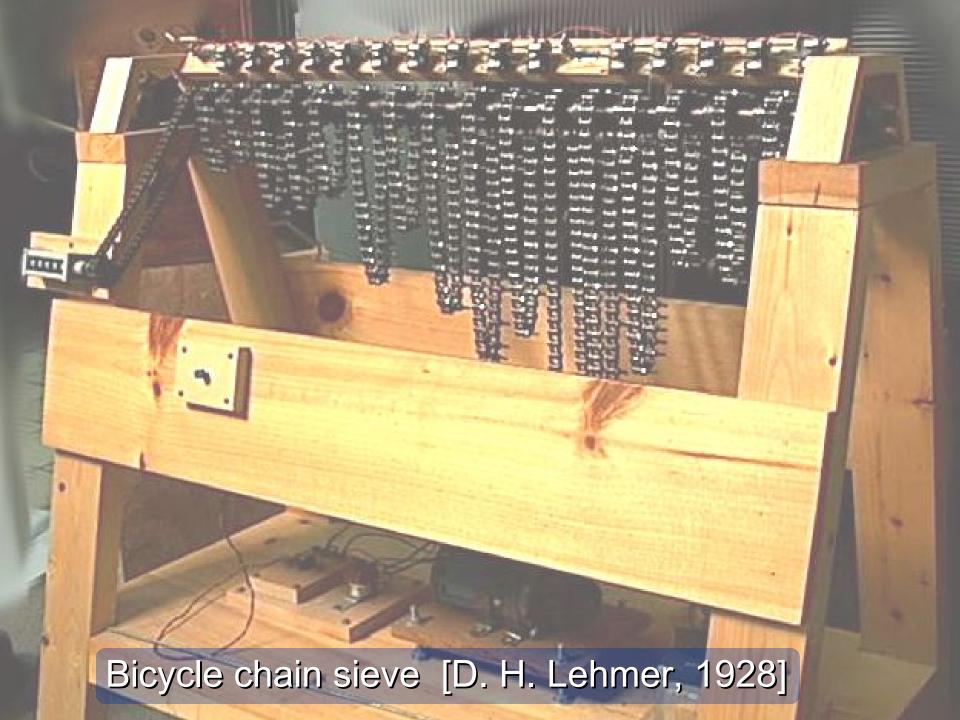
## Special Purpose Hardware for Factoring: the NFS Sieving Step

Adi Shamir Eran Tromer

Weizmann Institute of Science



#### NFS: Main computational steps

## Relation collection (sieving) step:

Find many relations.

Presently dominates cost for 1024-bit composites.

Subject of this survey.

#### Matrix step:

Find a linear relation between the corresponding exponent vectors.

Cost dramatically reduced by mesh-based circuits.

Surveyed in Adi Shamir's talk.

#### **Outline**

- The relation collection problem
- Traditional sieving
- TWINKLE
- TWIRL
- Mesh-based sieving

#### The Relation Collection Step

The task:

Given a polynomial f (and f'), find many integers a for which f(a) is B-smooth (and f'(a) is B'-smooth).

#### For 1024-bit composites:

- We need to test 3×10<sup>23</sup> sieve locations (per sieve).
- The values f(a) are on the order of  $10^{100}$ .
- Each f(a) should be tested against all primes up to  $B=3.5\times10^9$  (rational sieve) and  $B'=2.6\times10^{10}$  (algebraic sieve).

(TWIRL settings)

#### Sieveless Relation Collection

- We can just factor each f(a) using our favorite factoring algorithm for medium-sized composites, and see if all factors are smaller than B.
- By itself, highly inefficient.
   (But useful for cofactor factorization or Coppersmith's NFS variants.)

