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ABSTRACT

Compressive sensing (CS) is a popular technique used to reconstruct
a signal from few training examples, a problem which arises in many
machine learning applications. In this paper, we introduce a tech-
nique to guarantee that our data obeys certain isometric properties.
In addition, we introduce a bayesian approach to compressive sens-
ing, which we call ABCS, allowing us to obtain complete statistics
for estimated parameters. We apply these ideas to fMRI classifica-
tion and find that by isometrically transforming our data, significant
improvements in classification accuracy can be achieved using the
LASSO and Dantzig selector methods, two standard techniques used
in CS. In addition, applying the ABCS method offers improvements
in classification accuracy over both LASSO and Dantzig. Finally,
we find that applying both the ABCS method together with isomet-
ric transformations, we are able to achieve an error rate of 0.0%.

Index Terms— Compressive sensing, sparse representation,
bayesian learning, image classification

1. INTRODUCTION

In recent years, compressive sensing (CS) ([1]) has become a popu-
lar technique used to limit the amount of data required to reconstruct
signals, also known as sparse signal recovery. This technique has
become popular in many practical machine learning applications,
such as biomedical image classification and signal reconstruction,
and well as in applications to prevent over-fitting and reduce storage
capacities. Mathematically speaking, in a typical CS formulation, a
sensing matrix H is constructed consisting of possible examples of
the signal, that is H = [h1;h2 . . . ;hn]. To reconstruct a signal y
from H , a small number of samples from H are found by solving
the equation y = Hβ, where the vector β selects a small number
of examples from H . In the CS formulation, a regularization is im-
posed on β, typically an l1 regularization, to ensure sparseness. In
summary, the goal of CS is to solve the following problem, where
∥ β ∥1< ϵ imposes an l1 regularization on β.

y = Hβ s.t. ∥ β ∥1< ϵ for β (1)

State-of-the-art methods for sparse signal recovery commonly
utilize convex relaxation methods, including LASSO [2] and the
Dantzig selector [3]. It has been shown in [1] that the convex l1
relaxation yields an exact solution to the recovery problem provided
two conditions are met: 1) the signal is sufficiently sparse, and 2)

the set of samples used for signal recovery obeys a Restricted isom-
etry property (RIP) to facilitate accurate recovery of sparse signals.
However, to date the LASSO and Dantzig selector techniques have
been applied to many CS problems without guaranteeing that the set
of samples obeys the RIP property ([4],[5]). In addition, while these
convex relation methods have shown success in a variety of com-
pressed sensing problems, there is a considerable amount of effort
required to tune the sparseness constraint. Moreover, these methods
only provide a point estimate for β, and can thus be considered sub-
optimal solutions. In this paper, we introduce two novel techniques
to deal with the isometry and β estimation problems in typical CS
optimization techniques.

First, we introduce a novel method to transform H to be iso-
metric. Specifically, by randomly sampling samples from a binary
distribution, we construct a matrix P which has been shown to obey
isometric properties [6]. Next, we find a transformation T such that
applying this transformation to H produces P (i.e., P = TH). This
technique allows us to transform our data to an isometric space in
which we will demonstrate that CS algorithms are more effective.

In addition, to address the β estimation problems in CS, a non-
convex optimization method known as Bayesian CS [7] has been
introduced, which has the advantage of introducing a probabilistic
framework to estimate the spareness parameters required for signal
recovery. This technique limits the effort required to tune the sparse-
ness constraint, and also provides complete statistics for the estimate
of β. However, the approach introduced in [7] suffers from the fact
that it is difficult to obtain a closed-form probability expression to
estimate these parameters. In this paper, we introduce an approxi-
mation method into the Bayesian CS formulation which allows us
to derive a closed form probability expression. Specifically, instead
of utilizing a typical Laplacian sparseness-promoting prior (i.e., l1
as used in [7] and given in Equation 1), we explore a semi-Gaussian
type prior. Our motivation for this is twofold. First, [8] and [9]
illustrate that a semi-gaussian prior gives more weight to good sam-
ples in H compared to a Laplacian prior, will still promoting more
sparseness than a gaussian prior. Secondly, incorporating a semi-
gaussian prior into a Bayesian framework facilitates the derivation of
a closed-form recursion for estimating sparseness parameters, which
is difficult to do using Laplacian priors [7]. We will call this new
technique Approximate Bayesian Compressive Sensing (ABCS).

