11 exactly as desired. Each iteration now
involves just one sequential-access read operation and one random-access write operation.
In addition, it turns out that with appropriate choice of parameters we can cause the write
operations to always occur in a small window of activity, just behind the “read head”.
We may thus view the 8, 490 memory banks as closed rings of various sizes, with an active
window “twirling” around each ring at a constant linear velocity. Each such sliding window
is handled by a fast SRAM-based cache, whose content is swapped in and out of DRAM
in large blocks. This allows the bulk of events to be held in DRAM. Better yet, now the
only interface to the DRAM memory is through the SRAM cache; this allows elimination
of various peripheral circuits that are needed in standard DRAM.

4.3 Other Highlights

Other station designs. For progressions with small interval (pi < 5.2·105), it is inefficient
to continuously shuttle the progression state to and from passive memory. Thus, each
progression is handled by an independent active emitter cell that includes an internal
counter (similarly to TWINKLE). An emitter serves multiple bus lines, using a variant of
the delivery lines described above. Using certain algebraic tricks, these cells can be made
very compact. Two such station designs are used: for the progressions with medium-sized
intervals, many progressions share the same delivery lines (since emissions are still not very
frequent); this requires some coordination logic. For very small intervals, each emitter cell
has its own delivery line.
Diaries. Recall that in addition to finding the sieve locations a whose contributions exceed
the threshold, we also want to find the sets {i : a ∈ Pi} of relevant progressions. This is
accomplished by adding a diary to each processor (it suffices to handle the progressions
with large interval). The diary is a memory bank which records every emission sent by
the processor and saves it for a few thousand clock cycles — the depth of the bus pipeline.
By that time, the corresponding sieve location a has reached the end of the bus and the
accumulated sum of logarithms g(a) was checked. If the threshold was exceeded, this is
reported to all processors and the corresponding diary entries are recalled and collected.
Otherwise, these diary entries are discarded (i.e., their memory is reused).
Cascading the sieves. Recall that in NFS perform two sieving tasks in parallel: a
rational sieve whose parameters were given above, and an algebraic sieve which is usually
more expensive since it has a large value of B. However, we succeed in greatly reducing the
cost of the algebraic sieve by using an even higher parallelization factor for it: s = 32, 768.

11Collisions are handled by adding appropriate slacks.

9

This is made possible by an alteration that greatly reduces the bus width: the algebraic
sieve needs only to consider the sieve locations that passed the rational sieve, i.e., about
one in 5,000. Thus we connect the input of the algebraic sieve to the output of the rational
sieve, and in the algebraic sieve we replace the thick bus and delivery lines by units that
consider only the sieve locations that passed the rational sieve. We now have a much
narrower bus containing only 32 lines, though each line now carries both a partial sum
(as before) and the index a of the sieve location to which the sum belongs. Logically, the
sieve locations still travel in chunks of size s, so that the regular and predictable timing is
preserved. Physically, only the “relevant” locations (at most 32) in each chunk are present;
emissions addressed to the rest are discarded.
Fault tolerance. The issue of fault tolerance is very important, as silicon wafers normally
have multiple local faults, and in a wafer-scale device one cannot simply discard faulty
chips. For 1024-bit composites TWIRL is a wafer-scale design, and is designed to operate
in the presence of faults by a combination of methods, such as routing around faults and
re-assigning the functionality of faulty units to spare ones. Note that occasional transient
faults can be tolerated, since in the sieving task only the total number of good a values
matters.

4.4 Cost

Cost for 1024-bit composites. The cost of constructing enough TWIRL devices to
factor a 1024-bit integer in 1 year has been estimated at US$ 1.1M [14], when using the
now-standard 90nm chip manufacturing process. The non-recurring R&D cost would be
on the order of US$ 10M–20M. For the older 130nm process technology, the cost and
performance of TWIRL has been estimated in more detail in [20], with a bottom line of
US$ 10M for completion in 1 year. The following contains some key points of the latter
case.

Recall that to implement NFS we have to perform two different sieving tasks, a ra-
tional sieve and an algebraic sieve, which have different parameters. Here, the rational
sieve (whose parameters were given above) dominates the cost. For this sieve, we can fit
4 complete TWIRL devices on a 30cm silicon wafer. For the algebraic sieve (in the cas-
caded variant sketched above), a TWIRL device occupies a full wafer, but uses a higher
parallelization factor, s = 32, 768. For both types of TWIRL devices, the circuit area is
occupied by the DRAM banks storing large progressions. These devices are assembled in
clusters that consist of 8 rational TWIRL devices (occupying two wafers) and 1 algebraic
TWIRL (on a third wafer), where each rational TWIRL has a unidirectional link to the
algebraic TWIRL over which it transmits 12 bits per clock cycle. At a 1GHz clock rate,
the sieving task can be completed by 194 independent TWIRL clusters running in parallel.
Cost for 768-bit composites. For 768-bit composites, a single silicon wafer containing
6 independent TWIRL clusters (using 130nm process) can complete the sieving in 95 days.
Alas, the non-recurring cost would still be on the order of US$ 10M–20M.