#### Relation Collection via Sieving

- The task: Given a polynomial f (and f), find many integers a for which f(a) is B-smooth (and f'(a) is B'-smooth).
- We look for a such that p|f(a) for many large p:

$$\sum_{\substack{p | f(a) \\ p < B}} \log p > T \approx \log f(a)$$

Each prime p "hits" at arithmetic progressions:

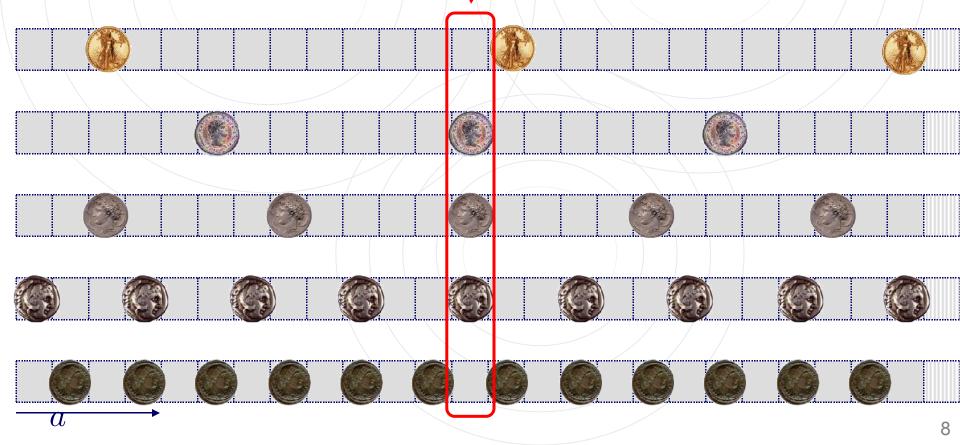
$$\begin{aligned} \{a: p | f(a)\} &= \{a: f(a) \equiv 0 \pmod{p}\} \\ &= \bigcup_{i} \{r_i + kp : k \in \mathbb{Z}\} \end{aligned}$$

where  $r_i$  are the roots modulo p of f. (there are at most deg(f) such roots, ~1 on average).

#### The Sieving Problem

Input: a set of arithmetic progressions. Each progression has a prime interval p and value  $\log p$ .

Output: indices where the sum of values exceeds a threshold.

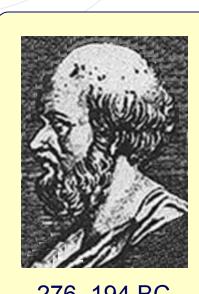




sieve locations (a values)

## Traditional PC-based sieving

[Eratosthenes of Cyrene] [Carl Pomerance, Richard Schroeppel]