We explore the benefits of the isometric transformation and
ABCS techniques on fMRI classification [10]. First, we explore the
classification accuracy of the LASSO and Dantzig selector methods,



with and without the isometric transformation, and find that using
isometric transformation offers a 3−59% relative improvement over
classification accuracy (depending on the data set used). Second, we
compare the behavior of the ABCS classifier to the Dantzig selector
and LASSO classifiers, and find that the ABCS technique offers and
improvement over the LASSO classifier. The ABCS technique also
outperforms LASSO when isometric transformations are applied to
the data, and in fact is able to offer a 0.0% error rate.

The rest of this paper is organized as follows. Section 2 presents
our novel formulation of isometric transformation for compressive
sensing, which Section 3 discusses the ABCS formulation. Section
4 presents the experiments performed, followed by a discussion of
the results in Section 5. Finally, Section 6 concludes the paper and
discusses future work.

2. ISOMETRIC TRANSFORMATIONS

The theory of CS requires that in order for a sparse solution for β
[6], the sensing matrix H should obey a so-called restricted isometry
property (RIP) at a certain level. In detail, the RIP is defined as

(1− δs) ∥ x ∥22≤∥ Hx ∥22≤ (1 + δs) ∥ x ∥22 (2)

for some δs ∈ (0, 1) and any x that is s-sparse at most. In [11],
we introduced the definition of a vector x = [x1x2 . . . xd] to be
s-block-sparse if its non-zero entries are concentrated in blocks of
dimension s. In other words, x is s-block sparse if #{xi | xi ̸=
0, i = 1, . . . , d} << d. Equation 2 infers that every subset of H
of dimension m × s acts as nearly orthonormal system. The RIP
constant δs gives an indication of the actual proximity of any subset
to orthogonality. In this section, given that our original matrix H
does not satisfy the RIP property, we present a solution to producing
an RIP-satisfying data matrix out of the original matrix H .

The isometric transformation relies on the existence of some
RIP-satisfying matrix of the same dimension as the original data set.
Constructing such a matrix is generally a non-trivial task. Never-
theless, it is well known fact that some random matrices obey the
RIP with high probability [6]. For example, it has been shown that a
binary matrix is isometric if the entries are sampled according to:

Pr
(
Pij = ±1/

√
m
)
= 0.5 (3)

Thus, given a se of Binary samples, an isomatric random ma-
trix in constructed, which we will refer to as P . Here P has the
same dimension as H . Next, the columns of H are reordered ac-
cording to their measure of significance. In this work, the columns
are reordered by computing a correlation coefficient between y an
the columns in H , described in more detail here [11]. As we will
discuss in the next step, the columns of H are split into smaller sub-
sets and a transformation is applied to each of these smaller subsets
to obtain an isometric matrix. The reordering of columns is done to
ensure that when the columns of H are split into smaller subsets, and
a β is obtained for each subset, there is a higher chance that this β
will be sparse.

Next, the matrices H and P are partitioned into d smaller sub-
sets, namely H = [H1, . . . , Hd] and P = [P1, . . . , Pd], where
each subset is denoted by Hi and Pi with i ∈ d. For each Hi

and Pi, subset, we define a transformation matrix T̂i = CiD
T
i

for all i = 1, . . . , d where CiΛiD
T
i is the Singular Value Decom-

position (SVD) of H−1
i Pi. Here Λi = diag(λ1

i , . . . , λ
m
i ), and

λ1
i ≥ λ2

i ≥ · · · ≥ λm
i . In [11], it can be shown that HT̂i is an

isometric matrix with the following property for some scalars α > 0
and δ ∈ (0, 1).

(1− δ) ∥ x ∥22≤∥ αHT̂x ∥22≤ (1 + δ) ∥ x ∥22
Letting λmax = argmaxi∈[1,d] λ

1
i and λmin =

argmini∈[1,d] λ
n
i , the scaling factor α is approximated by:

α ≈ 2
(
λ−1
min + λ−1

max

)−1

and the RIP constant δ is given as

δ =
(1 + δm)λ−1

min − (1− δm)λ−1
max

(1 + δm)λ−1
min + (1− δm)λ−1

max

< 1

where δm ∈ (0, 1) is the RIP constant associated with P .
Finally, the transformed matrix H̄ is defined as H̄ =

α
[
H1T̂1, . . . , HdT̂d

]
.

