
Thesis for the degree

Doctor of Philosophy

by

Eran Tromer

May 2007

Presented to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

Hardware-Based Cryptanalysis

חומרה באמצעי צפנים שבירת

התואר קבלת לשם חבור
לפילוסופיה דוקטור

" ז תשס אייר

של המדעית למועצה מוגש
למדע ויצמן מכון

ישראל, רחובות

מאת

טרומר ערן

מנחה

שמיר' עדי פרופ
Advisor

Prof. Adi Shamir

Summary

The theoretical view of cryptography usually models all parties, legitimate ones as well as attack-
ers, as idealized computational devices with designated interfaces, and their security and com-
putational complexity are evaluated in some convenient computational model – usually PC-like
RAM machines. This dissertation investigates several cases where reality significantly deviates
from this model, leading to previously unforeseen cryptanalytic attacks.

The first part of the dissertation investigates the concrete cost of factoring integers, and in partic-
ular RSA keys of commonly used sizes such as 1024 bits. Until recently, this task was considered
infeasible (i.e., its cost was estimated as trillions of dollars), based on extrapolations that assumed
implementation of factoring algorithms on sequential PC-like computers. We have shown that
the situation changes significantly when one introduces custom-built hardware architectures, with
algorithms and parametrization that are optimized for concrete technological tradeoffs and do
not fit the RAM machine model. Focusing on the Number Field Sieve (NFS) factoring algorithm,
we propose hardware architectures for both of its computational steps: the sieving step and the
linear algebra step. Detailed analysis and a careful choice of the NFS parameters show that for
breaking 1024-bit RSA keys, NFS can be be implemented at a fairly practical cost of a few million
US dollars for a throughput of one factorization per year. This casts grave doubt on the security
of such cryptographic keys, which are widely deployed in accordance with existing standards and
recommendations.

The second part of the dissertation investigates another abstraction violation: side-channel in-
formation leakage from cryptographic systems. We demonstrate two such channels. First, cache
contention in modern CPUs leads to leakage of information about memory access patterns, and
we devise novel ways to exploit this leakage. The new attacks work in pure software, and are
applicable even in scenarios where the attacker has no nominal communication channel with the
attacked code. They are also extremely efficient; for example, we have demonstrated full recovery
of an AES secret key from a Linux encrypted filesystem using just 800 analyzed encryptions,
gathered within 65 milliseconds. A second side channel we observe is acoustic emanations: mod-
ern PCs produce unintentional acoustic signals that are highly correlated with processor activity,
and reveal information about the calculation being performed (e.g., the secret moduli used during
RSA decryption). Due to their efficiency and ubiquity, these newly recognized side-channel at-
tacks form a threat in widespread practical circumstances, and thwart many traditional software
security measures such as process separation, sandboxes and virtual machines.

2

Summary

תקציר

 , , חישוב כמכונות לאו אם ובין מורשים אם בין במערכת המשתתפים את מייצגת ההצפנה לתורת התאורטית הגישה

- , דמוי מודל כגון נוח חישובי במודל וסיבוכיותם בטיחותם את ובוחנת מוגדר ממשק עם -PCמופשטות זיכרון עם

 , . אפשרות- פותחת ובכך המודל מגבולות חורגת המציאות בהם מקרים מספר חוקרת זו דיסרטציה אקראית גישה

. צפנים לשבירת חדשות לדרכים

 , המקרה את ובעיקר הראשוניים לגורמיהם מספרים פירוק של העלות את חוקר הדיסרטציה של הראשון חלקה

ההצפנה מערכת שבירת של כגון RSAהפרטי נפוץ בגודל מפתחות , 1024עבור . זו משימה לאחרונה עד ביטים

 ,() מבוסס מימוש המניחה אקסטרפולציה על בהתבסס דולרים כטריליוני נחזתה עלותה ישימה לבלתי נחשבה

דמויי טוריים ,PCמחשבים ייעודיות. חומרה ארכיטקטורות גם שוקלים כאשר מהותית שונה שהמצב הראינו

 , המודל מן חורגות ואשר טכנולוגיים שיקולים פי על מיטבי באופן נבחרו אשר ופרמטרים באלגוריתמים הנעזרות

 . אלגוריתם על בהתבסס הסדרתי Numberהחישובי Field Sieve (NFS) , מציגים אנו לראשוניים לפירוק

� . מראה מפורט ניתוח הלינארית האלגברה ושלב הסינון שלב שבו העיקריים השלבים לשני חומרה ארכיטקטורות

מפתחות שבירת , 1024באורך RSAשעבור אלגוריתם את לממש ניתן מיליוני NFSביטים של מעשית בעלות

, . אלו מפתחות של לבטיחותם כבדים חששות מעלה הדבר בשנה מפתח פיצוח של תפוקה עבור בודדים דולרים

. בתקנים ומומלצים רחב בשימוש נמצאים אשר

 : דרך הצפנה ממערכות מידע זליגת החישובית ההפשטה של נוספת בהפרה עוסק הדיסרטציה של השני חלקה

 ; . . זו מודרניים במעבדים המטמון זכרון על תחרות הוא ראשון הערוץ כאלו ערוצים שני מציגים אנו צדדיים ערוצים

 . , ההתקפות צפנים שבירת לשם זו זליגה לניצול דרכים מראים ואנו לזכרון גישה דפוסי אודות מידע זליגת גוררת

תוכנת עם נומינלי תקשורת ערוץ אף אין למתקיף בהם בתרחישים אפילו וישימות בתוכנה ממומשות החדשות

 : . מפתח של מלאה חשיפה הדגמנו ביותר יעילות המוצגות ההתקפות המותקפת מערכת AESההצפנה מתוך סודי

של מוצפנת -Linuxקבצים ב שימוש , 800תוך דהיינו . 65הצפנות , של נוסף ערוץ בלבד מדידות של מילישניות

 , , . רב מידע המגלים רעשים במתכוון שלא פולטים גילינו כך מודרניים מחשבים אקוסטיות זליגות הוא מידע זליגת

� , מפתחות אודות לדוגמה המתבצע החישוב ,RSAאודות . יישומן וזמינות יעילותן בשל לפענוח המשמשים הסודיים

 , מידור כגון מקובלים בטיחות אמצעי ועוקפות מעשיים תרחישים של רחבה בקשת איום מהוות שזיהינו ההתקפות

. וירטואליות ומכונות תהליכים

3

On the significance of this research

In a society that is becoming increasingly reliant on distributed communication networks, and
an economy that is increasingly information-driven, the task of securely channeling information
becomes as important as the task of creating it — just as irrigating a field of crop may require not
merely the water but also an aqueduct to channel it. The Assyrians of Nineveh built masterful
aqueducts to support their ”exceedingly great city” [95]; contemporary cryptography builds secure
channels of information to fulfill people’s needs for trust, privacy and commerce. And as Nineveh
fell to hydrological disaster [147], so does a modern peril lie in failure of cryptographic systems.

My research reveals several such imminent risks in well-established cryptographic and security
settings. It has shaken the confidence in current deployment of RSA and AES, among the two
most prominent cryptographic schemes, in such ubiquitous applications as e-commerce, banking,
virtual private networks and encrypted disks. The techniques thus introduced have ramifications
to many other cryptographic systems. Recognizing these hithero unknown risks, the computing
industry responded by revising its practices and standards (e.g., those of the IEEE [88], In-
ternet RFCs [159][215], USA government [152] and German government [175]) and researching
mitigation (e.g, by Intel Corp. [36][37]).

My effective cache-based attacks have unexpectedly felled AES, an encryption algorithm chosen
after years of exacting worldwide cryptographic scrutiny; this has spurred much research which
extends the attacks and countermeasures described herein. My results on the cost of factoring
(and hence the security of RSA) yield concrete estimates that, despite decades of investigation, are
a million times lower than previous estimates, thereby showing the poignancy of this approach
to custom-hardware cryptanalytic architectures. Numerous works, and a series of dedicated
workshops, have since been fruitfully following this path.

4

Acknowledgments

Through this maiden voyage of research and discovery, my advisor Adi Shamir served as a com-
pass, a guide and a partner. I am ever indebted for his wise advice, exacting mentorship and
unfailing support, as well as for his admirable capacity for sharing his acumen and formidable
knowledge. It has been a great privilege to learn the markings of a scientist from him.

I am indebted to my coauthors for our fruitful collaboration: Boaz Barak, Bruce Dodson, James
Hughes, Willi Geiselmann, Wil Kortsmit, Paul Leyland, Moni Naor, Asaf Nussboim, Dag Arne
Osvik, Ronen Shaltiel, Rainer Steinwandt and Jim Tomlinson — and in particular to Arjen K.
Lenstra, for his perspective on computational number theory as well as on the finer aspects of
scientific life.

The Weizmann Institute of Science has provided a wondrous environment for learning, coopera-
tion and intellectual growth. I have greatly benefited from, and enjoyed, the conversations with
the faculty and other residents of the department, and especially Moni Naor, Oded Goldreich,
and Shafi Goldwasser. The institutes’s Feinberg Graduate School, under Yosef Yarden and Ami
Shalit, has judiciously monitored, supported and awarded my progress. I could not envisage a
better place for a budding researcher.

Many other people have contributed to my research by comments, suggestions and discussions:
Adi Akavia, Dan Bernstein, Ernie Brickell, Uriel Feige, Andrew Huang, Markus Jakobsson,
Robert D. Silverman, Pankaj Rohatgi, Jean-Pierre Seifert, Thorsten Kleinjung, Eran Ofek,
Michael Szydlo, David Tromer, Udi Wieder, Gideon Yuval, and numerous others. Dan Boneh,
David Brumley, Jens Franke, Thorsten Kleinjung and Herman te Riele provided us with indis-
pensable research data and code. National Instruments Israel donated lab equipment, and Nir
Yaniv granted us use of the Nir Space Station studio.

Eli Biham, Shafi Goldwasser, Moni Naor and Omer Reingold graciously served on my interim
and final examination committees.

Parts of my research was conducted while at Microsoft Research, hosted by Ramarathnam
Venkatesan and Yacov Yacobi.

Back during my studies at the Technion, Erez Petrank and Eli Biham have first instilled in me
the appreciation of computational complexity and cryptography; this I shall forever cherish.

My research was conducted, and this thesis written, using a variety of free (libre) software:
the Linux kernel, GNU and KDE program suits, the Emacs, Kile and LyX, editors, the teTEX

5

Acknowledgments

LATEX typesetting system, the GNU Multiple Precision Library, the Pari/GP and octave numer-
ical/algebraic calculators, the Xfig, OpenOffice Impress and gnuplot drawing/plotting programs,
the gcc compiler, the Perl interpreter, and numerous other programs from the the Fedora Core
distribution. The OpenSSL and GnuPG cryptographic programs, as well as the Linux kernel,
were also employed as test subjects for our cryptanalytic attacks.

I wish to thank my parents, Arie and Zahava, for their ever-present love and support, and for
letting me take apart all those gadgets (even though they didn’t always fit back together).

My gratitude extends to the many friends and family who helped and bore with me through
recent years, and in particular to Yivsam and Zoya Azgad.

In love and appreciation of my wife Shlomit, this dissertation is dedicated to her:

6

Summary of contents

I Hardware-based parallelization of the Number Field Sieve 18

1 Introduction 19

2 The TWIRL architecture for the NFS sieving step 43

3 A mesh-based architecture for the NFS linear algebra step 69

4 A scalable pipelined architecture for the NFS linear algebra step 85

5 Analysis of NFS parameters 99

6 Conclusions and implications of Part I 123

II Side-channel attacks 128

7 Introduction 129

8 Efficient cache attacks on AES 133

9 Acoustic cryptanalysis 161

10 Conclusions and implications of Part II 171

7

Contents

Summary 2

On the significance of this research 4

Acknowledgments 5

List of Figures 15

List of Tables 17

I Hardware-based parallelization of the Number Field Sieve 18

1 Introduction 19

1.1 Overview of Part I . 19

1.2 Integer factorization . 20

1.3 Empirical hardness of factorization . 22

1.3.1 Challenges and past experiments . 22

1.3.2 1024-bit RSA and its importance . 23

1.3.3 768-bit RSA and its importance . 23

1.4 Cost measures . 24

1.5 The Number Field Sieve algorithm . 25

1.5.1 Background . 25

1.5.2 Notation . 25

1.5.3 Overview of NFS . 26

8

CONTENTS CONTENTS

1.5.4 NFS for discrete logarithms . 30

1.6 The NFS sieving step . 30

1.6.1 The task . 30

1.6.2 Traditional sieving . 32

1.6.3 Historical sieving devices . 33

1.6.4 TWINKLE . 34

1.6.5 FPGA-based serial sieving . 35

1.6.6 Mesh-based sieving . 35

1.6.7 Relation collection without sieving . 36

1.7 The NFS linear algebra step . 36

1.7.1 The block Wiedemann algorithm . 37

1.7.2 Complexity of the block Wiedemann algorithm 38

1.7.3 The reduced task . 40

1.7.4 The traditional approach to the matrix step 40

1.7.5 Bernstein’s mesh-based linear algebra circuit 41

2 The TWIRL architecture for the NFS sieving step 43

2.1 Overview . 43

2.2 Basic architecture . 44

2.2.1 Approach . 44

2.2.2 Largish primes . 46

2.2.3 Smallish primes . 50

2.2.4 Tiny primes . 51

2.3 Additional design considerations . 52

2.3.1 Delivery lines . 52

2.3.2 Implementation of emitters . 54

2.3.3 Implementation of funnels . 56

2.3.4 Initialization . 57

2.3.5 Cascading the sieves . 57

2.3.6 Eliminating sieve locations . 59

9

CONTENTS CONTENTS

2.3.7 Testing candidates . 59

2.3.8 Lattice sieving . 61

2.3.9 Fault tolerance . 61

2.4 Parametrization . 62

2.4.1 NFS parameters . 62

2.4.2 Technology parameters . 63

2.5 Cost estimates . 63

2.5.1 Cost of sieving for 1024-bit composites . 63

2.5.2 Cost of sieving for 768-bits composites . 65

2.5.3 Cost of sieving for 512-bits composites . 65

2.5.4 Asymptotic behavior for larger composites 65

2.5.5 Scaling with technology . 66

2.6 Comparison to previous works . 66

3 A mesh-based architecture for the NFS linear algebra step 69

3.1 Overview . 69

3.2 Estimating the cost of Bernstein’s circuits . 69

3.3 Basic routing-based architecture . 71

3.4 Choice of routing algorithm . 73

3.4.1 Criteria and alternatives . 73

3.4.2 Clockwise transposition routing . 74

3.4.3 Pathologies . 75

3.5 Improvements . 76

3.6 Further improvement . 78

3.7 Parametrization . 79

3.7.1 Technology parameters . 79

3.7.2 Deriving the cost of the device . 80

3.8 Cost estimates for 1024-bit composites . 82

3.8.1 Cost estimates for the throughput-optimized matrix 82

3.8.2 Cost estimates for the runtime-optimized matrix 83

10

CONTENTS CONTENTS

4 A scalable pipelined architecture for the NFS linear algebra step 85

4.1 Overview . 85

4.2 The architecture . 86

4.2.1 A basic scheme . 86

4.2.2 Compressed row handling . 87

4.2.3 Compressed vector transmission . 88

4.2.4 Processing vector elements . 88

4.2.5 Skewed assignment for iterated multiplication 90

4.2.6 Amortizing matrix storage cost . 91

4.2.7 Two-dimensional chip array . 91

4.3 Fault detection and correction . 92

4.3.1 Importance . 92

4.3.2 A generic scheme . 92

4.3.3 Device-specific considerations . 95

4.4 Parametrization . 96

4.4.1 Matrix parameters . 96

4.4.2 Technology parameters . 96

4.5 Cost estimates . 96

4.5.1 Cost for 1024-bit NFS matrix step . 96

4.5.2 Further details . 97

4.5.3 Comparison to previous designs . 98

5 Analysis of NFS parameters 99

5.1 Overview . 99

5.2 NFS parameter estimation techniques . 100

5.2.1 Notes on the Number Field Sieve . 100

5.2.2 Extrapolation from asymptotics . 102

5.2.3 Semi-smoothness probabilities . 103

5.2.4 Estimates via smoothness probabilities . 106

5.2.5 Direct smoothness tests . 109

11

CONTENTS CONTENTS

5.3 Choice of NFS polynomials . 110

5.3.1 Context . 110

5.3.2 NFS polynomials for RSA-1024 . 110

5.3.3 NFS polynomials for RSA-768 . 112

5.4 Results for extrapolated parameters . 112

5.4.1 Extrapolated parameters . 112

5.4.2 Evaluation via smoothness probabilities . 114

5.4.3 Evaluation via actual smoothness tests . 119

5.5 The TWIRL sieving parameters . 120

5.5.1 Yields for RSA-1024 . 120

5.5.2 Candidates yield in TWIRL . 121

5.5.3 Optimality and effect of technological progress 121

5.5.4 Yields for RSA-768 . 122

6 Conclusions and implications of Part I 123

6.1 Summary of results . 123

6.2 Notes . 124

6.3 Impact and follow-up works . 125

II Side-channel attacks 128

7 Introduction 129

7.1 Overview of Part II . 129

7.2 Side-channel attacks . 129

7.3 Timing attacks . 130

8 Efficient cache attacks on AES 133

8.1 Introduction . 133

8.1.1 Overview . 133

8.1.2 Related work . 134

8.2 Preliminaries . 135

12

CONTENTS CONTENTS

8.2.1 Memory and cache structure . 135

8.2.2 Memory access in AES implementations . 137

8.2.3 Notation . 138

8.3 Synchronous known-data attacks . 138

8.3.1 Overview . 138

8.3.2 One-round attack . 139

8.3.3 Two-rounds attack . 140

8.3.4 Measurement via Evict+Time . 142

8.3.5 Measurement via Prime+Probe . 144

8.3.6 Practical complications . 145

8.3.7 Experimental results . 147

8.3.8 Variants and extensions . 147

8.4 Asynchronous attacks . 149

8.4.1 Overview . 149

8.4.2 One-Round Attack . 149

8.4.3 Measurements . 150

8.4.4 Experimental results . 150

8.4.5 Variants and extensions . 151

8.5 Countermeasures . 152

8.5.1 Avoiding memory accesses . 152

8.5.2 Alternative lookup tables . 152

8.5.3 Data-independent memory access pattern 153

8.5.4 Application-specific algorithmic masking . 154

8.5.5 Cache state normalization and process blocking 155

8.5.6 Disabling cache sharing . 156

8.5.7 Static or disabled Cache . 156

8.5.8 Dynamic table storage . 157

8.5.9 Hiding the timing . 158

8.5.10 Selective round protection . 158

8.5.11 Operating system support . 159

13

CONTENTS CONTENTS

9 Acoustic cryptanalysis 161

9.1 Introduction . 161

9.1.1 Overview . 161

9.1.2 Related works . 161

9.2 Results . 162

9.2.1 Experimental setup . 162

9.2.2 The sound of RSA signatures . 163

9.2.3 Distinguishing between RSA secret keys . 164

9.2.4 Timing attacks . 165

9.2.5 Instruction pattern differentiation . 166

9.2.6 Verifying acoustic transduction . 167

9.2.7 Source of acoustic emanations . 168

9.3 Countermeasures . 169

10 Conclusions and implications of Part II 171

10.1 Summary of results . 171

10.2 Vulnerable cryptographic primitives . 172

10.2.1 Cache attacks . 172

10.2.2 Acoustic attacks . 172

10.2.3 Non-cryptographic systems . 173

10.3 Attack scenarios . 173

10.4 Mitigation . 174

10.5 Impact and follow-up works . 174

Publications and statement of originality 177

Bibliography 179

Index of notation 195

Index 197

14

List of Figures

2.1 Flow of sieve locations through devices . 45

2.2 Schematic structure of a largish station . 47

2.3 Schematic structure of a smallish station . 50

2.4 Schematic structure of a tiny station, for a single progression 52

2.5 Schematic structure of an n-to-m funnel . 56

3.1 Realizing a torus in a flat array. 78

4.1 Distributing the entries of A onto stations . 87

4.2 Subdivision of a chip into stations and processors 87

4.3 Arranging the stations into a circle . 90

4.4 Movement of vector element k-tuples through the circle of stations. 91

4.5 Using external memory to store the matrix . 92

5.1 Illustration of the main (semi-)smoothness probability functions 105

8.1 Schematic of a set-associative cache . 136

8.2 Candidate scores for a synchronous attack using Prime+Probe measurements . . . 141

8.3 Schematics of cache states . 143

8.4 Timings in Evict+Time measurements . 144

8.5 Prime+Probe attack . 146

8.6 Scores for combinations of key byte candidate and table offset candidate 146

8.7 Frequency scores for OpenSSL AES encryption of English text 151

9.1 Acoustic measurement of two identical RSA signatures 164

15

LIST OF FIGURES LIST OF FIGURES

9.2 Acoustic measurement of 7 different RSA signatures 165

9.3 Acoustic measurement demonstrating temporal resolution 165

9.4 Acoustic measurement of different CPU instructions 166

9.5 Acoustic measurement of two identical 4096-bit RSA signatures 167

9.6 Acoustic measurement of a MUL loop during cooling of capacitors 168

16

List of Tables

2.1 Sieving parameters . 62

3.1 Implementation hardware parameters . 81

3.2 Cost of the matrix step for the throughput-optimized matrix 82

3.3 Cost of the matrix step for the runtime-optimized matrix 83

3.4 Cost of the matrix step using a distributed routing-based architecture 83

5.1 Asymptotic behavior of several NFS variants . 102

5.2 (Semi-)smoothness functions, conditions, notation and terminology 104

5.3 Estimated yields with polynomials (B)–(F) for extrapolated parameters 116

5.4 Sieving effort to find Π(2i,2i+1)/32 ff ’s for d = 6 116

5.5 Minimal sieving efforts to find T (2ir ,2ia)/c ff ’s . 117

5.6 Estimated yields of polynomial (A) for extrapolated parameters 117

5.7 Estimated yields for extrapolated parameters with ξ3 118

5.8 Estimated yields for extrapolated smoothness bounds with 6 polynomials 118

5.9 Actual and estimated number of (2i,2j ,1)-semismooth Nr(a, b)’s for d = 6 119

5.10 Actual and estimated number of semismooth Na(a, b)’s for d = 6 120

5.11 Actual and estimated number of semismooth Na(a, b)’s for d = 6 (cont.) 120

5.12 RSA-1024 parameter sets for TWIRL with 130nm process technology 121

5.13 RSA-1024 parameter sets for TWIRL with 90nm process technology 122

5.14 RSA-768 parameter sets for TWIRL . 122

8.1 Data cache parameters for popular CPU models 137

17

Part I

Hardware-based parallelization
of the Number Field Sieve

The problem of distinguishing prime numbers from composite numbers and of resolving
the latter into their prime factors is known to be one of the most important and useful
in arithmetic. It has engaged the industry and wisdom of ancient and modern geome-
ters to such an extent that it would be superfluous to discuss the problem at length.
[...]
Furthermore, the dignity of the science itself seems to require that every possible means
be explored for the solution of a problem so elegant and so celebrated.

— C. F. Gauss, 1801 [68, article 329]

18

Chapter 1

Introduction

Given any two numbers, we may by a simple and infallible process obtain their product, but it
is quite another matter when a large number is given to determine its factors. Can the reader
say what two numbers multiplied together will produce the number 8,616,460,799? I think it
is unlikely that any one but myself will ever know; for they are two large prime numbers, and
can only be rediscovered by trying in succession a long series of prime divisors until the right
one be fallen upon.

— W. S. Jevons, 1874 [94, page 141]

1.1 Overview of Part I

Part I addresses the concrete cost of integer factorization and its effect on the security of the RSA
cryptosystem. It proposes novel implementations of the Number Field Sieve factoring algorithm,
using custom-built hardware devices that achieve massive parallelism, essentially for free. These
designs feature an interplay between algorithmic, number-theoretical and technological aspects.
By devising algorithms that take advantage of certain properties of the problem and of chip man-
ufacturing technology, efficiency is increased by many orders of magnitude compared to previous
proposals. For 1024-bit composites, the resulting cost is a few million US dollars — a millionth
of previous predictions, and sufficiently practical to affect industry practice and standards (see
§6.3).

The remainder of Chapter 1 surveys the state of the art in integer factorization and its cryp-
tographic significance, and describes past approaches and pertinent works. It also recalls the
pertinent details of the Number Field Sieve algorithm, focusing on its two computationally dom-
inant stages, the sieving step and the linear algebra step.

Chapter 2 presents TWIRL, a novel special-purpose architecture for the NFS sieving step. This
device is many orders of magnitude more cost-effective than previous proposals, and brings the

19

1. Introduction 1.2. Integer factorization

sieving step for 1024-bit integers to well within the practical realm: from trillions of US$ to mere
millions

Chapter 3 addresses the NFS linear algebra step, and considers mesh-based hardware architectures
for its realization. We begin by briefly evaluating a proposal by Bernstein, showing its practical
deficiencies. We then proceed to suggest a different mesh-based algorithms and improve it in
various ways, yielding far better scalability and, once again, reducing costs to within the practical
realm — albeit with some technological reservations.

Chapter 4 describes an alternative special-purpose device for the NFS linear algebra step. Instead
of a mesh, this architecture is based on a pipelined systolic architecture reminiscent of the TWIRL
device. It resolves the technological hurdles of the previous approach, further reduces cost, and
offers advantages in simulation and verification. We also suggest a highly efficient algorithmic
fault detection scheme for the NFS linear algebra step.

Chapter 5 details our analysis of the NFS parameters that will arise when factoring 1024-bit
and 768-bit composites, and demonstrate the pi falls one may encounter when following standard
techniques. This analysis is necessary for the design and evaluation in preceding chapters. Our
analysis indeed shows that the auxiliary steps of NFS can be kept at a cost lower than that of
the two major steps addressed above — supporting the implications regarding the practicality of
breaking 1024-bit RSA keys.

Chapter 6 summarizes and discusses the results of Part I, and briefly surveys recent progress
following our publications.

1.2 Integer factorization

The problem of finding the prime factors of integers is one of the oldest problems in mathematics.
Part of its appeal, as put forth by Gauss (see page 18), lies in the elegance and simplicity of the
problem’s definition: given an integer n, find integers p, q 6= ±1 such that n = pq. Despite its
simple statement, this has proved to be one of the notoriously difficult problems in computational
number theory.1

In 1977, the factoring problem gained great significance in cryptography with the introduction
of the RSA cryptosystem [176], the first public-key encryption scheme and signature scheme
with (conjectured) super-polynomial security. In this cryptosystem, the secret key is a pair of
large primes p, q and the public key is their product n = pq; its security thus relies on the
hardness of factorization.2 Subsequently, several other public-key cryptosystems based on the
hardness of factoring were proposed (e.g., those of Rabin [172] and Paillier [164]), as well as

1For the related problem of testing whether a given integer is prime, probabilistic polynomial-time algorithms are
known for several decades [141][199][173], and the problem was completely solved by the deterministic polynomial-
time algorithm of Agrawal et al. [8].

2It is not known whether hardness of factorization suffices for the security for RSA, but for appropriate param-
eters this is conjectured to be true.

20

1. Introduction 1.2. Integer factorization

other cryptographic primitives such as the Blum-Blum-Shub pseudorandom generator [29] and
the VSH hash function [46]. To date, the hardness of factorization is one of the few plausible
hardness assumptions on which to base public-key cryptography [81], and specifically one of the
very few candidate one-way trapdoor permutations [80]. As such, it relates to deep open problems
in complexity theory and the foundations of cryptography (e.g., as posed by Impagliazzo3 [90]).

Beyond the theoretical interest, there is a practical motivation for studying the concrete hardness
of integer factorization. RSA, being the most commonly deployed public-key cryptosystem, is
ubiquitous in such diverse contexts as secure web sites employing SSL/TLS, S/MIME encrypted
e-mail, various e-commerce and banking applications, and code authentication (e.g., web applets,
software updates, and game console titles). Hence, all of these presently assume the hardness of
integer factorization for their security. As shown in this dissertation, these assumptions are far
from warranted.

Various non-trivial algorithms have been devised for integer factorization, starting with obser-
vations by Fermat in 1643 [54]. Recent decades have seen especially fruitful, with a cascade of
discovered algorithms. One line of development, seeking algorithms whose complexity depends
on the size of the composite n, includes Dixon’s algorithm, the Continued Fraction method, the
Morrison-Brillhart approach, the Quadratic Sieve, and ultimately the Number Field Sieve —
along with their many variants. The other line of development is concerned with algorithms
whose complexity (for partial factorization, i.e., finding any nontrivial factor) depends only on
the size of the smallest factor of n; these include Pollard rho, Pollard p − 1, the ultimately the
Elliptic Curve method. See the surveys of A. K. Lenstra [125] for a comprehensive survey of
modern algorithms, H. C. Williams at al. [218] for a detailed account of historical factorization
methods circa 1750–1950, and L. E. Dickson [55] for older methods.

We do not know the true computational complexity of factoring integers drawn from the distri-
butions of interest. The associated decision problem (“does n have a factor smaller than x?”)
has efficiently-verifiable witnesses (namely the factorization of n), and is thus in NP ∩ co-NP;
consequentially it is believed that factorization is not NP-hard, as that would imply a collapse
of the polynomial hierarchy. On quantum computers, the problem can be solved in polynomial
time via Shor’s algorithm [192] [193], but to date little progress has been achieved towards an
empirical quantum realization of this algorithm and verification of its scalability.4 While the
problem is widely believed to be hard, this confidence relies solely on the absence of an efficient
factoring algorithm despite centuries of research.

The best algorithm known for factoring large integers of a general form is the Number Field Sieve.
3Impagliazzo [90, §2.5] writes: “Currently, all known secure public key cryptosystems are based on variants

of RSA, Rabin, and Diffie-Hellman cryptosystems. If an efficient way of factoring integers and solving discrete
logarithms became known, then not only would the popular public key cryptosystems be broken, but there would be
no candidate for a secure public-key cryptosystem, or any real methodology for coming up with such a candidate.”
This largely still holds today, with Diffie-Hellman extended to elliptic curves and with the notable addition of
lattice-based cryptosystem such as GGH [82], Ajtai-Dwork [9] and NTRU [85] (see [174] for a partial survey and
further pointers). Alas, the latter do not presently enjoy the same level of confidence as factoring.

4The only such published experiment used a 7-qubit quantum computer to factor 15 = 3 · 5, using inherently
non-scalable nuclear magnetic resonance techniques [209].

21

1. Introduction 1.3. Empirical hardness of factorization

The (heuristic) asymptotic time and space complexities of NFS are of the form

e(c+ o(1)) (log n)1/3 (log log n)2/3

where n is the composite being factored, and the constant c depends on the complexity measure
and the variant of the algorithm (see §5.2.1.4). While this algorithm has been fruitfully employed
to many a challenging factoring problems (the record stands at 663-bit bits [15][63]), it is not
thought to be capable of tackling the factorization problems that arise in practical cryptography,
such as factoring 1024-bit RSA keys.

The remainder of this chapter will survey the Number Field Sieve algorithm, its implementations,
and concrete factorization experiments and challenges.

1.3 Empirical hardness of factorization

1.3.1 Challenges and past experiments

Factoring integers with current techniques poses significant algorithmic and engineering chal-
lenges, and involves considerable uncertainty due to aspects of the algorithm for which analysis
is lacking or not tight. Over the past decades, this has led to numerous factorization experiments
which employed the state-of-the-art in factoring algorithms and computer technology (of their
time) to tackle sample challenges. For composites of a special form suitable to the Special Number
Field Sieve, there exist natural challenges such as Fermat numbers [128]. For integers of a general
form, which are of greater cryptographic usefulness and which form our focus, it is common to
choose targets from the “RSA challenge” list of composites. This list was published by RSA
Data Security, Inc. in 1991 and revised in 2001 [177], and consists of essentially randomly-drawn
RSA composites (i.e., integers with two prime factors of similar size) whose factorization was not
known at the time of publication.5 The hardness of factoring the RSA challenge composites is
widely taken to be representative of the general factoring task for RSA composites of comparable
size.

To date, the largest completed experiment (for integers of a general form) has factored the 663-bit
composite RSA-200 by Franke et al. [15][63]. Previous records are the 640-bit composite RSA-
640 [16], the 576-bit composite RSA-576 [62] and the 530-bit composite RSA-160 [17], by the same
group. However, little information has been released about these recent experiments. The best-
documented NFS factorization experiment is that of the 512-bit composite RSA-155 [44][43];
we shall at various points rely on empirical information gleaned at that experiment (e.g., in
Chapter 5). Prior to that, various smaller composites such as RSA-140 [201] were factored via
NFS and its predecessors.6 More recently, Aoki et al. [12] revisited smaller remaining challenges
such as RSA-150 and provided statistics about their factorization via NFS.

5The process of generating the composites involved knowledge of their factorization, but according to [177], this
information (and all potential side-channel information) has been contained and destroyed.

6See e.g. [35], [44, Table 1] or [197] for a list of factoring records since 1970.

22

1. Introduction 1.3. Empirical hardness of factorization

1.3.2 1024-bit RSA and its importance

The present “holy grail” for empirical factorization are 1024-bit composites, exemplified by the
RSA-1024 challenge number. RSA keys of this size are very widely deployed, including banking
services and the overwhelming majority of secure web sites (including e-commerce hubs such as
Amazon and eBay).

Such composites have been posited to be impractical to factor (by conventional means) until 2015
at least. According to Silverman’s extrapolation using NFS asymptotics [197] (adjusted to prices
circa 2005), completing such a factorization in 1 year would require roughly US$ 1012 worth of PC
hardware. Brent [35] showed that a high-level extrapolation from past factoring records suggests
that 1024-bit composites will be factored no sooner than 2018. Accordingly, until recently a NIST
draft guideline [151] suggests 1024-bit RSA keys can be considered secure until 2015 (this was
revised [152] to 2010 after the publication of our research, and several industry standards were
likewise affected; see §6.3).

Industry leaders appear even more optimistic about the security of such keys. For example,
VeriSign Inc., the largest commercial certificate authority, has issued multiple 1024-bit root cer-
tificates that are set to expire in 2028. Even RSA Security Inc. distributes a 1024-bit certificate
authority keys valid until 2026. These certificates are built into, and trusted by, all major web
browsers.7 If these certificates are compromised prematurely, then browser SSL certificates will
become untrustworthy during the many years it would take to revoke all such certificates from
users’ computers.

Given this motivation, our main focus in the next chapters will be on the cost of factoring 1024-bit
composites, and RSA-1024 specifically. To alleviate suspicion, we have duplicated some of the
analysis in Chapter 5 using randomly drawn 1024-bit RSA composites instead of RSA-1024; no
significant difference in the behavior was detected.

1.3.3 768-bit RSA and its importance

As an intermediate and more accessible goal, and following prior literature (e.g., [197]), we shall at
times also consider RSA-768 challenge number [177], as representative of 768-bit RSA composites.
RSA keys of this size are of lesser direct practical interest, as they have been mostly phased out,
but successfully factoring them is expected to enhance our understanding of the scalability and
behavior of the NFS algorithm.

7For example, certificates named “VeriSign Class {1,2,3,4} Primary CA” in Internet Explorer 6, and
likewise certificates with “OU=VeriSign Class {1,2,3} Public Primary Certificate Authority” and “OU=RSA
Security 1024 V3” in Firefox 2.0.

23

1. Introduction 1.4. Cost measures

1.4 Cost measures

Algorithms are traditionally analyzed in terms of their time complexity (number of operations in
an abstract model, or concrete running time) and space complexity (amount of storage in some
abstract model, or circuit size in some abstract model, or the concrete construction cost of a
device). In our focus on very large scale cryptanalytic problems, however, it is often more useful
to consider the product of these two costs, known as “AT cost” (for area×time) in VLSI design.
We shall refer to this cost measure as throughput cost , to stress its motivation in measuring the
equipment cost per unit problem-solving throughput. We shall usually consider it in concrete
terms of construction cost and actual running time, e.g., measured in US$×years.

It appears that throughput cost is indeed appropriate when a large number of problems must
be solved during some long period of time while minimizing total expenses. In particular, it is
conveniently oblivious to time-space tradeoffs that do not affect that total cost. One should,
however, be wary of non-discriminating use in security assessments: an adversary in possession
of plans for a device that breaks one key per year and costs $1M to construct clearly forms a
greater menace, compared to an adversary with plans for a device that costs $1 but requires 1M
years of sequential computation per key.

The use of this cost measure in the context of integer factorization was brought to the spotlight
by Bernstein [22]. An asymptotic treatment in an abstract model, in several contexts, was given
by Wiener [217].8

When evaluating special-purpose, custom-built cryptanalytic devices, there are additional costs
to consider. Beyond the marginal cost of constructing each device, there are typically significant
Non Recurring Engineering (NRE) costs for setting up the production line of the device, e.g., for
development, creation and verification of the lithographic masks for a VLSI process. There are
also costs involved with power and cooling, physical housing, and maintenance. While these are
not our focus, we shall occasionally refer to these considerations as well.

The power and cooling costs reflect the specifics of present technology; in principle any com-
putation can be efficiently implemented using reversible gates and arbitrarily low total energy
expenditure. However, there exists a physical lower bound on the throughput cost of any fixed
algorithm, due to a trade-off between speed and total energy.9

8Notably, Wiener’s bounds assume a 3-dimensional circuit whereas the devices discussed here all rely on 2-
dimensional VLSI circuits. If considered asymptotically and adapted to 3 dimensions in the natural manner, our
devices match Wiener’s lower and upper bounds.

9Lloyd [134] shows an upper bound of 5.43 · 1050 logical operations per second per kilogram of mass, due to (a
variant of) Heisenberg’s uncertainty principle. It follows that when performing a given number of operations, the
product of mass (hence energy and cost) and time cannot be arbitrarily low.

24

1. Introduction 1.5. The Number Field Sieve algorithm

1.5 The Number Field Sieve algorithm

1.5.1 Background

The Number Field Sieve algorithm was first proposed by J. M. Pollard in 1988, for composites
of a special form (this variant is often referred to as the Special Number Field Sieve). It was
subsequently implemented, improved and extended to the general case in a series of works by A. K.
Lenstra, H. W. Lenstra, M. Manasse, C. Pomerance, J. Buhler, L. M. Adleman, P. Montgomery,
D. Coppersmith and others. The resulting algorithm is known as the General Number Field
Sieve, often abbreviated Number Field Sieve (NFS). Many additional incremental improvements
were suggested during the subsequent two decades. See [129] for an account of the dawn of the
NFS and reprints of the seminal works, and [168] for an introduction and historical context.

A full description of the Number Field Sieve taking advantage of all published techniques and
variations is rather non-trivial, and to our knowledge no such implementation presently exists.
This section describes the parts of the Number Field Sieve algorithm which are relevant to this
dissertation. Throughout the discussion, we focus on a common variant of the General Number
Field Sieve, which has been employed in many large-scale factoring experiments.

1.5.2 Notation

The following is our basic terminology and notation when discussing the Number Field Sieve.
Each of the subsequent chapters introduces its own additional local notation, for discussing ar-
chitectural parameters (Chapter 2, Chapter 3 and Chapter 4) or number-theoretical functions
and additional NFS parameters (Chapter 5). See the Index of notation on page 195.

The number of primes smaller than or equal to x is denoted by π(x).

Following Knuth and Pardo [107], we denote the prime factors of an integer z > 1 by z(1), z(2), z(3), . . .
where |z| = z(1) · z(2) · z(3) · · · and z(1) ≥ z(2) ≥ z(3) ≥ · · · are prime or 1.

Let x ∈ Z, U > 0 (a smoothness bound), V > 0 (a large prime bound) and ` a non-negative
integer. Define the following properties of integers (see also §5.2.3):

An integer z is called U -smooth if z(1) ≤ U , i.e., if all its prime factors are at most U .

More generally, z is called (U, V, `)-semismooth if z(`) ≤ V and z(`+1) ≤ U , i.e., all its prime
factors are smaller than or equal to U except for at most that are smaller than or equal to V ; the
latter are referred to as large primes.

Lastly, z is called strictly (U, V, `)-semismooth if U < z(`) ≤ V and z(`+1) ≤ U , i.e., all its prime
factors are smaller than or equal to U except for exactly ` that are smaller than or equal to V .

Let Zn
def= Z/(nZ)Zn denote the ring of integers modulo n. For a field F, Fn×m denotes the

ring of n×m matrices over F and Fn denotes the vector space of dimension n over F. Matrices
shall be denotes by capital Latin letters (e.g., A). Column vectors are written as ~v, and vector

25

1. Introduction 1.5. The Number Field Sieve algorithm

transposition is denoted ~v
t. For a vector ~v, both vi and (~v)i denote its i-th element of ~v; but ~vi

is just some other vector.

The natural logarithm is denoted by ln(x) and the logarithm to base 2 by lg(x). Let exp(x) = ex,
and let xEy denote x · 10y (e.g., 1.2E3). The cardinality of a set S is denoted |S|. We use the
standard “Big-O” notations O(x), o(x) and Õ(x), where the latter disregards polylogarithmic
factors.

In our concrete cost estimates, where not specified otherwise the “$” currency is US$ circa 2004.
In several places we will use notation such as 〈〈x〉〉 to denote concrete parameters or costs; these
will be explained in the relevant context.

1.5.3 Overview of NFS

Let n be the number to be factored. We begin by choosing two irreducible polynomials, f(X), g(X) ∈
Z[X], that have no common root over Z, but share a common root m modulo n:

f(m) ≡ g(m) ≡ 0 (mod n) .

Let α be a complex root of f , and consider the ring Z[α] of polynomials in α with integers
coefficients (it is homomorphic to Z[X]/(f(X))). Since f(α) = 0 in Z(α) and f(m) = 0 in Zn,
the mapping α 7→ m induces a ring homomorphism φ : Z[α] → Zn. Analogously, letting β be a
complex root of g, the mapping β 7→ m induces a ring homomorphism ψ : Z[β]→ Zn.

Suppose we were able to find a finite set of coprime integers, T ⊂ Z× Z, and elements γ ∈ Z[α]
and δ ∈ Z[β], such that ∏

(a,b)∈T

(a− αb) = γ2 ,
∏

(a,b)∈T

(a− βb) = δ2 . (1.1)

Applying the ring homomorphisms φ and ψ on the left and right equations respectively, this
yields: ∏

(a,b)∈T

(a−mb) = φ(γ)2 ,
∏

(a,b)∈T

(a−mb) = ψ(δ)2

over Zn. Denoting x = φ(γ) and y = ψ(δ), we have thus obtained the congruence

x2 ≡ y2 (mod n) .

If n factors as n = pq with p, q 6= ±1 (not necessarily prime) and the choice of T was sufficiently
random (in a heuristic sense), then with probability at least 1/2 one of these holds: x = y
(mod p), x = −y (mod q); or x = −y (mod p), x = y (mod q). In either of these cases,
gcd(n, x−y) is a nontrivial factor of n; otherwise we retry with a different T . Finally, if gcd(n, x−
y) or n/ gcd(n, x− y) are not prime, they can be factored recursively.

26

1. Introduction 1.5. The Number Field Sieve algorithm

The crux of this algorithm is finding a set T which fulfills (1.1), i.e., for which
∏

(a,b)∈T (a− αb)
and

∏
(a,b)∈T (a− βb) are both squares in the respective rings.

Following the approach of Morrison-Brillhart and Dixon (see [129]), this problem is reduced to two
main steps, a sieving step and a linear algebra step. These two steps dominate the computational
complexity of the NFS, and as such form our focus; we shall discuss them in detail in subsequent
sections. The overall procedure for finding T is as follows.

Fix rational smoothness and semismoothness bounds Ur and Vr respectively, with Ur ≤ Vr.
Likewise, fix algebraic smoothness and semismoothness bounds Ua and Va, with Ua ≤ Va. Fix
the number of large primes: `a on the rational side and `r on the algebraic side.

Norms. Assume for simplicity that f and g are monic and g is linear.10 For coprime integers
(a, b) with b 6= 0, we define the rational norm and algebraic norm as

Nr(a, b)
def= |a− bm| , Na(a, b) def= |bdf(a/b)| .

Sieving. In the sieving step (also called relation collection) we look for relations: pairs of coprime
integers (a, b) with b > 0 such that Nr(a, b) is (Ur, Vr, `r)-semismooth and Na(a, b) is (Ua, Va, `a)-
semismooth. If Nr(a, b) is Ur-smooth and Na(a, b) is Ua-smooth, the relation is referred to as a
full relation, otherwise it is called a partial relation.

Approximately π(min{Ur, Ua})/d! full relations are free, namely one for each prime p ≤ min(Ur, Ua)
such that f has d roots modulo p (see [129]).

For non-negative integers `′r and `′a, a non-free relation (a, b) for which Nr(a, b) is strictly
(Ur, Vr, `

′
r)-semismooth and Na(a, b) is strictly (Ua, Va, `

′
a)-semismooth is called an (`′r, `

′
a)-partial

relation. We use the standard abbreviations ff for (0,0)-partial (“full,full”) relations, fp for (0,1)-
partial (“full,partial”) relations, fp for (1,0)-partial relations and pp for (1,1)-partial relations.

On the rational side, the sieving step involves sieving with the rational factor base: the set of
primes p ≤ Ur, whose cardinality is π(Ur). On the algebraic side, sieving involves an algebraic
factor base: the set of pairs (p, r) with p ≤ Ua prime and f(r) ≡ 0 mod p, whose cardinality ≈
π(Ua). These factor bases and parameters determine the progressions and thresholds in the
sieving procedure detailed in §1.6

The part of the (a, b)-plane where relations are sought, called the sieving region, is

S def= {(a, b) | −A < a ≤ A, 0 < b ≤ B}

for appropriately chosen bounds A,B > 0.11 The ratio ω def= A/B is called the skewness ratio of
the sieving region. We denote the size of the sieving region by S

def= |S| = 2AB. For any fixed

10 For general g(x) we redefine Nr(a, b)
def
= |bdeg(g) · g(a/b)| (the above is a special case); however this general

case entails some complications that are not relevant in our context, so for simplicity we will mostly ignore this
extension, and use it only in §5.3 for the special case of non-monic linear g(X) and, implicitly, when referring to
Coppersmith’s variant in §5.2.1.3 and §5.4.2.3.

11Such a rectangular sieving region is in general not optimal: a carefully chosen and somewhat smaller region, tak-
ing into account the real roots of f , can yield the same number of relations (see [196]). For our yield computations,
the effect is minor.

27

1. Introduction 1.5. The Number Field Sieve algorithm

0 < b ≤ B, the subset
{(a, b) | −A < a ≤ A}

is called a sieve line, and the sieve line width is R def= 2A.

Cycles. A cycle is a set C of relations such that
∏

(a,b)∈C Nr(a, b) is a square times a Ur-smooth
number and, simultaneously,

∏
(a,b)∈C Na(a, b) is a square times a Ua-smooth number12. For

example, a full relation forms a cycle of length 1. Two (1,0)-partial relations whose rational
norms share a large prime can be combined into a cycle of length 2. Similarly, for two (0,1)-
partial relations (a1, b1) and (a2, b2) whose algebraic norms share the large prime p, a length 2
cycle follows if the relations correspond to the same root of f mod p, i.e., if a1/b1 ≡ a2/b2 mod p.
Longer cycles may be built by pairing matching rational large primes or matching algebraic large
primes with corresponding roots.

Combining relations into cycles. We say that a set of cycles is independent if the character-
istic vectors of the cycles (as sets of relations) are linearly independent. Various techniques can
be used to construct independent cycles from relations; see [43] for an account. The number of
constructable independent cycles of small length clearly grows as additional relations are found,
but the expected growth rate is imperfectly understood, especially when many large primes are
allowed (large `a and `r).13 In Chapter 5 we shall rely on some heuristic and experimental
estimates to address this.

Combining cycles into T . For a cycle C, define σC =
∏

(a,b)∈C(a− αb). In the number field
Q(α), the principal ideal generated by σC can be uniquely factored into a product of prime ideals:
σC =

∏
Ii

qC,i , where Ii are the prime ideals in Q(α) (in arbitrary enumeration) and the qC,i are
integers. This induces an infinite exponent vector ~qC = (qC,1, qC,2, . . .). Similarly, for any set
T ′ of cycles, the product σT =

∏
C∈T ′ σC has an exponent vector ~qT =

∏
C∈T ′ ~qC . By unique

factorization into prime ideals, σT is a square iff all the elements of ~qT are even. And if σT is a
square then the set T =

⋃
C∈T ′ C (as a union with multiplicity), fulfills the left side of (1.1). It

follows that, given many cycles, we can try fulfilling (1.1) by computing their exponent vectors
and finding a linear combination whose sum is 0 modulo 2.

Here a crucial observation is made, in order to step from number fields down to mere integers:
the factorization of the ideal generated by σC into prime ideals of Q(α) is closely related to
factorization of the integer xC =

∏
(a,b)∈C Na(a, b) into prime numbers. This follows from the

fact that Na(a, b), as defined above, is the norm of a − αb in the number field, and has useful
properties such as multiplicativity. Very roughly speaking, each prime ideal in the factorization
of the ideal generated by σC is associated with some prime factor of xC . Thus, instead of
the exponent vectors ~qC , we can consider the exponent vectors ~rC = (rC,1, rC,2, . . .) defined by

12The condition on
Q

(a,b)∈C Na(a, b) is slightly more involved, but this is inconsequential in our context; see [129]
for the exact characterization.

13For details see Lenstra and Dodson’s experiment, Lambert’s partial analysis [113], and Cavallar’s methods and
results for RSA-155 [43].

28

1. Introduction 1.5. The Number Field Sieve algorithm

factorization over the integers: xC =
∏
pi

rC,i , where pi are the prime numbers (in increasing
order) and the rC,i are integers.14

For each cycle C found earlier, we know the exponent vector ~rC . We wish to find a linear
combination of these exponent vectors with all-even entries. By definition of a cycle, we know
that all but the first π(Ua) entries of every ~rC are even, so we only have to deal with finite-length
truncated vectors containing π(Ua) entries.

Everything that has been said about also holds on the rational side, i.e., for the norm Nr(a, b)
and the number field Q(β). Since we wish to satisfy both terms in (1.1), our task thus boils down
to constructing a concatenated exponent vectors (of dimension π(Ur)+π(Ua)) for each cycle, and
then finding a linear relation modulo 2 among these cycles.

Recall that π(min{Ur, Ua})/d! full relations were obtained for free, so once sieving has created
more than Π(Ur, Ua) def= π(Ur) + π(Ua) − π(min{Ur, Ua})/d! (independent) cycles, we are guar-
anteed that a linear relation modulo 2 will exist among the corresponding vectors. Thus, the
purpose of the sieving step is to find enough relations so that we can construct approximately
Π(Ur, Ua) independent cycles.

Linear algebra. In the linear algebra step (also called the matrix step), we take the exponent
vectors (of dimension π(Ur)+π(Ua)) corresponding to Π(Ur, Ua) independent cycles, add vectors
corresponding to the free relations, and form a matrix A.15 We then seek an nonzero element in
the kernel of A (i.e., a linear relation). The result is the characteristic vector of a set T fulfilling
(1.1), from which the factorization follows with probability at least 1/2. By finding several
independent kernel elements of A, and under heuristic assumptions about the random-looking
properties of the cycles, we can complete the factorization with overwhelming probability.

Choice of polynomials. The polynomials f and g are chosen as to maximize the number
of Nr(a, b) and Na(a, b) in the sieving region that satisfy the semi-smoothness conditions. This
is determined mainly the size of the values assumed by Nr(a, b) and Na(a, b) (smaller numbers
are more likely to be semi-smooth), and by their “root properties” (see [146]). The choice of
polynomials f and g can be done by a variety of methods. The original proposal (see [129]) was
to pick m of suitable size (namely m ≈ n1/(d+1) where d ≈ (log n/ log log n)1/3 is the desired
degree of f), let g(X) = X −m, and let the coefficients of f(X) be the base-m representation
of n. Improved techniques were devised by Montgomery and Murphy (see [143], [145], [146]). At
present the best results are achieved by the unpublished method of Kleinjung [64]; see further
discussion and concrete examples in Chapter 5.

Most methods for selecting polynomials create g which is linear, in which case β (the primitive
root of g) is rational and thus so are all elements of Z[β]. We shall henceforth assume that f is of
arbitrary degree while g is linear. We shall also follow the convention of referring to operations

14This account is greatly simplified, and complications abound; see [129] for the full details. The omitted
complications do not significantly affect the subsequent discussion.

15Alas, the common NFS notations collide here: A denotes both the matrix and the boundary of sieving lines
(an integer). The two are easily disambiguated by context, so we adhere to both conventions.

29

1. Introduction 1.5. The Number Field Sieve algorithm

involving g and Z[β] as happening on the rational side, as opposed to operations involving f
and Z[α], which are said to happen on the algebraic side. While the two sides fulfill the same
role in principle, the higher degree of f and the potentially complicated structure of Z[α] on the
algebraic side (see [39]) entail some differences in parametrization and choice of sub-algorithms,
as shall be seen later.

Computing algebraic square roots. Given a set T which fulfills (1.1) for some algebraic
numbers γ2 and δ2, one can efficiently compute the square roots γ and δ by employing methods
of Couveignes [50], Montgomery and Nguyen [155].

Cofactor factorization and candidate testing. When multiple large primes are used (`′r ≥ 2
or `′a ≥ 2), the basic sieve algorithm §1.6 produces some false positives. It tests only for the
presence of a large smooth factor of Nr(a, b) or Na(a, b), but does not verify that the remaining
factors (“cofactors”) satisfy the semi-smoothness conditions. Thus, candidate (a, b) values that
passed the basic sieve undergo further filtering via suitable small-scale factoring algorithms such
as the Elliptic Curve Method (see §5.2.4.3 for additional details). Moreover, we need to factor the
smooth parts as well, in order to construct the exponent vectors (if not provided by the sieving
step in full) and to check the results of the possibly-unreliable sieving step.

1.5.4 NFS for discrete logarithms

Beyond integer factorization, another computational problem of great cryptographic significance
is that of computing discrete logarithms in certain finite groups, such as Z∗p (the multiplicative
group of GF(p)). The ideas underlying NFS have been carried over to this problem, yielding
an analogous algorithm with similar asymptotic behavior. The Number Field Sieve for discrete
logarithms was first proposed by Gordon [56], and improved by Schirokauer [182]; see [156] for a
survey.

The major computational steps in this algorithm are qualitatively similar to those of the NFS
factorization algorithm. One significant difference is that in the linear algebra step, all operations
are done over GF(q) instead of GF(2), where q is the order of the group. In typical cryptographic
applications, q is at least 1024-bits long. Field operations and storage are thus significantly more
expensive than in the case of factoring of similarly-sized composites.

1.6 The NFS sieving step

1.6.1 The task

The first major step of the NFS algorithm, which dominates the cost in practice, is the sieving
step.16 In a simplified form and after appropriate reductions [129], the sieving problem is as

16Asymptotically the cost of the two steps can be balanced by appropriate choice of trade-off parameters, but as
argued in [131], this property does not appear to hold for the problem parameters of interest.

30

1. Introduction 1.6. The NFS sieving step

follows.17

The inputs of the sieving problem are R ∈ Z (sieve line width), T > 0 (threshold) and a set of
pairs (pi, ri) where the pi are the prime numbers smaller than some factor base bound U . There
is, on average, one such pair per prime smaller than U , and thus roughly B/ lnB pairs in total.
Each pair (pi, ri) corresponds to an arithmetic progression:

Pi
def= {a : a ≡ ri (mod pi)}

We are interested in identifying the sieve locations, i.e., integers a ∈ {0, . . . , R − 1}, that are
members of many progressions Pi with large pi:

λ(a) > T where λ(a) def=
∑

i:a∈Pi

logc pi

for some small constant c.

Since we only care about the total yield of relations, the sieving step can tolerate a small fraction
(e.g., a few percents) of lost relations with little effect — a similarly moderate increase in the
sieving area will fulfill the quota.18 It is also permissible to have (infrequent) false positives, since
these will be filtered out during candidate testing. This flexibility is very useful for efficiency, since
it relaxes constraints on accuracy and fault-tolerance (unlike the strict correctness requirements
in the matrix step below). For example, we round all logarithms to the nearest integer (hence
the non-arbitrary constant c).

Out of the R sieve locations, only (6/π2)R on average are potentially useful and the rest can be
ignored (due to the requirement, in §1.5.3, that a and b are coprime).

In the NFS sieving step we have two types of sieves: rational and algebraic, corresponding to the
polynomials f and g in the higher level of the NFS algorithm (see §1.5.3). Both sieving problems
are of the above form, but differ in their factor base bounds (Ur vs. Ua), threshold T and basis of
logarithm c (typically Ua � Ur so the algebraic side entails a higher computational load.19). We
need to handle B sieve lines, and for sieve line both sieves are applied, so there are 2B sieving
instances overall.

For each sieve line, each value a that passes the threshold in both sieves implies a candidate. Each
candidate undergoes additional tests, for which it is beneficial to also know the set {i : a ∈ Pi}
(for each sieve separately). The most expensive part of these tests is cofactor factorization,
which involves factoring medium-sized integers.20 The candidates that pass the tests are called
relations. The output of the relation collection step is the list of relations and their corresponding
{i : a ∈ Pi} sets. Our goal is to find a certain number of relations, and the parameters are chosen
accordingly a priori.

17For simplicity we assume line sieving [129]. The description also applies to one (suboptimal) approach to lattice
sieving. At one point (namely §2.3.8), we thus exceed the present model in order to better address lattice sieving.)