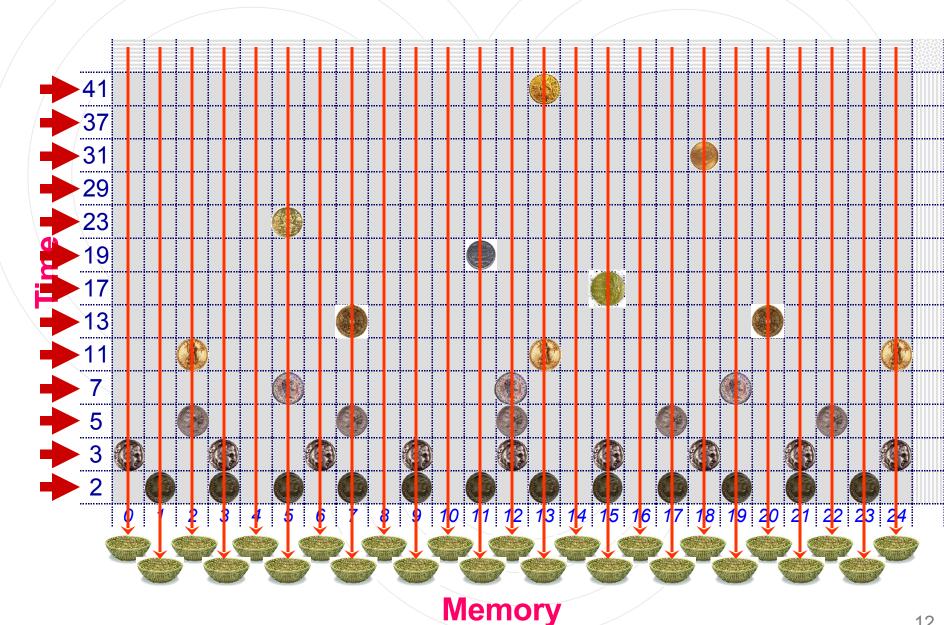


276-194 BC

#### PC-based sieving

- 2. Assign one memory location to each candidate number in the interval.
- 3. For each arithmetic progression:
  - Go over the members of the arithmetic progression in the interval, and for each:
    - Adding the  $\log p$  value to the appropriate memory locations.
- 4. Scan the array for values passing the threshold.

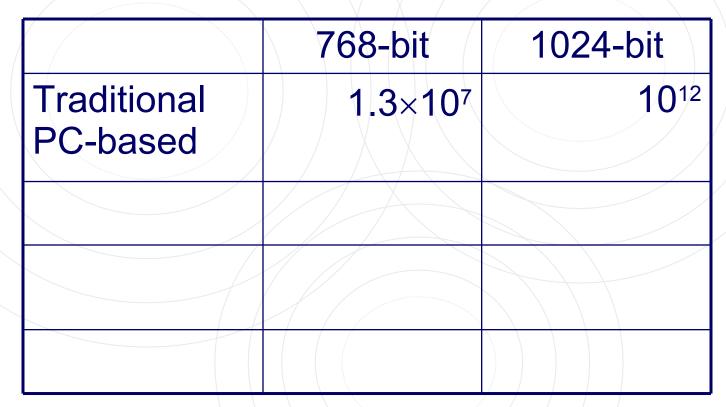
#### Traditional sieving, à la Eratosthenes



#### Properties of traditional PC-based sieving:

- Handles (at most) one contribution per clock cycle.
- Requires PC's with enormously large RAM's.
- For large p, almost any memory access is a cache miss.

# Estimated recurring costs with current technology (US\$×year)

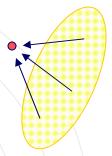


#### TWINKLE

(The Weizmann INstitute Key Locating Engine)

[Shamir 1999] [Lenstra, Shamir 2000]

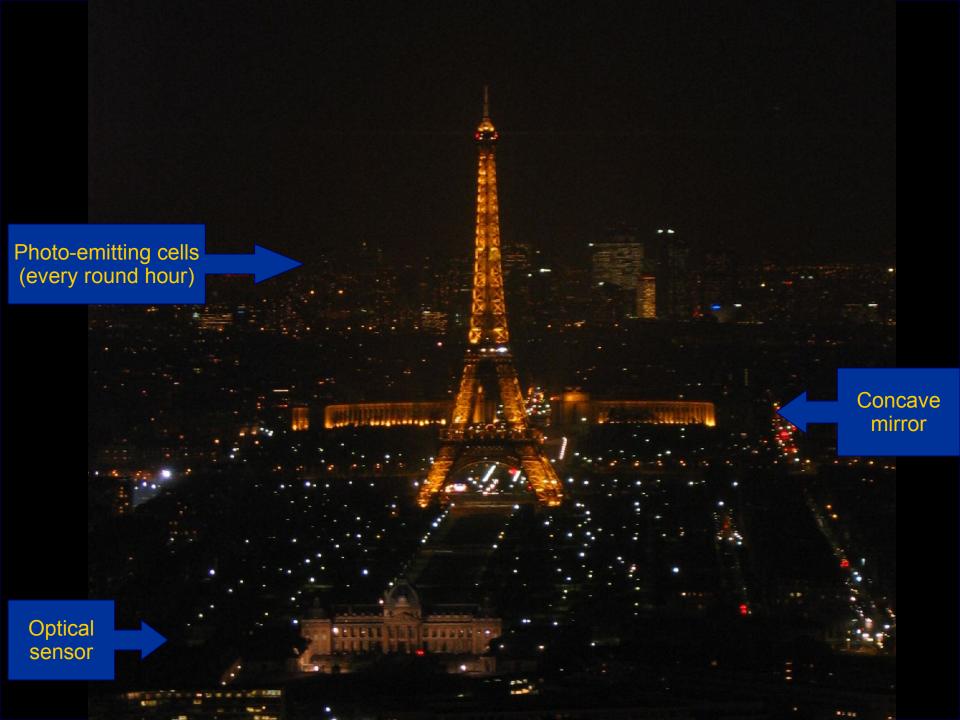
# TWINKLE: An electro-optical sieving device