10

Notes. In terms of data flow, TWIRL uses an enormous bandwidth both along the main
pipeline (between stations) and across it (along delivery lines). It is thus inherently a single-
wafer design: if we attempt to partition it into several chips (whether ASIC or FPGA),
its performance will be greatly reduced due to the limited throughput of the connections
between the chips. Consequentially, for 1024-bit it is presently necessary to use a sub-
optimal choice of the algebraic factor base bound Ba in order to fit all progressions into a
single wafer, even when using DRAM storage. A consequence of this is that presently, the
cost of TWIRL for 1024-bit (or larger) composites decreases faster than naively implied by
technological improvement in transistor speed and size (i.e., Moore’s law).

5 Mesh-based sieving

An alternative approach to highly parallel sieving hardware, which predated (and inspired)
TWIRL, is the mesh-based sieving proposed by Geiselmann and Steinwandt [8]. It followed
a related proposal by Bernstein [2], and was subsequently improved in [10]. Here we only
sketch the basic idea in its simplest form, and refer the reader to [8, 10] further details and
significant improvements.

The device consists of a two-dimensional mesh of s×s nodes, with each node connected
only to its (at most) 4 neighbors.12 The nodes implement a routing network that can carry
packets from any node to any node by a series of hops between adjacent cells. The range of
sieve locations a ∈ {0, . . . , R− 1} is partitioned into segments of size s2, and each segment
is handled separately as follows.

The s2 sieve locations in the current segment are assigned to the s2 mesh modes by a
bijective mapping. In addition, the mesh contains representations of all the progressions
in the factor base, partitioned among the s2 nodes and stored by some efficient means.
Each node performs two functions. First, it scans the progressions represented within
it, identifies the ones which contain some sieve location(s) inside the current segment,
and for each such case emits corresponding packet; the packet specifies the corresponding
contribution logh pi, and the address of the mesh node in charge of sieve location a. Second,
each node contains an accumulator for the sieve location a assigned to it, and for each
incoming packet addressed to this node, it adds the transmitted loghpi to its accumulator
and discards the packet. Thus, once all packets have been generated, routed and processed,
the accumulators contain the g(a) values and can be tested against the threshold. This
process is repeated segment by segment.
Improvements. Some of the improvement on the above described in [8, 10] include
the following. Progressions with large intervals are represented using compact DRAM
storage. Progressions with small intervals produce most of the contributions, but there
are relatively few of them, so their representation is duplicated across the mesh to avoid
routing their contributions over long distances. The routing network uses the heuristic

12Higher dimensional meshes, where available, would reduce the asymptotic cost

11

clockwise transposition algorithm [16] to minimize cost. The topology is changed from a
mesh to a torus, or several overlapping tori.
Cost for 768-bit composites. The mesh-based design of [10] has an estimated cost
marginally higher than that of TWIRL. For the same throughput, its silicon area is 6.3
times larger than that quoted for 768-bit TWIRL in [20], but it is divided into smaller
independent chips (which is practically advantageous); if TWIRL is re-parametrized to use
similarly sized chips, the gap is roughly halved.
Notes. While their architectures are radically different, the the mesh-based design and
TWIRL are fundamentally strongly related: both use high parallelism to amortize the
cost of the progression storage over many simultaneously processed sieve locations, both
handle primes of different sizes by different method (and specifically use compact DRAM
storage for larger primes), and both use a two-dimensional layout data movement. Com-
pared to traditional sieving, both asymptotically reduce the area×time cost by a factor of
s = Θ̃(

√
B) using a device of size s2 = Θ̃(B). Also, both are bandwidth-intensive, and

thus limited by the maximal wafer size (or by inter-chip I/O throughput). The tradeoffs
are fairly subtle: the approach of [10] enables a compressed encoding of progression in
DRAM, whereas TWIRL uses smaller and faster logic to achieve higher parallelization
and speed. One advantage of the mesh-based approach is the use of a uniform chip de-
sign whose repeating units are smaller than those of TWIRL, which simplifies design and
manufacturing.