18This is true as long as the parameters are sufficiently close to optimum; see §5.2.2.2 and §5.5.1.
19In TWIRL the rational sieve dominates the cost, due to these of cascaded sieves.
20We assume use of the “2+2 large primes” variant of the NFS [129, 127].

31

1. Introduction 1.6. The NFS sieving step

To mention typical parameters for 1024-composites (see Chapter 5), we may expect R ≈ 1015,
U ≈ 1010, and there are on the order of B ≈ 108 instances of this problem (with different
progressions and thresholds) to be solved. Thus, overall we need to check each of the 1023 sieve
locations in order to find out which are divisible by about 109 possible prime numbers — hence
the challenging computational magnitude of the problem.

1.6.2 Traditional sieving

The traditional method of performing the sieving task is, essentially, a variant of the algorithm
for finding prime integers devised by Eratosthenes of Cyrene, 276–194 BC (see [20]). It proceeds
as follows. An array of accumulators C[a] is initialized to 0. Then, the progressions Pi are
considered one by one, and for each Pi the indices a ∈ Pi are calculated and the value logc pi

is added to every such C[a]. Finally, the array is scanned to find the a values where C[a] > T .
When looking at a specific Pi its members can be enumerated very efficiently, so the amortized
cost of a logc pi contribution is low.

When this algorithm is implemented on a PC, we cannot apply it to the full range a = 0, . . . , R−1
since there would not be enough RAM to store R accumulators (and if there was, the incessant
cache misses would greatly degrade performance). Thus, the range is broken into smaller chunks,
each of which is processed as above. However, if the chunk size is not much larger than U (i.e.,
the typical period of the progressions) then most progressions make very few contributions, if
any, to each chunk; this increases the amortized cost per contribution. Thus, a huge amount of
memory is required to implement this algorithm efficiently, both for the accumulators and for
storing the list of progressions. As Bernstein [22] observed, this is inherently inefficient because
each memory bit is accessed very infrequently.

Cost for 768-bit composites. Completing the sieving for 768-bit composites in 1 year us-
ing traditional sieving has been estimated to require 90,000 PC computers with 5GB of fast
RAM each [130]. In prices circa 2003 and assuming a fivefold improvement in the relevant PC
performance criteria since [130], this would cost about US$ 13M.21

Cost for 1024-bit composites. The cost of traditional sieving for 1024-bit composites is
prohibitive, as shown in the following simple lower bound. In the algebraic (resp., rational)
sieves, on average each sieve location gets a contribution from 7 (resp., 3) progressions with odd
pi. Suppose that each such contribution takes just 1ns on average to process (in practice it
take significantly longer, due to the chunking described above and the non-local memory access
pattern). Then the total running time is (6/π2) ·R ·B · (7 + 3) · 1ns ≈ 57 million years, assuming
the same parameters as TWIRL (see §5.5). To implement this on a commodity PC computers
we would need 10GB of main memory just for storing the pairs representing the progressions,
and additional DRAM for storing the accumulators, for a total cost of about US$ 2,000 per PC
in today’s prices. Thus, the cost of employing enough PCs in parallel to complete the sieving in

21A similar figure is obtained analogously to the next paragraph when using the 768-bit parameters suggested
in Chapter 5 for line sieving instead of the extrapolated special-q sieving used in [130].

32

1. Introduction 1.6. The NFS sieving step

1 year, disregarding operational costs such as power, would be about (57 · 106) · $2,000 ≈ $1 · 1011

with these parameters.22 This lower bound is consistent with prediction by extrapolation [197],
which yields an estimate of about US$ 1012 in current terms.

1.6.3 Historical sieving devices

The sieving task used in number-theoretical algorithms (ranging from Eratosthenes’s algorithm to
finding prime to the Number Field Sieve) has a very regular structure, which can be exploited by
automated mechanical or electronic means. During the last century, severalsuch devices and been
devised and built. These first such devices were used for factorization using Fermat’s method,
where the goal of sieving is to identify squares in an arithmetic progression by testing quadratic
residuosity modulo various small primes. Later, similar sieving tasks arose in newer factoring
algorithms such as the Continued Fraction and the Quadratic Sieve. These devices all predate
the Number Field Sieve, but in principle they could be applied to it as well. In the following we
briefly survey various special-purpose sieving devices which are of historical interest. The “L/s”
value, where given, is the throughput of the machine in term of tested sieve locations per second.
For further details and resources, as well as a broader scope, see my on-line annotated taxonomy
of special-purpose cryptanalytic devices [203].

Employing mechanical devices for the sieving task was apparently first proposed by Frederick
William Lawrence in 1896 [116]. In 1912, following the publication of a French translation, three
prototype devices were independently built: by André Gérardin (the translator), by Maurice
Kraitchik, and by Pierre and Eugène Olivier Carissan (see [184]). These three devices were rough
prototypes that relied on a human observer and suffered from mechanical difficulties.

Machine á Congruences. This device, built by Eugène Olivier Carissan in 1919 [42] as an
improvement upon his brother’s earlier design, is the first known sieving machine that operated
successfully. It consists of 14 concentric brass rings, and employs electrical switches to identify
events corresponding to (likely) squares in the Fermat method.23

Lehmer’s electromechanical sieves. In the 1920’s and 1930’s, D. N. Lehmer and D. H.
Lehmer built several mechanical sieving devices, employing various approaches: bicycle chains
(1926 [117][118], 60 L/s), gears and photoelectric detectors (1932 [119][118][120], 6000 L/s) and
movie films (1936). After implementing a sieve program on the ENIAC (1946 [123]), Standards
Western Automatic Computer (SWAC) ([120], 1450 L/s), and the Illiac IV ([122]; 15 · 106 L/S),
D. H. Lehmer also built electronic sieving devices using delay lines (“DLS-127”, 1965 [121], 106

L/s), and partially built a device based on shift-register integrated circuits (“SRS-181”, 1970’s,
1.6 · 107 L/s predicted).24

22A different NFS parameter choice may somewhat reduce the cost, as may the use of special-q lattice sieving [129],
but neither is expected to dramatic increase the feasibility.

23For details see the investigative report of H. C. Williams and Shallit [184].
24See also the reviews by Lehmer [123], Patterson [165] and Stephens [200].

33

1. Introduction 1.6. The NFS sieving step

Extended Precision Operand Computer, AKA Georgia Cracker. This is a 128-bit,
parallel special-purpose computer for factoring using the Continued Fraction method, built by
Jeffrey Smith and Samuel Wagstaff in 1982–3 [198][170].

A High Performance Factoring Machine. This is a 256-bit general-purpose computer
designed by W. Rudd, D. A. Buell and D. M. Chiarull [178] to perform factorization 10 times
faster than existing general-purpose computers, with a low construction cost.

Quasimodo (“quadratic sieve motor”). This device, designed by C. Pomerance, J. W.
Smith and R. Tuler [169][168], was built but never functioned properly and was superceded by
the arrival of more efficient general-purpose computers.

UMSU, OASiS and SSU. In 1981–2, H. C. Williams and C. D. Patterson [165, §4] constructed
UMSU (“University of Manitoba Sieve Unit”), an extended variant of Lehmer’s aborted SRS-181.
It employed a hybrid approach, integrating dedicated shift-registers ICs with a general-purpose
microcomputer to sieve at 1.33 · 108 L/s. This was further enhanced by H. C. Williams and A.
Stephens, yielding OASiS (“Open Architecture Sieve System”) [200], which reached 2.15 ·108 L/s.
Subsequently, C. D. Patterson [165] designed and fabricated a VLSI sieving device with a rate of
4.22 · 109 L/s (for one full board), in which each each custom-made IC contained multiple shift
registers and the associated control logic.

Notably, most of the aforementioned devices address somewhat different sieving problems than
those that arise in NFS; in particular, they look for sieve locations that are members of some
progression (pi, ri) for every pi. That is, they compute set intersections, rather than the finer task
of logarithm-summation and threshold-comparison needed for the Number Field Sieve. Also, the
scales of the factor base (i.e., number and period of progressions) are much smaller than those
of interest for present factorization challenges. The resulting architectures are thus very different
from those we shall discuss in the following chapters, and many of the techniques introduced in
those works are not applicable or do not scale to sizes we are interested in.

1.6.4 TWINKLE

The TWINKLE design, devised by Shamir [185] and improved and analyzed by Lenstra and
Shamir [130], takes another approach to sieving by enlisting the power of modern VLSI and
opto-electric technology. Each TWINKLE device consists of a wafer containing numerous inde-
pendent cells, each in charge of a single progression Pi. After initialization the device operates
synchronously for R clock cycles, corresponding to the sieving range {0 ≤ a < R}. At clock cycle
a, the cell in charge of the progression Pi emits the value log pi iff a ∈ Pi. The values emitted
at each clock cycle are summed to obtain λ(x), and if this sum exceeds the threshold T then
the integer a is reported. This event is announced back to the cells, so that the i values of the
pertaining Pi is also reported.

The global summation is done by analog electro-optical means: in order to “emit” the value
log pi, a cell flashes an internal LED whose intensity (after appropriate filtering) is proportional to

34

1. Introduction 1.6. The NFS sieving step

log pi. A light sensor above the wafer measures the total light intensity in each clock cycle, which
is proportional to λ(a), and reports a success when this exceeds a given threshold T . The cells
themselves are implemented by simple registers and ripple adders. To support the optoelectronic
operations, it was originally proposed to implement the cells on Gallium Arsenide wafers (rather
than standard silicon wafers). The physical structure and the details of the efficient cell designs,
as well as various optimizations, are given in [185, 130]. Note that TWINKLE exchanges the
roles of space and time compared to traditional sievers:

Traditional TWINKLE
Sieve locations Space (accumulators) Time
Progressions Time Space (cells)

Cost for 768-bit composites. The cost of TWINKLE for 768-bit composites was analyzed
in [130]. It was estimated that to complete the factorization in 1 year, one can employ 2,500
TWINKLE devices (using an optimized variant of the design). However, these devices would
need to be supported by auxiliary computation that, when performed using standard PCs, would
require about 40,000 PCs with 5GB of memory each. In today’s prices, and assuming a fivefold
increase since [130] in the performance of all components, the total cost for completion in 1 year
would be on the order of US$ 8M (excluding the non-recurring R&D cost).

Notes. Despite the novel and effective use of non-electronic physical phenomena, TWINKLE
offers a relatively modest improvement over traditional sieving for large composites. TWINKLE
relies on auxiliary computers for continuously preparing and reloading its input (especially for
large composites, where there is not even room for enough cells to represent all the progressions),
and these auxiliary computers turn out to form a bottleneck.

1.6.5 FPGA-based serial sieving

Kim and Mangione-Smith [104] described a sieving device employing off-the-shelf parts, namely
Field Programmable Gate Array (FPGA) chips. The device uses classical sieving, without time-
memory reversal. By employing several FPGA chips, each connected to multiple fast SRAM
chips, it achieves a very high memory bandwidth and is subsequently claimed to be only 6 times
slower than TWINKLE for 512-bit composites. As this implementation is heavily tied to a specific
hardware platform, it is unclear how it scales to larger parallelism and larger sieving problems.

1.6.6 Mesh-based sieving

An alternative approach to highly parallel sieving hardware is the mesh-based sieving proposed
by Geiselmann and Steinwandt [74], following a related proposal by Bernstein25 [22], and subse-
quently improved in [76]. Here we only sketch the basic idea in its simplest form, and refer the
reader to [74, 76] for further details and improvements.

25This is merely hinted in [22], via the phrase “sieving via Schimmler’s algorithm”.

35

1. Introduction 1.6. The NFS sieving step

The device consists of a two-dimensional mesh of s× s nodes, with each node connected only to
its (at most) 4 neighbors.26 The nodes implement a routing network that can carry packets from
any node to any node by a series of hops between adjacent cells. The range of sieve locations
a ∈ {0, . . . , R− 1} is partitioned into segments of size s2, and each segment is handled separately
as follows.

The s2 sieve locations in the current segment are assigned to the s2 mesh modes by a bijective
mapping. In addition, the mesh contains representations of all the progressions in the factor base,
partitioned among the s2 nodes and stored by some efficient means. Each node performs two
functions. First, it scans the progressions represented within it, identifies the ones which contain
some sieve location(s) inside the current segment, and for each such case emits a corresponding
packet; the packet specifies the corresponding contribution logc pi, and the address of the mesh
node in charge of sieve location a. Each node contains an accumulator for the sieve location
a assigned to it, and for each incoming packet addressed to this node, it adds the transmitted
logcpi to its accumulator and discards the packet. Thus, once all the packets have been generated,
routed and processed, the accumulators contain the g(a) values and can be tested against the
threshold. This process is repeated segment by segment.

The original sieving-based architecture proposed in [74] was evaluated only for 512-bit composites
(in which case its cost is comparable to TWINKLE’s). It suffers from grave scalability issues that
appear to make it inapplicable to much larger composites. An improved architecture, incorporat-
ing ideas and techniques from the publications summarized in this dissertation, was subsequently
published by Geiselmann and Steinwandt [76]; see §6.3.

1.6.7 Relation collection without sieving

The task of relation collection can also be carried out more directly, without the use of a sieve. For
example, one can simply evaluate Na(a, b) and Nr(a, b) and identify smooth values using factoring
methods that are efficient for smooth integers, such as the Elliptic Curve Method. As has been
pointed out by Bernstein [22], this essentially eliminates storage costs, and is thus asymptotically
advantageous when considering throughput cost (see §1.4 and §5.2.1.4. However, it is widely
believed (with no contrary evidence) that this approach is not competitive with sieving the for
composite sizes of interest, i.e., those that are presently feasible to factor by any known algorithm.

1.7 The NFS linear algebra step

In the NFS linear algebra step, we are given a D × D matrix A over GF(2), whose columns
correspond to cycles built from the relations found in the preceding sieving step. This matrix
is large but sparse, with a non-uniform distribution of row densities. Our goal is to find a few
vectors in the kernel of A, i.e., vectors ~w such that A~w = ~0. Each such vector is the characteristic
vector of a set of cycles fulfilling (1.1).

26Higher dimensional meshes, where available, would reduce the asymptotic cost.

36

1. Introduction 1.7. The NFS linear algebra step

Typical matrix sizes we consider for 1024-bit composites are D ≈ 107 to D ≈ 1010, with column
weights on the order of 100 (see Chapter 5). These huge magnitudes exceed typical scientific
computing workloads, and raise several crucial considerations:

Scalability. One has to either devise an efficient distributed algorithm that can cope with low-
bandwidth inter-device connections, or build very dense monolithic devices capable of storing and
processing the large data sets involved.

Fault tolerance. A computation of this magnitude cannot be expected to complete without
fault, unless suitable means for error recovery are employed in software or hardware.

Parallelizing and amortizing access to data. The cost of storing the input matrix is, by
itself, very large compared to typical processing units (e.g., CPU). As observed by Bernstein [22],
it is crucial to amortize this cost by having numerous processing units that access the same
storage in parallel.

The best approaches known for solving very sparse linear systems over finite fields are the conju-
gate gradient and Lanczos methods (in particular, the block Lanczos algorithm [142, 49]), and the
Wiedemann algorithm and its variants.27 We shall focus on the latter, as the simpler structure
of its core operations makes it more suitable for hardware implementation.

1.7.1 The block Wiedemann algorithm

The block Wiedemann algorithm is based on Wiedemann’s original algorithm [216], generalized
to a parallelizable (“blocked”) variant by Coppersmith [48]. It was partially analyzed, extended
and first implemented by Kaltofen et al. [98][99], and further extended and fully analyzed by
Villard for the homogeneous [212][211] and non-homogeneous [213] cases.

The block Wiedemann algorithm is a randomized Las Vegas algorithm, i.e., the correctness of
the answer is readily verified. Its basic form is as follows. We shall be working over a finite field
GF(q), usually with q = 2. The input is a matrix A ∈ GF(q)D×D. For appropriately chosen
integers m,n, and δ

def= D/n+D/m+O(1):

1. Choose random matrices U ∈ GF(q)m×D and V ∈ GF(q)D×n. Compute V̄ = AV .

2. Compute Hi = UAiV̄ ∈ GF(q)m×n for i = 0, . . . , δ − 1.

3. Compute the generating vector polynomial of the sequence Hi, i.e.,

~g(λ) =
d∑

i=0

~giλ
i ∈ (GF(q)[λ])n

27See [113] for a unified analytic approach. Structured Gaussian elimination is used as often employed as a
preprocessing stage — see [43].

37

1. Introduction 1.7. The NFS linear algebra step

with d < D/n such that

d∑
i=0

Hi+j~gi =
d∑

i=0

UAi+j V̄ ~gi = 0 for all j ∈ {0, . . . , δ − n} . (1.2)

With high probability the left-projection by U in (1.2) does not affect the minimal recurrence
relation of the sequence, and then ~g(λ) is also a generating vector polynomial for the
sequence {AiV̄ }i:

d∑
i=0

Ai+j V̄ ~gi = 0 for all j ∈ {0, . . . , δ − n} . (1.3)

4. Let ` be the smallest non-negative integer such that ~g` 6= 0. Compute

~̂w =
d−∑̀
i=0

AiV ~g`+i .

Note that as a special case of (1.3) for j = 0:

A`+1 ~̂w =
d∑

i=`

AiAV ~gi =
d∑

i=`

AiV̄ ~gi =
d∑

i=0

AiV̄ ~gi = 0 .

Thus, if ~̂w 6= 0 (which indeed holds with high probability), for some i ∈ {0, . . . , `} and
~w = Ai ~̂w, we have ~w 6= 0 and A~w = 0.

One thus obtains, with high probability, a non-zero vector in the kernel of A. In the Number
Field Sieve we usually need several such (linearly independent) vectors, since some of them will
correspond to trivial relations among the elements of the factor base. To obtain up to n such
vectors, steps 3 and 4 can be extended by use of matrix generating polynomial [211, §3.2]. In the
general case this requires preconditioning [98][211][45].

The guarantee of high probability of success provably holds for sufficiently large m,n. Conversely,
for the case m = n = 1, corresponding to Wiedemann’s original algorithm [216], the algorithm
needs to be partially iterated multiple times, roughly doubling the work.28

1.7.2 Complexity of the block Wiedemann algorithm

The algorithm treats the matrix A as a black box, and uses it only as an operator applied to the
vector space GF(q)D by multiplication. Accordingly, the algorithm is particularly efficient when
multiplication of A by a vector can be performed quickly — as is indeed the case for the Number

28The latter is heuristic; a full analysis of this case is not known.

38

1. Introduction 1.7. The NFS linear algebra step

Field Sieve, due to the sparseness of A. Accordingly, we shall evaluate its complexity in terms
of the total number of matrix-by-vector multiplications, plus the number of auxiliary operations
over GF (q).

Step 1 requires n matrix-by-vector multiplications, and choice of (n + m)D random elements in
GF (q).

Step 2 can be performed by considering each column ~̄vj of V̄ separately. For each of j = 1, . . . , n,
and for each i = 0, . . . , δ − 1, compute Ai~̄vj through repeated multiplication by A, and take
its inner product with each of the rows of U . Overall, this requires δn = (1 + n/m)D + O(n)
matrix-by-vector multiplications and δmD = (1 + m/n)D2 + O(nD) operations in GF(q). In
practice, as a heuristic optimization the matrix U is often taken to be very sparse rather than
fully random; this makes the inner products essentially free.29

In Coppersmith’s original algorithm [48], step 3 is carried out by a heuristic generalization of
the Berlekamp-Massey algorithm [135]. Through more advanced techniques [98][211, §3], step
3 can be provably performed at a cost of O((n + m)2D log2D log logD) operations in GF(q)
using a probabilistic algorithm, or O((n+m)2(m/n)D log2((m/n)D) log logD) operations using
a deterministic algorithm.

Similarly to step 1, step 4 can be performed by considering each column ~vj of V separately. For
each of j = 1, . . . , n, and for each i = 0, . . . , δ− 1, compute Ai~vj through repeated multiplication
by A, multiply it by the scalar (~gi)j , and accumulate the result for each j. Overall, this requires
(d− `)n < D matrix-by-vector multiplications and δ(d− `)n(D + 1) = D2 +O(D) operations in
GF(q). If multiple kernel elements are needed, only the latter need to be repeated; in the case of
GF(2), our primary interest, they are trivial.

Overall, for reasonably small n,m (i.e., n,m�
√
D log2D log logD) and nontrivial matrices, the

cost of the block Wiedemann algorithm is dominated by the matrix-by-vector multiplications in
steps 1 and 3. If moreover m� n� 1, then there are roughly 2D such multiplications, divided
into 2n chains each of the form

A~vi , A
2~vi , A

3~vi , . . . , A
δ′~vi for δ′ ≈ D/n . (1.4)

Note that we compute each such chain twice, once in step 1 and again in step 3, in order to avoid
storing all the product vectors (see below).

For simplicity of calculation we shall subsequently always assume that the length δ′ of every
chain is exactly D/n. Also, for consistency with some of the published literature we shall denote
K

def= n, termed the blocking factor of the algorithm.

The non-block case. In the case m = n = 1, corresponding to Wiedemann’s original non-
block algorithm, there are approximately 3D multiplications; moreover, the process may need
to be repeated since there is a possibility of failure (when the generating polynomial of (1.2) is

29Partial justification for this practice is offered by the related variant of Villard [211, §10].

39

1. Introduction 1.7. The NFS linear algebra step

merely a factor of the minimal generating polynomial of (1.3); see [216]). Moreover, the Number
Field Sieve requires several linearly independent kernel elements: only half of the vectors will
yield a non-trivial congruence (see §1.5.3), and moreover certain NFS optimizations necessitate
discarding most of the vectors. For example, in RSA-155 [44], a total of about 10 kernel vectors
were needed. Fortunately, getting additional vectors is likely to be cheaper than getting the
first one — roughly 1/3 the cost (this is implicit in [216, Algorithm 1], taking advantage of the
aforementioned polynomial factors). As a crude approximation relying on the aforementioned
RSA-155 figure, we may expect the number of multiplications to be roughly 3 · 10

3 · 2D = 20D.

Space complexity. Apart from the matrix A, the algorithm stores only a handful of vectors
and polynomials. Note that the matrix-by-vector products (1.4) are not stored; rather, we only
store their inner products with some other vectors (step 2) or accumulate their scalar products
(step 4), and discard the intermediate results.30

Thus, storage cost is dominated by the storage requirements of the input matrix A itself.

1.7.3 The reduced task

After the above reductions and simplifications, the main task of the linear algebra step in the
Number Field Sieve can be stated simply as follows.

Given a matrix A ∈ GF(2)D×D and K vectors ~v1, . . . , ~vK ∈ GF(2)D, for K � 1, do the follow-
ing twice: perform K independent chains of D/K iterated matrix-by-vector multiplications, to
compute the vectors

A~vi , A
2~vi , A

3~vi , . . . , A
D/K~vi for i = 1, . . . ,K

and apply some simple, local functions on-the-fly to these products.

When K = 1, in the context of NFS, there are roughly 20D iterated multiplications, in one fully
sequential chain.

1.7.4 The traditional approach to the matrix step

A simple implementation of the matrix step on general-purpose computers puts a full copy of the
matrix on a single computer, and executes the multiplication chains by the standard methods for
sparse linear algebra on general-purpose computers (e.g., see Penninga [166] for details optimiza-
tions). Trivial parallelization is obtained by exploiting the blocking factor K to distribute the
load to up to K separate processors. This approach is extremely inefficient, since each computer
would hold enormous (subexponential) storage while accessing a single (constant-sized) word at
time. Even by considering just the memory bandwidth, we get a lower bound on the throughput
cost of this approach. For example, for 1024-bit composites and PCs circa 2002, we get a lower

30Indeed, had we stored the intermediate results, we could have avoided recomputing essentially the same prod-
ucts in both step 2 and step 4.

40

1. Introduction 1.7. The NFS linear algebra step

bound of 1.8 · 105 US$×years for the throughput-optimized matrix parameters of §5.4.1.2, and
3.7 · 1011 US$×years for the runtime-optimized matrix.31

For large matrices, one can distribute the matrix storage among multiple interconnected comput-
ers, and perform a joint computation via a distributed algorithm. This technique was used by
Lenstra et al. [126][24] for their implementation of NFS on a MasPar parallel computer, as well
as in many of the subsequent factorization experiments and in other contexts (see Kaltofen and
Lobo [99]). This approach scales more favorably than the trivial parallelization, both asymptot-
ically and in practice. However, performance is limited by the bandwidth of the network links
(see [35]), and most resources in the computation nodes are still severely underutilized.

1.7.5 Bernstein’s mesh-based linear algebra circuit

In 2001, Bernstein [22] made the observation that if one considers throughput cost (see §1.4)
then the cost of NFS can be reduced by appropriate parallelization. This takes advantage of the
following. The two most expensive steps of NFS have high space complexity (subexponential
in the size of the composite n), but most of this space is occupied by huge inputs that were
computed in previous steps. In conventional architectures, only a few bits of storage are accessed
by the processor at a given time, while the rest are just idly “twiddling their thumbs”. If we could
have numerous processing elements use a single copy of the input, the throughput cost would be
reduced.

Addressing the linear algebra step, Bernstein proposed an architecture based on processing nodes
connected via a mesh topology. Initially all the non-zero matrix entries, as well as a vector v, are
loaded onto the mesh, one value per node. Then, Schimmler’s mesh sorting algorithm [180] and
local operations are used to move the transform these values in order to compute the product
Av. We omit the details, as the routing-based architecture of Chapter 3 essentially supercedes
this architecture.

Asymptotically, the architecture proposed in [22] provided an asymptotic improvement, whose
magnitude depends on the method of comparison. In terms of the bit length of composites that
can be factored at a given throughput cost, Bernstein claimed an asymptotic improvement factor
of 3.01, whereas our alternative interpretation yields a more modest factor of 1.17 (see [131]).

Concretely, however, it turns out that reaping the benefits of this approach is not trivial and that
a direct implementation is impractical, as shall be seen in §3.2.

31See our publication [131] for details; there, these matrices are termed “small” and “large” respectively.

41

42

Chapter 2

The TWIRL architecture
for the NFS sieving step

 ; , ��� �� �� ��	
� ��� � ����� � ���� ���� ���� �� ��� ��� �� �� � ���� �� ��� �� ����] [.... , ���� �� ��� ��� �� �� �� �� ���
� �' � � � � ������ —

The appearance of the wheels and their work was like unto a beryl: and they four had one likeness; [...]
for the spirit of the living creature was in the wheels. — Ezekiel I 16–20 (ASV)

2.1 Overview

In this chapter we describe a new hardware implementation of the NFS sieving step which, for
pertinent problem sizes and technology, is 3-4 orders of magnitude more cost effective than the
best previously published designs (such as the optoelectronic TWINKLE and the mesh-based
sieving).

Based on a detailed analysis of all the critical components (but without an actual implementation),
we believe that the NFS sieving step for 512-bit RSA keys can be completed in less than ten
minutes by a $10K device. For 1024-bit RSA keys, analysis of the NFS parameters (backed by
experimental data where possible) suggests that the sieving step can be completed in less than a
year by a US$ 1.1M device.

This brings the NFS sieving step for 1024-bit composites to within practical reach. Combined
with the results of subsequent chapters, we will be able to conclude that 1024-bit RSA keys can
no longer be considered safe from well-funded adversaries.

Our approach is as follows. One lesson learned from Bernstein’s mesh-based circuit for the matrix
step [22] is that it is inefficient to have memory cells that are ”simply sitting around, twiddling
their thumbs” — if merely storing the input is expensive, we should utilize it efficiently by
appropriate parallelization. The proposed new device, termed TWIRL1, combines this intuition

1TWIRL stands for “The Weizmann Institute Relation Locator”

43

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

with the TWINKLE-like approach of exchanging time and space. Whereas TWINKLE tests sieve
location one by one serially, the new device handles thousands of sieve locations in parallel at
every clock cycle. The main difficulty is how to use a single copy of the input to solve many
subproblems in parallel, without collisions or long propagation delays and while maintaining
storage efficiency. We address this via a heterogeneous design that uses a variety of storage and
routing circuits and takes advantage of available technological tradeoffs.

The resulting cost estimates show that the device is not only faster, but also smaller and easier to
construct: for example, for 512-bit composites we can fit approximately 80 independent sieving
devices on a 30cm single silicon wafer, whereas each TWINKLE device requires a full GaAs wafer.
For 1024-bit composites, sieving can be performed at a surprisingly feasible cost of a few million
$US, compared to the trillions previously posited.

2.2 Basic architecture

2.2.1 Approach

We begin by reviewing TWIRL’s basic architecture, postponing the finer details to subsequent
sections. The final design will be slightly different for the rational vs. algebraic sieves (see §1.5.3);
we start by describing the rational sieve, and the alterations for the algebraic side are described
in §2.3.5.

For the sake of concreteness we provide numerical examples for a plausible choice of parameters
for 1024-bit composites. This choice will be discussed in §2.4; it is not claimed to be optimal,
and all costs should be taken as rough estimates. The concrete figures will be enclosed in double
angular brackets: 〈〈x〉〉r and 〈〈x〉〉a indicate a value x which is applicable to the algebraic and
rational sieves respectively, and 〈〈x〉〉 is applicable to both.

Recalling §1.6, we wish to solve B 〈〈≈ 2.7 · 108〉〉 pairs of instances of the sieving problem, each of
which has sieving line widthR 〈〈= 1.1 · 1015〉〉 and smoothness bound U 〈〈= 3.5 · 109〉〉r〈〈= 2.6 · 1010〉〉a.
For each instance, as input we are given arithmetic progressions Pi represented by pairs (pi, ri),
and a threshold T .

Consider first a “pipeline-of-adders TWINKLE” device that handles one sieve location per clock
cycle, like TWINKLE (see §1.6.4), but does so using a pipelined systolic chain of electronic
adders.2 Such a device would consist of a long unidirectional bus, lgT 〈〈= 10〉〉 bits wide, that
connects millions of conditional adders in series. Each conditional adder is in charge of one
progression Pi; when activated by an associated timer, it adds the value3 blog pie to the bus. At
time t, the z-th adder handles sieve location t − z. The first value to appear at the end of the
pipeline is λ(0), followed by λ(1), . . . , λ(R), one per clock cycle. See Fig. 2.1(a).

2This variant of TWINKLE was considered in [130], but deemed inferior in that context.
3blog pie denote the value logc pi for some fixed c, rounded to the nearest integer.

44

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

)(

+0(

) +0(

) +0(

) +0() +1(

) +1(

) +1(

) +1(

+1() +2(

) +2(

) +2(

) +2(

) +2(

) +1(

) +1(

) +1(

) +1(

) +1(

)

)+0t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

−3

−4

−1

−2

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

p1

p3

p5

p2

p4

p1

p3

p5

p2

p4

(a) (b)

s()−1

s()−1

s()−1

s()−1

s()−1

Figure 2.1: Flow of sieve locations through the device in (a) a chain of adders and (b) TWIRL.

We reduce the run time by a factor of s 〈〈= 4,096〉〉r〈〈= 32,768〉〉a by handling the sieving range
{0, . . . , R− 1} in chunks of length s, as follows. The bus is thickened by a factor of s to contain s
logical lines of lgT bits each. As a first approximation (which will be altered later), we may think
of it as follows: at time t, the z-th stage of the pipeline handles the sieve locations (t − z)s + i,
i ∈ {0, . . . , s− 1}. The first values to appear at the end of the pipeline are {λ(0), . . . , λ(s− 1)};
they appear simultaneously, followed by successive disjoint groups of size s, one group per clock
cycle. See Fig. 2.1(b).

Two main difficulties arise: the hardware has to work s times harder since time is compressed
by a factor of s, and the additions of blog pie corresponding to the same given progression Pi

can occur at different lines of a thick pipeline. Our goal is to achieve this parallelism without
simply duplicating all the counters and adders s times (which would keep the throughput cost
the same). We thus replace the simple TWINKLE-like cells by other units which we call stations.
Each station handles a small portion of the progressions, and its interface consists of bus input,
bus output, clock and some circuitry for loading the inputs. The stations are connected serially
in a pipeline, and at the end of the bus (i.e., at the output of the last station) we place a threshold
check unit that produces the device output.

An important observation is that the progressions have periods pi in a very large range of sizes,
and different sizes involve very different design tradeoffs. We thus partition the progressions into
three classes according to the size of their pi values, and use a different station design for each
class. In order of decreasing pi value, the classes will be called largish, smallish and tiny .4

This heterogeneous approach leads to reasonable device sizes even for 1024-bit composites, de-
spite the high parallelism: using standard CMOS VLSI technology, we can fit 〈〈4〉〉r rational-side
TWIRL devices into a single 30cm silicon wafer (whose manufacturing cost is about $5,000 in

4These are not to be confused with the “large primes” of the high-level NFS algorithm. All the primes with
which we are concerned here are below the smoothness bounds Ur or Ua respectively (see §1.5).

45

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

high volumes). Algebraic-side TWIRL devices use higher parallelism, and we fit only 〈〈1〉〉a of
them into each wafer.

The following sections describe the hardware used for each class of progressions. The preliminary
cost estimates that appear later are based on a careful analysis of all the critical components of
the design, but due to space limitations we omit the descriptions of many finer details. Some
additional issues are discussed in §2.3.

2.2.2 Largish primes

Progressions whose pi values are much larger than s emit blog pie values very seldom. For these
largish primes, defined as 〈〈pi > 5.2 · 105〉〉r 〈〈pi > 4.2 · 106〉〉a, it is beneficial to use expensive
logic circuitry that handles many progressions but allows very compact storage of each progres-
sion. A sequence of circuit elements processes these progression, computes and schedules the
corresponding contribution events, and adds them to the global bus passing through the station.

This station architecture is shown in Fig. 2.2. Each progression is represented as a progression
triplet (to be defined later) that is stored in a memory bank, using compact DRAM5 storage.
The progression triplets are periodically inspected and updated by special-purpose processors,
which identify emissions that should occur in the “near future” and create corresponding emission
triplets. The emission triplets, in turn, are passed into buffers that merge the outputs of several
processors, perform fine-tuning of the timing and create delivery pairs. Lastly, the delivery pairs
are passed to pipelined delivery lines, consisting of a chain of delivery cells which carry the
delivery pairs to the appropriate bus line and add their blog pie contribution.

2.2.2.1 Scanning the progressions

The progressions are partitioned into many 〈〈8,500〉〉r 〈〈60,000〉〉a DRAM banks, where each bank
contains some d progressions 〈〈32 ≤ d < 2.2 · 105〉〉r 〈〈32 ≤ d < 2.0 · 105〉〉a. A progression Pi is
represented by a progression triplet of the form (pi, `i, τi), where `i and τi characterize the next
element ai ∈ Pi to be emitted (which is not stored explicitly) as follows. The value τi = bai/sc is
the time when the next emission should be added to the bus, and `i = ai mod s is the number of
the corresponding bus line. A processor repeats the following operations,6 in a pipelined manner:

5DRAM (“Dynamic Random Access Memory”) stores each bit as a charge level on a capacitor. It is the densest
practical storage method available for electronic circuits, but is characterized by a high latency (often over 100
clock cycles).

6Additional logic related to reporting the sets {i : a ∈ Pi}, needed for the NFS linear algebra step, is described
in §2.3.7.

46

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

Cache

Pr
oc

es
so

r

D
R

A
M

Cache

Pr
oc

es
so

r

D
R

A
M

B
uf

fe
r

D
el

iv
er

y
lin

es

Figure 2.2: Schematic structure of a largish station

1. Read and erase the next state triplet (pi, `i, τi) from memory.

2. Send an emission triplet (blog pie, `i, τi) to a buffer connected to the processor.

3. Compute `′ ← (` + p) mod s and τ ′i ← τi + bp/sc + w, where w = 1 if `′ < ` and w = 0
otherwise.

4. Write the triplet (pi, `
′
i, τ

′
i) to memory, according to τ ′i (see §2.2.2.2 below).

We wish the emission triplet (blog pie, `i, τi) to be created slightly before time τi (earlier creation
would overload the buffers, while later creation would prevent this emission from being delivered
on time). Thus, we need the processor to always read from memory some progression triplet that
has an imminent emission. For large d, the simple approach of assigning each emission triplet to a
fixed memory address and scanning the memory cyclically would be ineffective. It would be ideal
to place the progression triplets in a priority queue indexed by τi, but it is not clear how to do so
efficiently in a standard DRAM due to its passive nature and high latency. However, by taking
advantage of the unique properties of the sieving problem we can get a good approximation, as
follows.

2.2.2.2 Progression storage

The DRAM bank is partitioned into memory slots, each of which can be empty (designated by a
special value) or contain a progression triplet. The processor reads progression triplets from these
memory slots in sequential cyclic order and at a constant rate 〈〈of one slot every 2 clock cycles〉〉.
When the processor reads a progression from a non-empty slot, it updates the progression state
as above and stores it at a different memory slot — namely, one that will be read slightly before

47

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

time τ ′i . In this way, after a short stabilization period the processor always reads triplets with
imminent emissions. In order to have (with high probability) a free memory slot within a short
distance of any slot, we increase the amount of memory 〈〈by a factor of 2〉〉; the progression is
stored at the first unoccupied slot, starting at the one that will be read at time τ ′i and going
backwards cyclically.

If there is no empty slot within 〈〈64〉〉 slots from the optimal designated address, the progression
triplet is stored at an arbitrary slot (or a dedicated overflow region) and restored to its proper
place at a later opportunity. When this happens we may miss a few emissions (depending on
the implementation) — but not the whole progression. This happens very seldom,7 and it is
permissible to miss a few candidates.

Autonomous circuitry inside the memory routes the progression triplet to the first unoccupied
position preceding the optimal one. To implement this efficiently we use a two-level memory
hierarchy which is rendered possibly by the following observation. Consider a largish processor
which is in charge of a set of d adjacent primes {pmin, . . . , pmax}. We set the size of the associated
memory to pmax/s triplet-sized words, so that triplets with pi = pmax are stored right before
the currently read slot; triplets with smaller pi are stored further back, in cyclic order. By
the density of primes, pmax − pmin ≈ d · ln(pmax). Thus triplet values are always stored at an
address that precedes the current read address by at most d · ln(pmax)/s, or slightly more due to
congestions. Since ln(pmax) ≤ ln(U) is much smaller than s, memory access always occurs at a
small window that slides at a constant rate of one memory slot every 〈〈2〉〉 clock cycles. We may
view the 〈〈8,500〉〉r 〈〈60,000〉〉a memory banks as closed rings of various sizes, with an active window
“twirling” around each ring at a constant linear velocity.

Each sliding window is handled by a fast cache based on SRAM-type memory.8 Occasionally, the
window is shifted by writing the oldest cache block to DRAM and reading the next block from
DRAM into the cache. Using an appropriate interface between the SRAM and DRAM banks
(namely, read/write of full rows), this hides the high DRAM latency and achieves very high
memory bandwidth. Also, this allows simpler and thus smaller DRAM.9 Note that cache misses
cannot occur. The only interface between the processor and memory are the operations “read
next memory slot” and “write triplet to first unoccupied memory slot before the given address”.
The logic for the latter is implemented within the cache, using auxiliary per-triplet occupancy

7For instance, in simulations for primes close to 〈〈20,000s〉〉r, the distance between the first unoccupied slot
and the ideal slot was smaller than 〈〈64〉〉r for all but 〈〈5 · 10−6〉〉r of the iterations. The probability of a random
integer x ∈ {1, . . . , x} having k factors is about (log log x)k−1/(k − 1)! log x. Since we are (implicitly) sieving over
values of size about x ≈ 〈〈1064〉〉r〈〈10101〉〉a which are “good” (i.e., semi-smooth) with probability p ≈ 〈〈6.8 · 10−5〉〉r
〈〈4.4 · 10−9〉〉a, less than 10−15/p of the good a’s have more than 35 factors; the probability of missing other good
a’s is negligible.

8SRAM (“Static Random Access Memory”) stores each bit using (typically) 6 transistors. It is characterized
by low latency but larger area per bit compared to DRAM (see Footnote 5).

9Most of the peripheral DRAM circuitry (including the refresh circuitry and column decoders) can be eliminated,
and the row decoders can be replaced by smaller stateful circuitry. Thus, the DRAM bank can be smaller than
standard designs. For the stations that handle the smaller primes in the “largish” range, we may increase the cache
size to d and eliminate the DRAM.

48

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

flags and local pipelined circuitry.10

2.2.2.3 Buffers

A buffer unit receives emission triplets from several processors in parallel, and sends delivery pairs
to several delivery lines. Its task is to convert emission triplets into delivery pairs by merging
them where appropriate, fine-tuning their timing and distributing them across the delivery lines:
for each received emission triplet of the form (blog pie, `, τ), the delivery pair (blog pie, `) should
be sent to some delivery line (depending on `) at time exactly τ .

Buffer units can be realized as follows. All incoming emission triplets are placed in a parallelized
priority queue indexed by τ , realized as a small mesh whose rows are continuously bubble-sorted
and whose columns undergo random local shuffles. Entries are injected at the top of the mesh,
and elements with small τ values “fall” to the bottom rows. The elements in the bottom rows
are tested for τ matching the current time, and the matching ones are passed to a pipelined
network that sorts them by `, merges where needed and passes them to the appropriate delivery
lines. Due to congestions some emissions may be late and thus discarded; since the inputs are
essentially random, with suitable parameters this is a rare event.

The size of the buffer depends on the typical number of time steps that an emission triplet is held
until its release time τ (which is fairly small due to the design of the processors), and on the rate
at which processors produce emission triplets 〈〈about once per 4 clock cycles〉〉.

2.2.2.4 Delivery lines

A delivery line receives delivery pairs of the form (blog pie, `) and adds each such pair to bus line
` exactly b`/kc clock cycles after its receipt. It is implemented as a one-dimensional array of cells
placed across the bus, where each cell is capable of containing one delivery pair. Here, the j-th
cell compares the ` value of its delivery pair (if any) to the constant j. In case of equality, it adds
blog pie to the bus line and discards the pair. Otherwise, it passes it to the next cell, as in a shift
register.

Overall, there are 〈〈2,100〉〉r 〈〈15,000〉〉a delivery lines in the largish stations, and they occupy a
significant portion of the device. §2.3.1 describes the use of interleaved carry-save adders to
reduce their cost, and §2.3.5 nearly eliminates them from the algebraic sieve.

2.2.2.5 Notes

In the description of the processors, DRAM and buffers, we took the τ values to be arbitrarily
large integers designating clock cycles. Actually, it suffices to maintain these values modulo some

10It needs to inspect just 〈〈64〉〉 slots, and this is easily done, e.g., using a search tree (of logarithmic depth) for
addressing, and a broadcast channel for data.

49

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

Fu
nn

el
Fu

nn
el

Fu
nn

el
Fu

nn
el

Fu
nn

el

Fu
nn

el

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Figure 2.3: Schematic structure of a smallish station

integer 〈〈2048〉〉 that upper bounds the number of clock cycles from the time a progression triplet
is read from memory to the time when it is evicted from the buffer. Thus, a progression occupies
only lgpi + 〈〈lg2048〉〉 DRAM bits for the triplet, plus lgpi bits for re-initialization (see §2.3.4).

The amortized circuit area per largish progression is Θ(s2(log s)/pi + log s + log pi).11 For fixed
s this equals Θ(1/pi + log pi), and indeed for large composites the overwhelming majority of
progressions 〈〈99.97%〉〉r 〈〈99.98%〉〉a will be handled in this manner.

2.2.3 Smallish primes

For progressions with pi close to s (〈〈256 < pi < 5.2 ·105〉〉r 〈〈256 < pi < 4.2 ·106〉〉a), each processor
can handle very few progressions because it can produce at most one emission triplet every 〈〈2〉〉
clock cycles. Thus, the amortized cost of the processor, memory control circuitry and buffers is
very high. Moreover, each such progression causes emissions so often that communicating these
emissions to distant bus lines (which is necessary if the state of each progression is maintained
at some single physical location) would involve enormous communication bandwidth. We thus
introduce a different station design to deal with the smallish primes (see Fig 2.3). The changes,
compared to the largish stations, are as follows.

2.2.3.1 Emitters and funnels

The first change is to replace the combination of the processors, memory and buffers by other
units. Delivery pairs are now created directly by emitters, which are small circuits that handle
a single progression each (as in TWINKLE). An emitter maintains the state of the progression
using internal registers, and periodically emits delivery pairs of the form (blog pie, `) which indicate

11The frequency of emissions is s/pi, and each emission occupies some delivery cell for Θ(s) clock cycles. The
last two terms are due to DRAM storage, and have very small constants.

50

2. The TWIRL architecture for the NFS sieving step 2.2. Basic architecture

that the value blog pie should be added to the `-th bus line some fixed time interval later. §2.3.2
describes a compact emitters design.

Each emitter is continuously updating its internal counters, but it creates a delivery pair only
once per roughly

√
pi (i.e., between 〈〈8〉〉r and 〈〈512〉〉r clock cycles; but see §2.2.3.2 fur further

adjustment). It would be wasteful to connect each emitter to a dedicated delivery line. This
is solved using funnels, which “compress” their sparse inputs as follows. A funnel has a large
number of input lines, connected to the outputs of many adjacent emitters; we may think of it as
receiving a sequence of one-dimensional arrays, most of whose elements are empty. The funnel
outputs a sequence of much shorter arrays, whose non-empty elements are exactly the non-empty
elements of the input array received a fixed number of clock cycle earlier. The funnel outputs
are connected to the delivery lines. §2.3.3 describes an implementation of funnels using modified
shift registers.

2.2.3.2 Duplication

The other major change is a duplication of the progression states, in order to move the sources of
the delivery pairs closer to their destination and reduce the cross-bus communication bandwidth.
Each progression Pi is handled by ni ≈ s/

√
pi independent emitters12 which are placed at regular

intervals across the bus. Accordingly we fragment the delivery lines into segments that span
s/ni ≈

√
pi bus lines each. Each emitter is connected (via a funnel) to a different segment,

and sends emissions to this segment every pi/sni ≈
√
p clock cycles. As emissions reach their

destination quicker, we can decrease the total number of delivery lines. Also, the reduction of
each emitter’s emission frequency by a factor of ni allows us to handle pi close to (or even smaller
than) s. Overall there are 〈〈501〉〉r delivery lines in the smallish stations, broken into segments of
various sizes.

2.2.3.3 Notes

Asymptotically the amortized circuit area per smallish progression is Θ((s/
√
pi + 1) (log s +

log pi)).

The term 1 is less innocuous than it appears — it hides a large constant (roughly the size of an
emitter plus the amortized funnel size), which dominates the cost for sufficiently large pi.

2.2.4 Tiny primes

For very small primes, the amortized cost of the duplicated emitters, and in particular the related
funnels, becomes too high. On the other hand, such progressions cause several emissions at every
clock cycle, so it is less important to amortize the cost of delivery lines over several progressions.

12〈〈ni = s/2
√
pi〉〉 rounded to a power of 2 (see §2.3.2), which is in the range 〈〈{2, . . . , 128}〉〉r.

51

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

E
m

itt
er

E
m

itt
er

E
m

itt
er

Figure 2.4: Schematic structure of a tiny station, for a single progression

This leads to a third station design for the tiny primes 〈〈pi < 256〉〉. While there are very few such
progressions and each corresponding blog pie contribution to the sieve locations is small, the total
contribution of such primes is significant since these contribution events happen very frequently.

Each tiny progression is handled independently, using a dedicated delivery line. The delivery
line is partitioned into segments of size somewhat smaller than pi,13 and an emitter is placed at
the input of each segment, without an intermediate funnel (see Fig 2.4). These emitters are a
degenerate form of the ones used for smallish progressions (see §2.3.2). Here we cannot interleave
the adders in delivery cells as done in largish and smallish stations, but the carry-save adders are
smaller since they only (conditionally) add the small constant blog pie. Since the area occupied by
each progression is dominated by the delivery lines, it is Θ(s) regardless of pi.

2.3 Additional design considerations

Having presented the basic architecture, we proceed to provide additional details and enhance-
ments.

2.3.1 Delivery lines

The delivery lines are used by all station types to carry delivery pairs from their source (buffer,
funnel or emitter) to their destination bus line. Their basic structure is described in §2.2.2. We
now describe methods for implementing them efficiently.

2.3.1.1 Interleaving

Most of the time the cells in a delivery line act as shift registers, and their adders are unused.
Thus, we can reduce the cost of adders and registers by dropping most registers and interleaving
the remaining, as follows. We use larger delivery cells that span r 〈〈= 4〉〉r adjacent bus lines,14

and contain an adder just for the q-th line among these, with q fixed throughout the delivery line
and incremented cyclically in the subsequent delivery lines (see Figure 2.2). As a bonus, we now
put every r adjacent delivery lines in a single bus pipeline stage, so that it contains one adder

13The segment length is the largest power of 2 smaller than pi (see §2.3.2).
14This applies only to the rational sieve, due to cascading (see §2.3.5).

52

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

per bus line. This reduces the number of bus pipelining registers by a factor of r throughout the
largish stations.

Since the emission pairs traverse the delivery lines at a rate of r lines per clock cycle, we need
to skew the space-time assignment of sieve locations so that as distance from the buffer to the
bus line increases, the “age” ba/sc of the sieve locations decreases. More explicitly: at time t,
sieve location a is handled by the b(a mod s)/rc-th cell15 of one of the r delivery lines at stage
t− ba/src − b(a mod s)/rc of the bus pipeline, if it exists.

In the largish stations, the buffer is entrusted with the role of sending delivery pairs to delivery
lines that have an adder at the appropriate bus line. An improvement by a factor of 2 is achieved
by placing the buffers at the middle of the bus, with the two halves of each delivery line directed
outwards from the buffer. In the smallish and tiny stations we do not interleave the adders: the
travel distance of delivery pairs is already lower due to emitter duplication, and we wish to avoid
the overhead of directing delivery pairs to an appropriate delivery line.16

Note that whenever we place pipelining registers on the bus, we must delay all downstream
delivery lines connected to this buffer by a clock cycle. This can be done by adding pipeline
stages at the beginning of these delivery lines.

2.3.1.2 Carry-save adders

Logically, each bus line carries a lgT 〈〈= 10〉〉-bit integer. These are encoded by a redundant
representation, as a pair of lgT -bit integers whose sum equals the sum of the blog pie contributions
so far. The additions at the delivery cells are done using carry-save adders, which have inputs
a, b, c and whose output is a representation of the sum of their inputs in the form of a pair e, f
such that e+ f = a+ b+ c. Carry-save adders are very compact and support a high clock rate,
since they do not propagate carries across more than one bit position. Their main disadvantage
is that it is inconvenient to perform other operations directly on the redundant representation,
but in our application we only need to perform a long sequence of additions followed by a single
comparison at the end. The number of bus wires is doubled, but these can be relegated to an
extra layer of metal conductors in the VLSI process; we expect the bottleneck to remain at the
logic/DRAM layer.17

To prevent wrap-around due to overflow when the sum of contributions is much larger than T ,
we slightly alter the carry-save adders by making their most significant bits “sticky”: once the
MSBs of both values in the redundant representation become 1 (in which case the sum is at least
T), further additions do not switch them back to 0.

15This is changed in §2.3.2.2.
16Still, the number of adders can be reduced by attaching a single adder to several bus lines using multiplexers.

This may impact the clock rate.
17Should this prove problematic, we can use the standard integer representation with carry-lookahead adders, at

some cost in circuit area and clock rate.

53

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

2.3.2 Implementation of emitters

The designs of smallish and tiny progressions (see §2.2.3, 2.2.4) included emitter elements. An
emitter handles a single progression Pi, and its role is to emit the delivery pairs (blog pie, `)
addressed to a certain group G of adjacent lines, ` ∈ G. This section describes our proposed
emitter implementation. For context, we first describe some less efficient designs.

2.3.2.1 Straightforward implementations

One simple implementation would be to keep a dlgpie-bit register and increment it by s modulo
pi every clock cycle. Whenever a wrap-around occurs (i.e., this progression causes an emission),
compute ` and check if ` ∈ G. Since the register must be updated within one clock cycle, this
requires an expensive carry-lookahead adder. Moreover, if s and |G| are chosen arbitrarily then
calculating ` and testing whether ` ∈ G may also be expensive. Choosing s, |G| as power of 2
reduces the costs somewhat.

A different approach would be to keep a counter that counts down the time to the next emission,
as in [185], and another register that keeps track of `. This has two variants. If the countdown is
to the next emission of this triplet regardless of its destination bus line, then these events would
occur very often and again require low-latency circuitry (also, this cannot handle pi < s). If the
countdown is to the next emission into G, we encounter the following problem: for any set G of
bus lines corresponding to adjacent residues modulo s, the intervals at which Pi has emissions
into G are irregular, and would require expensive circuitry to compute.

2.3.2.2 Line address bit reversal

To solve the last problem described above and use the second countdown-based approach, we
note the following: the assignment of sieve locations to bus lines (within a clock cycle) can be
done arbitrarily, but the partition of wires into groups G should be done according to physical
proximity. Thus, we use the following trick. Choose s = 2α and |G| = 2βi ≈ √pi, for some
integers α 〈〈= 12〉〉r〈〈= 15〉〉a and βi (where βi depends on the progression Pi). The residues modulo
s are assigned to bus lines with bit-reversed indices: sieve locations congruent to w modulo s are
handled by the bus line at physical location rev(w), where rev(·) denotes the bit-reversal of an
a-bit string.18

Consequently, the j-th emitter of the progression Pi, j ∈ {0, . . . ,2α−βi}, is in charge of the j-th
group of 2βi bus lines, i.e., it services the following sieve locations

Gi,j
def=
{
a : j · 2βi ≤ rev(a mod s) < (j + 1) · 2βi

}
.

The advantage of this choice is the following. Let ∆i
def= b2−βipic. Then:

18 Let w =
Pα−1

i=0 ci2
i for some c0, . . . , cα−1 ∈ {0,1}. Then rev(w)

def
=

Pα−1
i=0 2icα−1−i .

54

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

Lemma 1. Let Pi be a progression with period with pi > 2 and group size 2βi. Then the emissions
of Pi destined to any fixed group occur at time intervals of ∆i or ∆i + 1 cycles.

Proof. The j-th group handles sieve locations

Gi,j =
{
a :

⌊
rev(a mod 2α) / 2βi

⌋
= j
}

=
{
a : a ≡ rev(j) (mod 2α−βi)

}
.

By definition, the progression Pi contains the sieve locations

Pi = {a : a ≡ ri (mod pi)} .

Since 2α−βi and pi > 2 are coprime, by the Chinese Remainder Theorem we get that

Pi,j
def= Gi,j ∩ Pi = {a : a ≡ ci,j (mod 2α−βipi)} for some ci,j .

Thus, a pair of consecutive a1, a2 ∈ Pi,j fulfill a2 − a1 = 2α−βipi. The time difference between

the corresponding emissions is ∆′ def= ba2/sc − ba1/sc. If (a2 mod s) > (a1 mod s) then ∆′ =
b(a2 − a1)/sc = b2α−βipi/sc = ∆i, otherwise, ∆′ = d(a2 − a1)/se = ∆i + 1.

Note that ∆i ≈
√
pi , by the choice of βi. The fact that emissions into each group occur in

nearly-regular intervals of Ti block cycles (up to a correction of 1 cycle due to modulo s effect) is
exploited for efficient implementation of the emitters, as follows.

2.3.2.3 Emitter structure

In the smallish stations, each emitter consists of two counters, as follows.

• Counter A operates modulo ∆i = b2−βipic (typically 〈〈7〉〉r 〈〈5〉〉a bits), and keeps track of the
time until the next emission of this emitter. It is decremented by 1 (nearly) every clock
cycle.

• Counter B operates modulo 2βi (typically 〈〈10〉〉r 〈〈15〉〉a bits). It keeps track of the βi most
significant bits of the residue class modulo s of the sieve location corresponding to the
next emission. It is incremented by 2α−βipi mod 2βi whenever Counter A wraps around.
Whenever Counter B wraps around, Counter A is suspended for one clock cycle (this corrects
for the modulo s effect).

A delivery pair (blog pie, `) is emitted when Counter A wraps around, where blog pie is fixed for
each emitter. The target bus line ` gets βi of its bits from Counter B. The α−βi least significant
bits of ` are fixed for this emitter, and they are also fixed throughout the relevant segment of the
delivery line so there is no need to transmit them explicitly.

55

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

Figure 2.5: Schematic structure of an n-to-m funnel with n = 12, m = 4.

The physical location of the emitter is near (or underneath) the group of bus lines to which it is
attached. The counters and constants need to be set appropriately during device initialization.
Note that if the device is custom-built for a specific factorization task then the circuit size can
be reduced by hard-wiring many of these values19. The combined length of the counters is
roughly lgpi bits, and with appropriate adjustments they can be implemented using compact
ripple adders20 as in [130].

2.3.2.4 Emitters for tiny progressions

For tiny stations, we use a very similar design. The bus lines are again assigned to residues
modulo s in bit-reversed order (indeed, it would be quite expensive to reorder them). This time
we choose βi such that |G| = 2βi is the largest power of 2 that is smaller than pi. This fixes
∆i = 1, i.e., an emission occurs every one or two clock cycles. The emitter circuitry is identical
to the above, but in this case Counter A has become zero-sized (i.e., a wire), which effectively
leaves a single counter of size βi ≈ lgpi bits.

2.3.3 Implementation of funnels

The smallish stations use funnels to compact the sparse outputs of emitters before they are passed
to delivery lines (see §2.2.3). We implement these funnels as follows.