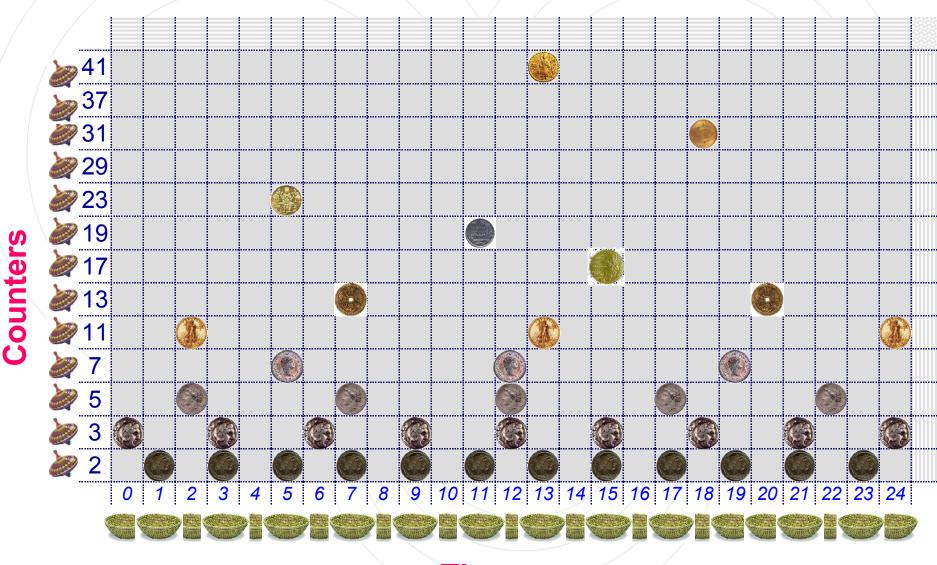
- Reverses the roles of time and space: assigns each arithmetic progression to a small "cell" on a GaAs wafer, and considers the sieved locations one at a time.
- A cell handling a prime p flashes a LED once every p clock cycles.
- The strength of the observed flash is determined by a variable density optical filter placed over the wafer.
- Millions of potential contributions are optically summed and then compared to the desired threshold by a fast photodetector facing the wafer.

### **Breaking News**

Exclusive photos of a working TWINKLE device in this very city!



#### TWINKLE: time-space reversal



**Time** 

# Estimated recurring costs with current technology (US\$×year)

|                      | 768-bit             | 1024-bit |
|----------------------|---------------------|----------|
| Traditional PC-based | 1.3×10 <sup>7</sup> | 1012     |
| TWINKLE              | 8×10 <sup>6</sup>   |          |
|                      |                     |          |
|                      |                     |          |

But: NRE...

#### Properties of TWINKLE:

- Takes a single clock cycle per sieve location, regardless of the number of contributions.
- Requires complicated and expensive GaAs wafer-scale technology.
- Dissipates a lot of heat since each (continuously operating) cell is associated with a single arithmetic progression.
- Limited number of cells per wafer.
- Requires auxiliary support PCs, which turn out to dominate cost.