6 Conclusions

It has been often claimed that 1024-bit RSA keys are safe for the next 15 to 20 years,
since when applying the Number Field Sieve to such composites both the sieving step
and the linear algebra step would be unfeasible. However, this assumed implementation
using standard general-purpose computers. The introduction of special-purpose hardware
architectures for NFS has reduced the predicted cost of factoring 1024-bit integers by
several orders of magnitude, to within the reach of large organizations. Focusing on the
sieving step of NFS, we have surveyed the main proposed architectures.

References

[1] J. Franke et al, RSA576, e-mail announcement, Dec. 2003, http://www.loria.fr/
~zimmerma/records/rsa576

[2] Daniel J. Bernstein, Circuits for integer factorization: a proposal, manuscript,
2001,http://cr.yp.to/papers.html

[3] Richard P. Brent, Recent progress and prospects for integer factorisation algorithms,
proc. COCOON 2000, LNCS 1858, 3–22, Springer-Verlag, 2000

12

http://www.loria.fr/~zimmerma/records/rsa576
http://www.loria.fr/~zimmerma/records/rsa576
http://cr.yp.to/papers.html

[4] S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgomery, B. Murphy, H.J.J.
te Riele, et al., Factorization of a 512-bit RSA modulus, proc. Eurocrypt 2000, LNCS
1807, 1–17, Springer-Verlag, 2000

[5] Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology, vol.
6, 169–180, 1993

[6] Electronic Frontier Foundation, DES Cracker Project, http://www.eff.org/
descracker.html

[7] Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt, Eran Tromer, Improved
Routing-Based Linear Algebra for the Number Field Sieve, proc. International Con-
ference on Information Technology (ITCC) ’05 – Track on Embedded Cryptographic
Systems, IEEE, 2005

[8] Willi Geiselmann, Rainer Steinwandt, A dedicated sieving hardware., proc. Public Key
Cryptography — PKC 2003, LNCS 2567, 254–266. Springer-Verlag, 2003

[9] Willi Geiselmann, Rainer Steinwandt. Hardware for solving sparse systems of lin-
ear equations over GF(2), proc. Cryptographic Hardware and Embedded Systems —
CHES 2003, LNCS 2779, 51–61, Springer-Verlag, 2003

[10] Willi Geiselmann, Rainer Steinwandt, Yet another sieving device, CT-RSA 2004,
LNCS 2964,278–291, Springer, 2004

[11] Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, A systolic design
for supporting Wiedemann’s algorithm, presented at Special-purpose Hardware for
Attacking Cryptographic Systems (SHARCS) workshop, Paris, 2005

[12] Arjen K. Lenstra, H.W. Lenstra, Jr., (eds.), The development of the number field sieve,
Lecture Notes in Math., vol. 1554, Springer-Verlag, 1993

[13] D. H. Lehmer, The mechanical combination of linear forms, The American Mathe-
matical Monthly, vol. 35, 114–121, 1928

[14] Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James
Hughes, Paul Leyland, Factoring estimates for 1024-bit RSA modulus, proc. Asiacrypt
2003, LNCS 2894, 331–346, Springer-Verlag, 2003 2003, LNCS, Springer-Verlag, to
appear.

[15] Arjen K. Lenstra, Adi Shamir, Analysis and optimization of the TWINKLE factoring
device, proc. Eurocrypt 2002, LNCS 1807, 35–52, Springer-Verlag, 2000

[16] Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, Eran Tromer, Analysis of Bernstein’s
factorization circuit, proc. Asiacrypt 2002, LNCS 2501, 1–26, Springer-Verlag, 2002

13

http://www.eff.org/descracker.html
http://www.eff.org/descracker.html

[17] NIST, Key management guidelines, Part 1: General guidance (draft), Jan. 2003, http:
//csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

[18] Carl Pomerance, A Tale of Two Sieves, Notices of the AMS, 1473–1485, Dec. 1996

[19] Adi Shamir, Factoring large numbers with the TWINKLE device (extended abstract),
proc. CHES’99, LNCS 1717, 2–12, Springer-Verlag, 1999

[20] Adi Shamir, Eran Tromer, Factoring large numbers with the TWIRL device, proc.
Crypto 2003, LNCS 2729, Springer-Verlag, 2003

[21] Robert D. Silverman, A cost-based security analysis of symmetric and asymmetric key
lengths, Bulletin 13, RSA Security, 2000

[22] Michael J. Wiener, The Full Cost of Cryptanalytic Attacks, Journal of Cryptology,
vol. 17 no. 2, 105–124, 2004

14

http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The NFS Sieving Step
	2.2 Traditional Sieving

	3 TWINKLE
	4 TWIRL
	4.1 Approach
	4.2 Largish primes
	4.3 Other Highlights
	4.4 Cost

	5 Mesh-based sieving
	6 Conclusions
	References