An n-to-m funnel (n�m) consists of a matrix of n columns and m rows, where each cell contains
registers for storing a single progression triplet (see Figure 2.5). At every clock cycle inputs are
fed directly into the top row, one input per column, scheduled such that the i-th element of the
t-th input array is inserted into the i-th column at time t+ i. At each clock cycle, all values are
shifted horizontally one column to the right. Also, each value is shifted one row down (to make
room for insertions at the top) if this would not overwrite another value. The t-th output array
is read off the rightmost column at time t+ n.

19For sieving the rational side of NFS, it suffices to fix the smoothness bounds. Similarly for the preprocessing
stage of Coppersmith’s Factorization Factory [47] .

20This requires insertion of small delays and tweaking the constant values.

56

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

For any m < n there is some probability of “overflow” (i.e., insertion of input value into a full
column). Assuming that each input is non-empty with some probability ν independently of the
others (ν ≈ 1/

√
pi ; see §2.2.3), the probability that a non-empty input will be lost due to overflow

is:

n∑
k=m+1

(
n

k

)
νk(1− ν)n−k(k −m)/k

We use funnels with 〈〈m = 5〉〉 rows and 〈〈n ≈ 1/ν〉〉 columns. For this choice and within the range
of smallish progressions, the above failure probability is less than 0.00011. This certainly suffices
for our application (see §1.6.1).

The above funnels have a suboptimal compression ratio n/m 〈〈≈ 1/5ν〉〉, i.e., the probability
〈〈≈ 1/5〉〉 of a funnel output value being non-empty, designated ν ′, is still rather low. We thus
feed these output into a second-level funnel 〈〈with m′ = 35, n′ = 14〉〉r, whose overflow probability
is less than 0.00016, and whose cost is amortized over many progressions. The output of the
second-level funnel is fed into the delivery lines. The combined compression ratio of the two fun-
nel levels is suboptimal only by a factor of n′/m′ν ′ 〈〈≈ 14/34 · 5 = 2〉〉, so the number of delivery
lines is twice the naive optimum. Note that, these being smallish stations, there is no further
complication due to interleaving of adders (see §2.3.1).

2.3.4 Initialization

The device initialization consists of loading the progression states and initial counter values into
all stations, and loading instructions into the bus bypass re-routing switches (after mapping out
the defects).

The progressions differ between sieving runs, but reloading the device would require significant
time (in [185] this became a bottleneck). We can avoid this by noting, as in [74], that the instances
of sieving problem that occur in the NFS are strongly related, and all that is needed is to increase
each ri value by some constant value r̃i after each run. The r̃i values can be stored compactly in
DRAM using lgpi bits per progression (this is included in our cost estimates) and the addition
can be done efficiently using on-wafer special-purpose processors. Since the interval R/s between
updates is very large, we don’t need to dedicate significant resources to performing the update
quickly. For lattice sieving the situation is somewhat different (see §2.3.8).

2.3.5 Cascading the sieves

The following modification is crucial to achieving high parallelism, and affects the high-level
architecture and physical partitioning of the device.

Recall that the instances of the sieving problem come in pairs of rational and algebraic sieves,
and we are interested in the a values that passed both sieves (see §1.6). However, the situation is

57

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

not symmetric: Ua 〈〈2.6 · 1010〉〉a is much larger than Ur 〈〈= 3.5 · 109〉〉r.21, leading to much higher
progression storage requirements on the algebraic side. Therefore, the cost of the algebraic sieves
would dominate the total cost even when s is chosen optimally for each sieve type. Moreover, for
1024-bit composites and the parameters we consider (see §2.4), we cannot make the algebraic-
side s as large as we wish because this would exceed the capacity of a single silicon wafer. The
following shows a way to address this.

Let sR and sA denote the s values of the rational and algebraic sieves respectively. The reason
we cannot increase sA and gain further “free” parallelism is that the bus becomes too wide to
fit on a silicon wafer, and the delivery lines become numerous and long (their cost increases as
Θ̃(s2)).

This cost is incurred because the bus is designed to sieve sA sieve locations per pipeline stage.
But if we first execute the rational sieve, then most sieve locations can be ruled out even before
algebraic sieving: all but a small fraction 〈〈1.7 · 10−4〉〉 of the sieve locations do not pass the
threshold in the rational sieve,22 and thus cannot form candidates regardless of their algebraic-
side quality.

Accordingly, we make the following change in the design of algebraic sieve. Instead of a wide
bus consisting of sA lines that are permanently assigned to residues modulo sA, we use a much
narrower bus consisting of only u 〈〈= 32〉〉a lines, where each line contains a pair (C,L). L =
(a mod sA) identifies the sieve location, and C is the sum of blog pie contributions to a so far. The
sieve locations are still scanned in a pipelined manner at a rate of sA locations per clock cycle,
and all delivery pairs are generated as before at the respective units.

The algebraic-side delivery lines are different: instead of being long and “dumb”, they are now
short and “smart”. When a delivery pair (blog pie, `) is generated, ` is compared to L for each of
the u lines (at the respective pipeline stage) in a single clock cycle. If a match is found, blog pie
is added to the value C of that line. Otherwise (i.e., in the overwhelming majority of cases), the
delivery pair is discarded.

At the head of the bus, the algebraic sieve accepts input pairs (0, a mod sA) corresponding to
the sieve locations a that passed the rational sieve. To achieve this we wire the outputs of
rational sieves to inputs of algebraic sieves, and operate them in a synchronized manner (with
the necessary phase shift to account for latency). Due to the mismatch in s values, we connect
sA/sB rational sieves to each algebraic sieves. Each such cluster of sA/sB + 1 sieving devices
is jointly applied to one single sieve line at a time, in a synchronized manner. To divide the
work between the multiple rational sieves, we use interleaving of sieve locations (similarly to the
bit-reversal technique of 2.3.2). With buffering to average away congestions, each rational-to-
algebraic connection transmits at most one value of size lgsR 〈〈12〉〉 bits per clock cycle — a fairly
low bandwidth requirement, which can be handled by external wires connecting separate chips.

21Ua and Ur are chosen as to produce a sufficient probability of semi-smoothness for the values over which we
are (implicitly) sieving: circa 〈〈10101〉〉a vs. circa 〈〈1064〉〉r.

22This is before the additional filtering of cofactor factorization. The fraction is slightly more when considering
the rounding inherent in blog pie and T .

58

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

This change greatly reduces the circuit area occupied by the bus wiring and delivery lines; for
our choice of parameters, those components becomes insignificant in the algebraic sieve. Also,
there is no longer need to duplicate emitters for smallish progressions (except when pi < s). This
allows us to use a large s 〈〈= 32,768〉〉a for the algebraic sieves, thereby reducing their cost to less
than that of the rational sieve (see §2.5.1). Hence, we can further increase Ua with little effect
on cost, which (due to tradeoffs in the NFS parameter choice) reduces A and B.

2.3.6 Eliminating sieve locations

In the NFS relation collection, we are only interesting in sieve locations a on the b-th sieve line
for which gcd(a′, b) = 1, where a′ = a−R/2, since other locations yield duplicate relations. The
latter are eliminated by the candidate testing, but the sieving work can be reduced by avoiding
sieve locations with c |a′, b for very small c. All major software-based sievers avoid locations with
2 |a′, b — this eliminates 25% of the sieve locations. In TWIRL we do the same: first we sieve
normally over all the odd lines, b ≡ 1(mod 2). Then we sieve over the even lines, and consider
only odd a′ values; since a progression with pi > 2 hits every pi-th odd sieve location, the only
change required is in the initial values loaded into the memories and counters. Sieving of these
odd lines takes half the time compared to even lines.

We also consider the case 3 |a′, b, similarly to the above. Combining the two, we get four types
of sieve runs: full-, half-, third- and sixth-length runs, for b mod 6 in {1,5}, {2,4}, {3} and {0}
respectively. Overall, we get a 33% time reduction, essentially for free. It is not worthwhile to
consider c |a′, b for c > 3 since the additional saving is too small to justify complication of the
control logic.

2.3.7 Testing candidates

Having computed approximations of the sum of logarithms λ(a) for each sieve location a, we need
to identify the resulting candidates, compute the corresponding sets {i : a ∈ Pi}, and perform
some additional tests (see §1.6). These are implemented as follows.

2.3.7.1 Identifying candidates

In each TWIRL device, at the end of the bus (i.e., downstream for all stations) we place an array
of comparators, one per bus line, that identify a values for which λ(a) > T . In the basic TWIRL
design, we operate a pair of sieves (one rational and one algebraic) in unison: at each clock cycle,
the sets of bus lines that passed the comparator threshold are communicated between the two
devices, and their intersection (i.e., the candidates) are identified. In the cascaded sieves variant,
only sieve locations that passed the threshold on the rational TWIRL are further processed by
the algebraic TWIRL, and thus the candidates are exactly those sieve locations that passed the
threshold in the algebraic TWIRL. The fraction of sieve locations that constitute candidates is
very small 〈〈2 · 10−11〉〉.

59

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

2.3.7.2 Finding the corresponding progressions

For each candidate we need to compute the set {i : a ∈ Pi}, separately for the rational and
algebraic sieves. From the context in the NFS algorithm it follows that the elements of this
set for which pi is relatively small can be found easily.23 It is thus sufficient to find the subset
{i : a ∈ Pi , pi is largish}, which is accomplished by having largish stations remember the pi

values of recent progressions and report them upon request.

To implement this, we add two dedicated pipelined channels passing through all the processors in
the largish stations. The lines channel , of width lgs bits, goes upstream (i.e., opposite to the flow
of values in the bus) from the threshold comparators. The divisors channel , of width lgU bits,
goes downstream. Both have a pipeline register after each processor, and both end up as outputs
of the TWIRL device. To each largish processor we attach a diary , which is a cyclic list of lgU -bit
values. Every clock cycle, the processor writes a value to its diary: if the processor inserted an
emission triplet (blog pie, `i, τi) into the buffer at this clock cycle, it writes the triple (pi, `i, τi) to
the diary; otherwise it writes a designated null value. When a candidate is identified at some
bus line `, the value ` is sent upstream through the lines channel. Whenever a processor sees an
` value on the lines channel, it inspects its diaries to see whether it made an emission that was
added to bus line ` exactly z clock cycles ago, where z is the distance (in pipeline stages) from the
processor’s output into the buffer, through the bus and threshold comparators and back to the
processor through the lines channel. This inspection is done by searching the 〈〈64〉〉 diary entries
preceding the one written z clock cycles ago for a non-null value (pi, `i) with `i = `. If such a
diary entry is found, the processor transmits pi downstream via the divisors channel (with retry
in case of collision). The probability of intermingling data belonging to different candidates is
negligible, and even then we can recover (by appropriate divisibility tests at a later stage).

In the cascaded sieves variant, the algebraic sieve records to diaries only those contributions that
were not discarded at the delivery lines. The rational diaries are rather large (〈〈13,500〉〉r entries)
since they need to keep their entries a long time — the latency z includes passing through (at
worst) all rational bus pipeline stages, all algebraic bus pipeline stages and then going upstream
through all rational stations. However, these diaries can be implemented very efficiently as DRAM
banks of a degenerate form with a fixed cyclic access order (similarly to the memory banks of the
largish stations).

2.3.7.3 Testing candidates

Given the above information, the candidates have to be further processed to account for the
various approximations and errors in sieving, and to account for the NFS “large primes” (see
§1.6). The first steps (computing the values of the polynomials, dividing out small factors and
the diary reports, and testing the size and primality of remaining cofactors) can be effectively

23Namely, by finding the small factors (using a suitable algorithm — see §1.2) of Nr(a
′, b) or Na(a

′, b) where b
is the line being sieved. This can be done at a later stage and is thus not time-critical.

60

2. The TWIRL architecture for the NFS sieving step 2.3. Additional design considerations

handled by special-purpose processors and pipelines, which are similar to the division pipeline
of [74, Section 4] except that here we have far fewer candidates (see §2.6).

2.3.7.4 Cofactor factorization

The candidates that survived the above steps (and whose cofactors were not prime or sufficiently
small) undergo cofactor factorization. This involves factorization of one (and seldom two) integers
of size at most 〈〈1 · 1024〉〉. Less than 〈〈2 · 10−11〉〉 of the sieve locations reach this stage (this takes
blog pie rounding errors into consideration), and a modern general-purpose processor can handle
each in less than 0.05 seconds. Thus, using dedicated hardware this can be performed at a small
fraction of the cost of sieving.

2.3.8 Lattice sieving

The design outlined above is motivated by NFS with line sieving, as described in §1.5.3, which
has very large sieve line width R = 2A. An important variant is NFS with “special-q” and line
sieving (see [129]), which is beneficial in terms of reducing the number of sieve locations tested.
However, lattice sieving has very short sieving lines (8192 in [44]), so the natural mapping to the
lattice problem as defined here (i.e., lattice sieving by lines) leads to values of A that are too
small.

We can adapt TWIRL to efficient lattice sieving as follows. Choose s equal to the width of the
lattice sieving region (they are of comparable magnitude); a full lattice line is handled at each
clock cycle, and R is the total number of points in the sieved lattice block. The definition (pi, ri)
is different in this case — they are now related to the vectors used in lattice sieving by vectors
(before they are lattice-reduced). The handling of modulo s wrap-around of progressions is now
somewhat more complicated, and the emission calculation logic in all station types needs to be
adapted. Note that the largish processors are essentially performing lattice sieving by vectors, as
they are “throwing” values far into the “future”, not to be seen again until their next emission
event.

Re-initialization is needed only when the special-q lattices are changed (every 8192 · 5000 sieve
locations in [44]), but it is more expensive. Given the benefits of lattice sieving, it may be
advantageous to use faster (but larger) re-initialization circuits and to increase the sieving regions
(despite the lower yield); this requires further exploration.

2.3.9 Fault tolerance

Due to its size, each TWIRL device is likely to have multiple local defects caused by imperfections
in the VLSI process. To increase the yield of good devices, we make the following adaptations.

61

2. The TWIRL architecture for the NFS sieving step 2.4. Parametrization

Table 2.1: Sieving parameters

Parameter Meaning 1024-bit 768-bit 512-bit

R = 2A Width of sieve line 1.1 · 1015 3.4 · 1013 1.8 · 1010

B Number of sieve lines 2.7 · 108 8.9 · 106 9.0 · 105

Ur Rational smoothness bound 3.5 · 109 1 · 108 1.7 · 107

Ua Algebraic smoothness bound 2.6 · 1010 1 · 109 1.7 · 107

If any component of a station is defective, we simply avoid using this station. Using a small
number of spare stations of each type (with their constants stored in reloadable latches), we can
handle the corresponding progressions.

Since our device uses an addition pipeline, it is highly sensitive to faults in the bus lines or
associated adders. To handle these, we can add a small number of spare line segments along the
bus, and logically re-route portions of bus lines through the spare segments in order to bypass
local faults. In this case, the special-purpose processors in largish stations can easily change
the bus destination addresses (i.e., ` value of emission triplets) to account for re-routing. For
smallish and tiny stations it appears harder to account for re-routing, so we just give up adding
the corresponding blog pie values; we may partially compensate by adding a small constant value
to the re-routed bus lines. Since the sieving step is intended only as a fairly crude (though highly
effective) filter, a few false-positives or false-negatives are acceptable.

2.4 Parametrization

In the following we postulate the parameters and costs of basic components, that were used to
obtain the figures in the above sections and the cost estimates in the next section.

2.4.1 NFS parameters

To predict the cost of sieving, we need to estimate the relevant NFS parameters (A, B, Ur,
Ua). The values we used are summarized in Table 2.1. The parameters for 512-bit composites
are the same as those postulated for TWINKLE [130] and appear conservative compared to
actual experiments [44].24 For 768-bit and 1024-bit composites, our parameter choice was based
on generating concrete NFS polynomials and evaluating their yield. The derivation of these
parameters is discussed at depth in Chapter 5.

Since several hardware designs [185, 130, 104, 74] were proposed for the sieving of 512-bit com-
posites, it is instructive to obtain cost estimates for TWIRL with the same problem parameters.
We thus assumed the same parameters as in [130, 74].

24A strict comparison cannot be done due to the different use of large primes and “special-q”.

62

2. The TWIRL architecture for the NFS sieving step 2.4. Parametrization

Where needed for some minor details (e.g., to verify the distribution of tiny primes), we relied
on the RSA-155 experiment [44].

2.4.2 Technology parameters

We assume hardware technology parameters which are typical of CMOS VLSI technology circa
2002–3, and are consistent with ITRS 2001 [91]: standard 30cm silicon wafers with 130nm process
technology, at an assumed cost of $5,000 per wafer. For 1024-bit and 768-bit composites we will
use DRAM-type wafers, which we assume to have a transistor density of 2.8 µm2 per transistor
(averaged over the logic area) and DRAM density of 0.2µm2 per bit (averaged over the area of
DRAM banks). For 512-bit composites we will use logic-type wafers, with transistor density of
2.38µm2 per transistor and DRAM density of 0.7µm2 per bit. The clock rate is 1GHz clock rate,
which appears realistic with judicious pipelining of the processors.25

2.5 Cost estimates

Having outlined the design and specified the problem size and technology parameters, we are ready
to estimate the full cost of a hypothetical TWIRL device. We include all of the enhancements
described in the preceding sections. While we tried to produce realistic figures, we stress that
these estimates are quite rough and rely on many approximations and assumptions. They should
only be taken to indicate the order of magnitude of the true cost. We have not done any detailed
VLSI design, let alone actual implementation.

2.5.1 Cost of sieving for 1024-bit composites

We assume the aforementioned NFS parameters and set parallelization factors of sR = 4,096 on
the rational side and sA = 32,768 for the algebraic side (using the cascaded sieves variant of
§2.3.5).

With this choice, one rational TWIRL device requires 16,000mm2 of silicon wafer area, or 1/4 of
a 30cm silicon wafer. Of this, 76% is occupied by the largish progressions (and specifically, 37%
of the device is used for the DRAM banks), 21% is used by the smallish progressions and the rest
(3%) is used by the tiny progressions. For the algebraic side we set sA = 32,768. One algebraic
TWIRL device requires 66,000mm2 of silicon wafer area — a full wafer. Of this, 94% is occupied
by the largish progressions (66% of the device is used for the DRAM banks) and 6% is used by
the smallish progressions. Additional parameters of are mentioned throughout §2.2.

The devices are assembled in clusters that consist each of 8 rational TWIRLs and 1 algebraic
TWIRL, where each rational TWIRL has a unidirectional link to the algebraic TWIRL over
which it transmits 12 bits per clock cycle. A cluster occupies three wafers: one wafer contains an

25These technology parameters correspond to the Custom-130-D and Custom-130-L setting of §3.7.1, respectively.

63

2. The TWIRL architecture for the NFS sieving step 2.5. Cost estimates

algebraic TWIRL, and each of the other two wafers contains 4 rational TWIRLs. Each cluster
handles a full sieve line in R/sA clock cycles, i.e., 33.4 seconds when clocked at 1GHz. The full
sieving involves B sieve lines, which would require 194 years when using a single cluster (after
the 33% saving of §2.3.6.) At a cost of $2.9M (assuming $5,000 per wafer), we can build 194
independent TWIRL clusters that, when run in parallel, would complete the sieving task within
1 year.

After accounting for the cost of packaging, power supply and cooling systems, adding the cost of
PCs for collecting the data and leaving a generous error margin,26 it appears realistic that all the
sieving required for factoring 1024-bit integers can be completed within 1 year by a device that
cost $10M to manufacture.27 In addition to this per-device cost, there would be an initial Non
Recurring Engineering cost on the order of $20M for design, simulation, mask creation, etc.

Further details. We have derived rough estimates for all major components of the design;
this required additional analysis, assumptions and simulation of the algorithms. Here are some
highlights, for 1024-bit composites with the choice of parameters specified throughout §2.2. A
typical largish special-purpose processor is assumed to require the area of 〈〈96,000〉〉r logic-density
transistors (including the amortized buffer area and the small amount of cache memory, about
〈〈14Kbit〉〉r, that is independent of pi). A typical emitter is assumed to require 〈〈2,037〉〉r transistors
in a smallish station (including the amortized costs of funnels), and 〈〈522〉〉r in a tiny station.
Delivery cells are assumed to require 〈〈530〉〉r transistors with interleaving (i.e., in largish stations)
and 〈〈1220〉〉r without interleaving (i.e., in smallish and tiny stations). We assume that the memory
system of §2.2.2 requires 〈〈2.5〉〉 times more area per useful bit than standard DRAM, due to the
required slack and area of the cache. We assume that bus wires don’t require wafer area apart
from their pipelining registers, due to the availability of multiple metal layers. We take the
cross-bus density of bus wires to be 〈〈0.5〉〉 bits per µm, possibly achieved by using multiple metal
layers.

Technological challenges. Since the device contains many interconnected units of non-uniform
size, designing an efficient layout (which we have not done) is a non-trivial task. However, the
number of different unit types is very small compared to designs that are commonly handled by
the VLSI industry, and there is considerable room for variations. The mostly systolic design also
enables the creation of devices which are larger than the reticle size, using multiple steps of a
single (or very few) mask set.

Yield. Using a fault-tolerant design (see §2.3.9), the yield can be made very high and functional
testing can be done at a low cost after assembly. Also, the acceptable probability of undetected
errors is much higher than that of most VLSI designs.

26It is a common rule of thumb to estimate the total cost as twice the silicon cost; to be conservative, we triple
it.

27With more modern 90nm technology this is reduced to $1.1M; see §2.5.5.

64

2. The TWIRL architecture for the NFS sieving step 2.5. Cost estimates

2.5.2 Cost of sieving for 768-bits composites

Using the aforementioned 768-bit NFS parameters, and parallelization factors of sR = 1,024 and
sA = 4,096 (cascaded), we obtain the following.

A rational sieve occupies 1,330mm2 and an algebraic sieve occupies 4,430mm2. A cluster con-
sisting of 4 rational sieves and one algebraic sieve can process a sieve line in 8.3 seconds, and 6
independent clusters can fit on a single 30cm silicon wafer.

Thus, a single wafer of TWIRL clusters can complete the sieving task within 95 days. This wafer
would cost about $5,000 to manufacture — one tenth of the RSA-768 challenge prize [177].28

2.5.3 Cost of sieving for 512-bits composites

The aforementioned 512-bit NFS parameters, assumed for compatibility with [130, 74], do not
let us favorably employ the cascaded sieves variation of §2.3.5. We thus set sA = sR = 1,024
without cascading.

A single TWIRL device would have a die size of about 800mm2, 56% of which are occupied by
largish progressions and most of the rest occupied by smallish progressions. It would process a
sieve line in 0.018 seconds, and can complete the sieving task within 6 hours.

In comparison, for the same NFS parameters TWINKLE would require 1.8 seconds per sieve
line, the FPGA-based design of [104] would require about 10 seconds and the mesh-based design
of [74] would require 0.36 seconds. To provide a fair comparison to TWINKLE and [74], we
should consider a single wafer full of TWIRL devices running in parallel. Since we can fit 79 of
them, the effective time per sieve line is 0.00022 seconds.

Thus, in factoring 512-bit composites the basic TWIRL design is about 1,600 times more cost
effective than the best previously published design [74], and 8,100 times more cost effective than
TWINKLE. Adjusting the NFS parameters to take advantage of the cascaded-sieves variant (see
§2.3.5) would further increase this gap. However, even when using the basic variant, a single
wafer of TWIRLs can complete the sieving for 512-bit composites in under 10 minutes.

2.5.4 Asymptotic behavior for larger composites

For largish progressions, the amortized cost per progression is Θ(s2(log s)/pi + log s + log pi)
with small constants (see §2.2.2). For smallish progressions, the amortized cost is Θ((s/

√
pi +

1) (log s+log pi)) with much larger constants (see §2.2.3). For a serial implementation (PC-based
or TWINKLE), the cost per progression is clearly Ω(log pi). This means that asymptotically we
can choose s = Θ̃(

√
U) to get a speed advantage of Θ̃(

√
U) over serial implementations, while

maintaining the small constants. Indeed, we can keep increasing s essentially for free until the
28Needless to say, this disregards an initial cost of about $20M. This initial cost can be significantly reduced by

using older technology, such as 0.25µm process, in exchange for some decrease in sieving throughput.

65

2. The TWIRL architecture for the NFS sieving step 2.5. Cost estimates

area of the largish processors, buffers and delivery lines becomes comparable to the area occupied
by the DRAM that holds the progression triplets.

For sufficiently large composites, it becomes beneficial to reduce the amount of DRAM used for
largish progressions by storing only the prime pi, and computing the rest of the progression triplet
values on-the-fly in the special-purpose processors (this requires computing the roots modulo pi

of the relevant NFS polynomial).

If the device would exceed the capacity of a single silicon wafer, then as long as the bus itself is
narrower than a wafer, we can (with appropriate partitioning) keep each station fully contained
in some wafer; the wafers are connected in a serial chain, with the bus passing through all of
them. Such high-bandwidth interconnects are non-trivial but feasible; the unidirectional, latency-
insensitive data flow along the bus (except for the diaries) helps in this respect.

2.5.5 Scaling with technology

In terms of data flow, TWIRL uses an enormous bandwidth both along the main pipeline (between
stations) and across it (along delivery lines). It is thus inherently a single-wafer design: if we
attempt to partition it into several chips (whether ASIC or FPGA), its performance will be greatly
reduced due to the limited throughput of the connections between the chips. Consequentially,
for 1024-bit it is presently necessary to use a sub-optimal choice of the algebraic factor base
bound Ba in order to fit all progressions into a single wafer, even when using DRAM storage.
A consequence of this is that presently, the cost of TWIRL for 1024-bit (or larger) composites
decreases faster than naively implied by technological improvement in transistor speed and size
(i.e., Moore’s law).

For example, moving from 130nm VLSI process to 90nm VLSI process the circuit area shrinks
by a factor of 4, but the cost of the device (after re-optimizing the various parameters) decreases
by a factor of 9, to just 1.1 US$×years. See §5.5.3 for further discussion.

2.6 Comparison to previous works

TWINKLE. The new device shares with TWINKLE (see §1.6.4) the property of time-space
reversal compared to traditional sieving. TWIRL is evidently much faster than TWINKLE, as the
two have comparable clock rates but the latter checks one sieve location per clock cycle whereas
the former checks thousands. None the less, TWIRL is smaller than TWINKLE — this is due
to the efficient parallelization and the use of compact DRAM storage for the largish progressions
(it so happens that DRAM cannot be efficiently implemented on GaAs wafers, which are used by
TWINKLE). We may consider using TWINKLE-like optical analog adders instead of electronic
adder pipelines, but constructing a separate optical adder for each residue class modulo s would
entail practical difficulties, and does not appear worthwhile as there are far fewer values to sum.

66

2. The TWIRL architecture for the NFS sieving step 2.6. Comparison to previous works

Relation collection without sieving. Bernstein [22] proposes to completely replace sieving
by memory-efficient smoothness testing methods, such as the Elliptic Curve Method factoring
algorithm, in order to reduces the asymptotic throughput cost of the linear algebra step. How-
ever, these asymptotic figures hide significant factors; based on current experience, for 1024-bit
composites it appears unlikely that memory-efficient smoothness testing would rival the practical
performance of traditional sieving, let alone that of TWIRL.

Mesh-based sieving. Compared to previous sieving devices, both mesh-based sieving (see
§1.6.6) and TWIRL achieve a speedup factor of Θ̃(

√
U). However, there are significant differences

in scalability and cost: TWIRL is 1,600 times more efficient for 512-bit composites, and ever more
so for bigger composites or when using the cascaded sieves variant (see §2.5.3, 2.3.5). Some reasons
for the discrepancy are as follows.29

The mesh-based sorting of [74] is effective in terms of latency, which is why it was appropriate
for the Bernstein’s matrix-step device [22] where the input to each invocation depended on the
output of the previous one. However, for sieving we care only about throughput. Disregarding
latency leads to smaller circuits and higher clock rates. For example, TWIRL’s delivery lines
perform trivial one-dimensional unidirectional routing of values of size 〈〈12+10〉〉r bits, as opposed
to complicated two-dimensional mesh sorting of progression states of size 〈〈2 · 31.7〉〉r. For the
algebraic sieves the situation is even more extreme (see §2.3.5).

In the design of [74], the state of each progression is duplicated dΘ̃(U/pi)e times (compared to
dΘ̃(

√
U/pi)e in TWIRL) or handled by other means; this greatly increases the cost. For the

primary set of design parameters suggested in [74] for factoring 512-bit numbers, 75% of the
mesh is occupied by duplicated values even though all primes smaller than 217 are handled by
other means, namely a separate division pipeline that tests potential candidates identified by
the mesh (using over 12,000 expensive integer division units). Moreover, this assumes that the
sums of blog pie contributions from the progressions with pi > 217 are sufficiently correlated with
smoothness under all progressions; it is unclear whether this assumption scales.

TWIRL’s handling of largish primes using DRAM storage greatly reduces the size of the circuit
when implemented using current VLSI technology (90 DRAM bits vs. about 2500 transistors
in [74]).

If the device must span multiple wafers, the inter-wafer bandwidth requirements of our design
are high, but still much lower than that of [74] (as long as the bus is narrower than a wafer),
and there is no algorithmic difficulty in handling the long latency of cross-wafer lines. Moreover,
connecting wafers in a chain may be easier than connecting them in a 2D mesh, especially in
regard to cooling and faults.

Other devices. All of the remaining sieving devices surveyed in §1.6 have a significantly higher
cost for 512-bit composites (where known), and their scalability (where possibly to evaluate) is
worse than the above.

29These were mostly addressed in the improved design [76] subsequent to the publication of TWIRL [187];
see §6.3.

67

68

Chapter 3

A mesh-based architecture
for the NFS linear algebra step

3.1 Overview

Turning our attention from the NFS sieving step to the other major step in the NFS algorithm,
this chapter addresses an approach to special-purpose devices for the NFS linear algebra step.
Here we are concerned with architectures based on a two-dimensional mesh or torus, realized as
electronic VLSI circuits.

We begin by evaluating such a proposal by Bernstein [22], for a simple architecture based on
mesh sorting. We show that, despite the attractive asymptotic behavior, the concrete cost of this
proposal is prohibitive.

We then present an alternative architecture based on mesh routing. The resulting design has
improved efficiency, fault tolerance and adaptivity to technological consideration. Its optimized
cost, about 67,000 times lower than that of [22]’s circuit, brings the linear algebra step to well
within practical reach for 1024-bit composites.

An alternative approach, with notable addition advantages, is portrayed in Chapter 4.

3.2 Estimating the cost of Bernstein’s circuits

We begin by concretely evaluating the cost of Bernstein’s proposed circuit [22], concluding that
its cost is prohibitive. This will motivate our alternative design in subsequent sections; moreover,
it will provide context for the identification and removal of various cost bottlenecks.

We consider the case of 1024-bit composites (see §1.3.2). To provide a best-case estimate we
choose a set of NFS parameters chosen for minimized throughput cost (in accordance with [22]’s

69

3. A mesh-based architecture for the NFS linear algebra step

3.2. Estimating the cost of Bernstein’s circuits

stated goal): the throughput-optimized matrix parameter set from §5.4.1.2. We then derive a
rough prediction of the associated costs when the mesh is implemented by custom hardware using
modern VLSI technology. In this section we use the circuit exactly as described in [22]; we assume
familiarity with that approach and refer the reader to [22] for its details. The next subsections
will describe an improved architecture, incorporating (among others) the improvements listed as
future plans in [22].

The circuits of [22] employ Wiedemann’s original algorithm [216], which is a special case of
block Wiedemann with blocking factor K=1 (see §1.7.1). Given an input consisting of a matrix
A ∈ GF(2)D×D with average column weight h and a vector ~v ∈ GF(2)D, the algorithm requires
a mesh of m ×m nodes where m2 > hD + 2D. By assumption, h ≈ 100 and D ≈ 4 · 107 so we
may choose m = 63256. To execute the sorting-based algorithm, each node consists mainly of
3 registers of

⌈
log2(4 · 107)

⌉
= 26 bits each, a 26-bit compare-exchange element (in at least half

of the nodes), and some logic for tracking the current stage of the algorithm. Input, namely the
nonzero elements of A and the initial vector ~v, is loaded just once so this can be done serially.
The mesh computes the vectors Ak~v by repeated matrix-by-vector multiplication, and following
each such multiplication it calculates the inner product ~u(Ak~v) and outputs this single bit.

In terms of transistor count, assuming 8 transistors per stored bit1, storage amounts to 624
transistors per node. Accounting for the logic for additional overheads such as a clock distribution
network, we shall assume an average of 2000 transistors per node for a total of roughly 8.0 · 1012

transistors in the mesh.

Using 130nm CMOS VLSI process on 30cm silicon wafers circa 2002 (i.e., the Custom-130-L
setting of §3.7.1), the complete mesh would occupy the area of 273 full silicon wafers.2 Optimisti-
cally assuming $5,000 per wafer, the construction cost would be US$1.4M, plus several million
US$ for the initial Non Recurring Engineering costs.

Inter-chip communication. The matter of inter-chip communication is problematic. The
mesh as a whole needs very few external lines (serial input, 1-bit output, clock, and power).
However, a chip consisting of s × s nodes has 4s − 4 nodes on its edges, and each of these
needs two 26-bit bidirectional links with its neighbor on an adjacent chip, for a total of about
2 · 2 · 26 · 4s = 416s connections. Moreover, such connections typically do not support the full
1GHz clock rate, so to achieve the necessary bandwidth we will need about 4 times as many
connections: 1664s. Standard wiring technology cannot provide such enormous density, though
emerging technologies do aim to achieve it.

For concreteness, we shall complete the evaluation using one such emerging approach. ‘Flip-chip”
technologies allow direct connections between chips that are placed face-to-face, at a density of
277 connections per mm2 (i.e., 60µs array pitch). We cut each wafer into the shape of a cross,
and arrange the wafers in a two-dimensional grid with the arms of adjacent wafers in full overlap
and facing each other. The central square of each cross-shaped wafer contains mesh nodes, and
the arms are dedicated to inter-wafer connections. Simple calculation shows that with the above

1A single-bit register (D-type edge-triggered flip-flop) in standard CMOS logic.
2See [131] for some further details.

70

3. A mesh-based architecture for the NFS linear algebra step

3.3. Basic routing-based architecture

connection density, if 40% of the (uncut) wafer area is used for mesh nodes then there is sufficient
room left for the connection pads and associated circuitry. This disregards the issues of delays
(mesh edges that cross wafer boundaries are realized by longer wires and are thus slower than the
rest), and of the defects which are bound to occur. To address these, adaptation of the algorithm
is needed.

Assuming that these technological and algorithmic issues are surmountable, the inter-wafer com-
munication entails a cost increase by a factor of about 3, to US$4.1M.

Throughput cost. According to [22, Section 4], a matrix-by-vector multiplication consists of,
essentially, three sort operations on the m×m mesh. Each sort operation takes 8m steps, where
each step consists of a compare-exchange operation between 26-bit registers of adjacent nodes.
Thus, multiplication requires 3 · 8m ≈ 1.52 · 106 steps. Assuming that each step takes a single
clock cycle at a 1GHz clock rate, we get a throughput of 659 multiplications per second.

Basically, Wiedemann’s algorithm requires 2D multiplications. Alas, the use of blocking factor
K = 1 entails additional costs that increase the number of necessary multiplications to roughly
20D (see §1.7.2). Thus, the expected total running time is roughly 20 · 4 · 107/659 ≈ 1 210 000
seconds, or 14 days. The throughput cost is thus 5.10 · 1012 US$×seconds.

If we increase the blocking factor from 1 to over 32 and handle the multiplication chains sequen-
tially on a single mesh, then only 2D multiplications are needed.3 In this case the time decreases
to 34 hours, and the throughput cost decreases to 5 · 1011 US$×seconds.

Since the device consists solely of logic circuitry that is active all the time, it would have very
high power consumption (equiv., heat dissipation) which may limit the node density and clock
rate of the device.4

3.3 Basic routing-based architecture

We proceed to present an alternative mesh-based architecture. This design performs a single
routing operation per multiplication, compared to three sorting operations (where even a single
sorting operation is slower than routing). It features a reduced cost, improved fault tolerance
and very simple local control. Moreover, its inherent flexibility allows further improvements, as
discussed in subsequent sections, yielding a total reduction in throughput cost by a factor of
about 67,000 compared to Bernstein’s circuit (as evaluated above, for 1024-bit composites). In
this section, we describe the basic approach.

For simplicity assume that each of the D columns of the matrix has weight exactly h (here
h = 100), and that the nonzero elements of A are uniformly distributed (both assumptions can
be easily relaxed, as done in §4.2.4). Let m =

√
D · h. We divide the m×m mesh into D blocks of

3[22] considers this but claims that it will not change the cost of computation; that is true only up to constant
factors.

4Similar considerations arose, and were addressed, for TWINKLE [130].

71

3. A mesh-based architecture for the NFS linear algebra step

3.3. Basic routing-based architecture

size
√
h×
√
h. Let Si denote the i-th block in row-major order (i ∈ {1, . . . , D}), and let ti denote

the node in the upper left corner of Si. We say that ti is the target of the value i. Each node
holds two log2D-bit values, Q[i] and R[i]. Each target node ti also contains a single-bit value
P [i]. For repeated multiplication of A and ~v, the mesh is initialized as follows: the i-th entry of
~v is loaded into P [i], and the row indices of the nonzero elements in column i ∈ {1, . . . , D} of A
are stored (in arbitrary order) in the Q[·] of the nodes in Si. Each multiplication is performed
thus:

1. For all i, broadcast the value of P [i] from ti to the rest of the nodes in Si (this can be
accomplished in 2

√
h− 2 steps).

2. For all i and every node j in Si: if P [i] = 1 then R[j] ← Q[j], else R[j] ← nil (where nil
is some distinguished value outside {1, . . . , D}).

3. P [i]← 0 for all i

4. Invoke a mesh-based packet routing algorithm on the R[·], such that each non-nil value
R[j] is routed to its target node tR[j]. Each time a value i arrives at its target ti, discard it
and flip P [i].

After these steps, P [·] contain the result of the multiplication, and the mesh is ready for the next
multiplication. As before, in the inner product computation stage of the Wiedemann algorithm,
we need only compute ~uAk~v for some vector ~u, so we load the i-th coordinate of ~u into node
ti during initialization, and compute the single-bit result ~uAk~v inside the mesh during the next
multiplication.

A physical realization of the mesh will contain many local faults (especially for devices that are
wafer-scale or larger, as discussed below). In the routing-based mesh, we can handle local defects
by algorithmic means as follows. Each node shall contain 4 additional state bits, indicating
whether each of its 4 neighbors is “disabled”. These bits are loaded during device initialization,
after mapping out the defects. The compare-exchange logic is augmented such that if node i has
a “disabled” neighbor in direction ∆ then i never performs an exchange in that direction, but
always performs an unconditional exchange in the two directions orthogonal to ∆. This allows us
to “close off” arbitrary rectangular regions of the mesh, such that values that reach a “closed-off”
region from outside are routed along its perimeter (clockwise or anti-clockwise, depending on the
parity of their arrival time and place). We add a few spare nodes to the mesh, and manipulate
the mesh inputs such that the spare effectively replace the nodes of the in closed-off regions. We
conjecture that the local disturbance caused by a few small closed-off regions will not have a
significant effect on the routing performance.

Going back to the cost evaluation, we see that replacing the sorting-based mesh with a routing-
based mesh reduces time by a factor of 3 · 8/2 = 12. Also, note that the Q[·] values are used
just once per multiplication, and can thus be stored in slower DRAM-type cells in the vicinity
of the node. DRAM cells are much smaller than edge-triggered flip-flops, since they require only

72

3. A mesh-based architecture for the NFS linear algebra step 3.4. Choice of routing algorithm

one transistor and one capacitor per bit. Moreover, the regular structure of DRAM banks allows
for very dense packing.5 For simplicity, we ignore the circuitry needed to retrieve the values
from DRAM — this can be done cheaply by temporarily wiring chains of adjacent R[·] into shift
registers. In terms of circuit size, we effectively eliminate two of the three large registers per node,
and some associated logic, so the routing-based mesh is about 3 times cheaper to manufacture.

Thus far, we gain a reduction of a factor 3 · 12 = 36 in the throughput cost compared to the
sorting-based approach. Additional gains will be described in §3.5 and §3.6.

3.4 Choice of routing algorithm

3.4.1 Criteria and alternatives

The above leaves open the choice of a routing algorithm. Many applicable candidates exist6.
However, to minimize hardware cost, we focus our attention on algorithms for a mesh topology,
under the restrictive one-packet communication model7, as defined by Schnorr and Shamir [183],
in which at each step every node holds at most one packet, and the only operation allowed is a
local compare-and-exchange of packets between neighboring nodes. Moreover, we seek a simple,
periodic schedule (cf. Kuty lowski et al. [112]). These constraints are are crucial for compactness
and feasibility of the circuit: maximal locality of wiring (and hence scalability), absence of storage
buffers, and simple control logic.

The above model rules out most known algorithms. For example, the time-optimal bounded-
queue MIMD algorithm of Leighton et al. [124], as well as its refinements (see [84, §3.1]), perform
simultaneous communication along all edges and employ buffers. Similarly, in the hot-potato
routing model , time-optimal algorithms are known for the torus (Feige et al. [61]) and mesh
(Kaklamanis et al. [96]), but such algorithms communicate on all edges at each step, and re-
quire deep high-latency logic (even when the one-pass property of [61] holds). Note that in our
architecture the same routing problem arises repeatedly, and thus the off-line routing model is
in principle applicable; however, we are not aware of a satisfactory solution for a succinct local
representation of the precomputed routing schedule.

Since our routing task represents addition in GF(2), the routing problem has the following un-
usual property: pairwise packet annihilation is allowed. That is, pairs of packets with identical
destinations may be “canceled out” without affecting the result of the computation. This re-
laxation can greatly reduce the congestion caused by multiple packets converging to the same
destination, and invalidates many lower-bound proofs.

We thus suggest a new routing algorithm, which fits in the desired model and whose empirical
properties are essentially optimal.

5For example, using the Custom-130-L setting of §3.7.1, in a large banks of embedded DRAM (which are shared
by many nodes in their vicinity), the amortized chip area per DRAM bit is about 0.7µm2, compared to 2.38µm2

per transistor or 19µm2 per flip-flop.
6See Grammatikakis et al. [84] for a (slightly outdated) survey.
7The terminology follows Sibeyn [194].

73

3. A mesh-based architecture for the NFS linear algebra step 3.4. Choice of routing algorithm

3.4.2 Clockwise transposition routing

The algorithm, which we call clockwise transposition routing, has an exceptionally simple control
structure which consists of repeating 4 steps. Each step involves compare-exchange operations
on pairs of neighboring nodes, such that the exchange is performed iff it reduces the distance-to-
target of the non-nil value (out of at most 2) that is farthest from its target along the relevant
direction.

Formally, the compare-exchange is defined as follows. Consider adjacent cells at columns j, j+ 1
which hold packets destined to columns j0, j1 respectively (either of which may be nil if the
corresponding cell is empty). The exchange is performed if one of the following holds:

• Single packet: j1 = nil and j0 > j , or j0 = nil and j1 < j + 1.

• Farthest first along compared direction: j0, j1 6= nil and j0 ≥ j1.

The analogous rule holds for packets destined to vertically adjacent cells. When a packet reaches
its destination, it is consumed (removed from the mesh) by flipping the value of the target’s P [i]
register.

In addition, we use the following rule, justified by the modulo 2 arithmetics: whenever two
identical packets are compared, both are annihilated.8 The schedule of the compare-exchange
operations is as follows:

• In step t ≡ 0 (mod 4), for every column j and odd row i, compare the cell at (i, j) to the
cell at (i− 1, j), i.e., above it (if any).

• In step t ≡ 1 (mod 4), for every row i and odd column j, compare the cell at (i, j) to the
cell at (i, j + 1), i.e., to its right (if any).

• In step t ≡ 2 (mod 4), for every column j and odd row i, compare the cell at (i, j) to the
cell at (i+ 1, j), i.e., below it (if any).

• In step t ≡ 3 (mod 4), for every row i and odd column j, compare the cell at (i, j) to the
cell at (i, j − 1), i.e., to its left (if any).

Note that each cell performs compare-exchange with its 4 neighbors in cyclic clockwise or anti-
clockwise order, where the direction and phase depend on its location; hence the name clockwise
transposition routing . This schedule can be implemented in a pipelined fashion by interleaving 4
routing operations, thereby eliminating the cost of state-keeping and control.

Due to the simplicity and locality of all operations and their schedule, clockwise transposition
routing is a very attractive choice for the NFS linear algebra step implementation in special-
purpose hardware.

8With a blocking factor K > 1, as used below, each packet contains a payload of a vector over GF(2) and the
packets are merged by adding (XORing) their payloads rather than being deleted.

74

3. A mesh-based architecture for the NFS linear algebra step 3.4. Choice of routing algorithm

While no theoretical analysis of this algorithm’s performance is known, experimentally its average-
case performance appears close to optimal: for randomly filled m×m meshes, and m sufficiently
large, the running time of the algorithm seems to be close to the trivial lower bound 2m− 2 with
overwhelming probability. We have simulated the algorithm on numerous inputs of sizes up to
13 000× 13 000, drawn from a distribution mimicking that of the meshes arising in NFS (as well
as the simple distribution that puts a random value in every node). In all such runs (except for
very small meshes), we have not observed even a single case where the running time exceeded
2m steps, which is just 2 steps from optimal; some typical simulations are demonstrated at [202].
However, it is known to livelock on certain pathological inputs as explained below.

This algorithm is a generalization of odd-even transposition sort, with a schedule that is identical
to the “2D-bubblesort” algorithm of Ierardi [89] but with different compare-exchange elements.
The change from sorting to routing is indeed quite beneficial, as [89] shows that 2D-bubblesort is
considerably slower than the observed performance of our clockwise transposition routing. The
new algorithm appears to be much faster than the 8m sorting algorithm (due to Schimmler [180])
used by Bernstein [22], and its local control is very simple compared to the complicated recursive
algorithms of Schnorr and Shamir [183] that achieve the 3m-step lower bound on mesh sort-
ing. Despite the apparent simplicity, the algorithm is very sensitive to the rule and schedule
of the compare-exchange elements; many apparently innocuous changes cause it to misbehave
dramatically (in part, analogously to the cases studied in [89]). For example, changing the
compare-exchange rule from “farthest-first” to “nearest-first” leads to frequent deadlocks.

3.4.3 Pathologies

While the above algorithm is highly attractive in terms of performance, it eventually turned out
to be incomplete — in the sense of having livelock configurations for which it never terminates
(i.e., it does not deliver all packets in finite time). The simplest example is “rotation” of the
4× 4 mesh, defined as follows (the matrix entries give the row and column indices of the packet’s
target):

(3,0) (2,0) (1,0) (0,0)
(3,1) (2,1) (1,1) (0,1)
(3,2) (2,2) (1,2) (0,2)
(3,3) (2,3) (1,3) (0,3)

On this input, the compare-exchange rule maintains the following invariant: in each row all
packets contain the same destination column, and vice versa. Hence the exchange will always be
performed. We can thus easily track each packet and see that it never reaches its destination.
Indeed, the original state is restored after 16 steps.

More generally, we can define an m ×m “rotation” as the routing problem in which the packet
initially at (i, j) is destined to (m − 1 − j, i). Then for m which is a multiple of 4, clockwise
transposition routing will enter a loop of length 4m.

One may wonder why these livelocks failed to occur in our numerous computer experiments.
Intuitively, this can be explained as follows. All known livelock configurations are unstable, in

75

3. A mesh-based architecture for the NFS linear algebra step 3.5. Improvements

the sense that when they are embedded in a larger mesh, interaction with a packet “passing by” is
likely to break their symmetries. Moreover, the observed livelock configurations cannot “travel”
in a larger mesh — the constituent packets and their destinations must be very close to begin
with. Thus, we may expect that in a large mesh there is a low probability that a local livelock
configuration will occur and survive.

In addition to livelocks, there are pathological inputs that do terminate but take significantly
more than 2m steps; one example is the “transpose” routing problem, where for every i, j the
packet initially at (i, j) is destined to (j, i) (see [202]).9

A full theoretical characterization of these pathologies and their probability of occurrence, as well
as finding an equally efficient algorithm that avoids them, remains an open problem.

Addressing pathologies. In light of the above, this algorithm is of limited use as a general-
purpose routing algorithm. However, in our setting it performs exceptionally well and the patholo-
gies are so rare as to never occur in extensive simulation. Since (in the case of K > 1) we perform
the same few routing operations repeatedly with different payloads, one can simply verify before-
hand that these specific inputs are not pathological (and perturb the matrix by permutation if
they are). Moreover, in [70][73] we describe an efficient way to detect pathologies (should they
occur), and resolve them using a negligible amount of additional circuitry. Lastly, if pathologies
occur sufficiently seldom, we can simply assume that the routing has finished within some time
bound close to the optimum, and apply the fault detection method of §4.3 to catch and recover
from violations of this assumption.

3.5 Improvements

We now tweak the routing-based circuit design to gain additional cost reductions. Compared to
the sorting-based design (see §3.2), these will yield a (constant-factor) improvement by several
orders of magnitudes. Moreover, it shows that even for 1024-bit composites, the cost of massive
computational parallelization can be made negligible compared to the cost of the RAM needed
to store the input, and thus the speed advantage is gained essentially for free.

Increased target density. The first improvement follows from increasing the density of targets.
Let ρ denote the average number of P [·] registers per node. In the above scheme, ρ = h−1 ≈ 1/100.
The total number of P [·] registers is fixed at D, so if we increase ρ the number of mesh nodes
decreases by hρ. However, we no longer have enough mesh nodes to route all the hD nonzero
entries of A simultaneously. We address this by partially serializing the routing process, as follows.
Instead of storing one matrix entry Q[·] per node, we store hρ such values per node: for ρ ≥ 1,
each node j is “in charge” of a set of ρ matrix columns Cj = {cj,1, . . . , cj,ρ}, in the sense that node
j contains the registers P [cj,1], . . . , P [cj,ρ], and the nonzero elements of A in columns cj,1, . . . , cj,ρ.
To carry out a matrix-by-vector multiplication we perform hρ iterations, where each iteration

9This test case was suggested to us by Uriel Feige.

76

3. A mesh-based architecture for the NFS linear algebra step 3.5. Improvements

consists of retrieving the next such nonzero element (or skipping it, depending on the result of
the previous multiplication) and then performing clockwise transposition routing as before.

Blocking. The second improvement follows from using block Wiedemann with a blocking factor
K � 1 (see §1.7.1). Besides reducing the number of multiplications by a factor of roughly 10
(see §1.7.1, §3.2), this produces an opportunity for amortizing the cost of routing, as follows.
Recall that in block Wiedemann, we need to (twice) perform K multiplication chains of the form
Ak~vi, for i = 1, . . . ,K and k = 1, . . . , D/K. The idea is to perform several chains in parallel
on a single mesh, reusing most resources (in particular, the storage taken by A). For simplicity,
we will consider handling all K chains on one mesh. In the routing-based circuits described so
far, each node emitted at most one message per routing operation — a matrix row index, which
implies the address of the target cell. The information content of this message (or its absence) is
a single bit. Instead, we shall attach K bits of information to this message: lgD bits for the row
index, and K bits of “payload”, one bit per multiplication chain.

The full algorithm. Combining the two generalizations gives the following algorithm, for
0 < ρ ≤ 1 and integer K ≥ 1. The case 0 < ρ < 1 requires distributing the entries of each matrix
column among several mesh nodes, as in §3.3, but its cost is similar.

Let {Cj}j∈{1,...,D/ρ} be a partition of {1, . . . , D}, Cj = {c : (j − 1)ρ ≤ c − 1 < jρ}. Each node
j ∈ {1, . . . , D/ρ} contains single-bit registers Pi[c] and P ′i [c] for all i = 1, . . . ,K and c ∈ Cj , and
a register Rj of size lgD + K. Node j also contains a list Qj = {(r, c) | Ar,c = 1, c ∈ Cj} of the
nonzero matrix entries in the columns Cj of A, and an index Ij into Cj . Initially, load the vectors
~vi into the Pi[·] registers. Each multiplication is then performed thus:

1. For all i and c, P ′i [c]← 0. For all j, Ij ← 1.

2. Repeat hρ times:

(a) For all j: (r, c)← Qj [Ij], Ij ← Ij + 1, R[j]←
〈
r, P1[c], . . . , PK [c]

〉
.

(b) Invoke the clockwise transposition routing algorithm on the R[·], such that each value
R[j] = 〈r, . . .〉 is routed to the node tj for which r ∈ Cj .
During routing, whenever a node j receives a message 〈r, p1, . . . , pK〉 such that r ∈ Cj ,
it sets P ′i [r] ← P ′i [r] ⊕ pi for i = 1, . . . ,K and discards the message. Moreover,
whenever identically-targeted packets 〈r, p1, . . . , pK〉 and 〈r, p′1, . . . , p′K〉 in adjacent
nodes are compared, they are combined: one is annihilated and the other is replaced
by 〈r, p1 ⊕ p′1, . . . , pK ⊕ p′K〉.

3. Pi[c]← P ′i [c] for all i and c.

After these steps, Pi[·] contain the bits of Ak~vi and the mesh is ready for the next multiplication.
We need to compute and output the inner products ~uj(Ak~vi) for some vectors ~u1, . . . , ~uK , and
this computation should be completed before the next multiplication is done. In general, this
seems to require Θ(K2) additional wires between neighboring mesh nodes and additional registers.

77

3. A mesh-based architecture for the NFS linear algebra step 3.6. Further improvement

Figure 3.1: Realizing a torus in a flat array.

However, usually the ~uj are chosen to have weight 1 or 2, so the cost of computing these inner
products can be kept very low. Also, note that the number of routed messages is now doubled,
because previously only half the nodes sent non-nil messages. However, empirically it appears
that the clockwise transposition routing algorithm handles the full load without any slowdown.

3.6 Further improvement

The following briefly outlines several additional enhancements we have devised for the routing-
based architecture; see our publication [70] for details. We also mention a variant by Geiselmann
and Steinwandt which improves scalability.

Torus topology. Changing the topology from a mesh to a torus halves the diameter of the
graph and reduces the bottleneck effect at the center of the mesh, so we can expect improved
performance. The clockwise transposition routing algorithm can be adapted to the torus10, and
its performance remains close to optimal: the empirically observed running time is halved.11 Since
the underlying physical circuit remains mesh-like, we need to emulate a torus by interleaving (see
Figure 3.1), which requires longer wires; strictly speaking, the one-packet model is thus violated.
However, in practice and for the parameters considered, the additional cost for the longer wires
(i.e., additional metal layers in the VLSI process) is much smaller than a factor of 2, so this
improvements results in a net benefit.

Parallel tori. The above can be further improved by an additional factor of ≈ 2, by using
four interleaved but independent sub-tori of size m/2×m/2, instead of one m×m torus.12 One
sub-torus consists of the cells at even rows and even columns; another consists of the cells at even
rows and odd columns, and so on. In each sub-torus, the expected source-to-destination distance
is merely m/4 as opposed to m/2 in the single torus (and the maximum distance is similarly
halved). Taking into account the interleaving already done in order to realize the torus topology,
each edge now physically spans a distance of 3 cells. The cost/benefit situation is comparable
to that of the move from the mesh to the torus (but decreases exponentially if we use higher
interleaving, so this seems to the maximum beneficial extension). Further local circuitry is now
needed in order to initially inject packets into the correct torus.

Refilling. For the relevant parameter choices (and specifically for large values of ρ), each cell
has several packets that have to be routed. Thus far, this was handled by iterating the routing

10This was first proposed by Geiselmann and Steinwandt [76] in the context of mesh-based sieving.
11This holds even though the expected travel distance, for random inputs, has decreased by a factor of just 4/3.
12This too was first proposed in [76] in the context of mesh-based sieving.

78

3. A mesh-based architecture for the NFS linear algebra step 3.7. Parametrization

algorithm several times: at each iteration a set of packets is injected into the mesh and all of
them are routed to their destination; only then the next set is injected. To improve performance,
we can inject packets before the mesh has been fully cleared. The choice of injection criteria
is crucial to realizing the benefit; some natural rules results in congestion and, subsequently, a
routing throughput that is lower than the original scheme.

The combined total improvement from the parallel tori topology and refilling is a factor of ap-
proximately 4 over the results of §3.5.

Distributed version. In [76], Geiselmann and Steinwandt suggested a distributed version of
the basic design described in §3.3 through §3.5. This variant splits the monolithic circuit into
multiple interconnected chips, each handling a submatrix. Performance is limited by inter-chip
communication bandwidth (which is presently much lower than on-chip bandwidth), and thus
decreased; however, the smaller chips are far easier to manufacture than wafer-scale circuits,
thereby addressing the technological hurdles discussed in §3.2.

3.7 Parametrization

It remains to determine the optimal values of K and ρ, and derive concrete cost estimates. This
involves implementation details and technological quirks, and obtaining precise figures appears
rather hard. We thus derive expressions for the various cost measures, based on parameters which
can characterize a wide range of implementations. We then substitute values that reasonably
represent modern technology, and optimize for these.

3.7.1 Technology parameters

The technology parameters used in our estimates are as follows.

• LetAt, Af andAd be the average wafer area occupied by a logic transistor, an edge-triggered
flip-flop and a DRAM bit, respectively (including the related wires).

• Let Aw be the area of a wafer.

• Let Ap be the wafer area occupied by an inter-wafer connection pad (see §3.2).

• Let Cw be the construction cost of a single wafer (in large quantities).

• Let Cd be the cost of a DRAM bit that is stored off the wafers (this is relevant only to the
FPGA implementation; see below).