#### TWIRL

(The Weizmann Institute Relation Locator)

[Shamir, Tromer 2003]

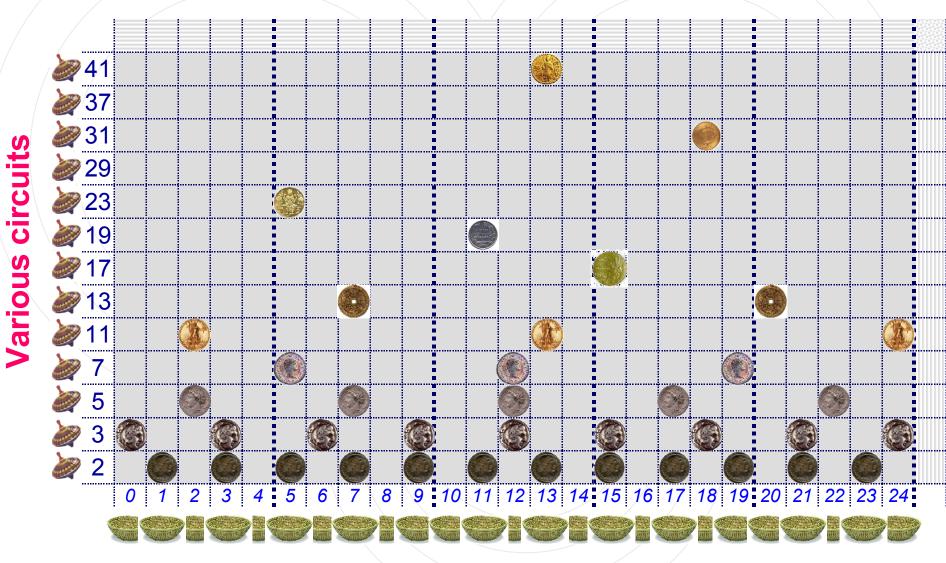
[Lenstra, Tromer, Shamir, Kortsmit, Dodson, Hughes, Leyland 2004]

#### TWIRL: TWINKLE with compressed time

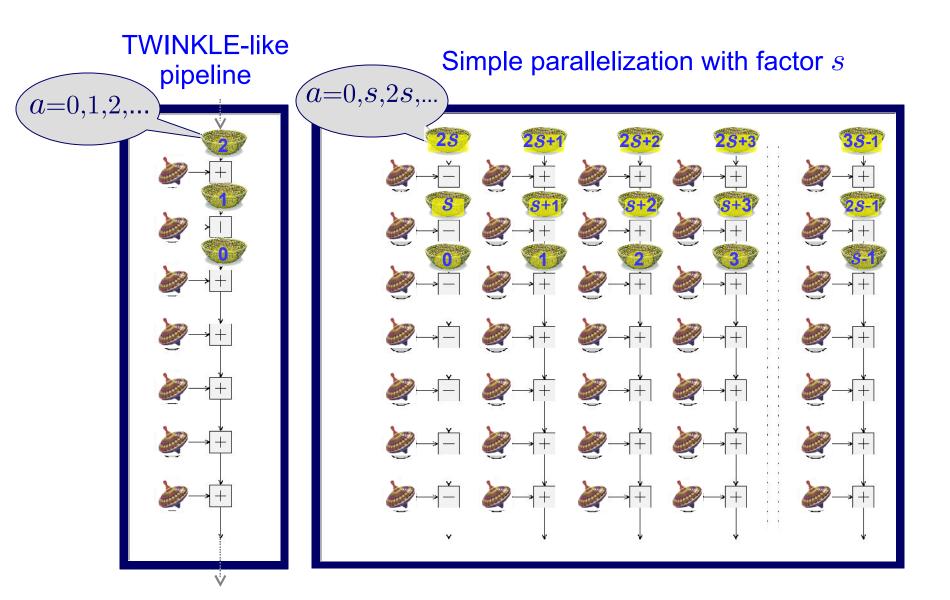
- Uses the same time-space reversal as TWINKLE.
- Uses a pipeline (skewed local processing) instead of electro-optical phenomena (instantaneous global processing).
- Uses compact representations of the progressions (but requires more complicated logic to "decode" these representations).
- Runs 3-4 orders of magnitude faster than TWINKLE by parallelizing the handling of sieve locations: "compressed time".