3. ORIGINAL ABCS DERIVATION

In this section, we formulate the ABCS solution. Ultimately, we
would like to use CS to solve the following problem:

y = Hβ s.t. ∥ β ∥21< ϵ for β (4)

In ABCS we use a sparseness promoting semi-gaussian prior,
denoted as ∥ β ∥21< ϵ, rather than the Laplacian prior (i.e., ∥ β ∥1)
as given by Equation 1. In addition, y is a frame of data from the test
set such that y ∈ ℜm where m is the dimension of the feature vector
y. H is a matrix of training examples and H ∈ ℜm×n where m <<
n. We assume that y satisfies a linear model as: y = Hβ + ζ where
ζ ∼ N(0, R). This allows us to represent p(y|β) as a Gaussian
distribution as:

p(y|β) ∝ exp(−1/2(y −Hβ)TR−1(y −Hβ)) (5)

Assuming β is a random parameter with some prior p(β) we
can obtain the maximum a posteriori (MAP) estimate for β given
y as follows: β∗ = argmaxβ p(β|y) = maxβ p(y|β)p(β). In
the ABCS formulation, we assume that p(β) is actual the product
of two prior constraints, namely a gaussian constraint pG(β) and a
semi-gaussian constrain pSG(β) to enforce sparseness. Below, we
present a two-step solution to solve the following problem in the
ABCS framework.

β∗ = argmax
β

p(y|β)pG(β)pSG(β) (6)

3.1. Step 1

In step 1, we solve for the β which maximizes the following ex-
pression. Equation 7 is equivalent to solving the equation y = Hβ
without enforcing a sparseness constraint on β [8].

β∗ = argmax
β

p(y|β)pG(β) (7)

We assume that pG(β) is a Gaussian, i.e., pG(β) =
N(β|β0, P0). Here β0 and P0 are initialized statistical moments uti-
lized in the algorithm. In [8], we show that the solution to Equation
7 has a closed form solution given by Equation 8.

β∗ = β1 =
(
I − P0H

T (HP0H
T +R)−1H

)
β0+

P0H
T (HP0H

T +R)−1y (8a)
Similarly, we can express the variance of β1 as P1 =

E
[
(β − β1)(β − β1)T

]
, given more explicitly by Equation 8b.

P1 = (I − P0H
T (HP0H

T +R)−1H)P0 (8b)



3.2. Step 2

Step 1 essentially solved for the pseudo-inverse of y = Hβ, of
which there are many solutions. In this section, we impose an ad-
ditional constraint that β will have a sparseness-promoting semi-
Gaussian prior, as given by Equation 9. Here σ2 is a constant pa-
rameter which controls the degree of sparseness of β.

pSG(β) = exp

(
−||β||21

2σ2

)
(9)

Given the solutions to Step 1 in Equations 8, we can
simply rewrite Equation 7 as another gaussian as p′(β|y) =
p(y|β)pG(β) = N(β|β1, P1). Therefore, let us assume now that
we would like to solve for the MAP estimate of β given the con-
straint that it is semi-gaussian, in other words:

β∗ = argmax
β

p′(β|y)pSG(β) (10)

In order to represent pSG(β) as a Gaussian the same way that
p(y|β) in Equation 5 was represented, let us define βi to be the ith

entry of the vector β. We introduce a matrix Ĥ of which the entries
are set as Ĥi(βi) = sign(βi), for i = 1, . . . , n. Here Ĥi(βi) = +1

for βi > 0, Ĥi(βi) = −1 for βi < 0, and Ĥi(βi) = 0 for βi = 0.
This matrix Ĥ is motivated from the fact that

∥ β ∥21= (
∑
i

(|βi|))2 = (
∑
i

(Ĥi(βi)βi))2 = (Ĥβ)2 (11)

Substituting the expression for ∥ β ∥21 given in Equation 11 and
assuming a that y = 0, we can rewrite Equation 9 as Equation 12.
Notice that Equation 12 has the same form as Equation 5 with H and
R now replaced by Ĥ and σ respectively.

pSG(β) = p(y = 0|β) = exp

(
−(0− Ĥβ)2

2σ2

)
(12)

The only problem with using Equation 10 to solve for β is the
dependency of Ĥ on β in Equation 8. Therefore, we make an as-
sumption, by calculating Ĥ based on the sign of the previously es-
timated β. In other words Ĥi(βi) ≈ Ĥi(βi

k−1). With this ap-
proximation we can use Equations 8a and 8b to solve Equation 12.
However, because of this semi-gaussian approximation, we must
estimate β and P iteratively. Equation 13 gives the recursive for-
mula which solves Equation 10 at iteration k for k > 1. Note that
p′(β|y) = N(β|βk−1, Pk−1), where for k = 2, β and P are com-
puted in Step 1.

βk = βk−1 −
Pk−1Ĥ

T

ĤPk−1ĤT + σ2
Ĥβk−1 (13a)

Pk =

[
I − Pk−1Ĥ

T

ĤPk−1ĤT + σ2

]
Pk−1 (13b)

In [8], we show that for large σ2 and large k, the estimate of
β and P using the approximate semi-gaussian given in Equation 12
is bounded from the estimate of these parameters for the true semi-
gaussian given in Equation 9 by O(1/σ2).