• Let Td be the reciprocal of the memory DRAM access bandwidth of a single wafer (relevant
only to FPGA).

79

3. A mesh-based architecture for the NFS linear algebra step 3.7. Parametrization

• Let Tl be the time it takes for signals to propagate through a length of circuitry (averaged
over logic, wires, etc.).

• Let Tp be the time it takes to transmit one bit through a wafer I/O pad.

We consider three concrete implementations: custom-produced “logic” wafers, custom-produced
“DRAM” wafers (which reduce the size of DRAM cells at the expense of size and speed of
logic transistors) and an FPGA-based design using off-the-shelf parts. Rough estimates of the
respective parameters, circa 2003–2005, are given in Table 3.1.

The “Custom-130-L” set corresponds to logic-oriented 130µm feature size CMOS VLSI process
on 30cm silicon wafers, exemplified by the Intel Pentium 4 “Northwood” processor; the figures are
derived from the concrete parameters of this processor (see [131] for details), and are consistent
with ITRS 2001 [91]. The “Custom-130-D” set likewise corresponds to DRAM-oriented 130µm
process, and “Custom-90-D” corresponds to DRAM-oriented 90µm feature size VLSI process
(cf. ITRS 2003 [93]). We assume a basic cost of $5,000 per wafer.13

Custom VLSI construction entails an additional Non Recurring Engineering (NRE) cost, for one-
time tasks such as creation of the lithographic masks; this cost is on the order of $1M–$10M,
depending on the process’s details and the circuit’s complexity.

Our main focus is on custom-built hardware, in accordance with the focus on throughput cost. In
practice, however, we are often concerned about solving a small number of factorization problems.
In this case, it may be preferable to use off-the-shelf components (especially if they can be
dismantled and reused, or if discreteness is desired). The “FPGA” parameters give an indication
on the cost using off-the-shelf hardware, namely Field Programmable Gate Array (FPGA) chips
connected in a two-dimensional grid, where each chip handles a block of mesh nodes. The numbers
are derived for an Altera Stratix EP1S25F1020C7 FPGA augmented by external DRAM chips.
For simplicity of calculation, the parameters are normalized so that one LE is considered to
occupy 1 area unit, and one FPGA chip is considered a “wafer”. See [131] for details.

3.7.2 Deriving the cost of the device

The estimated cost of the improved routing-based architecture, as of §3.5, is derived using the
following assumptions and approximations:

• The number of mesh nodes is D/ρ.

• The values in Qj [·] (i.e., the nonzero entries of A) can be stored in DRAM banks in the
vicinity of the nodes, where (with an efficient representation) they occupy hρlg(D)Ad per
node.

13This is the basic cost of an untested wafer. The full costs depend on the architecture (e.g., the fault-tolerance
capabilities) and are discussed separately.

80

3. A mesh-based architecture for the NFS linear algebra step 3.7. Parametrization

Custom-130-L Custom-130-D Custom-90-D FPGA

(130nm logic (130nm DRAM (90nm DRAM (Altera Stratix

process) process) process) (+ DRAM)

At 2.38 µm2 2.80 µm2 1.40 µm2 0.05

Af 19.00 µm2 22.40 µm2 11.20 µm2 1.00

Ad 0.70 µm2 0.20 µm2 0.10 µm2 ∅
Ap 4 000 µm2 4 000 µm2 ∅
Aw 6.36 · 1010 µm2 6.36 · 1010 µm2 6.36 · 1010 µm2 25 660

Cw $5,000 $5,000 $5,000 $150

Cd ∅ ∅ ∅ $4 · 10−8

Td ∅ ∅ ∅ 1.1 · 10−11 sec

Tl 1.46 · 10−11 sec/µm 1.80 · 10−11 sec/µm 1.43 · 10−9 sec

Tp 4 · 10−9 sec 4 · 10−9 sec 2.5 · 10−9 sec

Table 3.1: Implementation hardware parameters
Here, ∅ denotes values that are inapplicable and taken to be zero. Blank entries were not needed for our calculations.

• The Pi[c] registers can be moved to DRAM banks, where they occupy ρKAd per node.

• The P ′j [c] registers can also be moved to DRAM. However, to update the DRAM when a
message is received we need temporary storage of lg(ρ) + K bits. Throughout the D/ρ
steps of a routing operation, each node gets just 1 message on average (or less, due to
annihilation). Thus, one (lg(ρ) + K)-bit register per node suffices; if the register is still in
use when another message arrives, that message can be kept unconsumed, allowing it to
wonder around until the register is freed up. This occupies ρKAf per node when ρ < 2,
and ρKAd + 2(lg(ρ) +K)Af per node when ρ ≥ 2.

• The bitwise logic related to the Pi[c] registers, the P ′i [c] and the last K bits of the R[j]
registers together occupy 20 ·min(ρ,2)KAt per node.

• The R[j] registers occupy (lg(D) +K)Af per node.

• The rest of the mesh circuitry (clock distribution, DRAM access, clockwise transposition
routing, I/O handling, inner products, etc.) occupies (200 + 30lg(D))At per node.

• Let An be total area of a mesh node, obtained by summing the above (we get different
formulas for ρ < 2 vs. ρ ≥ 2).

• Let Am = AnD/ρ be the total area of the mesh nodes (excluding inter-wafer connections).

• Let Nw be the number of wafers required to implement the matrix step, and let Np be
the number of inter-wafer connection pads per wafer. For single-wafer designs, Nw =
1/bAw/Amc and Np = 0. For multiple-wafer designs, these values are derived from equa-
tions for wafer area and bandwidth: NwAw = Am + NwNpAp, Np = 4 · 2 ·

√
D/(ρNw) ·

(lgD +K) · Tp/(
√
AnTl).

• Let Nd be total number of DRAM bits (obtained by evaluating Am for Af = At = 0,Ad =
1).

81

3. A mesh-based architecture for the NFS linear algebra step

3.8. Cost estimates for 1024-bit composites

Algorithm Technology ρ K Wafers/ Construction Run time Throughput

chips/ cost cost

PCs Cs Ts (sec) CsTs (US$×years)

Routing Custom-130-L 0.51 107 19 $94,600 960 (16 min) 2.87 (opt)

Routing Custom-130-L 0.11 532 288 $1,440,000 120 (2 min) 5.48

Routing Custom-130-D 42.10 208 1 $5,000 14 600 (4.1 hours) 2.32 (opt)

Routing Custom-130-D 216.16 42 0.37 $2,500 228 000 (2.6 days) 18.0

Routing FPGA 5473.24 25 64 $13,800 10 600 000 (123 days) 4.66·103 (opt)

Routing FPGA 243.35 60 2500 $253,000 1 420 000 (17 days) 1.14·104

Sorting Custom-130-L 1 273 $4,100,000 1 210 000 (14 days) 1.57·105

Sorting Custom-130-L � 1 273 $4,100,000 121 000 (34 hours) 1.57·104

Serial PCs 32 1 $4,460 83 300 000 (3 years) 1.18·104

Table 3.2: Cost of the matrix step for the throughput-optimized matrix

• Let Na be the number of DRAM bit accesses (reads+writes) performed throughout the
matrix step. We get: Na = 2D(2hDK + Dh lgD), where the first term due to the P ′i [c]
updates and the second term accounts for reading the matrix entries.

• Let Cs = Nw Cw +Nd Cd be the total construction cost for the matrix step.

• The full block Wiedemann algorithm consists of 2D/K matrix-by-vector multiplications,
each of which consists of hρ routing operations, each of which consists of 2

√
D/ρ clocks.

Each clock cycle takes Tl
√
An.

The time Ts taken by the full block Wiedemann algorithm is thus:
Ts = 4D3/2hTl

√
ρAn/K +NaTd/Nw.

3.8 Cost estimates for 1024-bit composites

3.8.1 Cost estimates for the throughput-optimized matrix

Table 3.2 lists the estimated cost of the improved routing-based circuit of §3.5, for the throughput-
optimized matrix (§5.4.1.2), using several choices of ρ and K. It also lists the cost of the sorting-
based circuits (see §3.2) and a bandwidth-based lower bound on PC implementation (see §1.7.4).
The lines marked by “(opt)” give the parameter choice that minimize the throughput cost for
each type of hardware.

The third line describes a routing-based design whose throughput cost is roughly 67,000 times
lower than that of the original sorting-based circuit (or 6,700 times lower than sorting with
K � 1). Notably, this is a single-wafer device, which eliminates the technological problem of
connecting multiple wafers with millions of parallel wires, as necessary in the original design of
[22] (see §3.2). The fourth line shows that significant parallelism can be gained essentially for
free: here, 88% of the wafer area is occupied simply by the DRAM banks needed to store the
input matrix in a very compact representation, so further reduction in construction cost seems
impossible.

82

3. A mesh-based architecture for the NFS linear algebra step

3.8. Cost estimates for 1024-bit composites

Algorithm Impleme- ρ K Wafers/ Construction Run time Throughput

ntation chips/ cost cost

PCs Cs Ts (sec) CsTs (US$×years)

Routing Custom-130-L 0.51 136 6,030 $30.1M 3.3 · 106 (39 days) 3.21·106 (opt)

Routing Custom-130-L 0.11 663 9000 $500.0M 4.3 · 105 (4.9 days) 6.08·106

Routing Custom-130-D 41.12 306 391 $2.0M 4.6 · 107 (1.5 years) 2.84·106 (opt)

Routing Custom-130-D 261.55 52 120 $0.6M 1.0 · 109 (32 years) 1.89·107

Routing FPGA 17,757.70 99 13,567 $3.5M 2.3 · 1010 (726 years) 2.52·109 (opt)

Routing FPGA 144.41 471 6.6 · 106 $1000.0M 7.3 · 108 (24 years) 2.40·1010

Serial PCs 32 1 $1.3M 5.7 · 1012 (180 centuries) 2.35·1011

Table 3.3: Cost of the matrix step for the runtime-optimized matrix

ρ K m2 IO lines chips chip size (mm2) run time (days)

1982 69 1282 1280 3082 362 238

1982 69 1282 2560 3082 362 121

1551 31 2542 2048 1002 502 481

1551 31 2542 4096 1002 502 255

Table 3.4: Cost of the matrix step for the runtime-optimized matrix using a distributed routing-based
architecture using 130µm CMOS process.

3.8.2 Cost estimates for the runtime-optimized matrix

The runtime-optimized matrix, resulting from ordinary relation collection contains optimized for
running time (see §5.4.1.2), has 250 times more columns than the throughput-optimized matrix:
D ≈ 1010. We assume the same average column density, h = 100.

Using the formulas given in the previous section, we obtain the costs in Table 3.3 for the custom
and FPGA implementations, for various parameter choices. The fourth line shows that here too,
significant parallelism can be attained at very little cost (88% of the wafer area is occupied by
DRAM storing the input). As can be seen, the improved mesh has a feasible cost also for the
runtime-optimized matrix, and its cost is a small fraction of the cost of the alternatives, and of
the relation collection step.

This matrix is too large to fit into a single monolithic circuit with present (or near-future)
technology, even with wafer-scale integration; the storage alone, even using compact DRAM
memory, already exceeds a wafer’s capacity. The technological feasibility of this architecture thus
depends critically on the ability to make high bandwidth inter-wafer connections. We can rely on
emerging technological solutions as exemplified in §3.2), or invoke the distributed version of [75]
mentioned in §3.6. Cost estimates for the latter are given in Table 3.4. This table lists the chip
size and running time, as affected by inter-chip IO bandwidth (given as the number of number
of full-speed, unidirectional I/O lines per chip) and the choice of architecture parameters.

These chip sizes are quite reasonable: similarly sized chips are commonly manufactured nowadays,
and the design is highly regular and inherently fault-tolerant. The chip interconnect bandwidth
is still rather high, and presently it is only marginally feasible.

83

3. A mesh-based architecture for the NFS linear algebra step

3.8. Cost estimates for 1024-bit composites

We surmise that for 1024-bit composites, our routing-based architecture can feasibly carry out
the linear algebra step at a practical cost — modulo the aforementioned technological scalability
challenges. In particular, even for the conservative runtime-optimized matrix parameter settings,
the predicted cost is significantly lower than that of the corresponding sieving step.

84

Chapter 4

A scalable pipelined architecture
for the NFS linear algebra step

4.1 Overview

This chapter continues the investigation the NFS linear algebra step. While in the previous
chapter we have shown that the NFS linear algebra step for large composites can be implemented
at a practical cost, which is below that of sieving, the resulting designs have a major drawback:
they require (at least one of) extremely large chips, non-local wiring or high-bandwidth chip
interconnects, and thus pose significant technological hurdles.

We proceed to describe a new systolic design for the NFS linear algebra step, and specifically
for the matrix-by-vector multiplications which dominate the cost of the Wiedemann algorithm.
In its simplest form, it consists of a one dimensional chain of identical chips with purely local
interconnects, which (from a practical standpoint) makes it an attractive alternative to previous
wafer-scale mesh proposals. For higher efficiency it can be generalized to a two-dimensional array
of chips. Unlike previous proposals, this device has standard chip sizes (which are cheap and
widely available), purely local interconnects, and can use standard DRAM chips for some of
its components. In addition, the new design is highly scalable: there is no need to commit to
particular problem sizes and densities during the chip design phase, and there is no need to limit
the problem size to what can be handled by a single wafer. Since a single chip design of small
fixed size can handle a wide range of sparse matrix problems (some of which may be related to
the solution of partial differential equations rather than cryptography), the new architecture can
have additional applications, greatly reduced technological uncertainties, and lower initial NRE
cost.

Unlike previous routing based proposals, whose complex data flows required simulation of the
whole device and were not provably correct, the present device has a simple and deterministic
data flow, so that each unit can be simulated independently. This facilitates the simulation and
actual construction of meaningful proof-of-concept sub-devices.

85

4. A scalable pipelined architecture for the NFS linear algebra step 4.2. The architecture

For a conservative choice of 1024-bit NFS matrix parameters, the concrete cost estimate of the
design is 0.4M US$×year, an order of magnitude lower than the best previous proposal (including
that of Chapter 3 and variants thereof).

The present design adapts efficiently and naturally to operations over any finite field GF(q), since
it does not depend on the in-transit pairwise cancellation of values in GF(2).

As part of our design but also of independent interest, we describe a new error-detection scheme
adaptable to any implementation of Wiedemann’s algorithm (such as that of the preceding sec-
tion). Under reasonable assumptions, the new scheme can be used to detect computational errors
with probability arbitrarily close to 1 and at negligible cost.

4.2 The architecture

In the following, the task and notation are as given in §1.7. As in the previous chapters, the
architecture we describe is general, but for the sake of clarity we specify a concrete instance where
various design parameters are chosen suitably to 1024-bit RSA factorization. These concrete
parameters are designated by angular brackets (e.g., D 〈〈= 1010〉〉). §4.4 provides additional details
about the parameters and §4.5 discusses the cost of the device for these parameters.

As before, we shall unravel the architecture in several stages, where each stage generalizes its
predecessor and (when appropriately parametrized) improves its efficiency.

4.2.1 A basic scheme

The proposed hardware device is preloaded with a compressed representation of the sparse matrix
A ∈ GF(q)D×D,1 as will be detailed below. For each of the multiplication chains described
in §1.7.1, we load the input vector ~v and iteratively operate the device to compute the vectors
A~v,A2~v, . . . , AD/K~v.

We begin by describing an inefficient and highly simplified version of the device, to illustrate
its high-level data flow.2 This simplified device consists of D 〈〈= 1010〉〉 stations connected in a
pipeline. The i-th station is in charge of the i-th matrix row, and contains a list of the 〈〈≈ 100〉〉
non-zero entries in that row. It is also in charge of the i-th entry of the output vector, and
contains a corresponding accumulator W ′[i].

In each multiplication, the input vector ~v ∈ GF(2)D is fed into the top of the pipeline, and moves
down as in a shift register. As the entries of ~v pass by, the i-th station looks at all vector entries
vj passing through it, identifies the ones corresponding to the non-zero matrix entries Ai,j in row

1We describe the operation over an arbitrary finite field GF(q), for applicability to the solution of linear systems
over any such field. In the context of the NFS factoring algorithm, q = 2.

2This basic version can be thought of as the linear-algebra-step analogue of the pipeline-of-adders variant of
TWINKLE (see §2.2.1). Many of the improvements described in the following have corresponding analogues in the
TWIRL architecture of Chapter 2.

86

4. A scalable pipelined architecture for the NFS linear algebra step 4.2. The architecture

Station 1

Station u

...

v

A

Figure 4.1: Distributing the entries of
A onto stations

proc. 1 v1+k(u-1)

proc. k vk+ku

. .
 .

. .
 .

. .
 .

. .
 .

station u

. .
 .

. .
 .

. .
 .

. .
 .

station 1

. . . proc. 1 v1

proc. k vk
. . .

Figure 4.2: Subdivision of a chip into stations and processors

i, and for those entries adds Ai,j · vj to its accumulator W ′[i]. Once the input vector has passed
all stations in the pipeline, the accumulators W ′[·] contain the entries of the product vector A~v.
With additional shift operations, these can now be sequentially off-loaded and fed back to the
top of the pipeline in order to compute the next multiplication.

The one-dimensional chain of stations can be split across several chips: each chip contains one
or more complete stations, and the connections between stations may span chip boundary. Note
that since communication is unidirectional, inter-chip I/O latency is not a concern (though we
do need sufficient bandwidth; the amount of bandwidth needed will increase in the variants given
below, and is taken into account in the cost analysis of Section 4.5).

4.2.2 Compressed row handling

Since the matrix A is extremely sparse, it is wasteful to dedicate a complete station for handling
each row of A, as it will be idle most of the time. Thus, we partition A into u 〈〈= 9600〉〉 horizontal
stripes and assign each such stripe to a single station (see Figure 4.1). The number of rows per
station is µ ≈ D/u 〈〈= 220〉〉, and each station contains µ accumulators W ′[i] with i ranging over
the set of row indices handled by the station.

Each station stores all the non-zero matrix entries in its stripe, and contains an accumulator for
each row in the stripe. As before, the input vector ~v passes through all stations, but now there are
just u of these (rather than D). Since the entries of ~v arrive one by one, each station implicitly
handles a µ × D submatrix of A at each clock cycle. Each station now needs to be capable of
handling multiple events simultaneously; this is described below.

87

4. A scalable pipelined architecture for the NFS linear algebra step 4.2. The architecture

4.2.3 Compressed vector transmission

For additional efficiency, we add parallelism to the vector transmission. Instead of each station
processing a single entry of ~v in each clock-cycle, we process ~v in chunks of k 〈〈= 32〉〉 consecutive
entries.3 The inter-station pipeline is thickened by a factor of k. The vector ~v now passes in
chunks of k entries over an inter-station pipeline (in Figure 4.2 from right to left); in each clock
cycle, each station obtains such a chunk from the previous station (to its right), processes it and
passes it to the next station (to its left). The first (rightmost) station gets a new part of the
vector received from the outside. At each clock cycle, each station now implicitly handles a µ×k
submatrix of A.

Each station is comprised of k processors, each connected to a separate pipeline line (see Fig-
ure 4.2), and these k processors inside each station are connected via γ 〈〈= 2〉〉 intra-station chan-
nels, which are circular shift registers spanning the station. The µ accumulators W ′[i] contained
in this station are partitioned equally between the k processors.

For processing a k-element chunk of the vector, each of the k processors has to decide whether
the vector element vi it currently holds is relevant for the station it belongs to, i.e., whether
any of the µ matrix rows handled by this station contains a non-zero entry in column i. If so,
then vi should be communicated to the processor handling the corresponding accumulator(s) and
handled there. This is discussed in the following subsection.

4.2.4 Processing vector elements

Fetching vector elements. The relevance of a vector entry vi to a given station depends
only on i, which is uniquely determined by the clock cycle and the processor (out of the k) it
reached. Consequently, each processor needs to read the content of one pipeline line (to which it
is attached) at a predetermined set of clock cycles, specific to that processor, which is constant
across multiplications and easily precomputed. We encode it as follows; this is essentially an
alternative representation of the non-zero matrix entries belonging to the processor, in terms of
events instead of indices.

Each processor contains a fetches table which instructs it when to read the next vector element
from the pipeline. It contains fetch events, represented as triplets (τ, f, `) where τ is an δu 〈〈= 7〉〉-
bit integer, f is a one-bit flag and ` is a dlg(γ)e-bit integer. Such a triplet means: “ignore the
incoming vector entries for τ clock cycles; then, if f = 1, read the input vector element and transmit
it on the `-th intra-station channel”.4 The table is read sequentially, and is stored in compact
DRAM-type memory.

Updating the accumulators. Once a relevant vector element vi has been fetched by some
processor and copied to an intra-station channel, we still need to handle it by adding Aj,i · vi

3The choice of k depends mainly on the number of available I/O pins for inter-chip communication.
4The flag f is used to handle the cases where the interval between subsequent fetches is more than 2δu − 1.

88

4. A scalable pipelined architecture for the NFS linear algebra step 4.2. The architecture

to the accumulator W ′[j], for every row j handled by this station for which Aj,i 6= 0. These
accumulators (usually just one) may reside in any processor in this station. Thus, each processor
also needs to occasionally fetch values from the intra-station channels and process it. Similarly
to above, the timing of this operation is predetermined, identical across multiplications, easily
precomputed, and compactly stored.

To this end, each processor also holds an updates table containing update events represented as
a 5-tuple (τ, f, `, j′, x) where τ is an δf 〈〈= 7〉〉-bit integer, f is a one-bit flag, ` is a dlg(i)e-bit
integer, j′ is a dlg(µ/k)e-bit integer and x is a field element.5 Such a 5-tuple means: “ignore the
intra-station channels for τ clock cycles; then, if f = 1, read the element y ∈ GF(q) currently on
channel `, multiply it by x, and add the product to the j′-th accumulator in this processor”. This
table is also read sequentially and stored in compact DRAM-type memory.

During a multiplication, each processor essentially just keeps pointers into those two tables (which
can actually be interleaved in a single DRAM bank), and sequentially executes the events de-
scribed therein.

An update operation requires a multiplication over GF(q) and addition of the product to an accu-
mulator stored in DRAM (which is very compact but has high latency). These operations occur
at non-regular intervals, as prescribed by the updates table; the processors use small queues to
handle congestion, where a processor gets several update events within a short interval. Crucially,
the load on these queues is known in advance as a side effect of computing the tables. If some
processor is over-utilized or under-utilized, we can change the assignments of rows to stations, or
permute the matrix columns, to even the load.

Handling dense rows. All the entries arriving from the intra-station channels while the up-
dated vector is stored into the DRAM have to be held in the processor’s queues. As the random-
access latency of DRAM is quite large (≈ 70ns), the entries must not arrive too fast. Some of the
rows of A are too dense, and could cause congestions of the queues and intra-station channels. To
overcome this problem we split such dense rows into several sparser rows, whose sum equals the
original (which can be thus computed at the end of the multiplication). In this way we also ensure
that all stations have a similar load and handle the same number of rows. This increases the ma-
trix size by an insignificant amount (〈〈≈ 106〉〉 additional rows6 added to the original D 〈〈≈ 1010〉〉),
and the post-processing required to re-combine the split rows is trivial. Further load-balancing
can be done using a scattered matrix representation [34].

Precomputation and simulation. The content of the two tables used by each processor fully
encodes the matrix entries. These tables are precomputed once for each matrix A, e.g., using
ordinary PCs. Once computed, they allow us to easily simulate the operation of any processor at
any clock cycle, as it is completely independent of the rest of the device and of the values of the
input vectors. We can also accurately (though inefficiently) simulate the whole device. Unlike
the mesh-based approach of the previous chapter, we do not have to rely on heuristic run time
assumptions for the time needed to complete a single matrix-vector multiplication.

5Over GF(2), x = 1 always and can thus be omitted.
6Extrapolated from a preprocessed RSA-155 NFS matrix from [44], provided to us by Herman te Riele.

89

4. A scalable pipelined architecture for the NFS linear algebra step 4.2. The architecture

...

. .
 .

. .
 .

. .
 .

. .
 . . .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.

. . .
. . .

. . .

. . .

Figure 4.3: Arranging the stations into a circle

4.2.5 Skewed assignment for iterated multiplication

In the above scheme, once we have started feeding the initial vector ~v into the pipeline, after
(D/k) + u clock cycles7 the vector ~v has passed through the complete pipeline and the vector
A ·~v is fully computed but spread throughout the stations. More precisely, each of the u stations
contains µ = D/u consecutive components of ~v, and we next want to compute the matrix-by-
vector product A · A~v. Thus, we need to somehow feed the computed result A~v back into the
inter-station pipeline.

To feed the vector A~v back into the inter-station pipeline, first we physically close the station
interconnects into a circle as depicted in Figure 4.3; this can be done by appropriate wiring of
the chips on the PCB. We also place a memory bank of D/u GF(q) elements at each of the u
stations. Collectively, denote these banks by W ; their role will be related to that of the W ′[i]
accumulators, which we shall henceforth denote collectively by W ′. At the beginning of each
multiplication chain, the initial vector ~v is loaded into W sequentially, station by station.

During a multiplication, the content of W is rotated, by having each station treat its portion of
W as a FIFO of k-tuples: in each clock cycle it sends the last k-tuple of its portion of W to the
next station, and accepts a new k-tuple from the previous station. Meanwhile, the processors
inside each station function exactly as before, by tapping the flow of k-tuples of vector elements
in W at some fixed point (e.g., the head of the FIFO in that station). Thus, after D/k clock
cycles, we have completed a full rotation of the content of W and the multiplication result is
ready in the accumulators W . A key point here is that each station sees the contents of W in a
cyclic order but starting at a different offset; due to the commutativity of addition in GF(q) this
does not affect the final result.

Having obtained the matrix-by-vector product, we can now continue to the next multiplication
simply by switching the roles (or equivalently, the contents) of the memory banks W and accu-
mulators W ′: this amounts to a simple local operation in each processor (note that the size and
distribution among processors of the cells W [·] and the cells W ′[·] is indeed identical). Thus, the
matrix-by-vector multiplications can be completed at a rate of one per D/k cycles.

7Actually slightly more, due to the need to empty the station channels and processor queues.

90

4. A scalable pipelined architecture for the NFS linear algebra step 4.2. The architecture

Figure 4.4: Movement of vector element k-tuples through the circle of stations.

This temporal packing of multiplications can be illustrated by plotting the place vs. time of
vector elements during the operation of the device, as depicted in Figure 4.4.

4.2.6 Amortizing matrix storage cost

Recall that in the block Wiedemann algorithm, we actually execute 2K multiplication chains
with different initial vectors but identical matrix A. These are separated into two phases, and in
each phase we can handle these K chains in parallel. An important observation is that we can
handle these K chains using a single copy of the matrix (whose representation, in the form of the
two event tables, has so far dominated the cost). This greatly reduces the amortized circuit cost
per multiplication chain, and thus the overall cost per unit of throughput.

The above is achieved simply by replacing every field element in W and W ′ by a K-tuple of field
elements, and replacing all field additions and multiplications with element-wise operations on
the corresponding K-tuples. The event tables and the logic remain the same. Note that the input
and output of each station (i.e., the pipeline width) is now bigger, containing k ·K field elements.

4.2.7 Two-dimensional chip array

As described above, each of the processors inside the station incorporates two types of memory
storage: a fixed storage for the representation of the matrix elements (i.e., the event tables), and
vector-specific storage (W and W ′) which increases with the parallelization factor K. Ideally, we
would like to use a large K in order to reduce the amortized cost of matrix storage. However,
this is constrained by the chip area available for W and W ′.

To obtain further parallelization without increasing the chip sizes, we could simply run several
copies of the device in parallel. By itself, this does not improve the cost per unit of throughput.
But now all of these devices use identical storage for the matrix representation, and access it
sequentially at the same rate, so in fact we can “feed” all of them from a single matrix represen-
tation. In this variant, the event tables are stored in an external DRAM bank, and are connected

91

4. A scalable pipelined architecture for the NFS linear algebra step

4.3. Fault detection and correction

...

...

v1

st
at

io
n

ci
rc

le
 #

1

v2

st
at

io
n

ci
rc

le
 #

2

vb

st
at

io
n

ci
rc

le
 #

r

D
R

A
M

 st
or

in
g

A
Figure 4.5: Using external memory to store the matrix A, and b parallel devices (each hosting a circle of
stations)

to the chips hosting the processors and chain-specific storage through a unidirectional pipeline,
as illustrated in Figure 4.5. Note that communication remains purely local—there are no long
broadcast wires.

This variant splits each of the monolithic chips used by the previous variants into a standard
DRAM memory chip for matrix storage, plus a chain of small ASIC chips for the processors and
the storage of the vectors. By connecting b 〈〈= 90〉〉 such ASIC chips to each DRAM chip, we can
increase the blocking factor K by a factor of b without incurring the cost of duplicate matrix
storage.

4.3 Fault detection and correction

4.3.1 Importance

To successfully complete the Wiedemann algorithm, the device must compute all the matrix-
by-vector multiplications without a single error. For the problem parameters of interest the
multiplications will be realized by tens of thousands of chips operating over several months, and
it would be unrealistic to hope (or alternatively, expensive to ensure) that all the computations
will be faultless; even a single bit-flip error occurring during these months, if gone undetected,
could render the results of this extensive computation effectively useless.8 The same concern arises
for other special-purpose hardware designs, and also for software implementations on commodity
hardware. It is thus crucial to devise algorithmic means for detecting and correcting faults. In the
following we describe a method for detecting such errors soon after they occur, with arbitrarily
high probability, and at a very low cost in terms of complication, device size and running time.

4.3.2 A generic scheme

As above we use the notation of §1.7, except that we generalize to a matrix A and vector ~v over
any finite field GF(q). For integer factoring via NFS, q = 2.

8Note the contrast with the NFS sieving step, which can tolerate both false positive and false negative errors
in its smoothness tests.

92

4. A scalable pipelined architecture for the NFS linear algebra step

4.3. Fault detection and correction

A simple real time error-detection scheme would be to apply a linear test, as follows. During a
preprocessing stage, choose a random d × D matrix B for an appropriate d, precompute on a
reliable host computer and store in the hardware the d × D matrix C = BA, and verify that
B~w′ = C ~w whenever the hardware computes a new product w′ = A~w for some ~w. Over GF(q)
each row of the matrix B reduces the probability of an undetected error by a factor of q, and
thus for q = 2 we need at least a hundred rows in B to make this probability negligible.

Since each one of the dense 100×D matrices B and C contains about the same number of 1’s as
the sparse D×D matrix A (with one hundred 1’s per row), this linear test can triple the storage
and processing requirements of the hardware, and meshes poorly with the overall design whose
efficiency relies heavily on the sparseness of the matrix rows. Note that we cannot solve this
problem by making the 100×D matrix B sparse, since this would greatly reduce the probability
of detecting single bit errors.

In the following we describe an alternative error-detection scheme, which provides (effectively) an
arbitrarily small error probability at a negligible cost, under reasonable assumptions. It inspects
only the computed (possibly erroneous) matrix-by-vector products, and can thus be applied to
any implementation of Wiedemann’s algorithm.

Detection. Let ~w0, ~w1, ~w2, . . . ∈ GF(q)D denote the sequence of vectors computed by the device,
where ~w0 = ~v. To verify that indeed ~wi = Ai~v for all i > 0, we employ the following randomized
linear test. For a small integer d 〈〈= 200〉〉, choose a single vector~b ∈ GF(q)D uniformly at random,
and precompute on a reliable computer the single vector

~c
def=
(
~bAd

)t

.

After each ~wi is computed, compute also the inner products vectrb~wi and ~c
t
~wi (which are just

field elements). Save the last d results of the latter in a small shift register, and after each
multiplication test the following condition:

~b
t

~wi = ~c
t
~wi−d . (4.1)

If equality does not hold, declare that at least one of the last d multiplications was faulty.

Correctness. If no faults have occurred then (4.1) holds since both sides equal ~b
t

Ai~v. Con-
versely, we will argue that the first faulty multiplication ~wj 6= A~wj−1 will be detected within d
steps with overwhelming probability, under reasonable assumptions.

Let us first demonstrate this claim in the simplest case of a single transient error ~ε which occurs
in step j. This changes the correct vector Aj~v into the incorrect vector ~wj = Aj~v + ~ε. All the
previous ~wi for i < j are assumed to be correct, and all the later ~wi for i > j are assumed to
be computed correctly, but starting with the incorrect ~wj in step j. It is easy to verify that the
difference between the correct and incorrect values of the computed vectors ~wi for i > j evolves
as Ai−j~ε, and due to the effective randomness of the matrix A (generated by the sieving step)
these error vectors are likely to point in random directions in the D-dimensional space GF(q)D.

93

4. A scalable pipelined architecture for the NFS linear algebra step

4.3. Fault detection and correction

The device has d chances to catch the error by considering pairs of computed vectors which are d
apart, with the first vector being correct and the second vector being incorrect. The probability
that all these d random error vectors will be orthogonal to the single random test vector ~b is
expected to be about q−d, which is negligible; the computational cost was just two vector inner
products per matrix-by-vector multiplication.

The analysis becomes a bit more involved when we assume that the hardware starts to malfunc-
tion at step j, and adds (related or independent) fault patterns to the computed result after the
computation of each matrix-vector product from step j onwards. Let the result of the i-th multi-
plication be ~wi = A~wi−1 +~εi, where the vector ~εi is the error in the output of this multiplication.
We consider the first fault, so ~εi = 0 for all i < j. Assume that j ≥ d (j < d will be addressed
below). By the linearity of the multiplication and the minimality of j, we can expand the above
recurrence to obtain ~wi = Ai~v +

∑i
i′=j(A

i−i′~εi′) (i ≥ j). Plugging this into (4.1) and canceling

out the common term ~b
t

Ai~v, we get that for j ≤ i < j + d, (4.1) is equivalent to:

~b
t

ri = 0 where ri =
∑i

i′=j
(Ai−i′~εi′) . (4.2)

We assume that each error ~εi is one of at most (qD)α possibilities for some α � D/d (e.g.,
〈〈α = 105〉〉), regardless of A and ~b. This suffices to enumerate all reasonably likely combinations
of local faults (corrupted matrix entries, faulty pipeline connections, errors in GF(q) multipliers,
memory bit flips, etc.). We also make the simplifying (though not formally correct) assumption
that A10, ..., Ad−1 are random matrices drawn uniformly and independently.9 Then for any fixed
values of ~εi, the vectors in the set R = {ri}j+d−1

i=j+10 are drawn uniformly and independently from
GF(q)D (recall that ~εj 6= 0), and thus the probability that the span of R has dimension less than
the maximal d− 10 is smaller than dq−(D−d) (which is a trivial upper bound on the probability
that one of the d random vectors falls into the span of the others). By assumption, there are
at most (qD)αd possible choices of (~εi)

j+d
i=j+1. Hence, by the union bound, the probability that

the span of R has dimension less than d − 10 is at most (qD)αd · dq−(D−d) = d · qαd logq D+d−D,
which is negligible. Conditioned on the span of R having full rank d− 10, the probability of the
random vector ~b being orthogonal to the span of R is q−(d−10), which is also negligible. Hence,
with overwhelming probability, at least one of the tests (4.2) for j + 10 < i < j + d will catch the
fault in ~wj .

Startup and finalization. Note that the test (4.1) applies only to i > d, and moreover
that our analysis assumes that the first d multiplications are correct. Thus, for each of the 2K
multiplication chains of block Wiedemann, we start the computation by computing the first d

9The sieving and preprocessing steps of NFS yield a matrix A that has nearly full rank and is“random-looking”
except for some biases in the distribution of its values: A is sparse (with density 〈〈≈ 100/1010〉〉) and its density is
decreasing with the row number. The first few self-multiplications increase the density exponentially and smoothen
the distribution of values, so that A10 has full and uniform density. The independence approximation is applicable
since we are looking at simple local properties (corresponding to sparse error vectors), which are “mixed” well by
the matrix multiplication. While the resulting matrices do have some hidden structure, realistic fault patterns are
oblivious to that structure.

94

4. A scalable pipelined architecture for the NFS linear algebra step

4.3. Fault detection and correction

multiplications on a reliable general-purpose computer (possibly redundantly for verification),
and then load the state (including the queue of ~c t

~wi values for i = 0, . . . , d) into the device for
further multiplications.

Also note that in the analysis, the results of the j-th multiplications are implicitly checked by
(4.1) for i = j, . . . , j + d− 1. Thus, in order to properly check the last d multiplications in each
chain, we run the device for d extra steps and discard the resulting vectors but still test (4.1).

Recovery. The above method will detect a fault within d clock cycles (with overwhelming
probability), but will not correct it. Once the fault is detected, we must backtrack to a known-
good state without undoing too much work. Assuming a sufficiently low probability of error, it
is simplest to dump a full copy of the current vector ~wi from the device into a general-purpose
computer, at regular but generously-spaced intervals; this can be done by another special station
tapping the pipeline. The backup vectors may be stored on magnetic media, and thus their
storage has negligible cost. When a fault is detected, the faulty component can be replaced (or
a spare device substituted) and the computation restarted from the last known-good backup.

4.3.3 Device-specific considerations

Implementation. The above scheme requires only the computation of two inner products
(~b

t

~wi and ~c
t
~wi) for each multiplication. In the proposed hardware device, this is achieved by

one additional station along the pipeline, which taps the vector entries flowing along the pipeline
and verifies their correctness by the above scheme. This station contains the entries of ~b and
~c in sequential-access DRAM. For each of the K vectors being handled, the station processes a
k-tuple of vector entries at every clock cycle, keeps the d most recent values of ~c t

~wi in a local
FIFO queue at this station, and performs the test according to (4.1).

Halving the cost. The storage cost can be halved by choosing ~b pseudorandomly instead of
purely randomly; the number of multipliers can also be nearly halved by choosing ~b to be very
sparse.

Using faulty chips. In addition to the above high-level error-recovery scheme, it is also useful
to work around local faults in the component chips: this increases chip yield and prevents the
need to disassemble multi-chip devices if a fault was discovered after assembly. To this end, the
proposed device offers a significant level of fault tolerance due to its uniform pipelined design: we
can add a “bypass” switch to each station, which effectively removes it from the pipeline (apart
for some latency). Once we have mapped the faults, we can work around any fault in the internals
of some station (this includes the majority circuit area) by activating the bypass for that station
and assigning its role to one of a few spare stations added in advance. The chip containing a local
fault then remains usable, and only slightly less efficient.

95

4. A scalable pipelined architecture for the NFS linear algebra step 4.4. Parametrization

4.4 Parametrization

4.4.1 Matrix parameters

For 1024-bit composites we shall assume that the input size matches the runtime-optimized matrix
parameter set from §5.4.1.2, i.e., a matrix of size D×D for D ≈ 1010 with a density of 100 entries
per column. This matrix size, which was also evaluated in previous sections and others’ follow-up
works, represents a conservative estimate with generous margins; in particular, it is smaller than
the matrix that is expected to be produced by TWIRL.

4.4.2 Technology parameters

We shall assume 90nm chip manufacturing technology with DRAM-type process, i.e., Custom-
90-D setting of §3.7.1, with a net chip area of 1 cm2, a per-chip I/O bandwidth of 1024 Gbit/s,
and a clock rate of 1GHz. A DRAM access is assumed to take 70 clock cycles. These parameters
are quite realistic, if not conservative, with current technology.

4.5 Cost estimates

4.5.1 Cost for 1024-bit NFS matrix step

Clearly there are many possibilities for fixing the different parameters of our device, depending
on such parameters as desired chip size and number of chips. It is also possible to combine the
above design with the distributed version of [75] (see §3.6), thereby giving up the homogeneity and
purely local communication but decreasing the dimension of the handled vectors. In the following,
we consider a specific parameter set, which focuses on practicality using VLSI technology circa
2005. Further details are given below.

We employ a 300× 90 array of ASIC chips. Each column of 300 chips contains u = 9600 stations
(32 per chip). Each station consists of k = 32 processors, communicating over γ = 2 intra-station
channels, with a parallelization factor of 10. Each of the 300 rows, of 90 chips each, is fed by
a 108Gbit DRAM module.10 Overall, the blocking factor is K = 10 · 90 = 900. This array can
complete all multiplication chains in ≈ 2.4 months.

The total chip area, including the matrix storage, is less than 90 full 30cm wafers. Assuming
a silicon cost of US$ 5000 per wafer, and a factor 4 increase for overheads such as faulty chips,
packaging, testing and assembly, the total construction cost is under US$ 2M. The throughpost
cost is thus under 0.4M US$×year. This is significantly below that of sieving with comparable
technology (see Chapter 2).

10Note that the fault tolerance method from §4.3 protects the memory as well.

96

4. A scalable pipelined architecture for the NFS linear algebra step 4.5. Cost estimates

4.5.2 Further details

To derive concrete cost and performance estimates for the 1024-bit case, several implementation
choices for parameters, such as δu, δf, γ, τ , have been determined experimentally as follows. For
the above problem and technology parameters, and a large randomly drawn matrix, we used
a software simulation of a station to check for congestions in bus and memory accesses, and
chose design parameters for which such congestions never occur experimentally. Recall that the
device’s operation is deterministic and repetitive (see §4.2.4), so the simulation accurately reflects
the device’s operation with the given parameters.

In the following we briefly mention some aspects of the circuit area and its analysis, as used to
derive the overall estimate above. Note that we employ the split design of Section 4.2.7, which
puts the matrix storage in plain DRAM chips and the logic and vector storage in ASIC chips.
For these parameters, memory storage dominates area: approximately 97% of the ASIC chip
area is occupied by the DRAM which stores the intermediate vectors (i.e., W and W ′). Thus,
as in previous chapters, the suitable chip production process is a DRAM process optimized for
maximum memory density (at the expense of slightly larger logic circuits); hence our choice of
the Custom-90-D setting.

Each of the k 〈〈= 32〉〉 processors in each of the 32 stations in each of the 300 × 90 ASIC chips
contains the following logic:

• A K/b-bit register for storing the K/b-tuples of GF(2) elements flowing along from the
inter-station pipeline (≈ 8 ·K/b transistors).

• A K/b-bit register for each of the γ 〈〈= 2〉〉 intra-station channels (≈ 8 · γ ·K/b transistors).

• A FIFO queue 〈〈of depth 2〉〉 for storing elements arriving on the inter-station pipeline along
with the number of the internal bus onto which the respective element is to be written. For
this ≈ 2 · 8 · (K + dlg(γ)e) transistors per queue entry are sufficient.

• A FIFO queue 〈〈of depth 4〉〉 for storing elements arriving on the intra-station channels that
have to be XORed to the vector. Each entry consists of a K/b-tuple of bits for the vector
and a row number in the submatrix handled by the station has to be stored. This occupies
≈ 4 · 8 · (K/b+ dlgdD/(ku)ee) 〈〈= 4 · 8 · (10 + 15)〉〉 transistors per queue entry.

In addition to the registers and queues, we need some logic for counters (to identify the end of
a vector and to decide when to read another element from a bus), multiplexers, etc. For the
parameters of interest, under 1500 transistors are sufficient for this; the 32 × 32 processors on
each chip occupy about 3.2mm2.

The required DRAM storage consists of three parts:

• For storing 2 ·K/b vectors in GF(2)dD/(uk)e,: 2 ·K/b ·D/(uk) bit 〈〈≈ 650 Kbit〉〉.

• For the fetches table: δu + 1 + dlg(γ)e bits per entry.

97

4. A scalable pipelined architecture for the NFS linear algebra step 4.5. Cost estimates

• For the updates table: δf + 1 + dlg(γ)e+ dlgdD/(uk)ee bits per entry.

Overall, the DRAM on each chip occupies 〈〈≈ 67mm2〉〉. The number of clock cycles for each of
the ≈ 2D/K matrix-by-vector multiplications is D/k (plus a small overhead, � 1000 cycles, for
emptying queues and internal buses).

4.5.3 Comparison to previous designs

The optimized mesh-based architecture considered in Chapter 3 ([70]), adapted to 90nm technol-
ogy and distributed onto using 85×85 chips of size 12.25 cm2 each following [76] (to approach the
constraints of present technology), would require about 17.7 months to process the above matrix,
and the higher complexity of that design entails a lower clock rate in that design. Comparing
throughput per silicon area, the new device is over 10 times more efficient; moreover it has much
smaller individual chips and no need for non-local wiring.

This concludes our description and evaluation of the new NFS hardware architectures.
A summary of our results and their implications is presented in Chapter 6.

98

Chapter 5

Analysis of NFS parameters

5.1 Overview

The results of the preceding chapters rely heavily on numerical estimates of various parameters
in the Number Field Sieve, for problem sizes that are yet to be realized experimentally. However,
the NFS algorithm is notoriously hard to analyze and predict; even its asymptotic behavior is
understood only up to a exponent of 1 + o(1), and relies on plausible yet unproven conjectures.
Some aspects are understood heuristically and can be approximated numerically (e.g., relation
yields and the optimal choice of factor bases), while for other aspects little is known beyond a
handful of smaller-scale experimental results (e.g., cycle yields and the effect of large primes).
Previous works (e.g., [197, 35, 130]) relied on rough methods for extrapolation from past experi-
ments. These do not suffice for our purpose, and indeed, as shall be shown here, turn out to be
misleading when stretched to 1024-bit composites.

To facilitate and support the results of the preceding chapters, it is necessary to tackle this
uncertainty. The corresponding analysis is described in this chapter. We have employed all
known techniques to obtain to most plausible and detailed estimates of NFS parameters for
1024-bit and 768-bit composites. Moreover, our analysis extends the known numerical estimation
techniques in order to derive a wealth of additional information on intermediate values, such as
the frequency of candidate relations, at various stages of the algorithm. Considering the NFS
polynomials, a crucial component of the NFS algorithm, we demonstrate polynomials that are
significantly superior to those obtained by the commonly used method.

Beyond the necessity of these estimates for deriving concrete costs, they also played a crucial
role in guiding the optimization and fine-tuning of various trade-offs inherent in the TWIRL
architecture, thereby significantly contributing to the cost reduction. Additionally, the extended
analysis facilitated upper-bounding the cost of several auxiliary steps in the NFS algorithms (e.g.,
cofactor factorization) which might have, by themselves, dominated the total cost after the drastic
cost reduction in the main steps. This bolsters the significance of the new results as reflecting
the total cost of NFS.

99

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

Organization. In §5.2, we review and extend the three main techniques used for estimating
parameters and costs: straightforward extrapolation from asymptotic behavior, semi-numerical
evaluation by use of asymptotic smoothness probability functions, and experimental evaluation
by direct smoothness testing. These methods are, in this order, increasingly accurate but also
increasingly complicated, and each is applicable to a different subset of the NFS parameters.

In §5.3, we present carefully selected NFS polynomials that were used for our experiments; these
are necessary for reproducing the results and are of use for other research pursuing the same goal.

We then employ these techniques in two ways. First, in §5.4, we derive the main NFS parameters
for large composites (1024 and 768 bits) using the asymptotic approach, and evaluate the result
via the other two approaches. The results are instructive, in pointing out the dangers of relying
on the asymptotic extrapolations alone (a common practice in regard to NFS). Then, in §5.5,
we investigate a different parameter setting for the sieving parameters, guided by a more refined
analysis using smoothness probability functions. This setting is used for the TWIRL device of
§2.2, and we consider it in depth in that context.

5.2 NFS parameter estimation techniques

We begin by describing the methods employed to estimate the yield of the NFS. The basic
techniques are well-known, but at several places we extend them to improve accuracy, obtain
additional information, and make them applicable to a more general setting.

5.2.1 Notes on the Number Field Sieve

The following provides some additional pertinent background about the Number Field Sieve,
beyond the basic description in §1.5.

5.2.1.1 Cycle yield

As explained in §1.5.3, the number of relations required to obtain Π(Ur, Ua) independent cycles
(when using NFS with large primes) is determined by the matching behavior of the large primes,
and this behavior varies from factorization to factorization and is not yet well understood.1

Furthermore, the behavior gets considerably more complicated if 2 or 3 large primes are allowed
in the rational and algebraic norms, which is beneficial and customary in current factorizations
(e.g., [44][127]). The uncertainty about the matching behavior of the large primes is the main
reason that it is currently impossible to give reliable estimates for the difficulty of factoring
numbers that are much larger than the numbers we have experience with. For that reason, we
shall investigate several parameter choices which assume different cycle yields.

1Obviously, Π(Ur, Ua) distinct non-free full relations suffice, but this is necessary only in the yet-to-be-observed
worst-case situation where large primes cannot be paired at all. Likewise, for any number of permissible number
large primes (`a and `r), π(Vr) + π(Va) distinct relations always suffice.

100

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

5.2.1.2 Sieving effort

In the standard variant of NFS, for smoothness bounds Ur,Ua and a sieving region of size S, the
run time of the sieving effort is dominated by the number of times the progressions Pi induced
by the factor base hit the sieving region. This value is approximately proportional to2

W
def= S · (log log(Ur) + log log(Ua)) .

5.2.1.3 Coppersmith’s multi-polynomial version

As shown by Coppersmith [47], an improvement of the regular NFS can be obtained by replacing
the single degree-d polynomial f with a set F containing multiple irreducible degree-d polynomials
with a shared root m modulo n. In that case, a relation is a pair of coprime integers (a, b) with
b > 0 such that Nr(a, b) is (Ur, Vr, `r)-semismooth and bdf(a/b) is (Ua, Va, `a)-semismooth for
some f ∈ F . The goal is to find π(Ur) + |F |(π(Ua) − π(min{Ur, Ua})/d!) cycles. First, sieving
is used to find a set S̃ ⊂ S of sieve locations (a, b) ∈ S̃ with (Ur, Vr, `r)-semismooth rational
norms Nr(a, b) with a and b coprime. Next, a smoothness test different from sieving is used to
test bdf(a/b) for (Ua, Va, `a)-semismoothness for all (a, b) ∈ S̃ and all f ∈ F ; in [47], the Elliptic
Curve Method (ECM) is suggested. The approximate run time of the relation collection becomes
proportional to

S · log log(Ur) + Υ · |S̃| · |F |

where Υ is a constant that determines the cost ratio between ECM and sieving. This constant
depends on the (semi-)smoothness bounds Ua, Va, `a employed, and on many practical factors
such as the cost ratio between logic and storage.

5.2.1.4 Asymptotic NFS costs and parameters

We now briefly survey the asymptotic behavior of the Number Field Sieve.

Following standard notation (see [129]), let Lx[r, α] denote any function of x that equals

e(α+ o(1))(lnx)r(ln lnx)1−r
for x→∞ , (5.1)

where α and r are real numbers with 0 ≤ r ≤ 1. Under appropriate assumptions3, optimization of
the parameters for minimum run time (on a serial computer) for n→∞, leads to the asymptotic
costs and major parameters given in the first line of Table 5.1.4

Coppersmith’s multi-polynomial variant of NFS (see §5.2.1.3) runs, asymptotically, slightly faster;
see the second line of Table 5.1.5 The third line shows the effect when we optimize for minimal

2This disregards significant memory scalability and caching effects.
3Namely, a special case of Assumption 3.
4See our paper [131] for the detailed derivations.
5For Coppersmith’s variant the exact expressions are too long to fit in the table; see [131].

101

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

NFS variant Optimized Number of Throughput Bounds Ur, Ua; Sieve region
for operations cost matrix size D dimensions A, B

Ordinary #ops (64/9)1/3 (64/9)1/3(2/3) (8/9)1/3 (8/9)1/3

Coppersmith #ops 1.90188361 . . . 2.85282541 . . . 0.95094180 . . . 0.95094180 . . .
↪→ “free matrix” #ops 1.86893284 . . . 3.14851348 . . . 1.04950449 . . . 0.93446642 . . .

Circuits throughput (5/3)4/3 (5/3)4/3 (5/3)1/3(2/3) (5/3)1/3(5/6)

Table 5.1: Asymptotic behavior of several NFS variants. An entry α means that the asymptotic value of this
parameters is Ln[1/3, α].

sieving effort, in term of number of operations, and pretend that the matrix step is free. The
fourth line shows the asymptotic effect of using relation collection without sieving §1.6.7 combined
with one of the special-purpose linear-algebra devices of Chapter 3 or Chapter 4, with parameters
chosen to minimize throughput cost as in [22].

These expressions provide some insight into parameter selection, but the presence of the o(1)
limits their practical value. The choice of polynomial f (hence, the correction factor ξ in ua),
as well as the use of large primes, are believed to affect these values only by a constant factor
(which disappears in the o(1)).

5.2.2 Extrapolation from asymptotics

5.2.2.1 Technique

The simplest approach to estimating the cost and parameters of NFS for large integers is to
start with some representative factoring experiment of a smaller integer, and use the expected
asymptotic cost scaling to perform extrapolation.6 It proceeds as follows.

Let R indicate a resource required for a factorization effort. For instance, R could indicate the
computing time or throughput cost (see §1.4), or it could be the factor base size, or the total
matrix weight, or any other aspect of the factorization for which one measures the cost or size.

For a resource R, let CR(x) be a cost function that measures, asymptotically for x→∞ and in
the relevant unit, how much of R is needed to factor composites n′ ≈ x using NFS. For several
resources a heuristic expression for this function is known. For example, when R measures the
total minimized expected run time, then CR(x) = Lx[1/3, (64/9)1/3] as given in §5.2.1.4.

Assume that for the NFS factorization of some RSA modulus n′, Rn′ units of some resource R
are known to be required (or sufficient). Then CR(n)

CR(n′)Rn′ is used as an estimate estimate how
much of R would be required (resp., sufficient) for the factorization of RSA modulus n. The
factorization of the 512-bit RSA challenge composite n′ = RSA-155 (see §1.3.1) is often used as
the basis for such extrapolation.7

6This approach was used, for example, in [197, 35, 130].
7Larger composites have factored (see §1.3.1), but the necessary details were not published.

102

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

Similarly, suppose we consider two different parametrization settings for NFS (e.g., optimized for
different goals), with corresponding cost functions CI

R(x), CII
R(x) for some resource R. Then if

the NFS factorization of some RSA modulus n requires RI
n units of R in the first setting, we may

extrapolate that second setting would require RII
n = CII

R(n)

CI
R(n)
Rn units.

5.2.2.2 Caveats

In this type of estimate it is customary to ignore the o(1) factors in the exponent when CR is of
the form (5.1). Based on frequent observations this is not unreasonable if log(n′) and log(n) are
close. For large scale extrapolations, however, omitting the o(1)’s may be an over-simplification
that might produce misleading results.

Furthermore, even if log(n′) and log(n) are close, CR-based extrapolation for resources R that
are well understood in theory, may lead to results of dubious practical value, for the following
reason.

Consider the RSA-155 [44] 512-bit factorization. By extrapolation, one would recommend a factor
base size that is about 2.5 times larger than for a 462-bit factorization (such as RSA-140 [201]).
In practice, however, the entire concept of factor base size is obscured by the use of multiple large
primes and special q’s: it turned out that using the same factor base (due to implementation
limitations) did not severe degrade performance. This effect, where far-from-optimal factor base
sizes still lead to only slightly suboptimal performance, is due to the flat behavior around the
minimum of the run time curve as a function of the factor base size.8

However, run time increases sharply if the factor base size gets much too small (see [196]). This
causes a potential danger for factor base size extrapolation which disregard the o(1) term: a
suboptimal small choice, in the region where the curve is relatively well-behaved for the factor
base for n′, may be extrapolated to a factor base size for n in the steep region of the curve for n,
thereby leading to a much larger total run time for n than anticipated. This effect will be clearly
observed, for one concrete case of interest, in §5.4.2.3.

5.2.3 Semi-smoothness probabilities

A finer approach for estimating the yield of relations and candidates in the Number Field Sieve,
described in the next section, relies on asymptotic smoothness and semismoothness probabilities.
To this end, we recall and define several number-theoretical functions. The study of such functions
is at times termed psixyology ; we shall henceforth occasionally refer to these as psixyological
functions.9

8That is, the derivative of the cost as a function of the factor base size is small near the minimum cost, as one
may expect.

9The term “psixyology” was coined by Moree [144] after a function ψ(x, y) that is central to the analysis.

103

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

Asymptotic Predicate Term

probability (where U = x1/u, V = x1/v, W = x1/w)

ρ(u) Πρ(u),x(z)
def
= z(1) < U U -smooth

σ(u, v) Πσ(u,v),x(z)
def
= z(1) ≤ V ∧ z(2) ≤ U “semismooth” in [14]

σ`(u, v) Πσ`(u,v),x(z)
def
= U < z(`) ≤ V ∧ z(`+1) ≤ U strictly (U, V, `)-semismooth

σ̄2(u, v, w) Πσ̄2(u,v,w),x(z)
def
= U ≤ z(2) ≤ V ∧ z(3) ≤ U restricted strictly semismooth

∧ z(1)z(2) ≤WP`
`′=0 σ`′(u, v) z(`) ≤ V ∧ z(`+1) ≤ U (U, V, `)-semismooth

Table 5.2: Summary of smoothness functions, conditions, notation and terminology

5.2.3.1 Definitions

For a non-negative integer ` and positive reals u, v such that 0 < v < u < 1, let σ`(u, v) denote the
probability, for x → ∞, that a random positive integer smaller than x is strictly (x1/u, x1/v, `)-
semismooth (see §1.5.2). In particular, σ0(u, u) is the probability of x1/u-smoothness and equals
the Dickman ρ(u) function u−u+o(1) for u → ∞.10 This generalizes the σ(u, v) function of Bach
and Peralta [14] (whose σ(u, v) equals σ1(u, v) + ρ(u) in our notation) and the σ2(u, v) function
of Lambert [113].