## TWIRL: compressed time s=5 indices handled at each clock cycle.

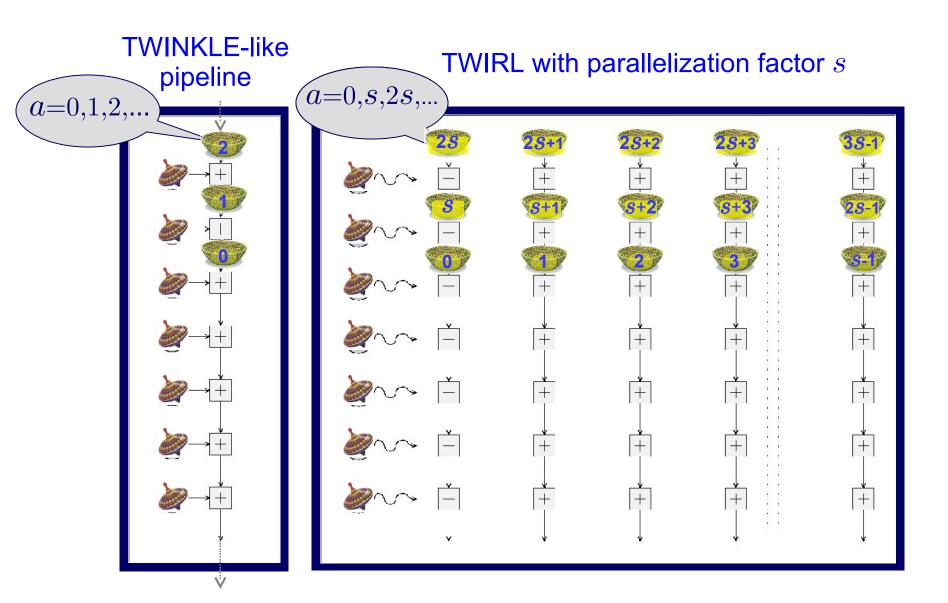
(real: s=32768)



#### Parallelization in TWIRL



#### Parallelization in TWIRL



### Heterogeneous design

- A progression of interval p makes a contribution every p/s clock cycles.
- There are a lot of large primes, but each contributes very seldom.
- There are few small primes, but their contributions are frequent.

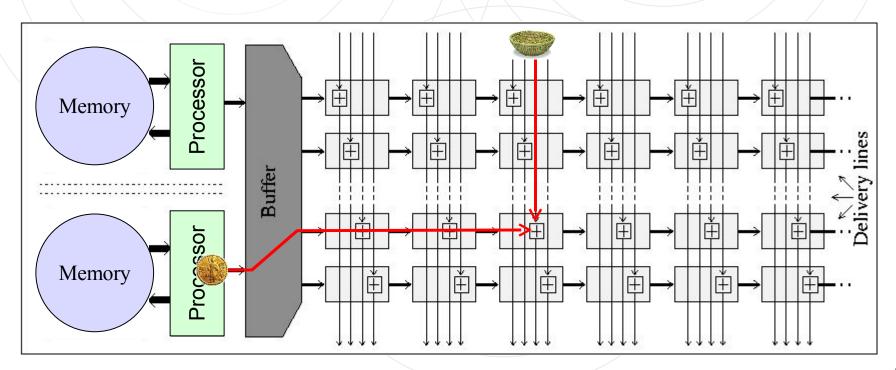


### Heterogeneous design

We place several thousand "stations" along the pipeline. Each station handles progressions whose prime interval are in a certain range. Station design varies with the magnitude of the prime.

#### Example: handling large primes

- Each prime makes a contribution once per 10,000's of clock cycles (after time compression); inbetween, it's merely stored compactly in DRAM.
- Each memory+processor unit handles many progressions. It computes and sends contributions across the bus, where they are added at just the right time. Timing is critical.