We define a restricted notion of strict (u, v, 2)-semismoothness, where the product of the two large
primes is also bounded. For u, v, w such that 0 < w < v < u < 1, let σ̄2(u, v, w) be the probability,
for x → ∞, that a random integer 0 < z < x fulfills x1/u ≤ z(2) ≤ x1/v, z(3) ≤ x1/u and also
z(1)z(2) ≤ x1/w. This is a generalization of strict semismoothness, since σ2(u, v) = σ̄2(u, v, v/2).

These conditions and asymptotic functions are summarized in Table 5.2 and illustrated in Fig-
ure 5.1. For each asymptotic probability function ϕ, the table defines a corresponding predicate
Πϕ,x such that, for fixed parameters u, v, w, we have ϕ = limx→∞ Prz [Πϕ,x(z)] for a uniformly
drawn integer 0 < |z| < x.

5.2.3.2 Computation

Closed expressions for σ` and σ̄2 are not known. For ρ and σ1, we used the numerical approxi-
mation methods of Bach and Peralta [14]. For σ2, Lambert provided a derivation in [113, Section
4.3] and an effective numerical calculation method in [113, Section 4.4 and Appendix A]. We
extend this to σ̄2 as follows:

Lemma 2. Let u, v, w be such that 0 < w < v < u < 1/2. Let α = 1/u, γ = 1/w and
β = min(1/v, γ − α). If β ≤ α then σ̄2(u, v, w) = 0, otherwise:

σ̄2(u, v, w) =
1
2

∫ β

α

(∫ min(β,γ−λ1)

α

ρ(1− λ1 − λ2)
α

· dλ2

λ2

)
dλ1

λ1

10See Crandall and Pomerance [51], Canfield et al. [40] and de Bruijn [53].

104

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

ρ(u) σ1(u, v) σ2(u, v) σ̄2(u, v, w)

Figure 5.1: Illustration of the main (semi-)smoothness probability functions. In each case, for a given x > 0, an
integer z whose two largest prime factors are z(1) ≥ z(2) (possibly 1) is represented by the point
(log z(1)/ log x, log z(2)/ log x). For each (semi-)smoothness function ϕ with fixed parameters, the shaded region
represents the integers z fulfilling the (semi-)smoothness predicate Πϕ,x, and ϕ equals the measure of the shaded
region (over uniformly drawn z s.t. |z| ≤ x and x→∞).

Proof outline. The non-trivial case β > α proceeds analogously to Lambert’s derivation of σ2.
Define a function Ψ̄2 such that σ̄2(u, v, w) = limx→∞ Ψ̄2(x, x1/v, x1/u, x1/w):

Ψ̄2(x, xβ, xα, xγ) def=
∑

xα≤p1≤xβ

∑
xα≤p2≤min{p,xγ/p1}

∣∣{z ≤ x : z(1) = p, z(2) = p2, z(3) ≤ xα
}∣∣

This is identical to the function Ψ2(x, xβ, xα) of [113] except for the limits of the summation. We
then follow the proof of [113, Theorem 4.3.1], substituting Ψ̄2 for Ψ2 and adjusting the limits
of summation and integration accordingly. In the transition to the analogue of equation [113,
Eq. (4.3)], note that the two-dimensional set over which we integrate remains symmetric. The
claim follows.

5.2.3.3 Implementation

For the yield estimates of §5.4.2 and §5.5, we wrote programs that compute all of the afore-
mentioned asymptotic smoothness functions. Our primary implementation is in C++, using a
generalization of the effective technique of [113, Section 4.4] to σ̄2. This implementation also
solves critical numerical stability problems which caused infinite loops in [113, Appendix A]. It
also employs caching of common expression and look-up techniques for improved performance, in
order to execute the methods of the next section in acceptable time.

For reference, we also wrote two additional implementations employing direct numeric integration
(following [14] and [113, Section 4.3] instead of symbolic manipulation of the integrals. One was
written in C++ using the GNU Scientific Library [79], and the other in Mathematica [219].

The consistency checking facilitated by multiple implementations helped us identify and correct
a previously unnoticed error in the derivation and code of [113].11 Where applicable, consistency

11On Page 97 there, a factor of 1/2 due to the Jacobian is omitted, leading to incorrect results for σ2 [114].

105

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

with the tables in [14] and the code in [113] was also verified.

5.2.4 Estimates via smoothness probabilities

The psixyological smoothness probability functions defined in the previous section let us express
and estimate the yield of full and partial relations in the Number Field Sieve.

5.2.4.1 Assumptions

First, we make the standard heuristic assumption that the values assumed by Nr(a, b) and Na(a, b)
behave like independent random integers of similar size with respect to their (semi-)smoothness
probability, apart from the correction factor ξ defined as follows.

For integer z, let η(U, z) denote the largest U -smooth factor of z. For random integers12 z � U ,
the expected value Γ(U) of ln η(U, z) is known to be

Γ(U) def=
∑

p<U, p prime

(log p)/(p− 1) .

Conversely, for a given NFS polynomial f , the expected value Γf (U) of ln η(U,Na(a, b)) taken
over (a, b) ∈ S can be estimated experimentally by averaging ln η(U,Na(a, b)) over a large random
set of coprime pairs (a, b). The correction factor that measures f ’s advantage is then defined as
the difference between the ln η(·) values assumed by the norms vs. the random case:13

ξ
def= exp(Γf (230)− Γ(230)) .

Typically we have ξ > 1 because f is chosen so that Na(a, b) tends to have unusually many small
factors (e.g., see [146]). The constant 230 is chosen to be much larger than the small factors
typically considered in the choice of f , and is otherwise inconsequential.

We also assume that asymptotic (semi-)smoothness probabilities, as captured by ρ(u), σ`(u, v) and
σ̄2(u, v, w), for fixed `, u, v and w, serve as a good estimate for concrete smoothness probabilities
for the numbers of the magnitude arising in the Number Field Sieve (see, e.g., [14],[146],[113]).

The combinations of these assumption is semi-formally captured by the following:

Assumption 3. Let ϕr, ϕa ∈ {ρ(u), σ`(u, v), σ̄2(u, v, w)} for any fixed u, v, w, ` (which may differ
between ϕr and ϕa). Let Πϕr,x and Πϕa,x be the corresponding predicates from Table 5.2. Let
xr, xa � 1. Let (a, b) be drawn uniformly from S conditioned on Nr(a, b) ≈ xr and Na(a, b)/ξ ≈
yr. Then:

Pr[Πϕr,xr(Nr(a, b)) ∧Πϕa,xa(Na(a, b))] ≈ ϕr · ϕa .

We have experimentally tested this assumption for several parameter choices; see §5.2.5 and
§5.4.3.

12In an asymptotic sense, when drawn uniformly from an increasingly large range.
13Our ξ fulfills a role similar to eα(f) in [146].

106

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

5.2.4.2 Estimating relations yield

Define:
ur =

log(Nr(a, b))
log(Ua)

, ua =
log(Na(a, b)/ξ)

log(Ua)

vr =
log(Nr(a, b))

log(Vr)
, va =

log(Na(a, b)/ξ)
log(Va)

.

By the above assumption, for integers `′r, `
′
a ≥ 0, a sieve location (a, b) randomly drawn from S

forms an (`′r, `
′
a)-partial relation with probability

σ`′r(ur, vr) · σ`′a(ua, va) .

conditioned on the magnitude of Nr(a, b) and Na(a, b). Integration of these probabilities over the
sieving region gives an estimate for the total yield of (`′r, `

′
a)-partial relations. A correction factor

6/π2 ≈ 0.608 is applied to all results to account for the probability that randomly drawn a and
b are coprime, since other pairs (a, b) are discarded during NFS sieving.

In the case of Coppersmith’s variant (see §5.2.1.3), an estimate of |S̃| is obtained by integrating
the σ`′r(ur, vr) values over the sieving region.

5.2.4.3 Estimating candidates yield

The above standard method lets us estimate the yield of full and partial relations, given the NFS
polynomial and sieving region. However, the full relation collection step involves multiple stages
of filtering, each testing for specific semi-smoothness properties. Sieving devices like TWIRL
address only certain tests, leaving numerous candidates which undergo futher filtering in later
stages. It is crucial to verify that the number of such initial candidates is sufficiently small so
that subsequent filtering does not become a bottleneck. Moreover, in the cascaded sieves variant
of TWIRL (see §2.3.5), the algebraic-side sieve handles only the pairs (a, b) that passed the
rational sieve, and it should be verified that the latter are sufficiently infrequent; this is crucial
for achieving the high parallelism factor of sA = 32,768 inspected pairs per clock cycle.

We extend the method of the previous section to estimate these quantities. That is, we estimate
the number of candidates at the relevant points in the algorithm by writing down the appro-
priate smoothness probability, integrating it over the sieving region and (analogously to §5.2.4)
multiplying the result by the correction factor 6/π2.

For integer z, let µ(U, z) def= z/η(y, z) denote the largest non U -smooth factor of z. In effect, the
sieving step identifies the pairs (a, b) for which µ(Ur, Nr(a, b)) ≤ V `r

r and µ(Ua, Na(a, b)) ≤ V `a
a .

Indeed, for `a, `r ≥ 2, not all such pairs form relations.

Here we assume the common setting `r = `a = 2.14 For brevity, let k1 and k2 denote the two
largest prime factors of Nr(a, b); similarly, let κ1 and κ2 denote the two largest prime factors of

14That is, we assume two large primes per side; see e.g., [44] and [127]. The technique is easily generalized.

107

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

Na(a, b):

k1
def= Nr(a, b)(1) , k2

def= Nr(a, b)(2) , κ1
def= Na(a, b)(1) , κ2

def= Na(a, b)(2) .

The relevant types of candidates are as follows.15

Pass Rational Sieve (PRS): The pairs that pass the rational sieve are those that fulfill µ(Ur, Nr(a, b)) ≤
V 2
r . Assuming V 2

r < U3
r , the above is equivalent to the following: (k1, k2 < Ur) ∨ (Ur <

k1 ≤ V 2
r ∧ k2 < Ur) ∨ (Ur < k1, k2 ∧ k1k2 ≤ V 2

r). Accordingly, the probability that (a, b)
fulfills this can be estimated by ρ(ur) + σ1(ur, vr/2) + σ̄2(ur, vr/2, vr/2).

Pass Both Sieves (PBS): the probability that a pair (a, b) passes both sieves is obtained
by multiplying the above by the analogous expression for the algebraic side: (ρ(ur) +
σ1(ur, vr/2) + σ̄2(ur, vr/2, vr/2)) · (ρ(ua) + σ1(ua, va/2) + σ̄2(ua, va/2, va/2)).

Pass Primality Testing (PPT): For pairs that passed both sieves, the smooth factors are
divided out to obtain µ(Ur, Nr(a, b)) and µ(Ua, Na(a, b)).16 If µ(Ur, Nr(a, b)) is prime and
larger than Vr, or µ(Ur, Na(a, b)) is prime and larger than Va, then the pair is discarded. A
pair (a, b) reaches and survives this test iff (k1, k2 < Ur)∨ (Ur < k1 ≤ Vr ∧ k2 < Ur)∨ (Ur <
k1, k2 ∧ k1k2 ≤ V 2

r) and analogously for the algebraic side. The probability that this holds is
estimated by (ρ(ur)+σ1(ur, vr)+σ̄2(ur, vr/2, vr/2))·(ρ(ua)+σ1(ua, va)+σ̄2(ua, va/2, va/2)).

Rational Cofactor Factorizations (RCF): For pairs that survived primality testing, if the
cofactor µ(Ur, Nr(a, b)) is composite then it needs to be factored and tested for Vr-smoothness.
The size of the cofactor to be factored is bounded by V 2

r . This step is reached and the fac-
torization is performed if (Ur < k1, k2 ∧ k1k2 ≤ V 2

r) and (κ1, κ2 < Ua) ∨ (Ua < κ1 ≤
Va ∧ κ2 < Ua) ∨ (Ua < κ1, κ2 ∧ κ1κ2 ≤ V 2

a). The probability that this holds is estimated
by σ̄2(ur, vr/2, vr/2) · (ρ(ua) + σ1(ua, va) + σ̄2(ua, va/2, va/2)).

Rational Semi-Smooth (RSS): A pair reaches the rational cofactor factorization step and
passes (or skips) it if indeed Nr(a, b) is (Ur, Vr, `r)-smooth and (a, b) passed the algebraic
sieve. For this to happen, the condition on the rational side is (k1, k2 < Ur) ∨ (Ur < k1 ≤
Vr ∧ k2 < Ur) ∨ (Ur < k1, k2 ≤ Vr), and the condition on the algebraic side is as in the
previous step. Thus the probability is estimated by (ρ(ur)+σ1(ur, vr)+σ2(ur, vr)) ·(ρ(ua)+
σ1(ua, va) + σ̄2(ua, va/2, va/2)).

Algebraic Cofactor Factorizations (ACF): For pairs that are semismooth on the rational
side, if the cofactor µ(Ua, Na(a, b)) is composite then it needs to be factored and tested
for Va-smoothness. This step is reached and the factorization is performed iff (Ua <

15This describes one plausible and commonly employed ordering of the filtering steps. Other variations are
possible (e.g., performing the algebraic cofactor factorization before the rational cofactor factorization, or even
before the rational primality testing), and indeed Kleinjung [106] has recently presented a method for interleaving
the steps in an optimal way; our technique easily extends to these cases.

16Efficiency-wise, most prime factors smaller than Ur or Ua are reported by TWIRL; see §2.3.7.2.

108

5. Analysis of NFS parameters 5.2. NFS parameter estimation techniques

κ1, κ2 ∧ κ1κ2 ≤ V 2
a) and also the rational-side condition of the previous step holds. The

corresponding probability is estimated by (ρ(ur)+σ1(ur, vr)+σ2(ur, vr))·σ̄2(ua, va/2, va/2).

Relations (Total): A pair that passes all of the above forms a relation; the probability of this
occurring is estimated by (ρ(ur) + σ1(ur, vr) + σ2(ur, vr)) · (ρ(ua) + σ1(ua, va) + σ2(ua, va)).

In §5.5 we evaluate the above for the NFS parameters sets of TWIRL.

5.2.5 Direct smoothness tests

To test the accuracy of the above ρ and σ1-based estimates compared to the actual NFS yield,
we tested Nr(a, b) and Na(a, b) values for smoothness for wide ranges of (a, b) pairs.

In the absence of a sieve implementation capable of handling the range of factor base sizes we
intended to test, we wrote a smoothness test that uses trial division up to 230 combined with the
Elliptic Curve Method factoring algorithm.

The simplest approach would have been to subject each successive number to be tested to trial
division followed, if necessary, by the ECM. To obtain slightly greater speed, and without having
to deal with the imperfections (overlooking some smooth values) and inconveniences (memory
requirements, resieving or trial divisions to obtain the cofactor) of sieving, we used a different
approach reminiscent TWIRL largish station design of §2.2.2.

The trial divisions were organized in such a way that a large consecutive range of a’s could
be handled reasonably efficiently, for a fixed b. For the algebraic norms this was achieved as
follows (the rational norms are processed similarly). Let [A1, A2] be a range of a-values to be
processed. For every progression Pi corresponding to a pair (pi, ri) with p < 230, calculate the
smallest ap ≥ A1 such that ap ≡ br mod p (i.e., p divides Na(ap, b)) and if ap ≤ A2 insert
the pair (p, ap) in a heap that is ordered with respect to non-decreasing ap values. Next, for
a = A1, A1 + 1, . . . , A2 in succession compute z = Na(a, b), remove all elements with ap = a
from the top of the heap, divide out the corresponding factors p from z to obtain the cofactor
z′ = µ(230, z), and if ap + p ≤ A2 insert (p, ap + p) in the heap. Each resulting z′ has no factors
smaller than 230; if z′ < 260 then it is certainly prime, otherwise it is subjected to the ECM
primality test. The full factorization is thus obtained and compared to the smoothness bounds.
The analogous test is also done for Nr(a, b).17

17Due to the probabilistic nature of the ECM, factors between 230 and the smoothness bound (Ua and Ur)
may be overlooked; but with proper ECM parameter settings and reasonably sized Ua and Ur, such as the ones
considered here, this occurs with negligible probability (and in any case, we will be erring on the side of caution
by underestimating the yield).

109

5. Analysis of NFS parameters 5.3. Choice of NFS polynomials

5.3 Choice of NFS polynomials

5.3.1 Context

Computation of estimates, by either psixyological method or by direct smoothness testing, re-
quires a concrete choice of the composite n, degree d, NFS polynomials f(X) and g(X), root m,
skewness ratio ω and correction factor ξ (see §1.5.3). The choice of polynomials affects all param-
eters, since good polynomials (i.e., those that produces a high yield of relations) allow for smaller
smoothness bounds and sieving regions. Finding such good polynomials is a non-trivial affair,
and various methods have been developed to improve the yield by a noticeable factor compared
to random polynomials fulfilling the necessary requirements [143][145][146][64].

Concentrating on 1024-bit composites (i.e., the most commonly used key size in the RSA cryp-
tosystem) and 768-bit composites (as a more accessible milestone), the natural subjects for study
are the RSA-1024 and RSA-768 challenge numbers published by RSA Data Security, Inc. (see
§1.3.1). The advanced methods for polynomial selection have not been previously invoked for such
large composites [105]. We have thus applied these techniques ourselves, with some necessitated
minor adaptations, for the purpose of the ensuing evaluation. The results, given in these section
and affecting the subsequent sections, have meanwhile been used by several follow-up works as
well (see §6.3).

5.3.2 NFS polynomials for RSA-1024

The RSA-1024 factoring challenge from [177] is the following composite:

n =1350664108659952233496032162788059699388814756056670275244851438515265106048595338339402871505719094417

9820728216447155137368041970396419174304649658927425623934102086438320211037295872576235850964311056407

3501508187510676594629205563685529475213500852879416377328533906109750544334999811150056977236890927563

We have derived and evaluated numerous polynomials for this composite, using the NFS poly-
nomial selection program of Jens Franke and Thorsten Kleinjung [64] (with minor adaptations).
Our experiments employed several Pentium 1.7GHz computers at the Weizmann Institute of Sci-
ence, for a total CPU time of about 20 days. Most of this time was spent on experimentation
with search parameters, which can be reused for other composites, so future experiments would
require just a few hours for polynomials of similar quality. Notably, with this polynomial selection
program there is a lot of flexibility in the search parameters: at a small cost in yield one can
obtain, for example, polynomials with much larger or much smaller skewness ratio ω, or trade
root properties for size properties (see [146]).

The best polynomial pair found, and which was subsequently used for the parametrization of
1024-bit TWIRL in §2.2, is the following:

(A) m = 2626198687912508027781823689041581872398105941296246738850076103682306196740

55292506154513387298663560887146183854975198160502278243245067074820593711054723850

110

5. Analysis of NFS parameters 5.3. Choice of NFS polynomials

57002739575614001142020313480711790373206171881282736682516670443465012822281608387
169409282469138311259520392769843104985793744494821437272961970486,
d = 5, s = 1991935.4, ξ = exp(6.33),
f(X) = 1719304894236345143401011418080X5

− 6991973488866605861074074186043634471X4

+27086030483569532894050974257851346649521314X3

+46937584052668574502886791835536552277410242359042X2

− 101070294842572111371781458850696845877706899545394501384X
− 22666915939490940578617524677045371189128909899716560398434136,

g(X) = 93877230837026306984571367477027X
− 37934895496425027513691045755639637174211483324451628365

Note that here we have a non-monic rational-side g, so compared to the special case given in
§1.5.3 we redefine Nr(a, b)

def= |b · g(a/b)|.
For some of the other experiments, we used the following polynomials, obtained through the
approach of Montgomery and Murphy [143][145][146]. This approach allows for f(X) of degree
other than d = 5, thereby allowing us to investigate the effect of varying the degree. However,
it yields polynomials that are somewhat inferior to those of [64]. In these cases, g(X) = X −m.
The best polynomials we found by this method, for d = 5,6,7,8,9, are as follows:

(B) m = 40166061499405767761275922505205845319620673223962394269848, d = 5, ω = 87281.9, ξ = exp(4.71),

f(X) = 1291966090228800X5 − 640923572655549773652421X4

+22084609569698872827347541432045436154518749958885X3

+395968894120701874630226095753546547718334332711719805X2

− 96965973957066386285836042292532199420340774279358321957826X
− 4149238485198657863882627412883817567549615187136520422680871493

(C) m = 6290428606355899027255723320027391715970345088070, d = 6, ω = 458.857, ξ = exp(3.10) ,

f(X) = 2180047385355840X6 − 3142872579455569636X5

− 1254155662796860036208992514969847001569768X4

− 12346184596682129311885354974311793670338999X3

+326853630498301587526877377811152784944999520522X2

+4609395911122979440239635705733809071478223546768X
− 11074692768758259967955017581674706364925519996590997

(D) m = 103900297567818360319524643906916425458585, d = 7, ω = 40.9082, ξ = exp(3.66),

f(X) = 1033308066924956844000X7 − 160755011543490353038479X6

− 195303627236151056576676296300427751X5 − 67322997660970472962322331424620518857X4

+852886687422682194441338494667584979283X3

+122261247387346205137507554160155213223449X2

− 941042262598628457425892609296624845278218X
− 38806712095590448575304126518627120637325432

(E) m = 1364850538695913738402818687041215458, d = 8, ω = 107.255, ξ = exp(5.13),

f(X) = 11216738509080904800X8 +4126963962861489385859X7

− 1175791917822439782941507504635X6 +2996639999067533888196133035298645X5

+208240147656019048048262524877102283X4 − 27357702926139861867857609251152887873X3

− 3424834099100207742896726960114709926535X2 − 12957538712647811491436510238283188219229X
+8733287829967486818441309661955398847347705

(F) m = 1310717071544062886859477360545488, d = 9, ω = 8.51584, ξ = exp(3.89),

f(X) = 11829510000X9 − 323042712742X8

− 2296009166444361125150144310X7 − 17667833832765445702215975840307X6

+104750984243461509795139799847908X5 +684082899341824778960200186325064X4

− 8558486132848151826178414424938636X3 +32301718781994667946436083991144874X2

− 42118837302218928303637260451515638X − 1293558869408225281960437545569172565

111

5. Analysis of NFS parameters 5.3. Choice of NFS polynomials

5.3.3 NFS polynomials for RSA-768

The RSA-768 factoring challenge from [177] is the following composite:

n =1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389

9564749427740638459251925573263034537315482685079170261221429134616704292143116022212404792747377940806

65351419597459856902143413

For RSA-768, we have derived the following polynomial pair (G) by the same method Franke-
Kleinjung procedure as (A) above. Using the Montgomery-Murphy approach we have also ob-
tained another (somewhat inferior) polynomial pair, denoted (H), with d = 5, ω ≈ 26000 and
ξ ≈ exp(5.3).18

(G) m = 2980427354552256959621694668022969720925142335553136586170340190386865951921

42458430585097389943648179813292845509402284357573098406890616147678906706078002760
825484610584689826591183386558993533887364961255454143572139671622998845,
d = 5, ω = 1905116.1, ξ = exp(3.78),
f(X) = 44572350495893220X5 + 1421806894351742986806319X4

− 1319092270736482290377229028413X3 − 4549121160536728229635596952173101064X2

+6062531470679201843447146909871507448641523X
− 1814356642608474735992878928235210850251713945286,

g(X) = 669580586761796376057918067X − 7730028528962337116069068686542066657037329

5.4 Results for extrapolated parameters

In this section, we estimate the main NFS parameters for 1024-bit and 768-bit composites using
the traditional asymptotic extrapolation technique described in §5.2.2. We then apply the finer
estimation techniques to these sizes, to investigate the soundness of these predictions and to
obtain the remaining parameters.

5.4.1 Extrapolated parameters

5.4.1.1 Smoothness bounds and sieving region

Lenstra and Shamir [130] have proposed the following parameters for 512-bit numbers, in the
context of TWINKLE:19

• 512-bit composites: Ur = Ua = 224, S = 1.6 · 1016 (A = 9 · 109, B = 9 · 105)

18For incidental technical reasons, §5.4.2.2 uses (H) rather than (G).
19The concrete factorization project [44] which factored RSA-155 used essentially similar values in [44]. The

details are complicated by the use of special-q lattice sieving and the variability of some parameters among con-
tributors to the sieving effort.

112

5. Analysis of NFS parameters 5.4. Results for extrapolated parameters

Following §5.2.2, we first extrapolate to 1024-bit composites by increasing the smoothness bounds
U , the number B of sieve lines and their length R = 2A, and the number of progressions
(roughly U/ ln(U)) by a factor of L21024 [1/3, (8/9)1/3] /L2512 [1/3,2/32/3] ≈ 2737. We then adjust
to a different choice of NFS parameters, corresponding to minimized throughput cost (instead
of minimized run time; see Table 5.1).20 This decreases the smoothness bounds by a factor of(
L21024 [1/3, (5/3)1/3(2/3)] /L21024 [1/3, (8/9)1/3]

)−1 ≈ 210, but increases both the sieve line width R
and the number of sieve lines B by a factor of L21024 [1/3, (5/3)1/3(5/6)]/L21024 [1/3, (8/9)1/3] ≈ 2.3.
The analogous computation is also carried out for 768-bit composites, yielding:

• 768-bit composites: Ur = Ua = 1.2 · 107, S = 4.2 · 1020 (A = 1.5 · 1012, B = 1.5 · 108)

• 1024-bit composites: Ur = Ua = 2.5 · 108, S = 6 · 1023 (A = 5.5 · 1013, B = 5.5 · 109)

If large primes and partial relations are not used (i.e., `a = `r = 0) then the uncertainty about
cycle behavior disappears, but more sieving is needed. By simply taking the smoothness bound
of 512-bit factorization to be 109 (which is the large primes bound used in [44]) and extrapolating
as before, we then obtain this estimate:

• 1024-bit composites without partial relations: Ur = Ua = 1.5 · 1010, S = 6 · 1023

5.4.1.2 Matrix sizes

Focusing on 1024-bit composites, we extrapolate the matrix sizes for the cases of minimzed
throughput cost and minimized running time.

Runtime-optimized matrix. In the factorization of RSA-155, the matrix had about 6.7 million
columns [44].21 Combining this figure with the L(2/32/3) matrix size growth rate corresponding
to minimized time complexity, we obtain

6.7 · 106 · L21024 [1/3,2/32/3]
L2512 [1/3,2/32/3]

≈ 1.8 · 1010 .

With some adjustment to account for the observed behavior of the o(1) term, it is estimated that
an optimal 1024-bit matrix would contain about D = 1010 columns.

Column density is hard to predict due to the complicating preprocessing methods employed
(see [43]). Since in RSA-155 the final matrix had average column density about 63, we assume
here an average column density of h = 100.

20We choose the “Circuits” setting of Table 5.1, which is optimized under the assumption that the sieving step
does not use much storage. This tends to increase the smoothness bounds compared to a more accurate optimization
for throughput cost when sieving is employed; but as we shall see the extrapolated smoothness bounds are still too
low.

21This matrix is, apparently, considerably smaller than optimal due to the choice of small smoothness bounds as
necessitated by the then-available sieve implementations.

113

5. Analysis of NFS parameters 5.4. Results for extrapolated parameters

We refer to this matrix size as the runtime-optimized matrix. In Chapter 2 through Chapter 4 we
also employ it as a generous overestimate to upper-bound the cost of processing a throughput-
optimized matrix.22

Throughput-optimized matrix. By optimizing for throughput cost instead, i.e., correcting
this matrix size for the L((5/3)1/3(2/3)) matrix size growth rate for matrix exponent 5/2, we find

1.8 · 1010 · L21024 [1/3, (5/3)1/3(2/3)]
L21024 [1/3,2/32/3]

≈ 8.7 · 107.

We arrive at an estimate of about 4 · 107 columns for the circuit-NFS 1024-bit matrix. We again,
optimistically, assume that the average column density is about 100. We refer to this matrix as
the throughput-optimized matrix.

5.4.2 Evaluation via smoothness probabilities

We proceed to evaluate the aforementioned parameters using the psixyological functions, as pre-
scribed in §5.2.4. We shall see that while the base parameters for 512-bit composites are reason-
able, their naive extrapolation (by the standard method) 768-bit and 1024-bit yields unrealistic
values. Subsequently we shall explore NFS yields and costs in the parameter-space neighborhood
of the extrapolated parameters, in order to find workable and effective adjustments, and to further
the understanding of the tradeoffs.

5.4.2.1 512-bit composites

Let n = RSA-155, d = 5, f and g as in RSA-155 [44], ω = 10800, and ξ = exp(5.3). Application
of our ρ and σ1-based estimates to Ur = Ua = 224, Vr = Va = 26Ur = 230, A = 9 · 109, and
B = 9 · 105 result in an estimated yield of Π(Ur, Ua)/8.9 ≈ 2.4 · 105 ff relations23, 2.2 · 106 fp’s,
9.1 · 105 pf ’s, and 8.1 · 106 pp’s. Because the parameter choice was intended for the use of two
large primes per side (`a, `r = 2), these results look acceptable: if more than one tenth of the
matrix is filled with ff ’s, combinations of multi-prime partial relations will certainly fill in the
rest (as confirmed experimentally in the case of [44]).

In retrospect, the sieving effort (as defined in §5.2.1.2) could be made about 470 times lower, while
keeping the same fraction of ff relations, by choosing larger smoothness bounds (Ur = 229, Ua =
230) and smaller region (B = 4.0 ·104 and proportional A). However, sieving would have required
a larger amount of accessible fast RAM than was available in 1999. Because Ur = Ua = 224 is
much smaller than the choice that would minimize the sieving effort, extrapolated parameters
may result in a very large sieving effort as explained in §5.2.2.2. See also Table 5.4 below.

22This is needed because, as shall be soon shown, direct extrapolations for the throughput-optimized case do not
yield a realistic result.

23ff , fp, etc. denote full-full, full-partial, etc. relations; see §1.5.3.

114

5. Analysis of NFS parameters 5.4. Results for extrapolated parameters

5.4.2.2 768-bit composites

We provide a very brief account of our evaluation of n = RSA-768 using the polynomial pair (H)
mentioned in §5.3.3. The qualitative behavior is similar to the (more important) case of 1024-bit
composites, discussed in much greater depth below.

To get S = 2AB = 4.2 · 1020 with A = ωB, we set B = 9 · 107. With Ur = Ua = 224,
Π(Ur, Ua) = 2.1 · 106, and Vr = Va = 210Ur = 234 we estimate a yield of fewer than 40 ff ’s, 1200
fp’s, 500 pf ’s, and 2 · 104 pp’s. It is unlikely that this is sufficient, unless a substantial effort
is spent on finding multi-prime partial relations. With increased smoothness bounds Ur = 229,
Ua = 230, and the same sieving region, about Π(Ur, Ua)/16 ≈ 5.2 · 106 ff ’s can be expected, i.e.,
this setting is plausible given reasonable use of partial relations.

5.4.2.3 1024-bit composites

For n = RSA-1024 we considered the polynomial pairs (B)–(F), of degrees d = 5,6,7,8,9 respec-
tively, each with corresponding integer m, skewness ratio ω, and correction factor ξ as specified
in §5.3.2. For each of these degrees, the first block of Table 5.3 gives the estimated yield figures
for the extrapolated region size S = 6 · 1023 and rounded24 extrapolated smoothness bounds
Ur = Ua = 228. For the large prime bounds we list several possibilities, Vr = Va = 2jUr for
j ∈ {8,12,16}, and indicate the expected yield of fp, pf , and pp relations by fpj , pf j , and ppj ,
respectively. Because the skewness ratio ω depends on d, the height B =

√
S/(2ω) and width

R = 2A = 2ωB of the sieving region depend on d.

The second block of Table 5.3 gives the analogous results for increased smoothness bounds Ur =
Ua = 234, corresponding to extrapolation without partial relations (see §5.4.1.1).

Table 5.3 indicates that, unless multi-prime partial relations are collected on a much wider scale
than customary or practical, the smoothness bounds obtained by extrapolation are infeasible.
The increased smoothness bounds are insufficient as well, using the extrapolated sieving region
size S, if partial relations are indeed not used.

Having observed that extrapolation did not yield acceptable results, we proceed to explore the
neighborhood in parameter-space in order to better understand its behavior and obtain more
realistic values.

Effect of sieving region. The two bottom blocks of Table 5.3 depict the effect of doubling and
quadrupling A and B, thereby increasing S = 2AB (and hence the sieving effort) by a factor 4
and 16, respectively. The number of ff relations still does not approach the goal Π(Ur, Ua).

To get the choice Ur = Ua = 234 to work without partial relations, our estimates suggest that
d = 6 with B ≈ 2.9 · 1012 (corresponding to S ≈ 8 · 1027) would suffice. This would, however,
be about 13000 times more expensive than the asymptotic estimate: the initial 2.6 · 1010 b-values

24We round up to a power of 2 for incidental technical reasons; the resulting overestimate of yield strengthens
our conclusion.

115

5. Analysis of NFS parameters 5.4. Results for extrapolated parameters

Table 5.3: Estimated yields with polynomials (B)–(F) for extrapolated parameters

Vr = Va = 28Ur (j = 8) Vr = Va = 212Ur (j = 12) Vr = Va = 216Ur (j = 16)
d ω B ff fp8 pf 8 pp8 fp12 pf 12 pp12 fp16 pf 16 pp16

Ur = Ua = 228, Π(Ur, Ua) ≈ 2.9E7, S = 6E23, W ≈ 3.6E24
5 87281.9 1.9E9 22 4.7E2 2.3E2 5.1E3 9.2E2 4.3E2 1.8E4 1.6E3 6.9E2 5.1E4
6 458.9 2.6E10 74 1.7E3 6.3E2 1.4E4 3.3E3 1.1E3 5.0E4 5.8E3 1.8E3 1.4E5
7 40.9 8.6E10 1.5E2 3.6E3 1.0E3 2.4E4 6.9E3 1.8E3 8.1E4 1.2E4 2.8E3 2.2E5
8 107.3 5.3E10 34 8.2E2 1.8E2 4.5E3 1.6E3 3.2E2 1.5E4 2.8E3 4.8E2 4.0E4
9 8.5 1.9E11 3 69 14 2.5E2 1.3E2 24 8.2E2 1.8E2 37 2.2E3

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 6E23, W ≈ 3.8E24
5 87281.9 1.9E9 9.1E6 1.1E8 5.6E7 6.9E8 2.0E8 9.5E7 2.1E9 3.3E8 1.5E8 5.2E9
6 458.9 2.6E10 2.1E7 2.8E8 1.0E8 1.4E9 5.1E8 1.7E8 4.1E9 8.2E8 2.6E8 1.0E10
7 40.9 8.6E10 3.1E7 4.3E8 1.2E8 1.7E9 7.7E8 2.0E8 5.0E9 1.3E9 2.9E8 1.2E10
8 107.3 5.3E10 6.8E6 1.0E8 2.2E7 3.3E8 1.9E8 3.6E7 9.9E8 3.1E8 5.2E7 2.4E9
9 8.5 1.9E11 5.3E5 8.5E6 1.5E6 2.5E7 1.6E7 2.5E6 7.3E7 2.6E7 3.6E6 1.8E8

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 2.4E24, W ≈ 1.5E25
5 87281.9 3.7E9 1.9E7 2.4E8 1.2E8 1.5E9 4.4E8 2.0E8 4.6E9 7.1E8 3.1E8 1.1E10
6 458.9 5.1E10 4.0E7 5.6E8 2.0E8 2.7E9 1.0E9 3.3E8 8.1E9 1.6E9 5.0E8 2.0E10
7 40.9 1.7E11 5.2E7 7.4E8 2.0E8 2.9E9 1.3E9 3.3E8 8.7E9 2.2E9 5.0E8 2.1E10

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 9.8E24, W ≈ 6.1E25
5 87281.9 7.4E9 4.1E7 5.3E8 2.5E8 3.3E9 9.5E8 4.3E8 1.0E10 1.5E9 6.6E8 2.5E10
6 458.9 1.0E11 7.5E7 1.0E9 3.7E8 5.2E9 2.0E9 6.3E8 1.6E10 3.2E9 9.5E8 3.9E10
7 40.9 3.4E11 8.6E7 1.3E9 3.4E8 5.0E9 2.3E9 5.7E8 1.5E10 3.8E9 8.4E8 3.7E10

Table 5.4: Sieving effort to find Π(2i,2i+1)/32 ff ’s for d = 6

i effort i effort i effort i effort i effort i effort
28 1.5E36 32 5.6E26 36 1.7E23 40 4.8E21 44 1.2E21 48 9.6E20
29 4.7E32 33 3.7E25 37 5.2E22 41 2.9E21 45 1.0E21 49 1.0E21
30 1.4E30 34 4.2E24 38 2.0E22 42 2.0E21 46 9.4E20 50 1.2E21
31 1.7E28 35 7.2E23 39 9.1E21 43 1.5E21 47 9.3E20 51 1.4E21

produce about Π(Ur, Ua)/72 ff ’s, but the performance deteriorates for larger b’s so that much
more than 72 times the initial effort is needed to find Π(Ur, Ua) ff ’s. For d = 5 or 7 it would be
1.1 or 3.5 times even more expensive, respectively.

Effect of partial relations. Using partial relations is probably a more efficient way to get
Ur = Ua = 234 to work, as suggested by the last two parts of Table 5.3. There are no adequate
methods yet to predict if the listed partial relation yield, perhaps augmented with partial relations
with 3 or more large primes, would suffice or not; thus we cannot make any definite statements
on the resulting cost or the semismoothness bound that would be required.

Effect of smoothness bounds. In Table 5.4 the effect of low smoothness bounds is illustrated.
The total expected sieving effort to find Π(Ur, Ua)/32 ff ’s is listed for d = 6, Ur = 2i with
i = 28,29, . . . ,51 and Ua = 2Ur. The optimum 9.3 · 1020 is achieved at i = 47. When i gets
smaller the effort at first increases slowly and gradually, but around i = 39 the effort grows faster
than the smoothness bounds shrink (so the throughput cost of sieving), and for smaller i the
performance deteriorates rapidly — lending support to the caveat in §5.2.2.2.

Effect of smoothness bounds and relative cycle yield. Suppose that the (unknown) ratio

116

5. Analysis of NFS parameters 5.4. Results for extrapolated parameters

Table 5.5: Minimal sieving efforts to find T (2ir ,2ia)/c ff ’s
c = 1 c = 8 c = 16 c = 32 c = 64 c = 128

d ir, ia effort ir, ia effort ir, ia effort ir, ia effort ir, ia effort ir, ia effort
6 48,49 1.6E23 47,48 7.2E21 47,48 2.6E21 47,48 9.2E20 47,48 3.3E20 46,47 1.2E20
7 47,49 9.4E22 47,49 3.5E21 46,48 1.1E21 46,47 3.5E20 45,47 1.1E20 45,46 3.6E19
8 48,50 3.7E23 47,49 1.0E22 46,48 3.0E21 46,48 8.7E20 45,47 2.5E20 45,47 7.5E19

Table 5.6: Estimated yields of polynomial (A) for extrapolated parameters

Vr = Va = 28Ur (j = 8) Vr = Va = 212Ur (j = 12) Vr = Va = 216Ur (j = 16)
B ff fp8 pf 8 pp8 fp12 pf 12 pp12 fp16 pf 16 pp16

Ur = Ua = 228, Π(Ur, Ua) ≈ 2.9E7, S = 6E23, W ≈ 3.6E24
3.88E8 9.9E2 2.0E4 9.7E3 2.0E5 3.8E4 1.8E4 6.8E5 6.6E4 2.8E4 1.9E6

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 6E23, W ≈ 3.8E24
3.88E8 1.8E8 2.1E9 1.0E9 1.2E10 3.7E9 1.7E9 3.5E10 5.9E9 2.6E9 8.6E10

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 2.4E24, W ≈ 1.5E25
3.88E8 3.8E8 4.5E9 2.2E9 2.5E10 8.1E9 3.7E9 7.7E10 1.3E10 5.6E9 1.9E11

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 9.8E24, W ≈ 6.1E25
3.88E8 8.2E8 9.9E9 4.7E9 5.7E10 1.8E10 8.0E9 1.7E11 2.9E10 1.2E10 4.2E11

between the number of cycles and the number of ff relations is c. What smoothness bounds
Ur = 2ir and Ua = 2ia will minimize the sieving effort needed to find the Π(2ir ,2ia)/c requisite
ff ’s? Table 5.5 shows the optimal choice, and corresponding sieving effort, for various c and
degrees d. As expected, both effort and smoothness bounds decrease with increasing c. This
effect is stronger for larger d. Overall, d = 7 is the best choice, with d = 6 better than d = 8 for
small c but vice versa for larger ones. For suboptimal smoothness bounds, however, d = 7 may
not be the best choice, as illustrated in Table 5.3.

Using the Franke-Kleinjung procedure. The above makes use only of polynomials (B)-
(F), which were found via the Montgomery-Murphy procedure, in order to obtain a meaningful
comparison between polynomials of different degrees. However, the degree-5 polynomial pair
(A) which was found via the (adapted) Franke-Kleinjung procedure, gives better results due to
its better root and size properties (see [146]). The corresponding yield estimates are given in
Table 5.6, organized analogously to Table 5.3.

Note that Table 5.3 gives strong indication that degree d = 5 is suboptimal, but the method we
used to generate (A) is limited to d = 5. One can expect that an adaptation of the improved
algorithm to d = 6 or d = 7 will yield even better results. In this light, the parameter choices
chosen for TWIRL in §5.5 according to polynomial (A) merely imply an upper bound on cost;
further improvement is likely to be possible.

Effect of much better polynomials. In an actual factorization attempt considerably more
time would be spent to find good polynomials, so we may expect polynomials better than (B)–
(F), and even (A), to be found. We approximate this by applying our estimates to polynomials
(B) and (C) but artificially adjusting the correction factors ξ to a larger value. In Table 5.7 the
results are given if ξ is replaced by ξ3 for d = 6,7, with parameters as in Table 5.3. Using the

117

5. Analysis of NFS parameters 5.4. Results for extrapolated parameters

Table 5.7: Estimated yields for extrapolated parameters with correction factor ξ3

Vr = Va = 28Ur (j = 8) Vr = Va = 212Ur (j = 12) Vr = Va = 216Ur (j = 16)
d ω B ff fp8 pf 8 pp8 fp12 pf 12 pp12 fp16 pf 16 pp16

Ur = Ua = 228, Π(Ur, Ua) ≈ 2.9E7, S = 6E23, W ≈ 3.6E24
6 458.9 2.6E10 2.6E2 5.8E3 2.2E3 4.9E4 1.1E4 4.0E3 1.7E5 2.0E4 6.3E3 4.7E5
7 40.9 8.6E10 6.8E2 1.5E4 4.6E3 1.0E5 2.9E4 8.0E3 3.5E5 5.1E4 1.2E4 9.5E5

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 6E23, W ≈ 3.8E24
6 458.9 2.6E10 5.7E7 7.2E8 2.8E8 3.5E9 1.3E9 4.9E8 1.1E10 2.1E9 7.3E8 2.6E10
7 40.9 8.6E10 9.9E7 1.3E9 3.9E8 5.1E9 2.4E9 6.4E8 1.5E10 3.9E9 9.4E8 3.7E10

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 2.4E24, W ≈ 1.5E25
6 458.9 5.1E10 1.1E8 1.4E9 5.3E8 6.9E9 2.5E9 8.9E8 2.1E10 4.1E9 1.3E9 5.1E10
7 40.9 1.7E11 1.7E8 2.3E9 6.6E8 9.1E9 4.2E9 1.1E9 2.7E10 6.8E9 1.6E9 6.5E10

Ur = Ua = 234, Π(Ur, Ua) ≈ 1.5E9, S = 9.8E24, W ≈ 6.1E25
6 458.9 1.0E11 2.0E8 2.8E9 1.0E9 1.4E10 4.9E9 1.7E9 4.1E10 8.0E9 2.6E9 1.0E11
7 40.9 3.4E11 2.8E8 4.0E9 1.1E9 1.6E10 7.3E9 1.9E9 4.8E10 1.2E10 2.8E9 1.2E11

Table 5.8: Estimated yields for asymptotically-extrapolated smoothness bounds with 6 polynomials

Vr = Va = 28Ur (j = 8) Vr = Va = 212Ur (j = 12)
d ω B ff fp8 pf 8 pp8 ECM effort fp12 pf 12 pp12 ECM effort

Ur = Ua = 234, goal ≈ 5.3E9, S = 6E23, W ≈ 1.9E24
6 458.9 2.6E10 1.3E8 1.7E9 6.2E8 8.2E9 E5.6E20 3.0E9 1.0E9 2.5E10 E8.7E20
7 40.9 8.6E10 1.8E8 2.6E9 7.1E8 9.9E9 E3.6E21 4.6E9 1.2E9 3.0E10 E5.4E21

current state-of-the-art of polynomial selection methods it is unlikely that such large correction
factors can be found in practice. Thus, the figures in Table 5.7 are probably too optimistic.
Compared to Table 5.3 the yield improves by a factor about 3: a relatively small effect that does
not have an impact on the observations made above about Ur = Ua = 228 and Ur = Ua = 234.
For example, for d = 6 and Ur = Ua = 234 not using partial relations (and correction factor ξ3)
would require B = 9.4 · 1011 with corresponding S = 8.2 · 1026; this is about 1300 times more
expensive than the asymptotic extrapolations. Hence, our limited polynomial search does detract
from the conclusion that direct extrapolation does not directly yield realistic parameter choices.

Effect of Coppersmith’s NFS variant. We estimated the yield and performance of Cop-
persmith’s multi-polynomial version of the NFS (see §5.2.1.3) by assuming that for any degree
d we can find a set G of sufficient cardinality consisting of degree d polynomials with a shared
root m modulo n and with skewness ratios and correction factors comparable to (B)-(F) in §5.3.
Table 5.8 lists some estimates for d = 6,7 and |G| = 6, to Table 5.3. The dimension of the matrix
increases 7/2-fold and the yield improves by a factor 6. The fp and pp yield increase may not
be very effective, since large primes match only if they occur in the norm of the same polyno-
mial f . The relation collection effort changes from sieving effort W ≈ 3.8 · 1024 to sieving effort
W ≈ 1.9 · 1024 plus a number of semismoothness tests (indicated by “ECM effort”), involving
the constant of proportionality Υ measuring the relative performance compared to sieving. As
explained in §5.2.1.3, the implications depend on the efficiency of direct smoothness testing vs.
sieving.

118

5. Analysis of NFS parameters 5.4. Results for extrapolated parameters

Table 5.9: Actual and estimated number of (2i,2j ,1)-semismooth Nr(a, b)’s for d = 6

i
j 24 25 26 27 28 29 30
24 2.4E3(2.7E3)
25 4.9E3(5.5E3) 6.3E3(7.0E3)
26 7.7E3(8.6E3) 1.2E4(1.4E4) 1.5E4(1.7E4)
27 1.1E4(1.2E4) 1.9E4(2.1E4) 2.8E4(3.1E4) 3.4E4(3.7E4)
28 1.4E4(1.6E4) 2.6E4(2.9E4) 4.3E4(4.7E4) 6.1E4(6.7E4) 7.1E4(7.7E4)
29 1.8E4(2.0E4) 3.4E4(3.7E4) 5.8E4(6.4E4) 8.9E4(9.8E4) 1.2E5(1.3E5) 1.4E5(1.5E5)
30 2.2E4(2.4E4) 4.2E4(4.7E4) 7.5E5(8.2E4) 1.2E5(1.3E5) 1.8E5(1.9E5) 2.3E5(2.5E5) 2.5E5(2.7E5)
31 2.6E4(2.9E4) 5.1E4(5.7E4) 9.3E4(1.0E5) 1.5E5(1.7E5) 2.4E5(2.6E5) 3.3E5(3.6E5) 3.8E5(4.1E5)
32 3.1E4(3.4E4) 6.1E4(6.8E4) 1.1E5(1.2E5) 1.9E5(2.1E5) 3.0E5(3.2E5) 4.3E5(4.7E5) 5.1E5(5.5E5)
33 3.6E4(4.0E4) 7.2E4(8.0E4) 1.3E5(1.5E5) 2.3E5(2.5E5) 3.7E5(4.0E5) 5.5E5(5.9E5) 6.5E5(7.1E5)
34 4.2E4(4.7E4) 8.4E4(9.3E4) 1.6E5(1.7E5) 2.7E5(3.0E5) 4.4E5(4.8E5) 6.7E5(7.2E5) 8.0E5(8.7E5)
35 4.8E4(5.4E4) 9.7E4(1.1E5) 1.8E5(2.0E5) 3.2E5(3.5E5) 5.2E5(5.6E5) 8.0E5(8.6E5) 9.7E5(1.0E6)
36 5.5E4(6.1E4) 1.1E5(1.2E5) 2.1E5(2.3E5) 3.6E5(4.0E5) 6.0E5(6.5E5) 9.3E5(1.0E6) 1.1E6(1.2E6)
37 6.3E4(7.0E4) 1.3E5(1.4E5) 2.4E5(2.6E5) 4.2E5(4.6E5) 6.9E9(7.5E5) 1.1E6(1.2E6) 1.3E6(1.4E6)
38 7.1E4(7.9E4) 1.4E5(1.6E5) 2.7E5(3.0E5) 4.7E5(5.2E5) 7.8E5(8.5E5) 1.2E6(1.3E6) 1.5E6(1.6E6)
39 8.1E4(9.0E4) 1.6E5(1.8E5) 3.0E5(3.3E5) 5.3E5(5.8E5) 8.9E5(9.7E5) 1.4E6(1.5E6) 1.7E6(1.9E6)
40 9.1E4(1.0E5) 1.8E5(2.0E5) 3.4E5(3.8E5) 6.0E5(6.6E5) 1.0E6(1.1E6) 1.6E6(1.7E6) 1.9E6(2.1E6)

5.4.3 Evaluation via actual smoothness tests

The accuracy of our ρ and σ1-based estimates as derived for n = RSA-1024 was tested by applying
smoothness tests (as explained in §5.2) to Nr(a, b) and Na(a, b)-values for wide ranges of (a, b)-
pairs with coprime a and b and degrees and parameters as in §5.3. More than 100 billion values
have been tested for degrees 6 and 7. No major surprises or unexpected anomalies were detected.

For d = 6 this is illustrated in Tables 5.9, 5.10, and 5.11. Tables 5.9 and 5.10 contain the
accumulated results of smoothness tests for Nr(a, b) and Na(a, b)-values, respectively, for more
than 100 billion coprime (a, b) pairs and 176 different b values ranging from 29 to 231. They list
the number of (2i,2j ,1)-semismooth Nr(a, b) and Na(a, b)-values (for i, j ranges as specified in the
tables) that were found using trial division up to 230. The (ρ+σ1)-based are given in parentheses.
Table 5.11 continues 5.10 for larger bounds; since such tests take longer, 5.6 million coprime and
13 different b-values ranging from 214 to 226.

The estimated value is systematically slightly higher than the actual value; this can be attributed
to the fact that the estimated values average over all positive numbers less than some bound,
whereas most values that are actually tested are close to the bound. This is partly offset by
the use of asymptotic smoothness probabilities, which are somewhat smaller than the concrete
probabilities.25

For d = 7 we found comparable results. Because of the asymptotic nature of the estimates, we
expect their accuracy to improve for the larger sieving regions suggested by Table 5.3.

25For ρ(ur) the correction term is roughly +0.423ρ(vr − 1)/ logNr(a, b); see [14].

119

5. Analysis of NFS parameters 5.5. The TWIRL sieving parameters

Table 5.10: Actual and estimated number of (2i,2j ,1)-semismooth Na(a, b)’s for d = 6

i
j 24 25 26 27 28 29 30
28 0(0.15) 0(0.41) 0(0.96) 0(1.85) 0(2.53)
29 0(0.19) 1(0.54) 1(1.36) 1(2.94) 1(5.32) 1(7.01)
30 0(0.23) 1(0.69) 1(1.80) 1(4.14) 1(8.34) 5(14.18) 10(16.87)
31 0(0.29) 1(0.86) 2(2.28) 2(5.45) 5(11.63) 17(21.94) 24(28.52)
32 1(0.34) 2(1.04) 3(2.81) 3(6.88) 8(15.21) 27(30.34) 40(41.10)
33 1(0.41) 2(1.24) 5(3.40) 5(8.45) 12(19.11) 39(39.44) 58(54.70)
34 1(0.48) 2(1.47) 5(4.05) 5(10.17) 15(23.36) 49(49.31) 70(69.41)
35 1(0.56) 2(1.72) 6(4.76) 7(12.05) 21(28.00) 60(60.01) 82(85.33)
36 1(0.65) 2(2.00) 7(5.55) 10(14.12) 27(33.05) 71(71.63) 97(102.57)
37 1(0.75) 2(2.30) 8(6.42) 11(16.39) 31(38.58) 82(84.26) 111(121.26)
38 2(0.86) 3(2.65) 9(7.38) 12(18.88) 36(44.61) 95(97.98) 132(141.52)
39 2(0.99) 3(3.03) 10(8.45) 14(21.62) 41(51.20) 106(112.90) 148(163.51)
40 2(1.13) 3(3.46) 11(9.62) 19(24.63) 47(58.41) 115(129.13) 163(187.36)

Table 5.11: Actual and estimated number of (2i,2j ,1)-semismooth Na(a, b)’s for d = 6 (cont.)

i
j 31 32 33 34 35 36 37 38 39 40
34 0(0.30) 0(0.49) 0(0.70) 0(0.82)
35 0(0.39) 0(0.66) 0(1.03) 1(1.41) 1(1.62)
36 0(0.48) 0(0.85) 0(1.38) 1(2.05) 1(2.73) 1(3.08)
37 0(0.58) 0(1.05) 0(1.75) 2(2.72) 2(3.90) 2(5.03) 2(5.60)
38 0(0.69) 0(1.26) 0(2.15) 2(3.44) 3(5.14) 4(7.11) 5(8.95) 5(9.84)
39 1(0.81) 1(1.49) 1(2.58) 3(4.21) 4(6.46) 8(9.30) 9(12.48) 12(15.36) 13(16.72)
40 1(0.93) 1(1.74) 1(3.04) 4(5.02) 6(7.86) 12(11.62) 15(16.20) 18(21.16) 21(25.51) 23(27.52)

5.5 The TWIRL sieving parameters

In order to increase relations yield and improve cost, the proposed TWIRL design (see §2.2)
deviates from the aforementioned extrapolated parameters. We experimented with numerous
parameter choices and polynomials, guided by the behavior observed in the preceding section,
and evaluated via the psixyological smoothness functions as in §5.2.4 and a numerical model of
TWIRL’s cost. Crucially for the design of the TWIRL architecture and for upper-bounding the
load in its auxiliary steps, we also obtain a wealth of additional information on intermediate
candidates by employing the techniques of §5.2.4.3.

5.5.1 Yields for RSA-1024

Compared to the previous section, TWIRL uses higher smoothness bounds: Ur = 3.5 · 109,
Ua = 2.6 · 1010, Vr = 4.0 · 1011, Va = 6.0 · 1011.26 Also, the number of large primes is set to
`r = `a = 2. Conversely, the sieving region size is reduced to S = 3.0 · 1023. Table 5.12 gives the
corresponding estimates of yield for the various kinds of full and partial relations. It also lists
the predicted number of intermediate candidates, using the notation of §5.2.4.3.

26This has a dramatic effect, suggesting that the result of the asymptotic extrapolation indeed resides on the
steep region of the run-time curve (see §5.2.2.2).

120

5. Analysis of NFS parameters 5.5. The TWIRL sieving parameters

Table 5.12: RSA-1024 parameter sets for TWIRL with 130nm process technology
Ur = 3.5E9, Ua = 2.6E10, Vr = 4.0E11, Va = 6.0E11, Π(Ur, Ua) ≈ 1.3E9, S = 3.0E23, d = 5, ω = 1991935.4, B = 2.7E8

(`′a, `′r)-partial (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) Total

relations yield 5.6E7 3.0E8 6.7E8 3.1E8 1.7E9 3.8E9 6.6E8 3.5E9 7.9E9 1.9E10

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))

1.1E20 5.0E12 6.2E10 4.9E10 3.4E10 2.7E10 5.2E63 3.1E103

Ultimately we are interested in the number of cycles among the relations found. Alas, the
dependence of the number of cycles on the number (and type) of relations is poorly understood
(see §1.5.3, §5.2.1.1). As noted, π(Vr) + π(Va) relations always suffice, and in past experiments
the number of relations collected was always somewhat lower. Here, the estimated number of
relations is a reasonable 0.49 · (π(Vr) + π(Va)). Using `a, `r > 2 would further increase the
relation yield. Note that there are Π(Ur, Ua)/23.2 ff ’s, which seems fairly generous compared to
past experiments.

Notably, while the most “fertile” area of the sieving region is close to the origin (small a and
b), unlike the situation in §5.4.2.3, here the relation yield has not yet “dried out”: for example,
doubling the region size S to 6 · 1023 increases the number of relations significantly, to 2.8 · 1010.
The practical significance is that if someone builds a TWIRL device with hard-wired smoothness
bounds and (for any reason) does not find enough relations using the above parameters, recovery
may be possible simply by increasing S, i.e., by sieving for a longer time using the same hardware.

5.5.2 Candidates yield in TWIRL

The candidates yield data in Table 5.12 lets us analyze various stages in the sieving and relation
collection can be likewise analyzed. For example the #PRS value is used for the cascaded sieves
of TWIRL §2.3.5.