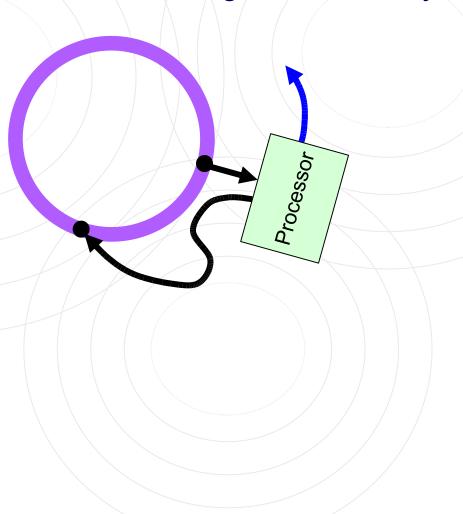


#### Implementing a priority queue of events

- The memory contains a list of events of the form  $(p_i, a_i)$ , meaning "a progression with interval  $p_i$  will make a contribution to index  $a_i$ ". Goal: implement a priority queue. The list is ordered by increasing  $a_i$ .
- At each clock cycle:
  - 1. Read next event  $(p_i, a_i)$ .
  - 2. Send a  $\log p_i$  contribution to line  $a_i \pmod{s}$  of the pipeline.
  - 3. Update  $a_i \leftarrow a_i + p_i$
  - 4. Save the new event  $(p_i, a_i)$  to the memory location that will be read just before index  $a_i$  passes through the pipeline.
- To handle collisions, slacks and logic are added.

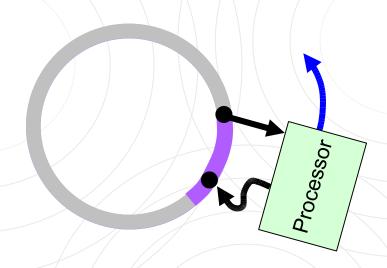
## Handling large primes (cont.)

- The memory used by past events can be reused.
- Think of the processor as rotating around the cyclic memory:



## Handling large primes (cont.)

- The memory used by past events can be reused.
- Think of the processor as rotating around the cyclic memory:



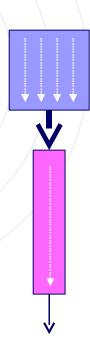
- By assigning similarly-sized primes to the same processor (+ appropriate choice of parameters), we guarantee that new events are always written just behind the read head.
- There is a tiny (1:1000) window of activity which is "twirling" around the memory bank. It is handled by an SRAM-based cache. The bulk of storage is handled in compact DRAM.

## Rational vs. algebraic sieves

- In fact, we need to perform two sieves: rational (expensive) and algebraic (even more expensive).
- We are interested only in indices which pass both sieves.
- We can use the results of the rational sieve to greatly reduce the cost of the algebraic sieve.

rational





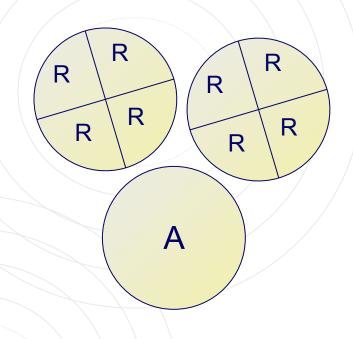
## The wafer-scale TWIRL design has algorithmic-level fault tolerance:

- Can tolerate false positives by rechecking on a host PC the smoothness of the reported candidates.
- Can tolerate false negatives by testing a slightly larger number of candidates.
- Can tolerate faulty processors and memory banks by assigning their primes to other processors of identical design.
- Can tolerate faulty adders and pipeline components by selectively bypassing them.

#### TWIRL for 1024-bit composites

(for 0.13μm process)

- A cluster of 9 TWIRLs on three 30cm wafers can process a sieve line (10<sup>15</sup> sieve locations) in 34 seconds.
- 12-bit buses between R and A component.
- Total cost to complete the sieving in 1 year, use 194 clusters (<600 wafers): ~\$10M (+ NRE).
- With 90nm process: ~1.1M.