Of particular concern is cofactor factorization, i.e., the factoring of (not too) large norms after
dividing away small factors that were discovered during sieving. We expect to perform about
such #RCF + #ACF = 7.7 · 1010 factorizations, for integers whose size is at most max(Vr, Va)2 =
3.6 · 1023. Such factorizations require under 30ms on average using a modern CPU. Thus, the
cofactor factorization can be completed in 1 year (i.e., in parallel to the operation of the TWIRL
device) using under 74 bare-bones PCs. This cost is negligible compared to the cost of TWIRL,
and in large volumes custom hardware would reduce it further.

5.5.3 Optimality and effect of technological progress

The TWIRL parameters were determined by practical concerns. Most crucially, they employ the
largest value of Ua for which the algebraic-side TWIRL device still fits on single silicon wafer.
Theoretically, this Ua is suboptimal; it would be beneficial to increase it further. Such increase
will become possible when progress in chip manufacturing technology allows fitting larger circuits
into a single wafer, either by increasing the wafer size or by decreasing the feature size. Thus, for
the near future we may expect the cost of TWIRL to decrease more than linearly as a function
of the relevant technological parameters, i.e., faster than naively implied by Moore’s law.

121

5. Analysis of NFS parameters 5.5. The TWIRL sieving parameters

Table 5.13: RSA-1024 parameter sets for TWIRL with 90nm process technology
Ur = 1.2E10, Ua = 5.5E10, Vr = 8.0E11, Va = 1.0E12, Π(Ur, Ua) ≈ 2.9E9, S = 8.0E22 d = 5, ω = 1991935.4, B = 1.4E8

(`′a, `′r)-partial (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) Total

relations yield 2.2E8 9.8E8 1.8E9 9.2E8 4.0E9 7.5E9 1.4E9 6.1E9 1.1E10 3.4E10

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))

6.3E19 1.1E13 9.8E10 7.2E10 5.9E10 4.5E10 2.7E63 1.1E102

Ur = 1.2E10, Ua = 5.5E10, Vr = 9.0E11, Va = 1.2E12, Π(Ur, Ua) ≈ 2.9E9, S = 7.3E23 d = 5, ω = 1991935.4, B = 4.3E8

(`′a, `′r)-partial (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) Total

relations yield 7.9E8 3.9E9 7.9E9 3.4E9 1.7E10 3.4E10 5.4E9 2.7E10 5.5E10 1.5E11

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))

5.2E20 4.6E13 4.6E11 3.4E11 2.7E11 2.1E11 8.1E63 2.8E104

Table 5.14: RSA-768 parameter sets for TWIRL
Ur = 1.0E8, Ua = 1.0E9, Vr = 2.0E10, Va = 3.0E10, Π(Ur, Ua) ≈ 5.7E7, S = 3.0E20 d = 5, ω = 1905116.1, B = 8.9E6

(`′a, `′r)-partial (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) Total

relations yield 3.5E6 2.2E7 5.5E7 2.5E7 1.5E8 3.9E8 6.2E7 3.8E8 9.7E8 2.1E9

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))

5.3E17 3.4E11 7.5E9 6.3E9 3.9E9 3.2E9 3.4E49 7.1E82

For a concrete example, one may consider an implementation of TWIRL using 90nm process
technology (Custom-90-D from §3.7.1). According to ITRS [92], compared to the 130nm process
technology considered in Chapter 2, we may assume a reduction in area by a factor of 2 and an
increase in speed by a factor of 2, for a total cost reduction by a factor of 4. Table 5.13 presents
two appropriate NFS parameter sets that make use of the denser wafers.

The first parmeter set is about as plausible as the one in Table 5.12, in terms of the assumptions
on cycle behavior. The cost of such a TWIRL implementation is roughly 1.1M US$×years
(predicted analogously to [187]) — considerably lower than 2.5M US$×years one may expect.

The second parameter set in Table 5.13 shows the effect of improved technology on yield, when
keeping the cost constant at 10M US$×years (i.e., the same as in Chapter 2). Here, the estimated
number of relations is 1.95 · (π(Vr) + π(Va)), which is nearly twice the trivially sufficient number.
Also, there are Π(Ur, Ua)/3.6 ff ’s, which is much more than in any recent factoring experiment.
Thus, we may conclude that using 90nm technology, a budget of 10M US$×years per factorization
(in large quantities) leaves an ample safety margin — arguably, more than enough to account
for estimation errors, relations that are lost due to approximations in the sieving process, and
sub-optimal cycles-finding algorithms.

5.5.4 Yields for RSA-768

We applied an analogous derivation, using smoothness probability estimates and a numerical
TWIRL cost mode, to choose the parameters for 768-bit TWIRL. Table 5.14 lists these, along
with the yield and candidates estimates using the RSA-768 polynomial pair (G).

122

Chapter 6

Conclusions and implications
of Part I

6.1 Summary of results

In Chapter 2, we have presented TWIRL, a new special-purpose electronic sieving device for
the Number Field Sieve. The device consists of a massively parallel pipeline that carries sieve
locations through various stations, where they experience the addition of progression contributions
in myriad different ways that are optimized for the varying scales of progression periods. In
factoring 512-bit integers, the new device is 1,600 times faster than the best previously published
designs. For 1024-bit composites, with appropriate choice of NFS parameters and modern 90nm
VLSI technology, the new device can complete the sieving task within 1 year at an estimated cost
of US$ 1.1, i.e., about a millionth of previous predictions.

In Chapter 3, we have presented a special-purpose device for the matrix-by-vector multiplications
that occur in the block Wiedemann algorithm of the NFS linear algebra step. This mesh-based
device dramatically improves the efficiency of the NFS linear algebra step compared to previous
proposals. For 1024-bit composites, it brings the cost of NFS linear algebra step to well within
practical range — albeit with some reservations regarding technological feasibility.

In Chapter 4, we resolved the aforementioned reservations by introducing a completely differ-
ent architecture, based on a pipelined systolic approach, which exhibits several advantages over
the prior (mesh-based) approach. It has a lower cost and modest technological requirements;
specifically, unlike previous proposals it uses standard chip sizes and purely local communication.
The architecture is scalable, and offers the flexibility to handle problems of varying sizes. Its
operation is deterministic and allows local simulation and verification of components. We have
also described an efficient error detection and recovery mechanism, which can also be adapted to
other software or hardware implementations of Wiedemann’s algorithm. Even with a conservative
(i.e., overestimated) matrix size, this device can complete the sieving task within 1 year at an
estimated cost of US$ 0.4.

123

6. Conclusions and implications of Part I 6.2. Notes

In Chapter 5, we supported the previous chapters by analysis of pertinent NFS parameters. We
have applied numerical methods to estimate the yield of the NFS when applied to 1024-bit and
768-bit RSA moduli, and tested the accuracy of our results using actual smoothness tests. We
also generalized and extended the parameter estimation technique to support the finer points of
our analysis.

Implications for RSA keys. It has been often claimed and relied upon, in the academia in
industry, that 1024-bit RSA keys would resist cryptanalysis for at least an additional decade —
arguing that both NFS sieving and the NFS matrix step would be unfeasible. Our results cast
grave doubt on these claims: if the prescribed devices are built, they would break RSA keys in
under one year at a cost of a few million US$. For 768-bit RSA keys, the amortized cost per key
is just a few thousand US$.

Our results do not imply that breaking 1024-bit RSA is within reach of individual hackers. How-
ever, it is difficult to identify any specific issue that may prevent a sufficiently motivated and
well-funded organization from applying the Number Field Sieve to 1024-bit composites within
the next few years. It should be stressed that these conclusions are based on many assumptions
necessitated by the incomplete understanding of the Number Field Sieve, and are not yet sup-
ported by an actual implementation. However, they form a strong indication as to the prudence
of depending on the hardness of this step. Any security assessment of such keys should take this
into account, and indeed our results are already reflected in, and referenced by, recent industry
practice and standards (e.g., by the IEEE, Internet RFC editor, and several governments; see
below).

6.2 Notes

Benefits of special-purpose hardware. An obvious benefit of special-purpose hardware is
that the cost of any algorithm can be reduced (compared to a software implementation) by
eliminating intermediate abstraction layers and discarding irrelevant peripheral hardware. One
cryptanalytic example of this point is the EFF DES Cracker [59], which employed 36,864 dedicated
chips to perform exhaustive search on a DES key, and did so at a small fraction of the cost (per
unit of throughput) compared to similar experiments that used general-purpose computers.

However, special-purpose hardware can go well beyond efficient implementation of standard algo-
rithms. Custom circuit design allows for specialized data paths, flexible partitioning of resources,
enormous parallelism, and even for the use of non-electronic computing devices. Taking advantage
of these requires new algorithms and adaptations, as has been evident in the preceding chapters.

Using semi-custom hardware. In an attempt to decrease the initial Non Recurring Engi-
neering cost, one may consider semi-custom technologies such as Field Programmable Gate Array
chips. This was shown to be unfavorable for one case in Chapter 3, where the FPGA-based imple-
mentation was significantly less efficient than both the custom designs and properly parallelized
PC-based implementation. We have carried out similar evaluations for the other architectures

124

6. Conclusions and implications of Part I 6.3. Impact and follow-up works

considered here, with similar results. The reason is twofold. The obvious one is the lower effi-
ciency, in terms of computational power per circuit area, of FPGA vs. custom circuits (due to the
higher abstraction level). The subtler but more essential reason is that all the architectures we
propose in this work are severely bandwidth-limited1, and FPGA chips do not provide sufficient
resources per chip nor sufficient inter-chip bandwidth to efficiently support the relevant problem
scales.

Balance between sieving and linear algebra. The cost estimates herein give strong indica-
tion that, for the parameter choices considered, the linear algebra step is easier than the sieving
step. In light of this, one may try to improve the overall performance of NFS by re-balancing the
relation collection step and the matrix step, i.e., by increasing the smoothness bounds to make
sieving easier. However, the parameter choices employed for TWIRL in Chapter 2 and Chapter 5
are already close to optimal in terms of sieving cost. Also, as we explain in [131], one cannot
expect such re-balancing to bring significant asymptotic improvement either.

6.3 Impact and follow-up works

The following is a brief survey of some of the works following up on the research presented in this
part of the dissertation, and its impact on industry standards and practice.

Industry and government standards. Following its immediate consideration by industry
(e.g., [97]), our research is now reflected and explicitly referenced by recent standards such as
IEEE 1363a-2004 [88], RFC 3766 [159] and RFC 4359 [215], and the German federal criteria
for electronic signatures (e.g., [175]). The relevant key size recommendations of NIST Special
Publication 800-57 [152] were likewise revised compared to drafts [151] preceding our publications.

SHARCS workshop. This research served as a primary motivation and focus for a new
annual workshop, SHARCS (Workshop on Special Purpose Hardware for Attacking Cryptographic
Systems [220, 221, 222]), on whose program committees I serve since 2006.

Pertinent publications following up on ours include:

Distributed linear algebra. In [75], Geiselmann and Steinwandt proposed a distributed vari-
ant of our mesh-routing-based linear algebra device; for a discussion see §3.6.

FPGA implementation of routing-based device. In [18][19], Bajracharya et al. report
on a detailed VHDL design for (one case of) the mesh-routing-based linear algebra device of
Chapter 3, and the resulting costs, using Field Programmable Gate Arrays.

Improved mesh-based sieving. In [76], Geiselmann and Steinwandt proposed a mesh-based
sieving architecture which addresses the cost and scalability issues of their prior design [74] (see
§1.6.6). It incorporates several ideas from our works on routing-based linear algebra of Chapter 3

1For certain cryptanalytic algorithms this is indeed an provable bottleneck [217].

125

6. Conclusions and implications of Part I 6.3. Impact and follow-up works

and the TWIRL architecture of Chapter 2; in particular, it employs clockwise transposition rout-
ing and compact DRAM-based progression representations. It also relies on the NFS parameter
analysis of Chapter 5. The estimated cost of factoring 768-bit composites via this architecture,
in terms of circuit area, is 6.3 times larger than of the TWIRL.2

Eliminating the diaries from TWIRL. In [69], Geiselmann and Steinwandt show that the
diary components of TWIRL, described in §2.3.7.2, can be eliminated.3 They showed that the
information previously encoded in the diaries can be reconstructed at an acceptable cost using
post-processing via a special-purpose implementations of the Elliptic Curve Method, described
in that paper.

Another sieving architecture. In [77], Geiselmann and Steinwandt describe a special-purpose
sieving device which resolves a drawback of the TWIRL device, namely the need for wafer-scale
integration (at a cost of 2-3.5 increase in silicon area). They employ a pipelined approach which
combines many of the ideas from Chapter 2 through Chapter 4, and the analysis in Chapter 5.

SHARK. In [65][66], Franke et al. present a highly-parallel electronic sieving device. Posed
as an alternative to TWIRL, it uses smaller chips connected via a massive butterfly routing
network. Unlike TWIRL, it is tailored for special-q lattice sieving. The cost estimate for 1024-bit
composites is higher than TWIRL’s ($200M vs. $1.1M for 1024-bit composites in one year), but
the technological challenges differ.

2If one requires that the individual chip sizes are also the same and re-parametrized TWIRL accordingly, the
gap is roughly halved.

3This component is responsible for just 3% of the ciruit size, but affects the circuit layout and the design’s
complexity.

126

127

Part II

Side-channel attacks

 ; ��� � �� ����	
�� �� �� ����� � ��� �� ��� �� ��
�� ��� �����
 " � � ����2 —

It is God’s privilege to conceal things
and the king’s privilege to discover them.

— Proverbs XXV 2
(New Living Translation)

128

Chapter 7

Introduction

7.1 Overview of Part II

In this Part we describe new types of side-channel cryptanalytic attacks, and their application
to major cryptosystems. Unlike many other side channels, these attacks are readily deployed
and widely applicable. We analyze their potential, experimentally demonstrate their power and
efficiency, and discuss countermeasures.

The remainder of Chapter 7 briefly surveys known side-channel attacks.

In Chapter 8 we describe pure software attacks that exploit inter-process information leakage
through the state of the CPU’s memory cache. We show how these attacks can be applied to the
AES cipher, and demonstrate an efficient attack on OpenSSL and Linux’s dm-crypt encrypted
partitions. Some variants of our attack do not even require known plaintext or ciphertext, and
have no direct interaction with the analyzed process other than running on the same CPU.

In Chapter 9 we describe attacks that exploits acoustic emanations from modern computers,
recorded via a plain microphone. These emanations are correlated with processor activity and
carry an unexpected wealth of information. We demonstrate acoustic leakage of secret information
from sensitive computation such as RSA signing and decryption.

Chapter 10 summarizes the results of Part II and briefly surveys recent works which appeared
after our published results.

7.2 Side-channel attacks

In the design of cryptographic algorithms and protocols, as in other computational settings, it
is postulated that parties communicate via designated input and output channels. However,
in practical adversarial settings we are often reminded that the designated channels are merely

129

7. Introduction 7.3. Timing attacks

convenient fiction: the underlying physical reality is that every concrete realization of a compu-
tational process interacts with its environment in unintended — and often unexpected — ways.
From the environment’s perspective, this creates additional, inadvertent inputs and outputs to the
computation. In cryptanalysis, side-channel attacks are methods that exploit these unintentional
information channels.

A large number of information-bearing side channels have been discovered and exploited crypt-
analytically. Some of these, in particular those exploiting inadvertent inputs, require invasive
access to the device (e.g., physical1 fault induction [32, 27] or attachment of electric probes).
Other channels are non-intrusive and rely solely on passive measurement; these include:2

• Radio-frequency electromagnetic emission (“TEMPEST”) [111, 136].

• Modulation of electromagnetic radiation sources (‘NONSTOP” [100]) such as a beam sent
by the attacker [223], a cellular phone [11], or an RFID tag reader [158].

• Electrical signals leaking to unintended wires, such as power lines or unsecured communi-
cation lines [223].

• Diffuse visible light, such as light emitted by display devices or status LEDs and reflected
by walls [111].

• Power-supply current fluctuations [109, 138, 137].

• Acoustic emanations from mechanical devices, such as mechanical cipher machines [223],
dot-matrix printers [38], or computer keyboards and ATM keypads [13].

• Timing of events on otherwise-legitimate output channels (timing attacks) [108, 181, 100,
31] (see §7.3).

Despite this extensive catalog of attack vectors, it appears that side-channel attacks are limited
in their practical security implications to modern computing equipment, since most of these side
channels require special measurement equipment and an expert human operator, or are applicable
only in very restricted circumstances (e.g., a smartcard in the hands of the attacker). Moreover,
these attacks are by now well-recognized and often protected against.

7.3 Timing attacks

Herein we briefly describe the notion of timing attacks, a known technique which we employ
in one of our acoustic attacks (see §9.2.4). This class of side-channel attacks, introduced by

1Another case of fault induction exploits algorithmic faults such as the possibility of decryption failure (shown
by Proos for NTRU [171]; Dwork et al. [58] provide a generic algorithmic countermeasure). Strictly, this is not a
side-channel attack since it does not violate the processing abstraction,

2Here we reference but a few of the seminal works; see [179] for an extensive bibliographic resource.

130

7. Introduction 7.3. Timing attacks

Kocher [108], exploits the fact that many computational operations vary in time depending on
the inputs to the operation. By measuring the running time of the operation we learn something
about its inputs. For example, in the RSA cryptosystem [176], decryption of a ciphertext c is
done by treating c as a large number, and computing the power cd (mod n) where d is part of
the secret key and n is the public key. The simplest (though inefficient) algorithm for computing
this exponentiation is to multiply c by itself d times; this takes time proportional to d, so in this
case measuring the decryption time will give an estimate of d. The algorithms used in practice
(e.g., ”square and multiply” with sliding windows and Montgomery multiplications) are much
more efficient, but exhibit similar properties unless carefully designed to thwart such attacks. By
combining many measurements that correspond to different properties of the key, the possibilities
can be narrowed down until the key is fully recovered.

Boneh and Brumley [31] showed that, using timing information accurate to within approx. 1
millisecond, the secret key can be extracted from common RSA implementations. In the pertinent
attack variants, the attacker submits chosen inputs (i.e., chosen ciphertexts when attacking RSA
decryption and chosen messages when attacking RSA signing), and observes the time it takes
the legitimate user to process (i.e., decrypt or sign) these inputs using the secret key. The latter
requires a feedback channel. In [31], the queries were via a network to an OpenSSL-based server,
and the attack code measured the time between the query and response packets.

131

132

Chapter 8

Efficient cache attacks on AES

, � � ����� ��� —

8.1 Introduction

8.1.1 Overview

Many computer systems concurrently execute programs with different privileges, employing vari-
ous partitioning methods to facilitate the desired access control semantics. These methods include
kernel vs. userspace separation, process memory protection, filesystem permissions and chroot,
and various approaches to virtual machines and sandboxes. All of these rely on a model of the
underlying machine to obtain the desired access control semantics. However, this model is often
idealized and does not reflect many intricacies of the actual implementation.

In this chapter we show how a low-level implementation detail of modern CPUs, namely the
structure of memory caches, causes subtle indirect interaction between processes running on the
same processor. This leads to cross-process information leakage. In essence, the cache forms a
shared resource which all processes compete for, and it thus affects and is affected by every process.
While the data stored in the cache is protected by virtual memory mechanisms, the metadata
about the contents of the cache, and in particular the memory access patterns of processes using
that cache, is not fully protected.

We describe several methods an attacker can use to learn about the memory access patterns of
another process, e.g., one which performs encryption with an unknown key. These are classified
into methods that affect the state of the cache and then measure the effect on the running time
of the encryption, and methods that investigate the state of the cache after or during encryption.
The latter are found to be particularly effective and noise-resistant.

133

8. Efficient cache attacks on AES 8.1. Introduction

We demonstrate the cryptanalytic applicability of these methods to the Advanced Encryption
Standard (AES, [149]) by showing a known-plaintext (or known-ciphertext) attack that performs
efficient full key extraction. For example, an implementation of one variant of the attack per-
forms full AES key extraction from the dm-crypt system of Linux using only 800 accesses to an
encrypted file, 65ms of measurements and 3 seconds of analysis; attacking simpler systems, such
as “black-box” OpenSSL library calls, is even faster at 13ms and 300 encryptions.

One variant of our attack has the unusual property of performing key extraction without knowledge
of either the plaintext or the ciphertext. This is a particularly strong form of attack, which is
clearly impossible in a classical cryptanalytic setting. It enables an unprivileged process, merely
by accessing its own memory space, to obtain bits from a secret AES key used by another process,
without any (explicit) communication between the two.This too is demonstrated experimentally.

Implementing AES in a way that is impervious to this attack, let alone developing an efficient
generic countermeasure, appears non-trivial; in Section 8.5, various countermeasures are described
and analyzed.

8.1.2 Related work

The possibility of cross-process leakage via cache state was first considered in 1992 by Hu [87] in
the context of intentional transmission via covert channels. In 1998, Kelsey et al. [101] mentioned
the prospect of “attacks based on cache hit ratio in large S-box ciphers”. In 2002, Page [161]
described theoretical attacks on DES via cache misses, assuming an initially empty cache and
the ability to identify cache effects with very high temporal resolution in side-channel traces. He
subsequently proposed several countermeasures for smartcards [162], though most of these re-
quire hardware modifications and are inapplicable or insufficient in our attack scenario. Recently,
variants of this attack (termed “trace-driven” in [162]) were realized by Bertoni et al. [25] and
Acıiçmez and Koç [3][4], using a power side channel of a MIPS microprocessor in an idealized sim-
ulation. By contrast, our attacks operate purely in software, and are hence of wider applicability
and implications; they have also been experimentally demonstrated in real-life scenarios.

In 2002 and subsequently, Tsunoo et al. devised a timing-based attack on MISTY1 [206, 207]
and DES [205], exploiting the effects of collisions between the various memory lookups invoked
internally by cipher (as opposed to the cipher vs. attacker collisions we investigate, which greatly
improve the attack’s efficiency). Recently Lauradoux [115] and Canteaut et al. [41] proposed
some countermeasures against these attacks, none of which are satisfactory against our attacks
(see Section 8.5).

Concurrently with but independently of this work, Bernstein [23] described attacks on AES
that exploit timing variability due to cache effects. This attack can be seen as a variant of our
Evict+Time measurement method (see Section 8.3.4 and the analysis of Neve et al. [154]), though
it is also somewhat sensitive to the aforementioned collision effects. The main difference is that
[23] does not use an explicit model of the cache and active manipulation, but rather relies only on
the existence of some consistent statistical timing pattern due to various memory access effects

134

8. Efficient cache attacks on AES 8.2. Preliminaries

which are neither controlled nor modeled. The resulting attack is simpler and more portable than
ours, but has several shortcomings. First, it requires reference measurements of encryption under
known key in an identical configuration, and these are often not readily available (e.g., a user
may be able to write data to an encrypted filesystem, but creating a reference filesystem with a
known key is a privileged operation). Second, the attack of [23] relies on timing the encryption
and thus, similarly to our Evict+Time method, seems impractical on many real systems due
to excessively low signal-to-noise ratio; our alternative methods (Sections 8.3.5 and 8.4) address
this. Third, even when the attack of [23] works, it requires a much higher number of analyzed
encryptions than our method.1 The recent paper of Canteaut et al. [41] describes a variant of
Bernstein’s attack which focuses on internal collisions (following Tsunoo et al.) and provided a
more in-depth experimental analysis; its properties and applicability are similar to Bernstein’s
attack.2

Also concurrently with but independently of our work, Percival [167] described a cache-based
attack on RSA for processors with simultaneous multithreading. The measurement method is
similar to one variant of our asynchronous attack (Section 8.4), but the cryptanalysis has little in
common since the algorithms and time scales involved in RSA vs. AES operations are very dif-
ferent. Both [23] and [167] contain discussions of countermeasures against the respective attacks,
and some of these are also relevant to our attacks (see Section 8.5).

Koeune and Quisquater [110] described a timing attack on a “bad implementation” of AES
which uses its algebraic description in a “careless way” (namely, using a conditional branch in
the MixColumn operation). That attack is not applicable to common software implementations,
but should be taken into account in regard to certain countermeasures against our attack (see
Section 8.5.2).

Leakage of memory access information has also been considered in other contexts, yielding theo-
retical [83] and heuristic [226][225] mitigation methods; these are discussed in Section 8.5.3.

See §10.5 for a discussion of several works following our research.

8.2 Preliminaries

8.2.1 Memory and cache structure

Over the past couple of decades and until recently, CPU speed has been growing at the rate
predicted by Moore’s law (about 60% per year), while the latency of main memory has been

1In our experiments the attack code of [23] failed to get a signal from dm-crypt even after a 10 hours run, whereas
in an identical setup our Prime+Probe (see §8.3.5) performed full key recovery using 65ms of measurements.

2Canteaut et al. [41] claim that their attack exploits only collision effects due to microarchitectural details (i.e.,
low address bits) and that Bernstein’s attack [23] exploits only cache misses (i.e., higher address bits). However,
experimentally both attacks yield key bits of both types, as can be expected: the analysis method of [23] also
detects collision effects (albeit with lower sensitivity), while the attack setting of [41] inadvertently also triggers
systematic cache misses (e.g., due to the encryption function’s stack usage and buffers).

135

8. Efficient cache attacks on AES 8.2. Preliminaries

S

W WT0

Cache Main memory

Figure 8.1: Schematic of a set-associative cache. Main memory addresses increase in row-first order. The light
gray blocks represent a cached AES lookup table. The dark gray blocks represent the attacker’s memory.

decreasing at a much slower rate (7%–9%).3 Consequentally, a large gap has developed between
the two. Complex multi-level cache architectures are employed to bridge this gap, but it still shows
through during cache misses: on a typical modern processor, accessing data in the innermost (L1)
cache typically requires amortized time on the order of 0.3ns, while accessing main memory may
stall computation for 50 to 150ns, i.e., a slowdown of 2–3 orders of magnitude. The cache
architectures are optimized to minimize the number of cache misses for typical access patterns,
but can be easily manipulated adversarially; to do so we will exploit the special structure in the
association between main memory and cache memory.

Modern processors use one or more levels of set-associative memory cache. Such a cache consists
of storage cells called cache lines, each consisting of B bytes. The cache is organized into S cache
sets, each containing W cache lines4, so overall the cache contains B · S ·W bytes. The mapping
of memory addresses into the cache is limited as follows. First, the cache holds copies of aligned
blocks of B bytes in main memory (i.e., blocks whose starting address is 0 modulo B), which we
will term memory blocks. When a cache miss occurs, a full memory block is copied into one of the
cache lines. Second, each memory block may be cached only in a specific cache set; specifically,
the memory block starting at address a can be cached only in the W cache lines belonging to
cache set ba/Bc mod S. See Figure 8.1. Thus, the memory blocks are partitioned into S classes,
where the blocks in each class contend for the cache lines in a single cache set.

Modern processors have up to 3 levels of memory cache, denoted L1 to L3, with “L1” being the
smallest and fastest cache and subsequent levels increasing in size and latency. For simplicity, in
the following we mostly ignore this distinction; one has a choice of which cache to exploit, and
our experimental attacks used both L1 and L2 effects. Additional complications are discussed in
Section 8.3.6. Typical cache parameters are given in Table 8.1.

3This relatively slow reduction in DRAM latency has proven so reliable, and founded in basic technological
hurdles, that it has been proposed Abadi et al. [1] and Dwork et al. [57] as a basis for proof-of-work protocols.

4In common terminology, W is called the associativity and the cache is called W -way set associative.

136

8. Efficient cache attacks on AES 8.2. Preliminaries

CPU model Level B (cache line size) S (cache sets) W (associativity) B · S ·W (total size)

Athlon 64 / Opteron L1 64B 512 2 64KB
Athlon 64 / Opteron L2 64B 1024 16 1024KB
Pentium 4E L1 64B 32 8 16KB
Pentium 4E L2 128B 1024 8 1024KB
PowerPC 970 L1 128B 128 2 32KB
PowerPC 970 L2 128B 512 8 512KB
UltraSPARC T1 L1 16B 128 4 8KB
UltraSPARC T1 L2 64B 4096 12 3072KB

Table 8.1: Data cache parameters for popular CPU models

8.2.2 Memory access in AES implementations

This chapter focuses on AES since its memory access patterns are particularly susceptible to
cryptanalysis (see Section 10.2.1 for a discussion of other ciphers). The cipher is abstractly
defined by algebraic operations and could, in principle, be implemented using just logical and
arithmetic operations.5 However, performance-oriented software implementations on 32-bit (or
higher) processors typically use the following alternative formulation, as prescribed in the Rijndael
AES submission [52].6

Several lookup tables are precomputed once by the programmer or during system initialization.
There are 8 such tables, T0, T3, T2, T3 and T

(10)
0 , T

(10)
1 , T

(10)
2 , T

(10)
3 , each containing 256 4-byte

words. The contents of the tables, defined in [52], are inconsequential for most of our attacks.

During key setup, a given 16-byte secret key ~k = (k0, . . . , k15) is expanded into 10 round keys7,
~K(r) for r = 1, . . . ,10. Each round key is divided into 4 words of 4 bytes each: ~K(r) =
(K(r)

0 ,K
(r)
1 ,K

(r)
2 ,K

(r)
3). The 0-th round key is just the raw key: K(0)

j = (k4j , k4j+1, k4j+2, k4j+3)
for j = 0,1,2,3. The details of the rest of the key expansion are mostly inconsequential.

Given a 16-byte plaintext ~p = (p0, . . . , p15), encryption proceeds by computing a 16-byte in-
termediate state ~x(r) = (x(r)

0 , . . . , x
(r)
15) at each round r. The initial state ~x(0) is computed by

x
(0)
i = pi⊕ki (i = 0, . . . ,15). Then, the first 9 rounds are computed by updating the intermediate

state as follows, for r = 0, . . . ,8:

(x(r+1)
0 , x

(r+1)
1 , x

(r+1)
2 , x

(r+1)
3)← T0[x(r)

0]⊕ T1[x(r)
5]⊕ T2[x(r)

10]⊕ T3[x(r)
15]⊕K(r+1)

0

(x(r+1)
4 , x

(r+1)
5 , x

(r+1)
6 , x

(r+1)
7)← T0[x(r)

4]⊕ T1[x(r)
9]⊕ T2[x(r)

14]⊕ T3[x(r)
3]⊕K(r+1)

1

(x(r+1)
8 , x

(r+1)
9 , x

(r+1)
10 , x

(r+1)
11)← T0[x(r)

8]⊕ T1[x(r)
13]⊕ T2[x(r)

2]⊕ T3[x(r)
7]⊕K(r+1)

2

(x(r+1)
12 , x

(r+1)
13 , x

(r+1)
14 , x

(r+1)
15)← T0[x(r)

12]⊕ T1[x(r)
1]⊕ T2[x(r)

6]⊕ T3[x(r)
11]⊕K(r+1)

3

(8.1)

5Such an implementation would be immune to our attack, but exhibit low performance. A major reason for the
choice of Rijndael in the AES competition was the high performance of the implementation analyzed here.

6Some software implementations use variants of this formulation with different table layouts; see 8.5.2 for a
discussion. The most common variant employs a single table for the last round; most of our attacks analyze only
the first few rounds, and are thus unaffected.

7We consider AES with 128-bit keys. The attacks can be adapted to longer keys.

137

8. Efficient cache attacks on AES 8.2. Preliminaries

Finally, to compute the last round (8.1) is repeated with r = 9, except that T0, . . . , T3 is replaced
by T (10)

0 , . . . , T
(10)
3 . The resulting ~x(10) is the ciphertext. Compared to the algebraic formulation

of AES, here the lookup tables represent the combination of ShiftRows, MixColumns and
SubBytes operations; the change of lookup tables in the last round is due to the absence of
MixColumns.

8.2.3 Notation

We treat bytes interchangeably as integers in {0, . . . ,255} and as elements of {0,1}8 that can
be XORed. Let δ denote the cache line size B divided by the size of each table entry (usually
4 bytes8); on most platforms of interest we have δ = 16. For a byte y and table T`, we will
denote 〈y〉 = by/δc and call this the memory block of y in T`. The significance of this notation
is as follows: two bytes y, z fulfill 〈y〉 = 〈z〉 iff, when used as lookup indices into the same table
T`, they would cause access to the same memory block9; they would therefore be impossible to
distinguish based only on a single memory access. For a byte y and table T`, we say that an AES
encryption accesses the memory block of y in T` if, according to the above description of AES,
at some point during that encryption there is some table lookup of T`[z] where 〈z〉 = 〈y〉.
In Section 8.3 we will show methods for discovering (and taking advantage of the discovery)
whether the encryption code, invoked as a black box, accesses a given memory block. To this end
we define the following predicate: Q~k

(~p, `, y) = 1 iff the AES encryption of the plaintext ~p under
the encryption key ~k accesses the memory block of index y in T` at least once throughout the 10
rounds.

Also in Section 8.3, our measurement procedures will sample a measurement score from a distri-
bution M~k

(~p, `, y) over R. The exact definition of M~k
(~p, `, y) will vary, but it will approximate

Q~k
(~p, `, y) in the following rough sense: for a large fraction of the keys ~k, all10 tables ` and a

large fraction of the indices ~x, for random plaintexts and measurement noise, the expectation of
M~k

(~p, `, y) is larger when Q~k
(~p, `, y) = 1 than when Q~k

(~p, `, y) = 0.

8.3 Synchronous known-data attacks

8.3.1 Overview

The first family of attacks, termed synchronous attacks, is applicable in scenarios where the
plaintext or ciphertext is known and the attacker can operate synchronously with the encryption

8One exception is OpenSSL 0.9.7g on x86-64, which uses 8-byte table entries. The reduced δ improves our
attacks.

9We assume that the tables are aligned on memory block boundaries, which is usually the case. Non-aligned
tables would benefit our attacks by leaking an extra bit per key byte in the first round. We also assume for
simplicity that all tables are mapped into distinct cache sets; this holds with high probability on many systems
(and our practical attacks can handle some exceptions).

10This will be relaxed in Section 8.3.7.

138

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

on the same processor, by using (or eavesdropping upon) some interface that triggers encryption
under an unknown key. For example, a Virtual Private Network (VPN) may allow an unprivileged
user to send data packets through a secure channel which uses the same secret key to encrypt
all packets. This lets the user trigger encryption of plaintexts that are mostly known (up to
some uncertainties in the packet headers), and our attack would thus, under some circumstances,
enable any such user to discover the key used by the VPN to protect the packets of other users.
As another example, consider the Linux dm-crypt and cryptoloop services. These allow the
administrator to create a virtual device which provides encrypted storage into an underlying
physical device, and typically a normal filesystem is mounted on top of the virtual device. If a
user has write permissions to any file on that filesystem, he can use it to trigger encryptions of
known plaintext, and using our attack he is subsequently able to discover the universal encryption
key used for the underlying device. We have experimentally demonstrated the latter attack, and
showed it to reliably extract the full AES key using about 65ms of measurements (involving just
800 write operations) followed by 3 seconds of analysis.

The attack consists of two stages. In the on-line stage, we obtain a set of random samples,
each consisting of a known plaintext and the memory-access side-channel information gleaned
during the encryption of that plaintext. This data is cryptanalyzed in an off-line stage, through
hypothesis testing: we guess small parts of the key, use the guess to predict some memory accesses,
and check whether the predictions are consistent with the collected data. In the following we first
describe the cryptanalysis in an idealized form using the predicate Q, and adapt it to the noisy
measurements of M . We then show two different methods for obtaining these measurements,
detail some experimental results and outline possible variants and extensions.

8.3.2 One-round attack

Our simplest synchronous attack exploits the fact that in the first round, the accessed table
indices are simply x(0)

i = pi⊕ ki for all i = 0, . . . ,15. Thus, given knowledge of the plaintext byte
pi, any information on the accessed index x(0)

i directly translates to information on key byte ki.
The basic attack, in idealized form, is as follows.

Suppose that we obtain samples of the ideal predicate Q~k
(~p, `, y) for some table `, arbitrary table

indices y and known but random plaintexts ~p. Let ki be a key byte such that the first encryption
round performs the access “T`[x

(0)
i]” in (8.1), i.e., such that i ≡ ` (mod 4). Then we can discover

the partial information 〈ki〉 about ki, by testing candidate values k̃i and checking them as follows.
Consider the samples that fulfill 〈y〉 =

〈
pi ⊕ k̃i

〉
. These samples will be said to be useful for k̃i,

and we can reason about them as follows. If we correctly guessed 〈ki〉 =
〈
k̃i

〉
then Q~k

(~p, `, y) = 1

for useful samples, since the table lookup “T`[x
(0)
i]” in (8.1) will certainly access the memory

block of y in T`. Conversely, if 〈ki〉 6=
〈
k̃i

〉
then we are assured that “T`[x

(0)
i]” will not access

the memory block of y during the first round; however, during the full encryption process there
is a total of 36 accesses to T` (4 in each of the first 9 AES rounds). The remaining 35 accesses

139

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

are affected also by other plaintext bytes, so (for sufficiently random plaintexts and avalanche
effect) the probability that the encryption will not access that memory block in any round is
(1 − δ/256)35. By definition, that is also the probability of Q~k

(~p, `, y) = 0, and in the common
case δ = 16 it is approximately 0.104.

Thus, after receiving a few dozen useful samples we can identify a correct
〈
k̃i

〉
— namely, the

one for which Q~k
(~p, `, y) = 1 whenever 〈y〉 =

〈
pi ⊕ k̃i

〉
. Applying this test to each key byte

ki separately, we can thus determine the top log2(256/δ) = 4 bits of every key byte ki (when
δ = 16), i.e., half of the AES key. Note that this is the maximal amount of information that can
be extracted from the memory lookups of the first round, since they are independent and each
access can be distinguished only up to the size of a memory block.

In reality, we do not have the luxury of the ideal predicate, and have to deal with measurement
score distributions M~k

(~p, `, y) that are correlated with the ideal predicate but contain a lot of
(possibly structured) noise. For example, we will see that M~k

(~p, `, y) is often correlated with
the ideal Q~k

(~p, `, y) for some ` but is uncorrelated for others (see Figure 8.5). We thus proceed
by averaging over many samples. As done above, we concentrate on a specific key xi and a
corresponding table `. Our measurement will yield samples of the form (p, y,m) consisting of
arbitrary table indices y, random plaintexts ~p, and measurement scores m drawn from M~k

(~p, `, y).
For a candidate key value k̃i we define the candidate score of k̃i as the expected value of m over
the samples useful to k̃i (i.e., conditioned on y = pi ⊕ k̃i). We estimate the candidate score by
taking the average of m over the samples useful for k̃i. Since M~k

(~p, `, y) approximates Q~k
(~p, `, y),

the candidate score should be noticeably higher when
〈
k̃i

〉
= 〈ki〉 than otherwise, allowing us to

identify the value of ki up to a memory block.

Indeed, on a variety of systems we have seen this attack reliably obtaining the top nibble of
every key byte. Figure 8.2 shows the candidate scores in one of these experiments (see Sec-
tions 8.3.5 and 8.3.7 for details); the δ = 16 key byte candidates k̃i fulfilling

〈
k̃i

〉
= 〈ki〉 are easily

distinguished.

8.3.3 Two-rounds attack

The above attack narrows each key byte down to one of δ possibilities, but the table lookups
in the first AES round can not reveal further information. For the common case δ = 16, the
key has 64 remaining unknown bits — still too much for exhaustive search. We thus proceed to
analyze the 2nd AES round, exploiting the non-linear mixing in the cipher to reveal additional
information. Specifically, we exploit the following equations, easily derived from the Rijndael

140

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 2 4 6 8 10 12 14 16

Figure 8.2: Candidate scores for a synchronous attack using Prime+Probe measurements (see §8.3.5),
analyzing a dm-crypt encrypted filesystem on Linux 2.6.11 running on an Athlon 64, after analysis of 30,000 (left)

or 800 (right) triggered encryptions. The horizontal axis is k̃5 = p5 ⊕ y (left) or
D
k̃5

E
(right) and the vertical axis

is the average measurement score over the samples fulfilling y = p5 ⊕ k̃5 (in units of clock cycles). The high nibble
of k5 = 0x50 is easily gleaned.

specification [52], which give the indices used in four of the table lookups in the 2nd round:11

x
(1)
2 = s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)⊕ 2 • s(p10 ⊕ k10)⊕ 3 • s(p15 ⊕ k15)⊕ s(k15)⊕ k2 (8.2)

x
(1)
5 = s(p4 ⊕ k4)⊕ 2 • s(p9 ⊕ k9)⊕ 3 • s(p14 ⊕ k14)⊕ s(p3 ⊕ k3)⊕ s(k14)⊕ k1 ⊕ k5

x
(1)
8 = 2 • (p8 ⊕ k8)⊕ 3 • s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k13)⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x
(1)
15 = 3 • s(p12 ⊕ k12)⊕ s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)⊕ 2 • s(p11 ⊕ k11)⊕ s(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

Here, s(·) denotes the Rijndael S-box function and • denotes multiplication over GF(256).12

Consider, for example, equation (8.2) above, and suppose that we obtain samples of the ideal
predicate Q~k

(~p, `, y) for table ` = 2, arbitrary table indices y and known but random plaintexts
~p. We already know 〈k0〉 , 〈k5〉 , 〈k10〉 , 〈k15〉 and 〈k2〉 from attacking the first round, and we also
know the plaintext. The unknown low bits of k2 (i.e., k2 mod δ), affect only the low bits of x(1)

2 ,
(i.e., x(1)

2 mod δ), and these do not affect which memory block is accessed by “T2[x(1)
2]”. Thus,

the only unknown bits affecting the memory block accessed by “T2[x(1)
2]” in (8.1) are the lower

log2 δ bits of k0, k5, k10 and k15. This gives a total of δ4 (i.e., 216 for δ = 24) possibilities for
candidate values k̃0, k̃5, k̃10, k̃15, which can be easily enumerated. To complete the recovery of
these four key bytes, we can identify the correct candidate as follows.

Identification of a correct guess is done by a generalization of the hypothesis-testing method used
for the one-round attack. For each candidate guess, and each sample, Q~k

(~p, `, y) we evaluate (8.2)
using the candidates k̃0, k̃5, k̃10, k̃15 while fixing the unknown low bits of k2 to an arbitrary value.
We obtain a predicted index x̃(1)

2 . If 〈y〉 =
〈
x̃

(1)
2

〉
then we say that this sample is useful for this

candidate, and reason as follows.

11These four equations are special in that they involve just 4 unknown quantities, as shown below.
12The only property of these functions that we exploit is the fact that s(·), 2•s(·) and 3•s(·) are “random-looking”

in a sense specified below.

141

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

If the guess was correct then 〈y〉 =
〈
x̃

(1)
2

〉
=
〈
x

(1)
2

〉
and thus “T2[x(1)

2]” certainly causes an access

to the memory block of y in T2, whence Q~k
(~p, `, y) = 1 by definition. Otherwise we have ki 6= k̃i

for some i ∈ {0,5,10,15} and thus

x
(1)
2 ⊕ x̃

(1)
2 = c • s(pi ⊕ ki) ⊕ c • s(pi ⊕ k̃i) ⊕ · · ·

for some c ∈ {1,2,3}, and since ~p is random the remaining terms are independent of the first
two. But for these specific functions the above is distributed close to uniformly. Specifically, it
is readily computationally verified, from the definition of AES [52], that the following differential
property (cf. [28]) holds: for any ki 6= k̃i, c ∈ {1,2,3}, δ ≥ 4 and z ∈ {0, . . . ,256/δ} we always
have

Pr
~p

[〈
c • s(pi ⊕ ki) ⊕ c • s(pi ⊕ k̃i)

〉
6= z
]
> 1− (1− δ/256)3 .

Thus, the probability that “T2[x(1)
2]” in (8.1) does not cause an access to the memory block of

y in T2 is at least (1− δ/256)3, and each of the other 35 accesses to T2 performed during the
encryption will access the memory block of y in T2 with probability δ/256. Hence, Q~k

(~p, `, y) = 0
with probability greater than (1− δ/256)3+35.

We see that each sample eliminates, on average, a (δ/256) · (1 − δ/256)38-fraction of the can-
didates — this is the probability, for a wrong candidate, that a random sample is useful for
that candidate (i.e., yields a testable prediction) and moreover eliminates that candidate (by
failing the prediction). Thus, to eliminate all the wrong candidates out of the δ4, we need about
log δ−4/ log

(
1− δ/256 · (1− δ/256)38

)
samples, i.e., about 2056 samples when δ = 16. Note that

with some of our measurement methods the attack requires only a few hundred encryptions, since
each encryption can provide samples for multiple y.

Similarly, each of the other three equations above lets us guess the low bits of four distinct
key bytes, so taken together they reveal the full key. While we cannot reuse samples between
equations since they refer to different tables `, we can reuse samples between the analysis of the
first and second round. Thus, if we had access to the ideal predicate Q we would need a total of
about 8220 encryptions of random plaintexts, and an analysis complexity of 4 · 216 · 2056 ≈ 229

simple tests, to extract the full AES key.

In reality we get only measurement scores from the distributions M~k
(~p, `, y) that approximate

the ideal predicate Q~k
(~p, `, y). Similarly to the one-round attack, we proceed by computing,

for each candidate k̃i, a candidate score obtained by averaging the measurement scores of all
samples useful to k̃i. We then pick the k̃i having the largest measurement score. The number
of samples required to reliably obtain all key bytes by this method is, in some experimentally
verified settings, only about 7 times larger than the ideal (see Section 8.3.7).

8.3.4 Measurement via Evict+Time

One method for extracting measurement scores is to manipulate the state of the cache before
each encryption, and observe the execution time of the subsequent encryption. Recall that we

142

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

(a)

(b)

(c)

(d)

(e)

Figure 8.3: Schematics of cache states, in the notation of Figure 8.1. States (a)-(c) depict Evict+Time and
(d)-(e) depict Prime+Probe.

assume the ability to trigger an encryption and know when it has begun and ended. We also
assume knowledge of the memory address of each table T`, and hence of the cache sets to which
it is mapped.13 We denote these (virtual) memory addresses by V (T`). In a chosen-plaintext
setting, the measurement routine proceeds as follows given a table `, index y into ` and plaintext
~p:

(a) Trigger an encryption of ~p.

(b) (evict) Access some W memory addresses, at least B bytes apart, that are all congruent to
V (T`) + y ·B/δ modulo S ·B.

(c) (time) Trigger a second encryption of ~p and time it.14 This is the measurement score.

The rationale for this procedure is as follows. Step (a) makes it highly likely that all table memory
blocks accessed during the encryption of ~p are cached15; this is illustrated in Figure 8.3(a). Step
(b) then accesses memory blocks, in the attacker’s own memory space, that happen to be mapped
to the same cache set as the memory block of y in T`. Since it is accessing W such blocks in
a cache with associativity W , we expect these blocks to completely replace the prior contents
of the cache. Specifically, the memory block of index y in the encryption table T` is now not
in cache; see Figure 8.3(b). When we time the duration of the encryption in (c), there are two
possibilities. If Q~k

(~p, `, y) = 1, that is if the encryption of the plaintext ~p under the unknown
encryption key ~k accesses the memory block of index y in T`, then this memory block will have
to be re-fetched from memory into the cache, leading to Figure 8.3(c). This fetching will slow
down the encryption. Conversely, if Q~k

(~p, `, y) = 0 then this memory fetch will not occur. Thus,
all other things being equal, the expected encryption time is larger when Q~k

(~p, `, y) = 1. The
gap is on the order of the timing difference between a cache hit and a cache miss.

Figure 8.4 demonstrates experimental results. The bright diagonal corresponds to samples where
〈y〉 ⊕ 〈p0〉 = 〈k0〉 = 0, for which the encryption in step (c) always suffers a cache miss.

13Also, as before, the cache sets of all tables are assumed to be distinct. See Section 8.3.6 for a discussion of
possible complications and their resolution.

14To obtain high-resolution timing we use the CPU cycle counter (e.g., on x86 the RDTSC instruction returns
the number of clock cycles since the last CPU reset).

15Unless the triggered encryption code has excessive internal cache contention, or an external process interfered.

143

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

(a)

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 0 16 32 48 64 (b)

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 0 16 32 48 64

Figure 8.4: Timings (lighter is slower) in Evict+Time measurements on a 2GHz Athlon 64, after 10,000
samples, attacking a procedure that executes an encryption using OpenSSL 0.9.8. The horizontal axis is the
evicted cache set (i.e., 〈y〉 plus an offset due to the table’s location) and the vertical axis is p0 (left) or p5 (right).
The patterns of bright areas reveal high nibble values of 0 and 5 for the corresponding key byte values, which are
XORed with p0.

This measurement method is easily extended to a case where the attacker can trigger encryption
with plaintexts that are known but not chosen (e.g., by sending network packets to which an
uncontrolled but guessable header is added). This is done by replacing step (a) above with one
that simply triggers encryptions of arbitrary plaintexts in order to cause all table elements to be
loaded into cache. Then the measurement and its analysis proceed as before.

The weakness of this measurement method is that, since it relies on timing the triggered encryp-
tion operation, it is very sensitive to variations in the operation. In particular, triggering the
encryption (e.g., through a kernel system call) typically executes additional code, and thus the
timing may include considerable noise due to sources such as instruction scheduling, conditional
branches, page table misses, and other sources cache contention. Indeed, using this measurement
method we were able to extract full AES keys from an artificial service doing AES encryptions
using OpenSSL library calls16, but not from more typical “heavyweight” services. For the latter,
we invoked the alternative measurement method described in the next section.

8.3.5 Measurement via Prime+Probe

This measurement method tries to discover the set of memory blocks read by the encryption
a posteriori, by examining the state of the cache after encryption. This method proceeds as
follows. The attacker allocates a contiguous byte array A[0, . . . , S ·W ·B− 1], with start address
congruent modulo S · B to the start address of T0.17 Then, given a plaintext ~p, it obtains
measurement scores for all tables ` and all indices y and does so using a single encryption:

(a) (prime) Read a value from every memory block in A.

(b) Trigger an encryption of ~p.

16For this artificial scenario, [23] also demonstrated key extraction.
17For simplicity, here we assume this address is known, and that T0, T1, T2, T3 are contiguous.

144

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

(c) (probe) For every table ` = 0, . . . 3 and index y = 0, δ,2δ, . . . ,256− δ:

- Read the W memory addresses A[1024` + 4y + tSB] for t = 0, . . . ,W − 1. The total
time it takes to perform these W memory accesses is the measurement score for ` and
y, i.e., our sample of M~k

(~p, `, y).18

Step (a) completely fills the cache with the attacker’s data; see Figure 8.3(e). The encryption in
step (b) causes partial eviction; see Figure 8.3(f). Step (c) checks, for each cache set, whether
the attacker’s data is still present after the encryption: cache sets that were accessed by the
encryption in step (b) will incur cache misses in step (c), but cache sets that were untouched by
the encryption will not, and thus induces a timing difference.

Crucially, the attacker is timing a simple operation performed by itself, as opposed to a com-
plex encryption service with various unknown overheads executed by someone else (as in the
Evict+Time approach); this is considerably less sensitive to timing variance, and oblivious to time
randomization or canonization (which are frequently proposed countermeasures against timing
attacks; see Section 8.5). Another benefit lies in inspecting all cache sets simultaneously after
each encryption, so that each encryption effectively yields 4 ·256/δ samples of measurement score,
rather than a single sample.

An example of the measurement scores obtained by this method, for a real cryptographic system,
are shown in Figure 8.5. Note that to obtain a visible signal it is necessary to normalize the
measurement scores by subtracting, from each sample, the average timing of its cache set. This is
because different cache sets are affected differently by auxiliary memory accesses (e.g., variables on
the stack and I/O buffers) during the system call. These extra accesses depend on the inspected
cache set but are nearly independent of the plaintext byte; thus they affect each column uniformly
and can be subtracted away. Major interruptions, such as context switches to other processes,
are filtered out by excluding excessively long time measurements.

8.3.6 Practical complications

Above we have ignored several potential complications. One of these is that the attacker does
not know where the victim’s lookup tables reside in memory. It may be hard to tell in advance,
or it might be randomized by the victim.19 However, the attacker usually does know the layout
(up to unknown global offset) of the victim’s lookup tables, and this enables the following simple
procedure: try each possible table offset in turn, and apply the one-round attack assuming this
offset. Then pick the offset that gave the maximal candidate score. In our experiments this
method works very well, even on a real, noisy system (see Figure 8.6). Often, it even suffices to
simply look for a frequently-accessed range of memory of the right size (see Figure 8.7).

18We perform probing using pointer-chasing to ensure loads which are not reorderable by the CPU’s internal
optimizations. To avoid “polluting” our samples, the probe code stores each obtained sample into the same cache
set it measured. On some platforms one can improve the timing gap by using writes instead of reads, or more than
W reads.

19For example, recent Linux kernels randomize memory offsets.

145

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

Figure 8.5: Prime+Probe attack using 30,000 encryption calls on a 2GHz Athlon 64, attacking Linux 2.6.11
dm-crypt. The horizontal axis is the evicted cache set (i.e., 〈y〉 plus an offset due to the table’s location) and the
vertical axis is p0. Left: raw timings (lighter is slower). Right: after subtraction of the average timing of each
cache set (i.e., column). The bright diagonal reveals the high nibble of p0 = 0x00.

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

Figure 8.6: Scores (lighter is higher) for combinations of key byte candidate (vertical axis) and table offset
candidate (horizontal axis). The correct combinations are clearly identified as the bright spots at the head of the
Sierpinski-like triangle (which is row-permuted on the right). Note the correct relative offsets of tables T0 (left)
and T1 (right) . This is the same dataset as in Figure 8.5.

Another complication is the distinction between virtual and physical memory addresses. The
mapping between the two is done in terms of full memory pages (i.e., aligned ranges of addresses).
These can be of different sizes, even on a single system, but are usually large enough to contain the
all the tables used in the first 9 AES rounds. In the above descriptions, and in some of our attacks,
we used the knowledge of both virtual and physical addresses of the victim’s tables. Sometimes
this is available (e.g., when the attacker and victim use the same shared library); it is also not a
concern when the cache uses indexing by virtual address. When attacking a physically indexed
cache, the attacker can run a quick preprocessing stage to gain the necessary knowledge about
the mapping from virtual to physical addresses, by analysis of cache collisions between pages.
Some operating systems perform page coloring [103], which makes this even easier. Alternatively,
in both measurement methods, the attacker can increase the number of pages accessed to well
above the cache associativity, thereby making it likely that the correct pages are hit; we have
verified experimentally that this simple method works, albeit at a large cost in measurement time
(a factor of roughly 300).

Additional complications arise, such as methods for obtaining high-resolution, low-latency time
measurements. These are all surmountable, but are omitted here for brevity.

146

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

8.3.7 Experimental results

We have tested the synchronous attacks against AES in various settings. To have an initial “clean”
testing environment for our attack code, we started out using OpenSSL library calls as black-box
functions, pretending we have no access to the key. In this setting, and with full knowledge of the
relevant virtual and physical address mappings, using Prime+Probe measurements we recover
the full 128-bit AES key after only 300 encryptions on Athlon 64, and after 16,000 encryptions
on Pentium 4E.20 In the same setting, but without any knowledge about address mappings (and
without any attempt to discover it systematically) we still recover the full key on Athlon 64 after
8,000 encryptions.

We then proceeded to test the attacks on a real-life encrypted filesystem. We set up a Linux
dm-crypt device, which is a virtual device which encrypts all data at the sector level (here, using
128-bit AES encryptions in ECB mode). The encrypted data is saved in an underlying storage
device (here, a loopback device connected to a regular file). On top of the dm-crypt device, we
created and mounted an ordinary ext2 filesystem. We triggered encryptions by performing writes
to an ordinary file inside that file system, after opening it in O DIRECT mode; each write consisted
of a random 16-byte string repeated 32 times. Running this on the Athlon 64 with knowledge
about address mappings, we succeeded in extracting the full key after just 800 write operations
done in 65ms (including the analysis of the cache state after each write), followed by 3 seconds of
off-line analysis. Data from two analysis stages for this kind of attack are shown in Figures 8.5
and 8.6 (the figures depict a larger number of samples, in order to make the results evident not
only to sensitive statistical tests but even to cursory visual inspection).

The Evict+Time measurements (Figure 8.4) are noisier, as expected, but still allow us to recover
the secret key using about 500,000 samples when attacking OpenSSL on Athlon 64. Gathering the
data takes about half a minute of continuous measurement, more than three orders of magnitude
slower than the attacks based on Prime+Probe.

8.3.8 Variants and extensions

There are many possible extensions to the basic techniques described above. The following are a
few notable examples.

So far we have discussed known-plaintext attacks. All of these techniques can be applied anal-
ogously in known-ciphertext setting. In fact the latter are significantly more efficient for AES
implementations of the form given in Section 8.2.2, since the last round uses a dedicated set of
tables and the noise due to other rounds is thus eliminated. Moreover, in the last round we
have non-linearity but no MixColumn operation, so we can easily extract the full key without
analyzing additional rounds. Note that even in the case of known-plaintext, the final guess of

20The Athlon 64 processor yielded very stable timings, whereas the Pentium 4E timings exhibited considerable
variance (presumably, due to some undocumented internal state).

147

8. Efficient cache attacks on AES 8.3. Synchronous known-data attacks

the key can be efficiently verified by checking the resulting predictions for the lookups in the last
round.21

Since AES decryption is very similar to encryption, all of our attacks can be applied to the
decryption code just as easily. Moreover, the attacks are also applicable when AES is used in
MAC mode, as long as either the input or output of some AES invocations is known.

In the two-round attack, we can guess byte differences ∆̃ = ki ⊕ kj and consider plaintexts such
that pi ⊕ pj = ∆̃, in order to cancel out pairs of terms S(ki ⊕ pi) ⊕ S(kj ⊕ pj) in (8.2). This
reduces the complexity of analysis (we guess just ∆̃ instead of both k̃i and k̃j), at the cost of
using more measurements.

To verify the results of the second-round analysis, or in case some of the tables cannot be analyzed
due to excessive noise, we can use the other 12 lookups in the second round, or even analyze the
third round, by plugging in partial information obtained from good tables.

Typically, loading a memory block into a cache line requires several memory transfer cycles due
to the limited bandwidth of the memory interface. Consequently, on some processors the load
latency depends on the offset of the address within the loaded memory block. Such variability
can leak information on memory accesses with resolution better than δ, hence an analysis of the
first round via Evict+Time can yield additional key bits. Cache bank collisions (e.g., in Athlon
64 processors) likewise cause timing to be affected by low address bits.

We believe this attack can be converted into a remote attack on a network-triggerable crypto-
graphic network process (e.g., IPsec [102] or OpenVPN [157]).22 The cache manipulation can be
done remotely, for example, by triggering accesses to the state tables employed by the host’s TCP
stack, stateful firewall or VPN software. These state tables reside in memory and are accessed
whenever a packet belonging to the respective network connection is seen. The attacker can
thus probe different cache sets by sending packets along different network connections, and also
measure access times by sending packets that trigger a response packet (e.g., an acknowledgment
or error). If a large number of new connections is opened simultaneously, the memory addresses
of the slots assigned to these connections in the state tables will be strongly related (e.g., con-
tiguous or nearly so), and can be further ascertained by finding slots that are mapped to the
same cache set (by sending appropriate probe packets and checking the response time). Once the
mapping of the state table slots to cache sets is established, all of the aforementioned attacks can
be carried out; however, the signal-to-noise (and thus, the efficiency) of this technique remains
to be evaluated.

21This was indeed demonstrated by [153] subsequent to our publication; see §10.5.
22This is ruled out in [41], though no justification is given.

148

8. Efficient cache attacks on AES 8.4. Asynchronous attacks

8.4 Asynchronous attacks

8.4.1 Overview

While the synchronous attack presented in the previous section leads to very efficient key re-
covery, it is limited to scenarios where the attacker has some interaction with the encryption
code which allows him to obtain known plaintexts and execute code just before and just after
the encryption. We now proceed to describe a class of attacks that eliminate these prerequisites.
The attacker will execute his own program on the same processor as the encryption program,
but without any explicit interaction such as inter-process communication or I/O, and the only
knowledge assumed is about the non-uniform distribution of the plaintexts or ciphertexts (rather
than their specific values). Essentially, the attacker will ascertain patterns of memory access per-
formed by other processes just by performing and measuring accesses to its own memory. This
attack is more constrained in the hardware and software platforms to which it applies, but it
is very effective on certain platforms, such as the increasingly popular CPU architectures which
implement simultaneous multithreading.

8.4.2 One-Round Attack

The basic form of this attack works by obtaining a statistical profile of the frequency of cache
set accesses. The means of obtaining this will be discussed in the next section, but for now we
assume that for each table T` and each memory block n = 0, . . . ,256/δ − 1 we have a frequency
score value F`(n) ∈ R, that is strongly correlated with the relative frequencies. For a simple but
common case, suppose that the attacker process is performing AES encryption of English text,
in which most bytes have their high nibble set to 6 (i.e., lowercase letters a through p). Since the
actual table lookups performed in round 1 of AES are of the form “T`[x

(0)
i]” where x(0)

i = pi⊕ ki,
the corresponding frequency scores F`(n) will have particularly large values when n = 6 ⊕ 〈ki〉
(assuming δ = 16). Thus, just by finding the n for which F`(n) is large and XORing them with
the constant 6, we get the high nibbles 〈ki〉.

Note, however, that we cannot distinguish the order of different memory accesses to the same
table, and thus cannot distinguish between key bytes ki involved in the first-round lookup to
the same table `. There are four such key bytes per table (for example, k0, k5, k10, k15 affect T0;
see Section 8.2.2). Thus, when the four high key nibbles 〈ki〉 affecting each table are distinct
(which happens with probability ((16!/12!) /164)4 ≈ 0.2), the above reveals the top nibbles of
all key bytes but only up to four disjoint permutations of 4 elements each. Overall this gives
64/ log2(4!4) ≈ 45.66 bits of key information, somewhat less than the one-round synchronous
attack. When the high key nibbles are not necessarily disjoint we get more information, but the
analysis of the signal is somewhat more complex.

More generally, suppose the attacker knows the first-order statistics of the plaintext; these can
usually be determined just from the type of data being encrypted (e.g., English text, numerical

149

8. Efficient cache attacks on AES 8.4. Asynchronous attacks

data in decimal notation, machine code or database records).23 Specifically, suppose that the
attacker knows R(n) = Pr [〈pi〉 = n] for n = 0, . . . , (256/δ−1) , i.e., the histogram of the plaintext
bytes truncated into blocks of size δ (where the probability is over all plaintext blocks and all
bytes i inside each block). Then the partial key values 〈ki〉 can be identified by finding those that
yield maximal correlation between F`(n) and R(n⊕ 〈ki〉).

8.4.3 Measurements

One measurement method exploits the simultaneous multithreading (SMT, called “HyperThread-
ing” in Intel Corp. nomenclature) feature available in some high-performance processors (e.g.,
most modern Pentium and Xeon processors, as well as POWER5 processors, UltraSPARC T1 and
others).24 This feature allows concurrent execution of multiple processes on the same physical
processor, with instruction-level interleaving and parallelism. When the attacker process runs
concurrently with its victim, it can analyze the latter’s memory accesses in real time and thus
obtain higher resolution and precision; in particular, it can gather detailed statistics such as the
frequency scores F`(n) ∈ R. This can be done via a variant of the Prime+Probe measurements
of Section 8.3.5, as follows.

For each cache set, the attacker thread runs a loop which closely monitors the time it takes to
repeatedly load a set of memory blocks that exactly fills that cache set with W memory blocks
(similarly to step (c) of the Prime+Probe measurements).25 As long as the attacker is alone
in using the cache set, all accesses hit the cache and are very fast. However, when the victim
thread accesses a memory location which maps to the set being monitored, that causes one of
the attacker’s cache lines to be evicted from cache and replaced by a cache line from the victim’s
memory. This leads to one or (most likely) more cache misses for the attacker in subsequent loads,
and slows him down until his memory once more occupies all the entries in the set. The attacker
thus measures the time over an appropriate number of accesses and computes their average, thus
obtaining the frequency score F`(n).

8.4.4 Experimental results

Attacking a series of processes encrypting English text with the same key using OpenSSL, we
effectively retrieve 45.7 bits of information26 about the key after gathering timing data for just 1
minute. Timing data from one of the runs is shown in Figure 8.7.

23Note that even compressed data is likely to have strong first-order statistical biases at the beginning of each
compressed chunk, especially when file headers are employed.

24We stress that this attack can be carried out also in the absence of simultaneous multithreading; see Sec-
tion 8.4.5.

25Due to the time-sensitivity and effects such as prefetching and instruction reordering, getting a significant
signal requires a carefully crafted architecture-specific implementation of the measurement code.

26For keys with distinct high nibbles in each group of 4; see Section 8.4.1.

150

8. Efficient cache attacks on AES 8.4. Asynchronous attacks

 0

 20

 40

 60

 80

 100

 120

 140

-512 -384 -256 -128 0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536
 60

 70

 80

 90

 100

 110

 120

 130

 140

-16 0 16 32 48 64 80 96

Figure 8.7: Frequency scores for OpenSSL AES encryption of English text. Horizontal axis: cache set. Timings
performed on 3GHz Pentium 4E with HyperThreading. To the right we zoom in on the AES lookup tables; the
pattern corresponds to the top nibbles of the secret key 0x004080C0105090D02060A0E03070B0F0.

8.4.5 Variants and extensions

This attack vector is quite powerful, and has numerous possible extensions, such as the following.

The second round can be analyzed using higher-order statistics on the plaintext, yielding enough
key bits for exhaustive search.

If measurements can be made to detect the order of accesses (which we believe is possible with
appropriately crafted code), the attacker can analyze more rounds as well as extract the unknown
permutations from the first round. Moreover, if the temporal resolution suffices to observe adja-
cent rounds in a single encryption, then it becomes possible to recover the complete key without
even knowing the plaintext distribution, as long as it is sufficiently nonuniform.

We have demonstrated the attack on a Pentium 4E with HyperThreading, but it can also be
performed on other platforms without relying on simultaneous multithreading. The essential
requirements is that the attacker can execute its own code while an encryption is in progress,
and this can be achieved by exploiting the interrupt mechanism. For example, the attacker can
predict RTC or timer interrupts and yield the CPU to the encrypting process a few cycles before
such an interrupt; the OS scheduler is invoked during the interrupt, and if dynamic priorities are
set up appropriately in advance then the attacker process will regain the CPU and can analyze
the state of the cache to see with great accuracy what the encrypting process accessed during
those few cycles.27

On multi-core processors, the lowest-level caches (L1 and sometimes L2) are usually private to
each core; but if the cryptographic code occasionally exceeds these private caches and reaches
caches that are shared among the cores (L2 or L3) then the asynchronous attack becomes appli-
cable at the cross-core level. In SMP systems, cache coherency mechanisms may be exploitable
for similar effect.

As in the synchronous case, one can envision remote attack variants that take advantage of data
structures to which accesses can be triggered and timed through a network (e.g., the TCP state
table).

27This was indeed subsequently demonstrated by [153]; see §10.5.

151

8. Efficient cache attacks on AES 8.5. Countermeasures

8.5 Countermeasures

In the following we discuss several potential methods to mitigate the information leakage. Since
these methods have different trade-offs and are architecture- and application-dependent, we can-
not recommend a single recipe for all implementors. Rather, we aim to present the realistic
alternatives along with their inherent merits and shortcomings. We focus our attention on meth-
ods that can be implemented in software, whether by operating system kernels or normal user
processes, running under today’s common general-purpose processors. Some of these countermea-
sures are presented as specific to AES, but have analogues for other primitives. Countermeasures
which require hardware modification are discussed in [161, 162, 23, 167, 163].

Caveat: due to the complex architecture-dependent considerations involved, we expect the se-
cure implementation of these countermeasures to be a very delicate affair. Implementers should
consider all exploitable effects given in [23], and carefully review their architecture for additional
effects.

8.5.1 Avoiding memory accesses

Our attacks exploit the effect of memory access on the cache, and would thus be completely
mitigated by an implementation that does not perform any table lookups. This may be achieved
by the following approaches.

First, one could use an alternative description of the cipher which replaces table lookups by an
equivalent series of logical operations. For AES this is particularly elegant, since the lookup tables
have concise algebraic descriptions, but performance is degraded by over an order of magnitude.28

Another approach is that of bitslice implementations [26]. These employ a description of the
cipher in terms of bitwise logical operations, and execute multiple encryptions simultaneously
by vectorizing the operations across wide registers. Their performance depends heavily on the
structure of the cipher, the processor architecture and the possibility of amortizing the cost across
several simultaneous encryptions (which depends on the use of an appropriate encryption mode).
For AES, we expect (but have not yet verified) that amortized performance would be comparable
to that of a lookup-based implementation, but its relevance is application-dependent.

Finally, one could use lookup tables but place the tables in registers instead of cache. Some
architectures (e.g., x86-64 and PowerPC AltiVec) have register files sufficiently large to hold the
256-byte S-box table, but reasonable performance seems unlikely.

8.5.2 Alternative lookup tables

For AES, there are several similar formulations of the encryption and decryption algorithms that
use different sets of lookup tables. Above we have considered the most common implementation,

28This kind of implementation has also been attacked through the timing variability in some implementations
[110].

152

8. Efficient cache attacks on AES 8.5. Countermeasures

employing four 1024-byte tables T0, . . . , T3 for the main rounds. Variants have been suggested
with one 256-byte table (for the S-box), two 256-bytes tables (adding also 2 • S[·]), one 1024-
byte table (just T0 with the rest obtained by rotations), and one 2048-byte table (T0, . . . , T3

compressed into one table with non-aligned lookups). The same applies to the last round tables,
T

(10)
0 , . . . , T

(10)
3 .

In regard to the synchronous attacks considered in Section 8.3, the effect of using smaller tables is
to decrease the probability ρ that a given memory block will not be accessed during the encryption
(i.e., Q~k

(~p, `, y) = 0) when the candidate guess k̃i is wrong. Since these are the events that rule
out wrong candidates, the amount of data and analysis in the one-round attack is inversely
proportional to log(1− ρ).

For the most compact variant with a single 256-byte table, and δ = 64, the probability is ρ =
(1 − 1/4)160 ≈ 2−66.4, so the synchronous attack is infeasible – we’re unlikely to ever see an
unaccessed memory block. For the next most compact variant, using a single 1024 bytes table,
the probability is ρ = (1− 1/16)160 ≈ 2−14.9, compared to ρ ≈ 0.105 in Section 8.3.2. The attack
will thus take about log(1−0.105)/ log(1−2−14.9) ≈ 3386 times more data and analysis, which is
inconvenient but certainly feasible for the attacker. The variant with a single 2KB table (8→ 64
bit) has ρ = (1 − 1/32)160, making the synchronous attack just 18 times less efficient than in
Section 8.3.2 and thus still doable within seconds.

For asynchronous attacks, if the attacker can sample at intervals on the order of single table
lookups (which is architecture-specific) then these alternative representations provide no appre-
ciable security benefit. We conclude that overall, this approach (by itself) is of very limited value.
However, it can be combined with some other countermeasures (see Sections 8.5.3, 8.5.5, 8.5.8).

8.5.3 Data-independent memory access pattern

Instead of avoiding table lookups, one could employ them but ensure that the pattern of accesses
to the memory is completely independent of the data passing through the algorithm. Most naively,
to implement a memory access one can read all entries of the relevant table, in fixed order, and
use just the one needed. Modern CPUs analyze dependencies and reorder instructions, so care
(and overhead) must be taken to ensure that the instruction and access scheduling, and their
timing, are completely data-independent.

If the processor leaks information only about whole memory blocks (i.e., not about the low address
bits),29 then it suffices that the sequence of accesses to memory blocks (rather than memory
addresses) is data-independent. To ensure this one can read a representative element from every
memory block upon every lookup.30 For the implementation of AES given in Section 8.2.2 and

29This assumption is false for the Athlon 64 processor (due to cache bank collision effects), and possibly for other
processors as well. See Section 8.3.8 and [23].

30This approach was suggested by Intel Corp. [37] for mitigating the attack of Percival on RSA [167], and
incorporated into OpenSSL 0.9.7h. In the case of RSA the overhead is insignificant, since other parts of the
computation dominate the running time.

153

8. Efficient cache attacks on AES 8.5. Countermeasures

the typical δ = 16, this means each logical table access would involve 16 physical accesses, a major
slowdown. Conversely, in the formulation of AES using a single 256-byte table (see Section 8.5.2),
the table consists of only 4 memory blocks (for δ = 64), so every logical table access would (the
dominant innermost-loop operation) involve just 4 physical accesses; but this formulation of AES
is inherently very slow.

A still looser variant is to require only that the sequence of accesses to cache sets is data-
independent (e.g., store each AES table in memory blocks that map to a single cache set). While
this poses a challenge to the cryptanalyst, it does not in general suffice to eliminate the leaked
signal: an attacker can still initialize the cache to a state where only a specific memory block
is missing from cache, by evicting all memory blocks from the corresponding cache set and then
reading back all but one (e.g., by triggering access to these blocks using chosen plaintexts); he
can then proceed as in Section 8.3.4. Moreover, statistical correlations between memory block
accesses, as exploited in the collision attacks of Tsunoo et al. [206][205], are still present.

Taking a broader theoretical approach, Goldreich and Ostrovsky [83] devised a realization of
Oblivious RAM : a generic program transformation which hides all information about memory
accesses. This transformation is quite satisfactory from an (asymptotic) theoretical perspective,
but its concrete overheads in time and memory size are too high for most applications.31 Moreover,
it employs pseudo-random functions, whose typical realizations can also be attacked since they
employ the very same cryptographic primitives we are trying to protect.32

Xhuang, Zhang, Lee and Pande addressed the same issue from a more practical perspective
and proposed techniques based on shuffling memory content whenever it is accessed [226] or
occasionally permuting the memory and keeping the cache locked between permutations [225].
Both techniques require non-trivial hardware support in the processor or memory system, and
do not provide perfect security in the general case.

A simple heuristic approach is to add noise to the memory access pattern by adding spurious
accesses, e.g., by performing a dummy encryption in parallel to the real one. This decreases the
signal visible to the attacker (and hence necessitates more samples), but does not eliminate it.

8.5.4 Application-specific algorithmic masking

There is extensive literature about side-channel attacks on hardware ASIC and FPGA implemen-
tations, and corresponding countermeasures. Many of these countermeasures are implementation-
specific and thus of little relevance to us, but some of them are algorithmic. Of particular interest
are masking techniques, which effectively randomize all data-dependent operations by applying
random transformations; the difficulty lies, of course, in choosing transformations that can be

31The Oblivious RAM model of [83] protects against a stronger adversary which is also able to corrupt the data
in memory. If one is interested only in achieving correctness (not secrecy) in the face of such corruption, then Blum
et al. [30] provide more efficient schemes and Naor and Rothblum [148] provide strong lower bounds.

32In [83] it is assumed that the pseudorandom functions are executed completely within a secure CPU, without
memory accesses. If such a CPU was available, we could use it to run the AES algorithm itself.

154

8. Efficient cache attacks on AES 8.5. Countermeasures

stripped away after the operation. One can think of this as homomorphic secret sharing, where
the shares are the random mask and the masked intermediate values. For AES, several masking
techniques have been proposed (see e.g. [160] and the references within). However, these are de-
signed to protect only against first-order analysis, i.e., against attacks that measure some aspect
of the state only at one point in the computation. Note that our asynchronous attacks do not fall
into this category. Moreover, the security proofs consider leakage only of specific intermediate
values, which do not correspond to the ones leaking via memory access metadata. Lastly, every
AES masking method we are aware of has either been shown to be insecure even for its original
setting (let alone ours), or is significantly slower in software than a bitslice implementation (see
Section 8.5.1). Thus, this venue presently seems unfruitful.

8.5.5 Cache state normalization and process blocking

To foil the synchronous attacks of Section 8.3, it suffices to ensure that the cache is at a data-
independent normalized state (e.g., by loading all lookup table elements into cache) at any entry
to and exit from the encryption code (including interrupt and context switching by the operating
system). Thus, to foil the Prime+Probe attack it suffices to normalize the state of the cache
after encryption. To foil the Evict+Time attack one needs to normalize the state of the cache
immediately before encryption (as in [161]), and also after every interrupt occurring during an
encryption (the memory accesses caused by the interrupt handler will affect the state of the cache
in some semi-predictable way and can thus be exploited by the attacker similarly to the Evict
stage of Evict+Time). Performing the normalization after interrupts typically requires operating
system support (see Section 8.5.11). As pointed out in [23, Sections 12 and 14], it should be
ensured that the table elements are not evicted by the encryption itself, or by accesses to the
stack, inputs or outputs; this is a delicate architecture-dependent affair.

A subtle aspect is that the cache state, which we seek to normalize, includes a hidden state which
is used by the CPU’s cache eviction algorithm (typically Least Recently Used or variants thereof).
If multiple lookup table memory blocks are mapped to the same cache set (e.g., OpenSSL on the
Pentium 4E; see Table 8.1), the hidden state could leak information about which of these blocks
was accessed last even if all of them are cached; an attacker can exploit this to analyze the last
rounds in the encryption (or decryption).

All of these countermeasures provide little protection against the asynchronous attacks of Sec-
tion 8.4. To fully protect against those, during the encryption one would have to disable interrupts
and stop simultaneous threads (and perhaps also other processors on an SMP machine, due to
the cache coherency mechanism). This would significantly degrade performance on SMT and
SMP machines, and disabling interrupts for long durations will have adverse effects. A method
for blocking processes more selectively based on process credentials and priorities is suggested in
[167].

Note that normalizing the cache state frequently (e.g., by reloading all tables after every AES
round) would merely reduce the signal-to-noise of the asynchronous attacks, not eliminate them.

155

8. Efficient cache attacks on AES 8.5. Countermeasures

8.5.6 Disabling cache sharing

To protect against software-based attacks, it would suffice to prevent cache state effects from span-
ning process boundaries. Alas, practically this is very expensive to achieve. On a single-threaded
processor, it would require flushing all caches during every context switch. On a processor with
simultaneous multithreading, it would also require the logical processors to use separate logical
caches, statically allocated within the physical cache; some modern processors do not support
such a mode. One would also need to consider the effect of cache coherency mechanisms in SMP
configurations.

A relaxed version would activate the above means only for specific processes, or specific code
sections, marked as sensitive. This is especially appropriate for the operating system kernel, but
can be extended to user processes as explained in Section 8.5.11.

To separate two processes w.r.t. to the attacks considered here, it suffices33 to ensure that all
memory accessible by one process is mapped into a group of cache sets that is disjoint from that
of the other process.34 In principle, this can be ensured by the operating system virtual memory
allocator, through a suitable page coloring algorithm. Alas, this fails on both of the major x86
platforms: in modern Intel processors every 4096-byte memory page is mapped to every cache
set in the L1 cache (see Table 8.1), while in AMD processors the L1 cache is indexed by virtual
addresses (rather than physical addresses) and these are allocated contiguously.

8.5.7 Static or disabled Cache

One brutal countermeasure against the cache-based attacks is to completely disable the CPU’s
caching mechanism.35 Of course, the effect on performance would be devastating, slowing down
encryption by a factor of about 100. A more attractive alternative is to activate a “no-fill”
mode36 where the memory accesses are serviced from the cache when they hit it, but accesses
that miss the cache are serviced directly from memory (without causing evictions and filling).
The encryption routine would then proceed as follows:

(a) Preload the AES tables into cache

(b) Activate “no-fill” mode

(c) Perform encryption

(d) Deactivate “no-fill” mode

33In the absence of low-address-bit leakage due to cache bank collisions.
34This was proposed to us by Úlfar Erlingsson of Microsoft Research.
35Some stateful effects would remain, such as the DRAM bank activation. These might still provide a low-

bandwidth side channel in some cases.
36Not to be confused with the “disable cache flushing” mode suggested in [162], which is relevant only in the

context of smartcards.

156

8. Efficient cache attacks on AES 8.5. Countermeasures

The section spanning (a) and (b) is critical, and attacker processes must not be allowed to run
during this time. However, once this setup is completed, step (c) can be safely executed. The
encryption per se would not be slowed down significantly (assuming its inputs are in cache when
“no-fill” is enabled), but its output will not be cached, leading to subsequent cache misses when
the output is used (in chaining modes, as well as for the eventual storage or transmission). Other
processes executed during (c), via multitasking or simultaneous multithreading, may incur a
severe performance penalty. Breaking the encryption chunks into smaller chunks and applying
the above routine to each chunk would reduce this effect somewhat, by allowing the cache to be
occasionally updated to reflect the changing memory working set.

Intel’s family of Pentium and Xeon processors supports such a mode,37 but the cost of enabling
and disabling it are prohibitive. Also, some ARM implementations have a mini-cache which can
be locked, but it is too small for the fastest table-based formulations. We do not know which
other processors families currently offer this functionality.

This method can be employed only in privileged mode, which is typically available only to the
operating system kernel (see Section 8.5.11), and may be competitive performance-wise only
for encryption of sufficiently long sequences. In some cases it may be possible to delegate the
encryption to a co-processor with the necessary properties. For example, IBM’s Cell processor
consists of a general-purpose (PowerPC) core along with several “Synergistic Processing Element”
(SPE) cores. The latter have a fast local memory but it is not a cache per se, i.e., there are no
automatic transfers to or from main memory, thus, SPEs employed as cryptographic co-processors
would not be susceptible to this attack.38

8.5.8 Dynamic table storage

The cache-based attacks observe memory access patterns to learn about the table lookups. Instead
of eliminating these, we may try to decorrelate them. For example, one can use many copies of
each table, placed at various offsets in memory, and have each table lookup (or small group of
lookups) use a pseudorandomly chosen table. Ideally, the implementation will use S copies of
the tables, where S is the number of cache sets (in the largest relevant cache). However, this
means most table lookups will incur cache misses. Somewhat more compactly, one can use a single
table, but pseudorandomly move it around memory several times during each encryption.39 If the
tables reside in different memory pages, one should consider and prevent leakage (and performance
degradation) through page table cache (i.e., Table Lookaside Buffer) misses.

37Enable the CD bit of CR0 and, for some models, adjust the MTRR. Coherency and invalidation concerns
apply.

38In light of the Cell’s high parallelism and the SPE’s abundance of 128-bit registers (which can be effectively
utilized by bitslice implementations), it seems to have considerable performance potential in cryptographic and
cryptanalytic applications.

39If the tables stay static for long then the attacker can locate them (see Section 8.3.6) and discern their
organization. This was prematurely dismissed by Lauradoux [115], who assumed that the mapping of table entries
to memory storage will be attacked only by exhaustive search over all possible such mappings; the mapping can
be recovered efficiently on an entry-by-entry basis.

157

8. Efficient cache attacks on AES 8.5. Countermeasures

Another variant is to mix the order of the table elements several times during each encryption.
The permutations need to be chosen with lookup efficiency in mind (e.g., via a linear congruential
sequence), and the choice of permutation needs to be sufficiently strong; in particular, it should
employ entropy from an external source (whose availability is application-specific).40

The performance and security of this approach are very architecture-dependent. For example,
the required strength of the pseudorandom sequence and frequency of randomization depend on
the maximal probing frequency feasible for the attacker.

8.5.9 Hiding the timing

All of our attacks perform timing measurements, whether of the encryption itself (in Section 8.3.4)
or of accesses to the attacker’s own memory (in all other cases). A natural countermeasure for
timing attacks is to try to hide the timing information. One common suggestion for mitigating
timing attacks is to add noise to the observed timings by adding random delays to measured
operations, thereby forcing the attacker to perform and average many measurements. Another
approach is to normalize all timings to a fixed value, by adding appropriate delays to the encryp-
tion, but beside the practical difficulties in implementing this, it means all encryptions have to be
as slow as the worst-case timing (achieved here when all memory accesses miss the cache). Nei-
ther of these provide protection against the Prime+Probe synchronous attack or the asynchronous
attack.

At the operating system or processor level, one can limit the resolution or accuracy of the clock
available to the attacker; as discussed by Hu [86], this is a generic way to reduce the bandwidth
of side channels, but is non-trivial to achieve in the presence of auxiliary timing information
(e.g., from multiple threads [167]), and will unpredictably affect legitimate programs that rely
on precise timing information. The attacker will still be able to obtain the same information as
before by averaging over more samples to compensate for the reduced signal-to-noise ratio. Since
some of our attacks require only a few milliseconds of measurements, to make them infeasible the
clock accuracy may have to be degraded to an extent that interferes with legitimate applications.

8.5.10 Selective round protection

The attacks described in Sections 8.3 and 8.4 detect and analyze memory accesses in the first two
rounds (for known input) or last two rounds (for known output). To protect against these specific
attacks it suffices to protect those four rounds by some of the means given above (i.e., hiding,
normalizing or preventing memory accesses), while using the faster, unprotected implementation
for the internal rounds.41 This does not protect against other cryptanalytic techniques that can
be employed using the same measurement methods. For example, with chosen plaintexts, the

40Some of these variants were suggested to us by Intel Corp, and implemented in [36], following an early version
of this work.

41This was suggested to us by Intel Corp, and implemented in [36], following an early version of this work.

158

8. Efficient cache attacks on AES 8.5. Countermeasures

table accesses in the 3rd round can be analyzed by differential cryptanalysis (using a 2-round
truncated differential). None the less, those cryptanalytic techniques require more data and/or
chosen data, and thus when quantitatively balancing resilience against cache-based attacks and
performance, it is sensible to provide somewhat weaker protection for internal rounds.

8.5.11 Operating system support

Several of the countermeasures suggested above require privileged operations that are not avail-
able to normal user processes in general-purpose operating systems. In some scenarios and plat-
forms, these countermeasures may be superior (in efficiency or safety) to any method that can
be achieved by user processes. One way to address this is to provide secure execution of crypto-
graphic primitives as operating system services. For example, the Linux kernel already contains
a modular library of cryptographic primitives for internal use; this functionality could be exposed
to user processes through an appropriate interface. A major disadvantage of this approach is its
lack of flexibility: support for new primitives or modes will require operating system modifications
(or loadable drivers) which exceed the scope of normal applications.

An alternative approach is to provide a secure execution facility to user processes.42 This facility
would allow the user to mark a “sensitive section” in his code and ask the operating system to
execute it with a guarantee: either the sensitive section is executed under a promise sufficient to
allow efficient execution (e.g., disabled task switching and parallelism, or cache in “no-fill” mode
— see above), or its execution fails gracefully. When asked to execute a sensitive section, the
operating system will attempt to put the machine into the appropriate mode for satisfying the
promise, which may require privileged operations; it will then attempt to fully execute the code
of the sensitive section under the user’s normal permissions. If this cannot be accomplished (e.g.,
a hardware interrupt may force task switching, normal cache operation may have to be enabled
to service some performance-critical need, or the process may have exceeded its time quota) then
the execution of the sensitive section will be aborted and prescribed cleanup operations will be
performed (e.g., complete cache invalidation before any other process is executed). The failure
will be reported to the process (now back in normal execution mode) so it can restart the failed
sensitive section later.

The exact semantics of this “sensitive section” mechanism depend on the specific countermeasure
and on the operating system’s conventions. This approach, while hardly the simplest, offers
maximal flexibility to user processes; it may also be applicable inside the kernel when the promise
cannot be guaranteed to hold (e.g., if interrupts cannot be disabled).

The impact of these attacks is summarized in Chapter 10.

42Special cases of this were discussed in [167] and [23], though the latter calls for this to be implemented at the
CPU hardware level.

159

160

Chapter 9

Acoustic cryptanalysis

9.1 Introduction

9.1.1 Overview

The human ear is a highly effective device for collecting inadvertent acoustic outputs from adver-
sarial systems — originally, prey and predators, but in modern times of need, such as the 1956
Suez crisis, even a mechanical Hagelin cipher machine may be subject to unanticipated auricular
attention [223]. However, it was widely believed that acoustic eavesdropping on electronic com-
puters, whether by ear or by microphone, is not relevant against multi-GHz circuits1; at best one
could hope to eavesdrop on mechanical I/O devices or on very low-bandwidth channels such as
hard disk head movements.

We demonstrate that unintended acoustic signals do, in fact, leak a wealth of information on
computation in many modern computers. These signals emanate from components in the power
regulation circuitry, which are modulated by the CPU’s workload. Most basically, we can easily
differentiate between heavy computation and idleness with good temporal resolution; this, by
itself, suffices to apply key-recovery timing attacks via an acoustic feedback channel. By further
analysis of acoustic spectral signatures, we demonstrate the ability to identify internal details
of secret-key RSA operations (e.g., operations modulo the different secret primes), and to easily
distinguish between different secret keys based on their acoustic spectral signatures.

9.1.2 Related works

Auditory eavesdropping on human conversations is a common practice, whose first publications
date back several millenia [78]. Analysis of sound emanations from mechanical devices is a newer

1Sound propagation in air has a useful range in frequencies of at most a few hundred KHz, due to non-linear
attenuation and distortion effects, such as viscosity, relaxation and diffusion at the molecular level. The exact
attenuation rates depend on frequency, air pressure, temperature and humidity; see e.g. [60][21].

161

9. Acoustic cryptanalysis 9.2. Results

affair, bearing precedents in military context such as identification of watercrafts via the sound
signature of their engine and propeller as recorded by hydrophones. There are anecdotal stories
of computer programmers and system administrators monitoring the high-level behavior of their
systems by listening to sound cues generated by mechanical system components, such as hard
disk head seeks; but these do not appear very useful in the presence of caching, delayed writes and
multitasking. Another such leakage source lies in coupling of system components to internal audio
circuitry via unintended electric or electromagnetic radiation channels; but well-built systems keep
this cross-talk at a negligible level.

In the context of information security, Wright [223, pp. 103–107] provides the aforementioned
account of MI5 and GCHQ using a phone tap to eavesdrop on a Hagelin cipher machine in
an Egyptian embassy, thereby counting the number of clicks during the rotors’ secret setting
procedure.2 The sound of keystrokes on keyboards has been observed to leak information about
the pressed keys, as well as the identity of the user, due to timing patterns. Recent research
(concurrent to ours) by Asonov and Agrawal [13], improved by Zhuang [224], shows that keys
can also be distinguished individually by their sound, due to minute differences in mechanical
properties such as keys’ position on a slightly vibrating printed circuit board. While these attacks
are applicable to data that is entered manually (e.g., passwords), they are not applicable to larger
secret data such as RSA keys.

9.2 Results

9.2.1 Experimental setup

We used a variety of measurement configurations and subjects. Where not stated otherwise, the
recordings mentioned in this chapter were conducted as follows. To demonstrate the feasibility of
the attack, we employed inexpensive off-the-shelf equipment: a Røde NT3 condenser microphone
(US$170), an Alto S-6 mixer (US$55) serving as an amplifier and rudimentary equalizer, and a
Creative Labs Audigy 2 sound card (US$70) for recording into a measurement computer. The
recordings were made in normal office conditions, with the microphone placed 20cm from the
recorded subject computer. A weak high-pass prefilter (roughly -10dB below 1KHz, +10dB
above 10KHz) was applied using the mixer’s rudimentary built-in equalizer. The subject of the
recording is an unbranded desktop computer using a PC Chips M754LMR motherboard, an Intel
Celeron 666MHz CPU and an Astec ATX200-3516 power supply. The PC case was opened and
fan noise was quenched by disconnecting the fans. This computer was chosen for its particularly
clear acoustic emanations, but is by no means a special case: every computer we tested showed
significant correlation between acoustic spectrum and CPU activities, and in about half the cases
the effect could be heard even by naked ear when using appropriate CPU activity patterns.3

2Wright refers to this technique as bearing the codename “ENGULF” [223, p. 107].
3Anecdotal feedback we have received following the initial publication of this research confirms the ubiquity of

the effect.

162

9. Acoustic cryptanalysis 9.2. Results

Comparable results were achieved under more realistic conditions, where the subject computer
is fully assembled and placed 1m–2m from the microphone, using studio-grade audio equipment.
For example, using a high-quality analog high-pass filter to attenuate strong low-frequency noise
(e.g., fan humming) allows further amplification of interesting signals before analog-to-digital
quantization.

We also acquired advanced lab-grade recording equipment, capable of higher frequencies and sensi-
tivity: a Brüel&Kjær type 4939 1/4” microphone with a type 2670 amplifier and a NEXUS condi-
tioning amplifier, and a National Instruments PCI-6052E DAQ PCI card (total value US$6,500).4

The Brüel&Kjær microphone is rated for uniform sensitivity up to 100KHz, and offers fair sen-
sitivity up to roughly 160KHz, matching the Nyquist frequency of the 333KHz sampling rate
provided by the DAQ card.5.

The spectrograms below depict the empirical measurements, processed and rendered via a sliding-
window FFT using the Baudline [195] signal analysis software. To make the relevant signals stand
out, we applied digital equalization (a low-pass filter to attenuate low frequencies) and a post-FFT
intensity histogram adjustment.

9.2.2 The sound of RSA signatures

We begin by inspecting the sound generated during RSA secret-key operations, i.e., signing and
decryption. We chose a common RSA implementation, namely GnuPG 1.2.4 [67], and used it
to sign short messages using randomly-generated 4096-bit RSA keys. Figure 9.1 depicts the
spectrogram of two identical signing operations in sequence, using the same key and message.
Each signing operation is preceded by a short delay during which the CPU is in a sleep state.

Several effects are evident. The delays, where the computer is idle, are manifested as bright
horizontal strips, i.e., wideband noise.6 Between these strips, the two signing operations are
clearly distinguished. Halfway through each signing operation there is a transition at several
frequency bands. This corresponds to a detail in the RSA implementation of GnuPG: for public
key n = pq, the RSA signature s = md (mod n) is computed by evaluating md mod (p−1) (mod p)
and md mod (q−1) (mod q), and combining these via the Chinese Remainder Theorem. The first
half of the signing operation corresponds to the exponentiation modulo p, and the second to the
exponentiation modulo q.7 Strikingly, the transition between these secret exponents is clearly
visible. This effect is consistent and reproducible; indeed, the two acoustic signatures depicted

4The DAQ card was graciously donated for this research by National Instruments Israel.
5We were able to record even higher frequencies using this equipment, by foregoing the use of low-pass filters

and exploiting the aliasing effects in the DAQ.
6The delay is implemented by the operating system using the x86 HLT instruction, which puts the CPU into a

special low-power sleep state that lasts until the next hardware interrupt. On modern CPUs this temporarily shuts
down many of the on-chip circuits, which dramatically lowers power consumption and alters acoustic emissions for
relatively long time.

7This was confirmed by patching the GnuPG code to just repeat the operation modulo p twice, which indeed
eliminated the effect from the measurements.

163

9. Acoustic cryptanalysis 9.2. Results

Figure 9.1: Spectrogram of an acoustic measurement of two 4096-bit GnuPG RSA signatures. The horizontal
axis is frequency (0-48KHz), the vertical axis is time (0-2.5sec), and intensity is proportional to the instantaneous
energy in that frequency band.

in Figure 9.1 are very similar. RSA decryption operations use an essentially identical algorithm,
with similar results.

9.2.3 Distinguishing between RSA secret keys

Beside measuring the duration and internal properties of individual RSA secret-key operations,
we have investigated the effect of different keys. Having observed that the acoustic signature of
modular integer exponentiation depends on the modulus involved, one may expect different keys
to cause different sounds. This is indeed the case, as demonstrated in Figure 9.2. Here, we used
GnuPG 1.2.4 to sign a fixed message using 7 different 4096-bit RSA keys randomly generated
beforehand. Each signature is preceded by a short CPU sleep. It is readily observed that each
signature (and in fact, each exponentiation using modulus p or q) has a unique spectral signature.

This ability to distinguish keys is of interest in traffic-analysis applications.8 It is likewise possible
to distinguish between algorithms, between different implementations of an algorithm and and
between different computers (even of the same model) running the same algorithm. Furthermore,
the leaked key information may be exploitable for a systematic key recovery attack.9

8For example, observing that an embassy has now decrypted a message using a rarely employed key, heard
before only in specific diplomatic circumstances, can form valuable information.

9We are presently pursuing this extension.

164

9. Acoustic cryptanalysis 9.2. Results

Figure 9.2: Spectrogram of an acoustic measurement of different GnuPG RSA signatures using 7 different keys.

Figure 9.3: Spectrogram of an acoustic measurement of brief bursts of computation (3ms each, with 20ms
period) on an otherwise idle CPU, using the lab-grade equipment. Unlike the rest of the figures, here time is
horizontal and frequency is vertical.

9.2.4 Timing attacks

We were able to (manually but reliably) distinguish a cryptographic operation from idleness
with a temporal resolution close to 1ms using the off-the-shelf equipment. Using the lab-grade
equipment, the temporal resolution was under 0.4ms (see Figure 9.3). This resolution suffices
for carrying key-recovery timing attacks (see §7.3) via an acoustic feedback channel. It thus
facilitates timing attacks in situations where a network feedback channel is not available for timing
measurements, e.g., in the case of one-way transmission of e-mail or when one-way communication
is enforced by physical protocol such as unidirectional transfer of media. Furthermore, the ability
to measure the duration of operations modulo p vs. modulo q separately (see §9.2.2) allows an
improvement in the efficiency of the timing attacks.

165

9. Acoustic cryptanalysis 9.2. Results

Figure 9.4: Acoustic measurement of different CPU instructions

9.2.5 Instruction pattern differentiation

Turning to a lower-level investigation of the effect, we observe a difference between characteristic
spectra of different CPU operations. To demonstrate this, we wrote a simple program that
executes (partially unrolled) loops containing one of the following x86 instructions: HLT (CPU
sleep), MUL (integer multiplication), FMUL (floating-point multiplication), main memory access
(forcing L1 and L2 caches misses), and REP NOP (short-term idle). Figure 9.4 shows a recording
of a series of such homogeneous loops.

Each of the instruction loops can be distinguished from the others by some characteristic of its
spectrum.10 The differences are even more pronounced at the higher frequencies accessible via
the lab-grade equipment. Heterogeneous operations of instructions likewise have a characteristic
sound signature, and can often be distinguished from each other. We conclude that the acoustic
leakage divulges information about what program is running and what routines are frequently
executed.

10The ADD and REP NOP instructions are in this case distinguished only by a subtle difference in the intensity of
the 24–25KHz band, possibly because pure integer addition exercises a tiny fraction of the CPU circuit.

166

9. Acoustic cryptanalysis 9.2. Results

Figure 9.5: Spectrogram of an acoustic measurement of two 4096-bit GnuPG RSA signatures, with the
microphone blocked by cloth. The signal is nearly eliminated.

9.2.6 Verifying acoustic transduction

A potential concern in our experiments is the possibility that the recorded signal is not transmitted
by sound waves in air, but rather by electromagnetic radiation picked up by some part of the
recording equipment and further amplified (e.g., the microphone assembly or cable serving as
antennae despite ample grounding). This would have relegated the attack to the well-investigated
realm of electromagnetic side-channels.

The fact that some of the effects are directly audible by a human listener indicates that some
acoustic transduction is indeed taking place, but does not ensure its magnitude and spectral
properties. To test the hypothesis conclusively, we repeated the experiment depicted Figure 9.1,
except that the microphone was muffled via a device that is absorbant acoustically but nearly
transparent electromagnetically.11 The corresponding recording is given in Figure 9.5. As ex-
pected, all but the lowest frequencies are greatly attenuated, and the signal of interest is gone.
This confirms that the signal is indeed transmitted by acoustic transduction. Furthermore, if the
microphone is turned off (using its built-in switch) but left connected to a running amplifier, the
amplifier’s output is at its noise floor.

11Namely, a folded dry cloth handkerchief. Woven synthetic fiber yielded the same effect.

167

9. Acoustic cryptanalysis 9.2. Results

Figure 9.6: Acoustic measurement of a MUL loop during cooling of power-supply capacitors on PC Chips
M754LMR motherboard.

9.2.7 Source of acoustic emanations

To identify the source of the acoustic emanations, we partially disassembled a subject computer
and perturbed its various components one by one (by local application of Quik-Freeze spray),
all the while looking for a significant effect on the recorded sound. The culprit identified by
this method is a bank of 1500µF capacitors near the CPU socket of the PC Chips M754LMR
motherboard. Figure 9.6 depicts the effect of cooling these capacitors while the CPU is executing
a loop of MUL instructions. Following the spray application (which saturates the recording), the
information-bearing spectral lines are significantly shifted. No such effect was observed for any
other component.

We surmise that the sound is generated in the power regulation circuitry — either the capacitors
themselves, or the associated and adjacent inductor coils (both capacitors and inductors are
known to be prone to vibrations). This circuitry is modulated by the CPU’s momentary load,
and a modern CPU can vary its load by an order of magnitude in a few microseconds. While
vibration is most common in capacitors whose electrolyte has dried out, our experiments show that
information-bearing emanations are often generated by brand-new desktop and laptop computers.

168

9. Acoustic cryptanalysis 9.3. Countermeasures

9.3 Countermeasures

One obvious countermeasure is to use sound dampening equipment (i..e., ”sound-proof” boxes or
rooms) that is designed to sufficiently attenuate all relevant frequencies. Conversely, a sufficiently
strong wide-band noise source can mask the informative signals (but ergonomic concerns may
render this unattractive). Careful circuit design and high-quality electronic components can
reduce the emanations. Specifically for certain cryptographic algorithms and at some cost in
performance, one can employ algorithmic techniques to reduce the cryptanalytic usefulness of the
emanations to attacker. A variety of masking and normalization techniques have been designed
to protect cryptographic code against power and electromagnetic side-channel leakages; these
would be effective also against the acoustic side channel, whose bandwidth is significantly lower.
However, these techniques often have a nontrivial cost in performance and complexity.

Notably, the acoustic attack would not be foiled merely by the presence of typical fan and room
noises. The interesting acoustic signals are mostly above 10KHz, whereas typical computer fan
noise and normal room noise are concentrated at lower frequencies and can thus be filtered out
by suitable equipment. Multitasking does not pose a large challenge either, since different tasks
can be distinguished by their different acoustic spectral signatures. The presence of multiple
computers does not significantly hamper the attack either, since they can be told apart by their
different acoustic signatures, which vary with the hardware, software, component temperatures
and environmental conditions.

169

170

Chapter 10

Conclusions and implications
of Part II

10.1 Summary of results

In Chapter 8, we described novel attacks which exploits inter-process information leakage through
the state of the CPU’s memory cache. This leakage reveals memory access patterns, which can
be used for cryptanalysis of cryptographic primitives that employ data-dependent table lookups.
Exploiting this leakage allows an unprivileged process to attack other processes running in parallel
on the same processor, despite partitioning methods such as memory protection, sandboxing and
virtualization. Some of our methods require only the ability to trigger services that perform
encryption or MAC using the unknown key, such as encrypted disk partitions or secure network
links. Moreover, we demonstrated an extremely strong type of attack, which requires knowledge
of neither the specific plaintexts nor ciphertexts, and works by merely monitoring the effect of
the cryptographic process on the cache. We discussed in detail several such attacks on AES, and
experimentally demonstrated their applicability to real systems, such as OpenSSL and Linux’s
dm-crypt encrypted partitions (in the latter case, the full key was recovered after just 800 writes
to the partition, taking 65 milliseconds). Finally, we proposed a variety of countermeasures.

In Chapter 9 we demonstrated attacks that exploit acoustic emanations from modern computers,
wherein the power circuitry creates vibrations that are modulated by CPU activity. We demon-
strated acoustic leakage of secret information from sensitive computation such as RSA signing
and decryption. These leakages are sufficient for distinguishing attacks on RSA, and provide
strong evidence that key recovery may be possible.

171

10. Conclusions and implications of Part II 10.2. Vulnerable cryptographic primitives

10.2 Vulnerable cryptographic primitives

10.2.1 Cache attacks

The cache attacks we have demonstrated are particularly effective for typical implementations of
AES, for two reasons. First, the memory access patterns have a simple relation to the inputs; for
example, the indices accessed in the first round are simply the XOR of a key byte and a plaintext
byte. Second, the parameters of the lookup tables are favorable: there is a large number of
memory blocks involved (but not too many to exceed the cache size) and thus many bits are
leaked by each access. Moreover, there is a significant probability that a given memory block will
not be accessed at all during a given random encryption.

Beyond AES, such attacks are potentially applicable to any implementation of a cryptographic
primitive that performs key- and input-dependent memory accesses. The efficiency of the attack
depends heavily on the structure of the cipher and chosen implementation, but heuristically, large
lookup tables increase the effectiveness of all attacks: having few accesses to each table helps the
synchronous attacks, whereas the related property of having temporally infrequent accesses to
each table helps the asynchronous attack. Large individual table entries also aid the attacker, in
reducing the uncertainty about which table entry was addressed in a given memory block. This
is somewhat counterintuitive, since it is usually believed that large S-boxes are more secure.

For example, DES is vulnerable when implemented using large lookup tables which incorporate
the P permutation and/or to compute two S-boxes simultaneously. Cryptosystems based on large-
integer modular arithmetic, such as RSA, can be vulnerable when exponentiation is performed
using a precomputed table of small powers (see [167]). Moreover, a naive square-and-multiply
implementation would leak information through accesses to long-integer operands in memory.
The same potentially applies to ECC-based cryptosystems.

Primitives that are normally implemented without lookup tables, such as the SHA family [150]
and bitsliced Serpent [10], are impervious to the attacks described here. However, to protect
against timing attacks one should scrutinize implementations for use of instructions whose tim-
ing is key- and input-dependent (e.g., bit shifts and multiplications on some platforms) and
for data-dependent execution branches (which may be analyzed through data cache access, in-
struction/trace cache access or timing). Note that timing variability of non-memory operations
can be measured by an unrelated process running on the same machine, using a variant of the
asynchronous attack, via the effect of those operations on the scheduling of memory accesses.

10.2.2 Acoustic attacks

Acoustic attacks appear effective in the case of code consiting of long, relatively uniform pat-
terns of instructions, as is typical of public-key cryptography with large keys. Due to the limited
temporal resolution of this channel, we do not expect much useful information from brief op-
erations such as a single invocation of a typical block cipher (although repeated operation may

172

10. Conclusions and implications of Part II 10.2. Vulnerable cryptographic primitives

yield key-dependent activation patterns, e.g., due to cache contention). An exact characteristic
is difficult since the modulation path leading to acoustic emanations is imperfectly understood
and hardware-dependent.

10.2.3 Non-cryptographic systems

The cache and acoustic leakages we have identified apply to any operation, cryptographic or
otherwise. Above we have focused on cryptographic operations because these are designed and
trusted to protect information, and thus information leakgage from within them can be critical
(for example, recovering a single decryption key can compromise the secrecy of all messages sent
over the corresponding communication channel). However, information leakage can be harmful
also in non-cryptographic context. For example, even knowledge of what programs are running
on someone’s computer at a given time can be sensitive.

10.3 Attack scenarios

The cache attacks require no dedicated hardware at all, and work in pure software. The acoustic
attacks are also quite accessible: we have demonstrated that easily obtained sound recording
equipment, at a cost of a few hundred dollars, will in many cases suffice to pick up a wealth of
information from useful range. We believe that even microphones built into mobile phones and
laptops would often suffice.

These novel attacks are easy to deploy using pure software or minimal hardware, and affect a
large number of deployed systems — including those that are otherwise hardened or insusceptible
to previously known attacks. This, in effect, demonstrates that side-channel attacks have been
“commoditized” — they no longer lie solely in the realm of government agencies and professional
espionage, but have now become an important design consideration for security even in home and
office environment.

At the system level, cache state analysis is of concern in essentially any case where process separa-
tion is employed in the presence of malicious code. This class of systems includes many multi-user
systems, as well as web browsing, DRM applications, the Trusted Computing Platform [204] and
NGSCB [140]. The same applies to acoustic cryptanalysis, whenever malicious code can access a
nearby microphone device and thus record the acoustic effects of other local processes.

Disturbingly, virtual machines and sandboxes offer little protection against the asynchronous
cache attack (in which attacker needs only the ability to access his own memory and measure
time) and against the acoustic attacks (if the attacker gains access to a nearby microphone). Thus,
our attacks may cross the boundaries supposedly enforced by FreeBSD jail(), VMware [214]1,
Xen [208], the Java Virtual Machine [133] and plausibly even scripting language interpreters.

1This compromises the system described in a recent NSA patent 6,922,774.[139]

173

10. Conclusions and implications of Part II 10.4. Mitigation

Today’s hardware-assisted virtualization technologies, such as Intel’s “Virtualization Technology”
and AMD’s “Secure Virtual Machine, offer no protection either.

Remote cache attacks are in principle possible, and if proven efficient they could pose serious
threats to secure network connections such as IPsec [102] and OpenVPN [157].

A notable property of the acoustic side channel is that, uniquely among the physical side channels,
the interception equipment is ubiquitous. Unlike radio receivers or photodetectors, microphones
are present at nearly every facility, and are built into common equipment such as mobile and
landline phones, laptop computers and PDAa. This opens new venues of attack. For example,
an unclassified laptop or a PDA phone may be compromised (e.g., via a web browser bug) and
programmed to wake up at a given hour and record using its internal microphone. If this device is
later carried into a secure computer room (but not connected to anything), it may record valuable
acoustic information without its owner’s knowledge. Side-channel countermeasures presently
deployed in secure facilities may offer little resistance; for example, Faraday cages for computers
typically contain air vents covered by grounded meshes, which attenuate RF electromagnetic
radiation but are acoustically transparent. The wide repertoire of techniques for eavesdropping
on sound, consisting of such powerful methods as laser interferometer microphones capable of
detecting sound-induced vibrations in window panes (or other reflective surfaces) from a distance,
enables a multitude of additional attack scenarios.

10.4 Mitigation

Cache attacks. We have described a variety of countermeasures against cache state analysis
attacks; some of these are generic, while others are specific to AES. However, none of these un-
conditionally mitigates the attacks while offering performance close to current implementations.
Thus, finding an efficient and secure solution that is application- and architecture-independent
remains an open problem. In evaluating countermeasures, one should pay particular attention to
the asynchronous attacks, which on some platforms allow the attacker to obtain (a fair approxi-
mation of) the full transcript of memory accesses done by the cryptographic code.

Acoustic attacks. The acoustic channel is similar to other physical side channels, in that
mitigation can be achieved through algorithmic techniques (for specific cryptographic primitives),
by a careful circuit design and use of high-quality components, or by thorough shielding and
physical access controls.

10.5 Impact and follow-up works

Our work on cache state analysis has spurred significant academic and industry interest. Among
the subsequent works are the following:

174

10. Conclusions and implications of Part II 10.5. Impact and follow-up works

Countermeasures. Following a pre-publication of this research, Brickell et al. of Intel Corp.
[36][37] implemented and experimentally evaluated several AES implementations that reduce the
cache side-channel leakage (see discussion in §8.5), and Page [163] evaluated partitioned cache
architectures as a countermeasure.

Survey and extensions to related attacks. In [41], Canteaut et al. surveys and classifies
the various cache attacks, and proposes some countermeasures and extensions.

Exploiting the OS scheduler. In [153]), Neve and Seifert empirically demonstrate the effec-
tiveness of an extension we have merely alluded to hypothetically: carrying out an asynchronous
attacks without simultaneous multithreading, by exploiting only the OS scheduling and inter-
rupts. Indeed, they show that with appropriate setup the result provides excellent temporal
resolution. They also demonstrate the effectiveness of analyzing the last round of AES instead
of the first one (where applicable).

Collision-based attacks. In [33], Bonneau and Mironov present an attack on AES based on
exploiting internal cache collisions, following the approach of Tsunoo et al. (see §8.1.2), and
relate it to our attacks. Comparable results were obtained by Acıiçmez et al. [7].

Branch prediction and instruction cache attacks. In [5, 6, 2], Acıiçmez et al. describe new
classes of attacks that exploit the CPU instruction cache or its branch prediction mechanism,
instead of the data cache considered herein. They demonstrate efficient RSA key recovery via
contention for these resources. The measurement approaches (and hence attack scenarios) are
similar to the data cache attack techniques described here, but the information obtained is about
the execution path rather than data accesses. Veith et al. [210] presented a related attack, which
monitors branch prediction via the CPU performance counters. Since the type of vulnerable code
is different compared to data cache attacks, these attacks are complementary.

175

176

Publications and statement of
originality

Most of the results presented in this dissertation have been published as follows (the papers
marked by •© were chosen as the corresponding conference’s opening presentation):

Refereed publications:

•© Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, Eran Tromer, Analysis of Bernstein’s factorization
circuit, proc. Asiacrypt 2002, LNCS 2501, 1–26, Springer, 2002 [131]

•© Adi Shamir, Eran Tromer, Factoring large numbers with the TWIRL device, proc. CRYPTO 2003,
LNCS 2729, 1–26, Springer, 2003 [187]

• Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James Hughes, Paul
Leyland, Factoring estimates for a 1024-bit RSA modulus, proc. Asiacrypt 2003, Springer, LNCS
2894, 331–346, Springer, 2003 [132]

• Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt, Eran Tromer, Improved routing-based linear
algebra for the Number Field Sieve, proc. International Conference on Information Technology:
Coding and Computing (ITCC’05), vol. 1, 636-641, IEEE, 2005 [70]

• Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Scalable hardware for sparse sys-
tems of linear equations, with applications to integer factorization, proc. CHES 2005, LNCS 3659,
131–146, Springer, 2005 [72]

•© Adi Shamir, Dag Arne Osvik, Eran Tromer, Cache attacks and countermeasures: the case of AES,
proc. RSA Conference Cryptographers Track (CT-RSA) 2006, LNCS 3860, 1–20, Springer, 2006;
first presented at the FSE’05 rump session, February 2005 [186]

Invited publications:

• Adi Shamir, Eran Tromer, On the cost of factoring RSA-1024, RSA CryptoBytes, vol. 6 no. 2,
10–19, 2003 [188]

•© Adi Shamir, Eran Tromer, Special-purpose hardware for factoring: the NFS sieving step, proc.
Workshop on Special Purpose Hardware for Attacking Cryptographic Systems (SHARCS), 2005
[190]

177

Publications and statement of originality

• Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Scalable hardware for sparse sys-
tems of linear equations, with applications to integer factorization, proc. CHES 2005, LNCS 3659,
131–146, Springer, 2005 [71]

• Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Fault-tolerance in hardware for
sparse systems of linear equations, with applications to integer factorization, Chapter 8 in N. Nedjah,
L. de Macedo Mourelle (Eds.), New Trends in Cryptographic Systems, Nova Science Publishers, 2006
[73]

The results in Chapter 9 are joint work (in progress) with Adi Shamir, announced at the Euro-
crypt’04 rump session [189][191].

The dissertation contains additional results beyond the aforementioned publications.

All results presented in this dissertation are, where not stated otherwise, original research. Most of
this research was done in collaboration with other investigators, as reflected in the aforementioned
publications. My personal contribution to each of these publications was substantial at the
conceptual, technical and editorial levels.