# Estimated recurring costs with current technology (US\$×year)

|                      | 768-bit             | 1024-bit                           |
|----------------------|---------------------|------------------------------------|
| Traditional PC-based | 1.3×10 <sup>7</sup> | 1012                               |
| TWINKLE              | 8×10 <sup>6</sup>   |                                    |
| TWIRL                | 5×10 <sup>3</sup>   | 10 <sup>7</sup> (10 <sup>6</sup> ) |
|                      |                     |                                    |
|                      |                     |                                    |

But: NRE, chip size...

#### Properties of TWINKLE

- Dissipates considerably less heat than TWINKLE, since each active logic element serves thousands of arithmetic progressions.
- 3-4 orders of magnitude faster than TWINKLE.
- Storage of large primes (sequential-access DRAM) is close to optimal.
- Can handle much larger B → factor larger composites.
- Enormous data flow banddwidth → inherently single-wafer (bad news), wafer-limited (mixed news).

## Mesh-based sieving

[Bernstein 2001]
[Geiselmann, Steinwandt 2003]
[Geiselmann, Steinwandt 2004]

#### Mesh-based sieving

Processes sieve locations in large chunks.

Based on a systolic 2D mesh of identical nodes.

#### Each node performs three functions:

- Forms part of a generic mesh packet routing network
- In charge of a portion of the progressions.
- In charge of certain sieve locations in each interval of sieve locations.

#### Mesh-based sieving: basic operation

#### For each sieving interval:

- 2. Each processor inspects the progressions stored within and emits all relevant contributions as packets:  $(a, \log p)$
- 3. Each packet  $(a, \log p)$  is routed, via mesh routing, to the mesh cell in charge of of sieve location a.
- 4. When a cell in charge of sieve location a receives a packet  $(a, \log p)$ , it consumes it and add  $\log p$  to an accumulator corresponding to a (initially 0).
- 5. Once all packets arrived, the accumulators are compared to the threshold.

## Mesh sieving (cont.)

In mesh-based sieving, we route and sum

progression contributions to sieve locations.

- In mesh-based linear algebra, we route and sum matrix entries multiplied by old vector entries to new vector entries.
- In both cases: balance the cost of memory and logic.

### Mesh sieving – enhancements

- Progressions with large intervals represented using compact DRAM storage, as in TWIRL (+compression).
- Efficient handling of small primes by duplication.
- Clockwise transposition routing.
- Torus topology, or parallel tori.
- Packet injection.

# Estimated recurring costs with current technology (US\$×year)

|                      | 768-bit             | 1024-bit                           |
|----------------------|---------------------|------------------------------------|
| Traditional PC-based | 1.3×10 <sup>7</sup> | 1012                               |
| TWINKLE              | 8×10 <sup>6</sup>   |                                    |
| TWIRL                | 5×10 <sup>3</sup>   | 10 <sup>7</sup> (10 <sup>6</sup> ) |
| Mesh-based           | 3×10 <sup>4</sup>   |                                    |
|                      |                     |                                    |

But: NRE, chip size...

### Properties of mesh-based sieving

- Uniform systolic design
- Fault-tolerant at the algorithm level (route around defaults).
- Similarity to TWIRL: 2D layout, same asymptotic cost, heterogeneous bandwidth-limited.
- Subtle differences: storage compression vs. higher parallelism, chip uniformity.

# Estimated recurring costs with current technology (US\$×year)

|                      | 768-bit             | 1024-bit                           |
|----------------------|---------------------|------------------------------------|
| Traditional PC-based | 1.3×10 <sup>7</sup> | 1012                               |
| TWINKLE              | 8×10 <sup>6</sup>   |                                    |
| TWIRL                | 5×10 <sup>3</sup>   | 10 <sup>7</sup> (10 <sup>6</sup> ) |
| Mesh-based           | 3×10 <sup>4</sup>   |                                    |
| SHARK                |                     | 2×10 <sup>8</sup>                  |



But: NRE, chip size, chip transport networks...

#### Conclusions

- Special-Purpose Hardware provides several benefits:
  - Reduced overhead
  - Immense parallelism in computation and transport
  - Concrete technology-driven algorithmic optimization
- Dramatic implications for 1024-bit composites.
- But: larger composites necessitate algorithmic advances.