178

Bibliography

[1] Martin Abadi, Mike Burrows, Mark Manasse, Ted Wobber, Moderately hard, memory-bound
functions, ACM Transactions on Internet Technology, vol. 5, issue 2, 299–327, 2005

[2] Onur Acıiçmez, Yet another microarchitectural attack: exploiting I-cache, IACR Cryptology
ePrint Archive, report 2007/164, 2007, http://eprint.iacr.org/2007/164

[3] Onur Acıiçmez, Çetin Kaya Koç, Trace driven cache attack on AES, IACR Cryptology ePrint
Archive, report 2006/138, 2006, http://eprint.iacr.org/2006/138; full version of [4]

[4] Onur Acıiçmez, Çetin Kaya Koç, Trace driven cache attack on AES (short paper), proc.
International Conference on Information and Communications Security (ICICS) 2006, LNCS
4296, 112–121, Springer, 2006; short version of [3]

[5] Onur Acıiçmez, Çetin Kaya Koç, Jean-Pierre Seifert, On the power of simple branch predic-
tion analysis, IACR Cryptology ePrint Archive, report 2006/351, 2006

[6] Onur Acıiçmez, Çetin Kaya Koç, Jean-Pierre Seifert, Predicting secret keys via branch pre-
diction, proc. RSA Conference Cryptographers Track (CT-RSA) 2007, LNCS 4377, 225–242,
Springer, 2007

[7] Onur Acıiçmez, Werner Schindler, Çetin Kaya Koç, Cache based remote timing attack on the
AES, proc. RSA Conference Cryptographers Track (CT-RSA) 2007, to appear.

[8] Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P. Annals of Mathematics
160, vol. 2, 781–793, 2004

[9] Miklós Ajtai, Cynthia Dwork, A public-key cryptosystem with worst-case/average-case equiv-
alence, proc. 29th Annual IEEE Symp. on Foundations of Computer Science (FOCS), 284-
293, 1997

[10] Ross J. Anderson, Eli Biham, Lars R. Knudsen, Serpent: A proposal for the Advanced En-
cryption Standard, AES submission, 1998, http://www.cl.cam.ac.uk/∼rja14/serpent.
html

179

http://eprint.iacr.org/2007/164
http://eprint.iacr.org/2006/138
http://www.cl.cam.ac.uk/~rja14/serpent.html
http://www.cl.cam.ac.uk/~rja14/serpent.html

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Ross J. Anderson, Markus G. Kuhn, Soft tempest — an opportunity for NATO, proc. Infor-
mation Systems Technology (IST) Symposium “Protecting NATO Information Systems in
the 21st Century”, Washington DC, 25–27, 1999

[12] Kazumaro Aoki, Yuji Kida, Takeshi Shimoyama, Hiroki Ueda, GNFS Factoring Statistics
of RSA-100, 110, . . ., 150, IACR Cryptology ePrint Archive, report 2004/095, 2006, http:
//eprint.iacr.org/2004/095

[13] Dmitry Asonov, Rakesh Agrawal, Keyboard acoustic emanations, proc. IEEE Symposium on
Security and Privacy, 3–11, IEEE, 2004

[14] E. Bach, R. Peralta, Asymptotic semi-smoothness probabilities, University of Wisconsin,
Technical report #1115, October 1992

[15] Friedrich Bahr, M. Böhm, Jens Franke, Thorsten Kleinjung, rsa200, e-mail announcement,
May 2005, http://www.loria.fr/∼zimmerma/records/rsa200

[16] Friedrich Bahr, M. Böhm, Jens Franke, Thorsten Kleinjung, RSA640, e-mail announcement,
November 2005, http://www.loria.fr/∼zimmerma/records/rsa640

[17] Friedrich Bahr, Jens Franke, Thorsten Kleinjung, M. Lochter, M. Böhm, RSA-160, e-mail
announcement, Apr. 2003, http://www.loria.fr/∼zimmerma/records/rsa160

[18] Sashisu Bajracharya, Deapesh Misra, Kris Gaj, Tarek El-Ghazawi, Reconfigurable hard-
ware implementation of mesh routing in Number Field Sieve factorization, proc. Field Pro-
grammable Technology (FPT) 2004, 263–270, 2004; updated in [19].

[19] Sashisu Bajracharya, Deapesh Misra, Kris Gaj, Tarek El-Ghazawi, Reconfigurable hardware
implementation of mesh routing in Number Field Sieve factorization, Special Purpose Hard-
ware for Attacking Cryptographic Systems (SHARCS’05), 2005; updated version of [18].

[20] E. Barbin, J. Borowczyk, J.-L. Chabert, M. Guillemot, A. Michel-Pajus, A. Djebbar, J.-C.
Martzloff, Jean-Luc Chabert, C. Weeks, A History of Algorithms: From the Pebble to the
Microchip, Springer, 1999

[21] H. E. Bass, Roy G. Keeton, Ultrasonic absorption in air at elevated temperatures, Journal
of the Acoustical Society of America, vol. 58, 110-112, 1975

[22] Daniel J. Bernstein, Circuits for integer factorization: a proposal, manuscript, 2001, http:
//cr.yp.to/papers.html

[23] Daniel J. Bernstein, Cache-timing attacks on AES, preprint, 2005, http://cr.yp.to/
papers.html#cachetiming

[24] Daniel J. Bernstein, Arjen K. Lenstra, A general number field sieve implementation, 103–126
in [129], 1993

180

http://eprint.iacr.org/2004/095
http://eprint.iacr.org/2004/095
http://www.loria.fr/~zimmerma/records/rsa200
http://www.loria.fr/~zimmerma/records/rsa640
http://www.loria.fr/~zimmerma/records/rsa160
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, Gianluca Palermo,
AES power attack based on induced cache miss and countermeasure, proc. International
Conference on Information Technology: Coding and Computing (ITCC’05), 586–591, IEEE,
2005

[26] Eli Biham, A fast new DES implementation in software, proc. FSE 1997, LNCS 1267, 260–
272, Springer, 1997

[27] Eli Biham, Adi Shamir, Differential fault analysis of secret key cryptosystems, proc.
CRYPTO’97, LNCS 1294, 513– 525, Springer, 1977

[28] Eli Biham, Adi Shamir, Differential cryptanalysis of DES-like Cryptosystems, Journal of
Cryptology, vol. 4, vo. 1, 3–72, 1991

[29] Lenore Blum, Manuel Blum, Michael Shub, Comparison of two pseudo-random number gen-
erators, proc. CRYPTO ’82, 61-78, Plenum Press, 1983

[30] Manuel Blum, William Evans, Peter Gemmell, Sampath Kannan, Moni Noar, Checking the
correctness of memories, proc. Conference on Foundations of Computer Science (FOCS)
1991, 90–99, IEEE, 1991

[31] Dan Boneh, David Brumley, Remote timing attacks are practical, proc. 12th USENIX Secu-
rity Symposium, 2003

[32] Dan Boneh, Richard A. DeMillo, Richard J. Lipton, On the importance of checking crypto-
graphic protocols for faults, Journal of Cryptology, Springer, vol. 14, no. 2, 101–119, 2001

[33] Joseph Bonneau, Ilya Mironov, Cache-collision timing attacks against AES, proc. Crypto-
graphic Hardware and Embedded Systems (CHES) 2006, 201–215, 2006

[34] Richard P. Brent, Parallel algorithms in linear algebra, proc. Second NEC Research Sym-
posium (1991), SIAM, 1993, http://web.comlab.ox.ac.uk/oucl/work/richard.brent/
pub/pub128.html

[35] Richard P. Brent, Recent progress and prospects for integer factorisation algorithms, proc.
Proc. Sixth Annual International Computing and Combinatorics Conference, LNCS 1858,
3–22, Springer, 2000

[36] Ernie Brickell, Gary Graunke, Michael Neve, Jean-Pierre Seifert, Software mitigations to
hedge AES against cache-based software side channel vulnerabilities, IACR Cryptology ePrint
Archive, report 2006/052, 2006, http://eprint.iacr.org/2006/052

[37] Ernie Brickell, Gary Graunke, Jean-Pierre Seifert, Mitigating cache/timing attacks in AES
and RSA software implementations, RSA Conference 2006, San Jose, session DEV-203, 2006,
http://2006.rsaconference.com/us/cd pdfs/DEV-203.pdf

181

http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub128.html
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub128.html
http://eprint.iacr.org/2006/052
http://2006.rsaconference.com/us/cd_pdfs/DEV-203.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[38] R. Briol, Emanation: how to keep your data confidential, proc. Symposium on Electromag-
netic Security for Information Protection, SEPI’91, Rome, Italy, 1991

[39] J. P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers with the Number
Field Sieve, 50–94 in [129], 1993

[40] E. R. Canfield, Paul Erdös, C. Pomerance, On a problem of Oppenheim concerning “Fac-
torisatio Numerorum”, J. Number Theory, vol. 17, 1–28, 1983

[41] Anne Canteaut, Cédric Lauradoux, André Seznec, Understanding cache attacks, research
report RR-5881, INRIA, April 2006, http://www-rocq.inria.fr/codes/Anne.Canteaut/
Publications/RR-5881.pdf

[42] Eugène Olivier E. Carissan, Machine a resoudre les congruences, Bulletin de la Société
d’Encouragement pour l’Industrie Nationale, vol. 132, 600-607, 1920

[43] Stefania Cavallar, Strategies in filtering in the Number Field Sieve, proc. Algorithmic Number
Theory, 4th International Symposium (ANTS-IV), 209–232, 2000

[44] Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L. Montgomery,
Brian Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gérard Guillerm, Paul Ley-
land, Joël Marchand, François Morain, Alec Muffett, Chris Putnam, Craig Putnam, Paul
Zimmermann, Factorization of a 512-bit RSA modulus, proc. Eurocrypt 2000, LNCS 1807,
1–17, Springer, 2000

[45] Li Chen, Wayne Eberly, Erich Kaltofen, B. David Saunders, Willam J. Turner, Gilles Vil-
lard, Efficient matrix preconditioners for black box linear algebra, Linear Algebra and its
Applications, vol. 343–344, 119–146, 2002

[46] Scott Contini, Arjen K. Lenstra, Ron Steinfeld, VSH, an efficient and provable collision
resistant hash function, proc. Eurocrypt 2006, Springer, LNCS 4004, 165–182, 2006

[47] Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology, vol. 169–
180, 1993

[48] Don Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann
algorithm, Mathematics of Computation, vol. 62, 333–350, 1994

[49] Don Coppersmith, Solving homogeneous linear equations over GF (2) via block Wiedemann
algorithm, Mathematics of Computation, vol. 62 issue 205, 333–350, 1994

[50] Jean-Marc Couveignes, Computing a square root for the Number Field Sieve, 95–102 in [129],
1993

[51] R. Crandall, Carl Pomerance, Prime numbers: a computational perspective, Springer-Verlag,
2001

182

http://www-rocq.inria.fr/codes/Anne.Canteaut/Publications/RR-5881.pdf
http://www-rocq.inria.fr/codes/Anne.Canteaut/Publications/RR-5881.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[52] Joan Daemen, Vincent Rijmen, AES Proposal: Rijndael, version 2, AES submission, 1999,
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf

[53] Nicolaas Govert de Bruijn, On the number of positive integers ≤ x and free of prime factors
> y, II, Indagationes Mathematicae, vol. 38, 239–247, 1966

[54] Pierre de Fermat, Fragment d’une lettre de Fermat, Oeuvres de Fermat 2, 256–258, 1894

[55] Leonard Eugene Dickson, History of the theory of numbers, vol. I: Divisibility and Primality,
Carnegie Institute of Washington, Publication No. 256, 1919

[56] Discrete logarithms in GF (p) using the number field sieve, SIAM Journal on Discrete Math-
ematics, vol. 6 issue. 1, 124–138, 1993

[57] Cynthia Dwork, Andrew Goldberg, Moni Naor, On memory-bound functions for fighting
spam, proc. 2003, 426–444, LNCS 2729, Springer, 2003

[58] Cynthia Dwork, Moni Naor, Omer Reingold, Immunizing encryption schemes from decryp-
tion errors, proc. Eurocrypt 2004, LNCS 3027, 342–360, Springer, 2004

[59] Electronic Frontier Foundation, DES Cracker Project, web site, http://www.eff.org/
descracker.html

[60] L. B. Evans, H. E. Bass., Tables of absorption and velocity of sound in still air at 68◦,” Wyle
Laboratories, Report WR72-2, 1972

[61] Uriel Feige, Prabhakar Raghavan, Exact analysis of hot-potato routing proc. 33rd Annual
IEEE Symp. on Foundations of Computer Science (FOCS), 553–562, IEEE, 1992

[62] Jens Franke et al., RSA576, e-mail announcement, December 2003, http://www.loria.fr/
∼zimmerma/records/rsa576

[63] Jens Franke, On the factorization of RSA200, invited talk at Workshop on Special Pur-
pose Hardware for Attacking Cryptographic Systems (SHARCS’06), 2006, http://www.
hyperelliptic.org/tanja/SHARCS/talks06/Jens Franke.pdf

[64] Jens Franke, Thorsten Kleinjung, C program for Number Field Sieve polynomial selection,
private communication, Feb. 2003

[65] Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, Colin Stahlke,
SHARK — a realizable special hardware device for factoring 1024-bit integers, proc. Work-
shop on Special Purpose Hardware for Attacking Cryptographic Systems (SHARCS’05),
2005

[66] Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, Colin Stahlke,
SHARK — a realizable special hardware device for factoring 1024-bit integers, proc. Cryp-
tographic Hardware and Embedded Systems (CHES) 2005, LNCS 3659, Springer, 2005

183

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf
http://www.eff.org/descracker.html
http://www.eff.org/descracker.html
http://www.loria.fr/~zimmerma/records/rsa576
http://www.loria.fr/~zimmerma/records/rsa576
http://www.hyperelliptic.org/tanja/SHARCS/talks06/Jens_Franke.pdf
http://www.hyperelliptic.org/tanja/SHARCS/talks06/Jens_Franke.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[67] Free Software Foundation Inc., The GNU Privacy Guard, web site, http://gnupg.org

[68] Carl Friedrich Gauss, Disquisitiones arithmeticae, Braunschweig, 1801

[69] Willi Geiselmann, Fabian Januszewski, Hubert Köpfer, Jan Pelzl, Rainer Steinwandt, A
simpler sieving device: combining ECM and TWIRL, proc. International Conference on
Information and Communications Security (ICICS) 2006, LNCS 4296, Springer, 2006

[70] Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt, Eran Tromer, Improved routing-based
linear algebra for the Number Field Sieve, proc. International Conference on Information
Technology: Coding and Computing (ITCC’05), vol. 1, 636-641, IEEE, 2005

[71] Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, A systolic design for sup-
porting Wiedemann’s algorithm, proc. Workshop on Special Purpose Hardware for Attacking
Cryptographic Systems (SHARCS’05), 13–17, 2005

[72] Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Scalable hardware for sparse
systems of linear equations, with applications to integer factorization, proc. Cryptographic
Hardware and Embedded Systems (CHES) 2005, LNCS 3659, 131–146, Springer, 2005

[73] Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Fault-tolerance in hardware
for sparse systems of linear equations, with applications to integer factorization, Chapter 8
in N. Nedjah, L. de Macedo Mourelle (Eds.), New Trends in Cryptographic Systems, Nova
Science Publishers, 2006

[74] Willi Geiselmann, Rainer Steinwandt, A dedicated sieving hardware, proc. PKC 2003, LNCS
2567, 254–266, Springer-Verlag, 2003

[75] Willi Geiselmann, Rainer Steinwandt, Hardware to solve sparse systems of linear equations
over GF(2), proc. Cryptographic Hardware and Embedded Systems (CHES) 2003, LNCS
2779, 51–63, Springer, 2003

[76] Willi Geiselmann, Rainer Steinwandt, Yet another sieving device, proc. CT-RSA 2004, LNCS
2964, 278–291, Springer, 2004

[77] Willi Geiselmann, Rainer Steinwandt, Non-wafer-scale sieving hardware for the NFS: another
attempt to cope with 1024-bit, IACR Cryptology ePrint Archive, report 2006/403, 2006,
http://eprint.iacr.org/2006/403

[78] Genesis 27:5

[79] GNU Project, GNU Scientific Library (GSL), http://www.gnu.org/software/gsl

[80] Oded Goldreich, Foundations of Cryptography - Volume 1, Cambridge University Press, 2001

[81] Oded Goldreich, Foundations of Cryptography - Volume 2, Cambridge University Press, 2004

184

http://gnupg.org
http://eprint.iacr.org/2006/403
http://www.gnu.org/software/gsl

BIBLIOGRAPHY BIBLIOGRAPHY

[82] Oded Goldreich, Shafi Goldwasser, Shai Halevi, Public-key cryptosystems from lattice reduc-
tion problems, proc. CRYPTO ’97, LNCS 1294, 112–131, Springer, 1997

[83] Oded Goldreich, Rafail Ostrovsky, Software protection and simulation on oblivious RAMs,
Journal of the ACM, vol. 43 no. 3, 431–473, 1996

[84] M. D. Grammatikakis, D. F. Hsu, M. Kraetzl, J. F. Sibeyn, Packet routing in fixed-connection
networks: a survey, Journal of Parallel and Distributed Computing, vol. 54 no. 2, 77–132,
1998

[85] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, NTRU: A Ring-Based Public Key Cryp-
tosystem, proc. Algorithmic Number Theory (ANTS III), LNCS 1423, 267–288, Springer,
1998

[86] Wei-Ming Hu, Reducing timing channels with fuzzy time, proc. IEEE Computer Society
Symposium on Research in Security and Privacy, 8–20, IEEE, 1991

[87] Wei-Ming Hu, Lattice scheduling and covert channels, IEEE Symposium on Security and
Privacy, 52–61, IEEE, 1992

[88] IEEE, IEEE Std. 1363a-2004 IEEE Standard Specifications for Public-Key Cryptography –
Amendment 1: Additional Techniques, 2004

[89] D. Ierardi, 2d-bubblesorting in average time O(N lgN), Proceedings 6th ACM symposium on
Parallel algorithms and architectures, 1994

[90] Russell Impagliazzo, A personal view of average-case complexity, proc. Structure in Com-
plexity Theory Conference, 134–147, IEEE, 1995

[91] International Technology Roadmap for Semiconductors, International Technology Roadmap
for Semiconductors 2001 Edition, http://www.itrs.net/reports.html

[92] International Technology Roadmap for Semiconductors, International Technology Roadmap
for Semiconductors 2002 Update, http://www.itrs.net/reports.html

[93] International Technology Roadmap for Semiconductors, International Technology Roadmap
for Semiconductors 2003 Edition, http://www.itrs.net/reports.html

[94] William Stanley Jevons, The principles of science: a treatise on logic and scientific method,
vol. I, Macmillan and Co., London, 1874

[95] Jonah 3:3

[96] Christos Kaklamanis, Danny Krizanc, Satish Rao, Hot-potato routing on processor arrays,
ACM Symposium on Parallel Algorithms and Architectures archive, 273–282, ACM, 1993

[97] Burt Kaliski, TWIRL and RSA key size, RSA Laboratories Technical Note, http://www.
rsasecurity.com/rsalabs/node.asp?id=2004, 2003

185

http://www.itrs.net/reports.html
http://www.itrs.net/reports.html
http://www.itrs.net/reports.html
http://www.rsasecurity.com/rsalabs/node.asp?id=2004
http://www.rsasecurity.com/rsalabs/node.asp?id=2004

BIBLIOGRAPHY BIBLIOGRAPHY

[98] Erich Kaltofen, Analysis of Coppersmith’s block Wiedemann algorithm for the parallel so-
lution of sparse linear systems, , Mathematics of Computation, vol. 64 no. 210, 777–806,
1995

[99] Erich Kaltofen, Austin A. Lobo, Distributed matrix-free solution of large sparse linear sys-
tems over finite fields, Algorithmica, vol. 24 no. 3–4, 331–348, 1999

[100] J. Kelsey, B. Schneier, D. Wagner, C. Hall, Side channel cryptanalysis of product ciphers
(final version); http://www.schneier.com/paper-side-channel2.pdf

[101] John Kelsey, Bruce Schneier, David Wagner, Chris Hall, Side channel cryptanalysis of
product ciphers, proc. 5th European Symposium on Research in Computer Security, LNCS
1485, 97–110, Springer, 1998

[102] Stephen Kent et al., RFC 4301 through RFC 4309, Network Working Group Request for
Comments, http://rfc.net/rfc4301.html etc., 2005

[103] Richard E. Kessler, Mark D. Hill, Page placement algorithms for large real-indexed caches,
ACM Transactions on Computer systems, vol, 10, no., 4, 338–359, 1992

[104] Hea Joung Kim, William H. Magione-Smith, Factoring large numbers with programmable
hardware, proc. FPGA 2000, ACM, 2000

[105] Thorsten Kleinjung, private communication, May 2003

[106] Thorsten Kleinjung, Cofactorisation strategies for the number field sieve and an estimate
for the sieving step for factoring 1024 bit integers, Workshop on Special Purpose Hardware
for Attacking Cryptographic Systems (SHARCS’06), 2006

[107] Donald E. Knuth, Luis Trabb Pardo, Analysis of a simple factorization algorithm, Theo-
retical Computer Science, vol. 3, issue 3, 321–348, 1976

[108] Paul Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems, proc. CRYPTO 96, LNCS 1109, 104–113, Springer, 1996.

[109] Paul Kocher, Joshua Jaffe, Benjamin Jun, Differential Power Analysis, proc. CRYPTO 99,
LNCS 1666, 388–397, Springer Verlag, 1999

[110] François Koeune, Jean-Jacques Quisquater, A timing attack against Rijndael, technical re-
port CG-1999/1, Université catholique de Louvain, http://www.dice.ucl.ac.be/crypto/
tech reports/CG1999 1.ps.gz

[111] Markus G. Kuhn, Compromising emanations: eavesdropping risks of computer displays,
Technical Report UCAM-CL-TR-577, University of Cambridge, Computer Laboratory, 2003

[112] Miros law Kuty lowski, Krzysztof Loryś, Brigitte Oesterdiekhoff, Rolf Wanka, Fast and fea-
sible periodic sorting networks of constant depth, proc. proc. 35th Annual IEEE Symp. on
Foundations of Computer Science (FOCS), 369–380, IEEE, 1994

186

http://www.schneier.com/paper-side-channel2.pdf
http://rfc.net/rfc4301.html
http://www.dice.ucl.ac.be/crypto/tech_reports/CG1999_1.ps.gz
http://www.dice.ucl.ac.be/crypto/tech_reports/CG1999_1.ps.gz

BIBLIOGRAPHY BIBLIOGRAPHY

[113] Robert Lambert, Computational aspects of discrete logarithms, Ph.D. University of Water-
loo, 1996

[114] Robert Lambert, private communication, Sep. 2003

[115] Cédric Lauradoux, Collision attacks on processors with cache and countermeasures, West-
ern European Workshop on Research in Cryptology (WEWoRC) 2005, Lectures Notes in
Informatics, vol. P-74, 76–85, 2005, http://www.cosic.esat.kuleuven.ac.be/WeWorc/
allAbstracts.pdf

[116] Frederick William Lawrence, Factorisation of numbers. Quarterly Journal of Pure and Ap-
plied Mathematics, vol. 28, 285–311, 1896

[117] Derrick H. Lehmer, The mechanical combination of linear forms, The American Mathemat-
ical Monthly, vol. 35, 114–121, 1928

[118] Derrick H. Lehmer, Hunting big game in the theory of numbers, Scripta Mathematica I,
229–235, Sept. 1932

[119] Derrick H. Lehmer, A photo-electric number sieve, American Mathematical Monthly, vol.
40, 401–406, 1933

[120] Derrick H. Lehmer, The sieve problem for all-purpose computers, Mathematical Tables and
Other Aids to Computation, vol. 7, no. 41, 6–14, 1953

[121] Derrick H. Lehmer, An announcement concerning the delay line SIEVE DLS-127,
Mathathatics of Computation, vol. 20, 645-646, 1966

[122] Derrick H. Lehmer, Exploitation of parallelism in number theoretic and combinatorial com-
putation, proc. 5th Manitoba Conf. on Numerical Mathematics and Computing, 95–111,
1976

[123] Derrick H. Lehmer, A history of the sieve process, in A History of Computing in the Twen-
tieth Century, 445–456, Academic Press, 1980

[124] F. T. Leighton, F. Makedon, I. Tollis, A 2n−2 step algorithm for routing in an n×n mesh,
proc. 1989 ACM Symposium on Parallel Algorithms and Architectures, 328–335, ACM, 1989

[125] Arjen K. Lenstra, Integer factoring, Designs, Codes and Cryptography, vol. 19, 101-128,
2000

[126] Arjen K. Lenstra, private communication, Apr. 2006

[127] Arjen K. Lenstra, Bruce Dodson, NFS with four large primes: an explosive experiment,
proc. Crypto ’95, LNCS 963, 372–385, Springer, 1995

[128] Arjen K. Lenstra, Hendrik W. Lenstra, Mark Manasse, John M. Pollard, The factorization
of the ninth Fermat number, Mathematics of Computation, vol. 61, 318–349, 1993

187

http://www.cosic.esat.kuleuven.ac.be/WeWorc/allAbstracts.pdf
http://www.cosic.esat.kuleuven.ac.be/WeWorc/allAbstracts.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[129] Arjen K. Lenstra, H. W. Lenstra, Jr. (eds.), The development of the number field sieve,
Lecture Notes in Mathematics, vol. 1554, Springer, 1993

[130] Arjen K. Lenstra, Adi Shamir, Analysis and Optimization of the TWINKLE Factoring
Device, proc. Eurocrypt 2002, LNCS 1807, 35–52, Springer, 2000

[131] Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, Eran Tromer, Analysis of Bernstein’s fac-
torization circuit, proc. Asiacrypt 2002, LNCS 2501, 1–26, Springer, 2002

[132] Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James Hughes,
Paul Leyland, Factoring estimates for a 1024-bit RSA modulus, procedings of Asiacrypt
2003, Springer, LNCS 2894, 331–346, Springer, 2003

[133] Tim Lindholm, Frank Yellin, The Java virtual machine specification, 2nd edition, Prentice
Hall, 1999

[134] Seth Lloyd, Ultimate physical limits to computation, Nature, vol. 406, 1047-1054, 2000

[135] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on Information
Theory, vol. 15, 122–127, 1969

[136] Joel McNamara, The complete, unofficial TEMPEST information page, web page, http:
//www.eskimo.com/∼joelm/tempest.html, 2004

[137] Thomas S. Messerges, Using second-order power analysis to attack DPA resistant software,
proc. Cryptographic Hardware and Embedded Systems (CHES) 2000, Springer, LNCS 1965,
238–251, 2000

[138] Thomas S. Messerges, Ezzy A. Dabbish, Robert H. Sloan, Power analysis attacks of mod-
ular exponentiation in smartcards, proc. Cryptographic Hardware and Embedded Systems
(CHES) 1999, Springer, LNCS 1717, 144–157, 1999

[139] Robert V. Meushaw, Mark S. Schneider, Donald N. Simard, Grant M. Wagner, Device for
and method of secure computing using virtual machines, US patent 6,922,774, 2005

[140] Microsoft Corp., Next-generation secure computing base, web page, http://www.
microsoft.com/resources/ngscb

[141] Gary L. Miller, Riemann’s Hypothesis and tests for primality, Journal of Computer and
System Sciences 13, no. 3, 300-317, 1976

[142] Peter L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2),
proc. Eurocrypt’95, LNCS 925, 106–120, Springer-Verlag 1995

[143] Peter L. Montgomery, B. Murphy, Improved polynomial selection for the number field sieve,
extended abstract for the conference on the mathematics of public-key cryptography, June
13-17, 1999, The Fields institute, Toronto, Ontario, Canada

188

http://www.eskimo.com/~joelm/tempest.html
http://www.eskimo.com/~joelm/tempest.html
http://www.microsoft.com/resources/ngscb
http://www.microsoft.com/resources/ngscb

BIBLIOGRAPHY BIBLIOGRAPHY

[144] Pieter Moree, On the psixyology of Diophantine equations, Ph.D. thesis, Leiden University,
1993

[145] Brian Murphy, Modelling the yield of the Number Field Sieve polynomials, Proceedings
ANTS-III, LNCS 1423, 137–151, Springer, 1998

[146] Brian Murphy, Polynomial selection for the Number Field Sieve integer factorisation algo-
rithm, Ph.D. thesis, The Australian National University, July 1999

[147] Nahum 1:8

[148] Moni Naor, Guy N. Rothblum, The complexity of online memory checking, proc. 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS) 2005, 573–584, IEEE
2005

[149] National Institute of Standards and Technology, Advanced Encryption Standard (AES),
FIPS PUB 197, 2001

[150] National Institute of Standards and Technology, Secure Hash Standard (SHS), FIPS PUB
180-2, 2002

[151] National Institute of Standards and Technology, Key management guidelines, Part 1: Gen-
eral guidance (draft), Jan. 2003

[152] National Institute of Standards and Technology, Recommendation for key management —
Part 1: General (Revised), NIST Special Publication 800-57, May 2006, http://csrc.nist.
gov/publications/nistpubs/800-57/SP800-57-Part1.pdf

[153] Michael Neve, Jean-Pierre Seifert, Advances on access-driven cache attacks on AES, proc.
Selected Areas in Cryptography (SAC’06), to appear.

[154] Michael Neve, Jean-Pierre Seifert, Zhenghong Wang, A refined look at Bernstein’s AES side-
channel analysis, proc. ACM Symposium on Information, computer and communications
security, 369–369, 2006

[155] Phong Nguyen, A Montgomery-like square root for the Number Field Sieve, proc. Algorith-
mic Number Theory (ANTS-III), LNCS 1423, 151–168, Springer, 1998

[156] A. M. Odlyzko, Discrete logarithms: the past and the future, Designs, Codes and Cryptog-
raphy, 129–145, Springer-Verlag, 2000

[157] OpenVPN Solutions LLC, OpenVPN — An Open Source SSL VPN Solution by James
Yonan, web site, http://openvpn.net

[158] Yossi Oren, Adi Shamir, Power analysis of RFID tags, RSA Conference 2006 panel session;
see http://www.wisdom.weizmann.ac.il/∼yossio/rfid

189

http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf
http://openvpn.net
http://www.wisdom.weizmann.ac.il/~yossio/rfid

BIBLIOGRAPHY BIBLIOGRAPHY

[159] H. Orman, P. Hoffman, RFC 3766: Determining strengths for public keys used for ex-
changing symmetric keys, Network Working Group Request for Comments, http://rfc.
net/rfc3766.html, 2004

[160] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, Vincent Rijmen, A side-channel
analysis resistant description of the AES S-box, proc. Fast Software Encryption (FSE) 2005,
LNCS 3557, Springer, 2005

[161] Daniel Page, Theoretical use of cache memory as a cryptanalytic side-channel, technical
report CSTR-02-003, Department of Computer Science, University of Bristol, 2002, http:
//www.cs.bris.ac.uk/Publications/pub info.jsp?id=1000625

[162] Daniel Page, Defending against cache-based side-channel attacks, Information Security
Technial Report, vol. 8 issue. 8, 2003

[163] Daniel Page, Partitioned cache architecture as a side-channel defence mechanism, IACR
Cryptology ePrint Archive, report 2005/280, 2005, http://eprint.iacr.org/2005/280

[164] Pascal Paillier, Public-key cryptosystems based on composite degree residuosity classes, proc.
Eurocrypt 99,, LNCS 1592, 223-238, Springer, 1999

[165] Cameron D. Patterson, The derivation of a high speed sieve device, Ph.D. thesis, Dept. of
Computer Science, University of Calgary, Calgary, Alberta, Canada, 1991

[166] O. Penninga, Finding column dependencies in sparse matrices over mathbbF2 by block
Wiedemann, Technical report MAS-R9819, Centrum voor Wiskunde en Informatica, 1998

[167] Colin Percival, Cache missing for fun and profit, BSDCan 2005, Ottawa, 2005; see http:
//www.daemonology.net/hyperthreading-considered-harmful

[168] Carl Pomerance, A Tale of Two Sieves, Notices of the AMS, 1473–1485, Dec. 1996

[169] Carl Pomerance, Jeffrey W. Smith, Randy Tuler, A pipeline architecture for factoring large
integers with the quadratic sieve algorithm, SIAM Journal on Computing, vol. 17, 387–403,
1988

[170] Carl Pomerance, Jeffrey W. Smith, Samuel S. Wagstaff, Jr., New ideas for factoring large
integers, proc. CRYPTO’83, Plenum Press, 81–85, 1984

[171] , John Proos, Imperfect decryption and an attack on the NTRU encryption scheme, IACR
Cryptology ePrint Archive, report 2003/002, 2003

[172] Michael O. Rabin, Digitalized signatures and public-key functions as intractable as factor-
ization, MIT Lab for Computer Science technical report LCS/TR212, 1979

[173] Michael O. Rabin, Probabilistic algorithm for testing primality, Journal of Number Theory
12, no. 1, 128-138, 1980

190

http://rfc.net/rfc3766.html
http://rfc.net/rfc3766.html
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625
http://eprint.iacr.org/2005/280
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful

BIBLIOGRAPHY BIBLIOGRAPHY

[174] Oded Regev, Lattice-based cryptography, tutorial given in CRYPTO 2006, http://www.cs.
tau.ac.il/∼odedr/papers/crypto2006.pdf

[175] Regulatory Authority for Telecommunications and Posts, Suitable cryptographic algo-
rithms, German Federal Gazette, no. 48, 4202–4203, 11 March 2003, http://www.
bundesnetzagentur.de/media/archive/1873.pdf

[176] Ronald L. Rivest, Adi Shamir, Leonard Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, vol. 21 no. 2, 120–126. 1978

[177] RSA Security Inc., The RSA factoring challenge FAQ,
http://www.rsasecurity.com/rsalabs/challenges/factoring and
The RSA factoring challenge numbers,
http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html

[178] W. G. Rudd, Duncan A. Buell, Donald M. Chiarulli, A high performance factoring machine,
proc. 11th International Conference on Computer Architecture, 297-300, ACM, 1983

[179] Ruhr-Universität Bochum Chair for Communication Security, Side Channel Cryptanalysis
Lounge, web site,
http://www.crypto.ruhr-uni-bochum.de/en sclounge.html

[180] Manfred Schimmler, Fast sorting on the instruction systolic array, Report 8709, Christian
Albrecht University Kiel, 1987

[181] Werner Schindler, A timing attack against RSA with the Chinese Remainder Theorem,
proc. Cryptographic Hardware and Embedded Systems (CHES) 2000, LNCS 1965, 109–124,
Springer, 2000

[182] O. Schirokauer, Discrete logarithms and local units, Philosophical Transactions of the Royal
Society of London, A 345, 409–423, 1993

[183] Claus P. Schnorr, Adi Shamir, An optimal sorting algorithm for mesh connected computers,
proc. 16th ACM Symposium on Theory of Computing, 255–263, 1986

[184] Jeffrey Shallit, Hugh C. Williams, François Morain, Discovery of a lost factoring machine,
The Mathematical Intelligencer, vol. 17 no. 3, 41–47, 1995

[185] Adi Shamir, Factoring large numbers with the TWINKLE device (extended abstract),
proc. Cryptographic Hardware and Embedded Systems (CHES) 1999, LNCS 1717, 2–12,
Springer, 1999

[186] Adi Shamir, Dag Arne Osvik, Eran Tromer, Cache attacks and countermeasures: the case
of AES, proc. RSA Conference Cryptographers Track (CT-RSA) 2006, LNCS 3860, 1–20,
Springer, 2006; first presented at the FSE’05 rump session, February 2005

191

http://www.cs.tau.ac.il/~odedr/papers/crypto2006.pdf
http://www.cs.tau.ac.il/~odedr/papers/crypto2006.pdf
http://www.bundesnetzagentur.de/media/archive/1873.pdf
http://www.bundesnetzagentur.de/media/archive/1873.pdf
http://www.rsasecurity.com/rsalabs/challenges/factoring
http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

BIBLIOGRAPHY BIBLIOGRAPHY

[187] Adi Shamir, Eran Tromer, Factoring large numbers with the TWIRL device, proc. CRYPTO
2003, LNCS 2729, 1–26, Springer, 2003

[188] Adi Shamir, Eran Tromer, On the cost of factoring RSA-1024, RSA CryptoBytes, vol. 6
no. 2, 10–19, 2003

[189] Adi Shamir, Eran Tromer, Acoustic cryptanalysis: on nosy people and noisy machines,
Eurocrypt 2004 rump session, 2004; see [191]

[190] Adi Shamir, Eran Tromer, Special-purpose hardware for factoring: the NFS sieving
step, proc. Workshop on Special Purpose Hardware for Attacking Cryptographic Systems
(SHARCS’05), 1–12, 2005

[191] Adi Shamir, Eran Tromer, Acoustic cryptanalysis: on nosy people and noisy machines, web
page, http://tromer.org/acoustic

[192] Peter W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring,
proc. 35th Annual Symposium on the Foundations of Computer Science, 124–134, IEEE,
1994

[193] Peter W. Shor, Polynomial-time algorithm for prime factorization and discrete logarithms
on a quantum computer, SIAM Journal on Computing, vol. 26 no. 5, 1484–1509, 1997

[194] Jop F. Sibeyn, Overview of mesh results, Technical Report MPI-95-1018, Max-Planck In-
stitut fur Informatik, Germany, 1995

[195] SigBlips, baudline signal analyzer, web site, http://baudline.com

[196] Robert D. Silverman, Optimal parameterization of SNFS, Manuscript, 2002, http://
citeseer.ist.psu.edu/silverman03optimal.html

[197] Robert D. Silverman, A cost-based security analysis of symmetric and asymmetric key
lengths, Bulletin 13, RSA Security, 2000, http://www.rsasecurity.com/rsalabs/node.
asp?id=2088

[198] Jeffrey W. Smith, Samuel S. Wagstaff, Jr., An extended precision operand computer, proc.
21st Southeast Region. ACM Conference, 209–216, 1983

[199] Robert M. Solovay, Volker Strassen, A fast Monte-Carlo test for primality, SIAM Journal
on Computing, vol. 6 no. 1, 84–85, 1977

[200] Allan J. Stephens, OASiS: An open architecture sieve system for problems in number theory,
Ph.D. thesis, Department of Computer Science, University of Manitoba, 1990

[201] Herman te Riele, Stefania Cavallar, Bruce Dodson, Arjen Lenstra, Paul Leyland, Walter
Lioen, Peter Montgomery, Brian Murphy, Paul Zimmermann, Factorization of RSA-140
using the Number Field Sieve, e-mail announcement, February 1999, http://ftp.cwi.nl/
herman/NFSrecords/RSA-140

192

http://tromer.org/acoustic
http://baudline.com
http://citeseer.ist.psu.edu/silverman03optimal.html
http://citeseer.ist.psu.edu/silverman03optimal.html
http://www.rsasecurity.com/rsalabs/node.asp?id=2088
http://www.rsasecurity.com/rsalabs/node.asp?id=2088
http://ftp.cwi.nl/herman/NFSrecords/RSA-140
http://ftp.cwi.nl/herman/NFSrecords/RSA-140

BIBLIOGRAPHY BIBLIOGRAPHY

[202] Eran Tromer, Clockwise Transposition Routing examples, web page, http://tromer.org/
clockwise

[203] Eran Tromer, Special-purpose cryptanalytic devices: an annotated taxonomy, web page,
http://tromer.org/cryptodev

[204] Trusted Computing Group, Trusted Computing Group: Home, web site, http://www.
trustedcomputinggroup.org

[205] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, Hiroshi Miyauchi, Crypt-
analysis of DES implemented on computers with cache, proc. Cryptographic Hardware and
Embedded Systems (CHES) 2003, LNCS 2779, 62-76, 2003

[206] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, Hiroshi Miyauchi, Cryptanalysis
of block ciphers implemented on computers with cache, proc. International Symposium on
Information Theory and its Applications 2002, 803–806, 2002

[207] Yukiyasu Tsunoo, Etsuko Tsujihara, Maki Shigeri, Hiroyasu Kubo, Kazuhiko Minematsu,
Improving cache attacks by considering cipher structure, International Journal of Informa-
tion Security, “Online First”, Springer, Nov. 2005

[208] University of Cambridge Computer Laboratory, The Xen virtual machine monitor, web
site, http://www.cl.cam.ac.uk/research/srg/netos/xen

[209] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S. Yannoni,
Mark H. Sherwood, Isaac L. Chuang, Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance, Nature, vol. 414, 883–887, 2001

[210] Alexander A. Veith, Andrei V. Belenko, Alexei Zhukov, A preview on branch misprediction
attacks: using Pentium performance counters to reduce the complexity of timing atttacks,
CRYPTO’06 rump session, 2006

[211] Gilles Villard, A study of Coppersmith’s block Wiedemann algorithm using matrix polynomi-
als, Rapport de Recherche 975 IM, Institut d’Informatique et de Mathematiques Appliquees
de Grenoble, France, 1997. Full version of [212].

[212] Gilles Villard, Further analysis of Coppersmith’s block Wiedemann algorithm for the so-
lution of sparse linear systems (extended abstract), proc. 1997 International Symposium on
Symbolic and Algebraic Computation, 32–39, ACM Press, 1997. Extended abstract of [211].

[213] Gilles Villard, Block solution of sparse linear systems over GF(q): the singular case, ACM
SIGSAM Bulletin, vol. 32 issue. 4, 10–12, ACM, 1998

[214] VMware Inc., VMware: virtualization, virtual machine & virtual server consolidation, web
site, http://www.vmware.com

193

http://tromer.org/clockwise
http://tromer.org/clockwise
http://tromer.org/cryptodev
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.cl.cam.ac.uk/research/srg/netos/xen
http://www.vmware.com

BIBLIOGRAPHY BIBLIOGRAPHY

[215] B. Weis, RFC 4359: The use of RSA/SHA-1 signatures within encapsulating security pay-
load (ESP) and authentication header (AH), Network Working Group Request for Com-
ments, http://rfc.net/rfc4359.html, 2006

[216] D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions on
Information Theory, vol. IT-32, 54–62, 1986

[217] Michael J. Wiener, The full cost of cryptanalytic attacks, Journal of Cryptology, vol. 17 no.
2, 105–124, 2004

[218] Hugh C. Williams, Jeffrey O. Shallit, Factoring integers before computers, 481–531 in
Mathathatics of Computation 1943–1993: a half-century of computational mathematics,
AMS, 1994

[219] Wolfram Research Inc., Mathematica, http://www.wolfram.com/products/mathematica

[220] Workshop on Special Purpose Hardware for Attacking Cryptographic Systems
(SHARCS’05), Feb. 24–25, Paris, France, 2005, http://www.ruhr-uni-bochum.de/itsc/
tanja/SHARCS/slides.html

[221] Workshop on Special Purpose Hardware for Attacking Cryptographic Systems
(SHARCS’06), April 3–4, Cologne, Germany, 2006, http://www.ruhr-uni-bochum.de/
itsc/tanja/SHARCS/start06.html

[222] Workshop on Special Purpose Hardware for Attacking Cryptographic Systems
(SHARCS’07), Sep. 9–10, Vienna, Austria, 2006, http://sharcs.org

[223] Peter Wright, Spycatcher, Viking Penguin, 1987

[224] Li Zhuang, Feng Zhou, J. D. Tygar, Keyboard acoustic emanations revisited, proc. 12th
ACM Conference on Computer and Communications Security, 373–382, 2005

[225] Xiaotong Zhuang, Tao Zhang, Santosh Pande, HIDE: An Infrastructure for Efficiently pro-
tecting information leakage on the address bus, proc. Architectural Support for Programming
Languages and Operating Systems, 82–84, ACM, 2004

[226] Xiatong Zhuang, Tao Zhang, Hsien-Hsin S. Lee, Santosh Pande, Hardware assisted con-
trol flow obfuscation for embedded processors, proc. International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, 292-302, ACM, 2004

194

http://rfc.net/rfc4359.html
http://www.wolfram.com/products/mathematica
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/slides.html
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/slides.html
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/start06.html
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/start06.html
http://sharcs.org

Index of notation

The following points to the primary definition(s) of the non-standard notation used in this text.
Note that, where no confusion can arise, a symbol may carry different meanings in different
chapters.

Symbols
A . 27, 29, 36, 40
B . 27, 31, 136
Cj . 76
D . 36, 40, 113
Gi,j . 54

K
(r)
i . 137

Lx[r, α] . 101
M~k

(~p, `, y) . 138
O(x) . 26
Pi . 31
Q[i] . 72
Q~k

(~p, `, y) . 138
R . 28
R[i] . 72
S . 136
T . 31
T` . 137
W . 90, 136
W ′ . 90
W ′[i] . 86
Ap . 79
At . 79
Aw . 79
Ua . 31
U . 31
Ur . 31
Cd . 79
Cw . 79
E (e.g., 1.2E3) 26

Υ . 101, 118
Γ(U) . 106
Γf (U) . 106
Fn . 25
Fn×m . 25
Na(a, b) . 27
Nr(a, b) 27, 111
Π(Ur, Ua) . 29
R . 102
Td . 79
Tl . 80
Tp . 80
∆i . 54
S̃ . 101
Zn . 25
α . 54
βi . 54
• . 141
|S| . 26
δ . 138
`i . 46
η(U, z) . 106
κ1 . 107
κ2 . 107
`a . 27
c . 31
〈y〉 . 138
lg(x) . 26
R . 31
ln(x) . 26

195

INDEX OF NOTATION INDEX OF NOTATION

λ(a) . 31
`r . 27
µ . 87
µ(y, z) . 107
nil . 72
ν . 57
S . 27
S . 27
ω . 27, 110
T . 26
rev(w) . 54
ρ . 76
ρ(u) . 104
W . 101
σ2(u, v) . 104
σ`(u, v) . 104
σ̄2(u, v, w) . 104
τi . 46
ξ . 106, 110
Õ(x) . 26
ua . 107
ur . 107
va . 107
~K(r) . 137
~c . 93
~k . 137
~p . 137
~v . 25
~wi . 93
~x(r) . 137
~v

t . 26
~ε . 93
vr . 107
d . 29, 93
f(X) . 26, 110
g(X) . 26, 110
h . 71, 113
k . 88
k1 . 107
k2 . 107
ki . 137
m 26, 70, 71, 110

n . 26
o(x) . 26
pi . 31, 137
q . 92
r . 52
ri . 31
s . 36, 45
s(·) . 141
sA . 58
sR . 58
u . 87
vi . 40

x
(r)
i . 137
z(1), z(2), z(3), 25
$. 26
〈〈x〉〉 . 26
〈〈x〉〉a . 44
〈〈x〉〉r . 44
〈〈x〉〉 . 44

L
L/s . 33

196

Index

A
Advanced Encryption Standard . 134, 137
algebraic norm 27
algebraic side 30
algebraic sieve 57
associativity 136
asymptotic parameters 101
AT cost . 24

B
blocking factor 39
branch prediction 175
buffer . 46, 49

C
cache line . 136
cache set . 136
candidate 59, 107
candidate score 140
carry-save adder 53
cascaded sieves 57
Chinese Remainder Theorem 55, 163
clockwise transposition routing 74
cofactor factorization 61, 121
Continued Fraction method 21
cost measures 24
cryptoloop . 139
Custom-130-D 63, 80
Custom-130-L 63, 70, 73, 80
Custom-90-D 80
cycle 28, 36, 100

D
delivery line 46, 49, 52

delivery pair . 46
DES . 134, 172
diary . 60
discrete logarithms 30
divisors channel 60
Dixon’s algorithm 21
dm-crypt 139, 147
DRAM 46, 48, 72, 88, 89

E
Elliptic Curve Method 30, 36, 67, 101, 109,

126
Elliptic Curve method 21
emitter . 50, 54
Evict+Time 142
exponent vector 28
Extended Precision Operand Computer 34

F
factorization . 20
fault tolerance 61
fetch event . 88
fetches table . 88
ff relation . 27
Field Programmable Gate Array . . 35, 80,

124, 125
fp relation . 27
Franke-Kleinjung procedure . 110, 112, 117
free relation . 27
frequency score 149
full relation . 27
funnel . 50, 56

G
General Number Field Sieve 25

197

INDEX INDEX

Georgia Cracker 34
GnuPG . 163

H
hot-potato routing model 73
HyperThreading 150
hypothesis testing 139

I
ideal . 28
independent cycles 28
instruction cache 175
integer factorization 20
IPsec . 148, 174

L
Lanczos algorithm 37
large prime . 45
large prime bound 25
large primes . 27
largish prime 45, 46, 109
lattice sieving 61
linear algebra 29
linear algebra step 27
lines channel . 60
livelock . 75

M
Machine á Congruences 33
matrix step . 29
measurement score 138
memory block 136, 138
memory block of y 138
memory page 146
memory slot . 47
mesh routing 73
Montgomery-Murphy procedure . 111, 112,

117
Moore’s law 135

N
Non Recurring Engineering 24
NP-hardness 21
number field . 28

Number Field Sieve 21, 25
Number Field Sieve for discrete logarithms

. 30

O
OASiS . 34
Oblivious RAM 154
one-packet communication model 73
OpenSSL 138, 144, 147, 150
OpenVPN 148, 174

P
Paillier cryptosystem 20
partial relation 27
pf relation . 27
pipeline . 86
pipeline-of-adders TWINKLE 44
Pollard p− 1 21
Pollard rho . 21
polynomials 110
pp relation . 27
Prime+Probe 144
Prime+Probe measurements 150
processor (TWIRL) 46
progression triplet 46
psixyological functions 103
psixyology . 103

Q
Quadratic Sieve 21
Quasimodo . 34

R
Rabin cryptosystem 20
rational norm 27
rational side . 30
rational sieve 57
relation collection 27, see sieving
RSA cryptosystem 20, 124
RSA-1024 23, 110
RSA-768 23, 112
runtime-optimized matrix 113

198

INDEX INDEX

S
sandbox . 173
semismooth integer 25
semismoothness bound 27
set-associative memory cache 136
sieve line . 28
sieve line width 28
sieve location 31
sieving 30, 32, 33, 43
sieving region 27
sieving step . 27
simultaneous multithreading 150
skewness ratio 27
smallish prime 45, 50
smooth integer 25, 103
smoothness bound 25, 27
smoothness probability 103
Special Number Field Sieve 25
special-q . 61
SRAM . 48
SSU . 34
station . 86
stations . 45
strictly semismooth integer 25
synchronous attacks 138

T
Table Lookaside Buffer 157
throughput cost 24, 69
throughput-optimized matrix 70, 114
timing attacks 130
tiny prime 45, 51, 56
TWINKLE 34, 44, 66
TWIRL 43, 48, 109

U
UMSU . 34
update event . 89
updates table 89
useful sample 139, 141

V
virtual machine 173

Virtual Private Network 139

W
Wiedemann algorithm 37

Y
yield (chips) . 61
yield (relations) 120

199

	Summary
	On the significance of this research
	Acknowledgments
	Contents

	List of Figures
	List of Tables
	I Hardware-based parallelization of the Number Field Sieve
	1 Introduction
	1.1 Overview of Part I
	1.2 Integer factorization
	1.3 Empirical hardness of factorization
	1.3.1 Challenges and past experiments
	1.3.2 1024-bit RSA and its importance
	1.3.3 768-bit RSA and its importance

	1.4 Cost measures
	1.5 The Number Field Sieve algorithm
	1.5.1 Background
	1.5.2 Notation
	1.5.3 Overview of NFS
	1.5.4 NFS for discrete logarithms

	1.6 The NFS sieving step
	1.6.1 The task
	1.6.2 Traditional sieving
	1.6.3 Historical sieving devices
	1.6.4 TWINKLE
	1.6.5 FPGA-based serial sieving
	1.6.6 Mesh-based sieving
	1.6.7 Relation collection without sieving

	1.7 The NFS linear algebra step
	1.7.1 The block Wiedemann algorithm
	1.7.2 Complexity of the block Wiedemann algorithm
	1.7.3 The reduced task
	1.7.4 The traditional approach to the matrix step
	1.7.5 Bernstein's mesh-based linear algebra circuit

	2 The TWIRL architecture for the NFS sieving step
	2.1 Overview
	2.2 Basic architecture
	2.2.1 Approach
	2.2.2 Largish primes
	2.2.3 Smallish primes
	2.2.4 Tiny primes

	2.3 Additional design considerations
	2.3.1 Delivery lines
	2.3.2 Implementation of emitters
	2.3.3 Implementation of funnels
	2.3.4 Initialization
	2.3.5 Cascading the sieves
	2.3.6 Eliminating sieve locations
	2.3.7 Testing candidates
	2.3.8 Lattice sieving
	2.3.9 Fault tolerance

	2.4 Parametrization
	2.4.1 NFS parameters
	2.4.2 Technology parameters

	2.5 Cost estimates
	2.5.1 Cost of sieving for 1024-bit composites
	2.5.2 Cost of sieving for 768-bits composites
	2.5.3 Cost of sieving for 512-bits composites
	2.5.4 Asymptotic behavior for larger composites
	2.5.5 Scaling with technology

	2.6 Comparison to previous works

	3 A mesh-based architecture for the NFS linear algebra step
	3.1 Overview
	3.2 Estimating the cost of Bernstein's circuits
	3.3 Basic routing-based architecture
	3.4 Choice of routing algorithm
	3.4.1 Criteria and alternatives
	3.4.2 Clockwise transposition routing
	3.4.3 Pathologies

	3.5 Improvements
	3.6 Further improvement
	3.7 Parametrization
	3.7.1 Technology parameters
	3.7.2 Deriving the cost of the device

	3.8 Cost estimates for 1024-bit composites
	3.8.1 Cost estimates for the throughput-optimized matrix
	3.8.2 Cost estimates for the runtime-optimized matrix

	4 A scalable pipelined architecture for the NFS linear algebra step
	4.1 Overview
	4.2 The architecture
	4.2.1 A basic scheme
	4.2.2 Compressed row handling
	4.2.3 Compressed vector transmission
	4.2.4 Processing vector elements
	4.2.5 Skewed assignment for iterated multiplication
	4.2.6 Amortizing matrix storage cost
	4.2.7 Two-dimensional chip array

	4.3 Fault detection and correction
	4.3.1 Importance
	4.3.2 A generic scheme
	4.3.3 Device-specific considerations

	4.4 Parametrization
	4.4.1 Matrix parameters
	4.4.2 Technology parameters

	4.5 Cost estimates
	4.5.1 Cost for 1024-bit NFS matrix step
	4.5.2 Further details
	4.5.3 Comparison to previous designs

	5 Analysis of NFS parameters
	5.1 Overview
	5.2 NFS parameter estimation techniques
	5.2.1 Notes on the Number Field Sieve
	5.2.2 Extrapolation from asymptotics
	5.2.3 Semi-smoothness probabilities
	5.2.4 Estimates via smoothness probabilities
	5.2.5 Direct smoothness tests

	5.3 Choice of NFS polynomials
	5.3.1 Context
	5.3.2 NFS polynomials for RSA-1024
	5.3.3 NFS polynomials for RSA-768

	5.4 Results for extrapolated parameters
	5.4.1 Extrapolated parameters
	5.4.2 Evaluation via smoothness probabilities
	5.4.3 Evaluation via actual smoothness tests

	5.5 The TWIRL sieving parameters
	5.5.1 Yields for RSA-1024
	5.5.2 Candidates yield in TWIRL
	5.5.3 Optimality and effect of technological progress
	5.5.4 Yields for RSA-768

	6 Conclusions and implications of Part I
	6.1 Summary of results
	6.2 Notes
	6.3 Impact and follow-up works

	II Side-channel attacks
	7 Introduction
	7.1 Overview of Part II
	7.2 Side-channel attacks
	7.3 Timing attacks

	8 Efficient cache attacks on AES
	8.1 Introduction
	8.1.1 Overview
	8.1.2 Related work

	8.2 Preliminaries
	8.2.1 Memory and cache structure
	8.2.2 Memory access in AES implementations
	8.2.3 Notation

	8.3 Synchronous known-data attacks
	8.3.1 Overview
	8.3.2 One-round attack
	8.3.3 Two-rounds attack
	8.3.4 Measurement via Evict+Time
	8.3.5 Measurement via Prime+Probe
	8.3.6 Practical complications
	8.3.7 Experimental results
	8.3.8 Variants and extensions

	8.4 Asynchronous attacks
	8.4.1 Overview
	8.4.2 One-Round Attack
	8.4.3 Measurements
	8.4.4 Experimental results
	8.4.5 Variants and extensions

	8.5 Countermeasures
	8.5.1 Avoiding memory accesses
	8.5.2 Alternative lookup tables
	8.5.3 Data-independent memory access pattern
	8.5.4 Application-specific algorithmic masking
	8.5.5 Cache state normalization and process blocking
	8.5.6 Disabling cache sharing
	8.5.7 Static or disabled Cache
	8.5.8 Dynamic table storage
	8.5.9 Hiding the timing
	8.5.10 Selective round protection
	8.5.11 Operating system support

	9 Acoustic cryptanalysis
	9.1 Introduction
	9.1.1 Overview
	9.1.2 Related works

	9.2 Results
	9.2.1 Experimental setup
	9.2.2 The sound of RSA signatures
	9.2.3 Distinguishing between RSA secret keys
	9.2.4 Timing attacks
	9.2.5 Instruction pattern differentiation
	9.2.6 Verifying acoustic transduction
	9.2.7 Source of acoustic emanations

	9.3 Countermeasures

	10 Conclusions and implications of Part II
	10.1 Summary of results
	10.2 Vulnerable cryptographic primitives
	10.2.1 Cache attacks
	10.2.2 Acoustic attacks
	10.2.3 Non-cryptographic systems

	10.3 Attack scenarios
	10.4 Mitigation
	10.5 Impact and follow-up works

	Publications and statement of originality
	Bibliography
	Index of notation
	Index