4. EXPERIMENTS

We analyze the benefit of isometric transformations and ABCS for
fMRI classification. The fMRI data sets are those that were used
in [10]. The data consists of a series of trials in which the subject
is being shown either a picture (+1) or a sentence (−1). The brain
activity is monitored over a time interval of 9 seconds during which
a fMRI scan is performed every 1 second. We have used this set-up
for producing two data sets for each subject. The first set, which
we termed ‘sliced’, consists of the 1st scan in each trial whereas the
second one involves the average of 6 fMRI scans (from 1 to 6). The
resulting data sets consist of nearly 2000 features, and 40 relevant
samples [10]. We use a 2-out cross-validation scheme for testing
the underlying classifiers. This procedure involves 20 trials in which
2 samples (one of each class) are taken as a testing set while the
remaining samples are used for training. The classifiers are applied
using 12 data sets, these account for 6 sets (sliced and averaged for
each of the 3 subjects) and their transformed versions.

Next to demonstrate the behavior of ABCS and isometric trans-
formations in a multi-class classification problem, we conduct ex-
periments on the fMRI data set described here [12]. This fMRI data
set consists of 20 samples of a subject viewing 8 types of images
which are labeled as 1 to 8 (i.e., total of 160 fMRI scans). The ex-
perimental setup uses 8-out cross-validation in which 8 samples, one
of each label, are taken as a test set while the remaining samples are
used for training the classifiers.

To reduce the number of 2000 features, a random field (RF)
model is applied to select an optimal subset of these features. This
method is described in more detail here [8]. In all tests a binary
random matrix P (see Section 2) was used for producing the trans-
formed set. The realization of P is chosen as the one that yields the
best classification accuracy when applying the above procedure on a
predetermined development set which in our case was composed out
of 20 samples from the training set.

All classifiers were coded in Matlab’s environment. The Dantzig
selector implementation uses the built-in function ‘linprog’ that is
based on a linear interior point solver. The LASSO classifier uses
the MATLAB implementation of LARS algorithm [13] to solve the
linear regression problem with the class label treated as a real-valued
response variable; in order to obtain binary prediction on a test sam-
ple, we simply threshold the output of LASSO model (i.e., predict
+1 if the output is positive and -1 otherwise).

First, we explore the classification accuracy of CS classifiers,
namely Dantzig selector and LASSO, with and without isometric
transformations. Please note that only for this implementation of
LASSO, feature selection was not performed using the RF model.
Instead the LASSO classifier approach runs on all features, and se-
lects a desired number of variables (that is specified as an input pa-
rameter to LARS procedure) automatically. Second, we compare
the classification of the ABCS method to the LASSO and Dantzig
selector methods, without applying isometric transformations, for
various number of optimal subset parameters selected using the RF
model from the 2000 feature dimensional set. Finally, we explore
the behavior of LASSO and ABCS techniques with isometric trans-
formations, for various numbers of features. In our work, we choose
all elements of β0 to be 0 since β is assumed to be sparse around 0
anyways. P0 is chosen to be diagonal with elements having a large
value of 100, reflecting the fact that the prior is uninformative.



5. RESULTS

5.1. Classification with Isometric Transformations

Tables 1 and 2 illustrate the classification results for the LASSO and
Dantzig selector methods on the sliced and averaged data sets, with
and without isometric transformations. The results for each data set
are averaged across all three subjects. Notice that for both tech-
niques, the isometric transformations offer improvements in accu-
racy, with relative improvements ranging from 3% to 59% depend-
ing on the data set. This demonstrates that transforming the data
to be isometric provides for better signal recovery (and thus overall
classification accuracy), an idea which was only theoretically proven
in [6] but illustrated by application in Tables 1 and 2 .

Sliced Data set
Method Original Transf. Rel. Imp.

RF-Dantzig 0.52 0.83 0.59
LASSO(100 vars, ttest) 0.73 0.82 .12

Table 1. Classification accuracy on Sliced Data Sets, averaged
across all 3 subjects.

Averaged Data Set
Method Original Transf. Rel. Imp.

RF-Dantzig 0.76 0.90 .18
LASSO(100 vars, ttest) 0.90 0.93 .03

Table 2. Classification accuracy on Averaged Data Sets, averaged
across all 3 subjects.

5.2. Classification with ABCS

To analyze the behavior of the ABCS method, Figure 1 compares the
classification error rate for the LASSO and ABCS methods, with and
without isometric transformations for different optimal number of
features. Note that we have not included the Dantzig selector in this
analysis, since Section 5.1 illustrated that LASSO outperformed the
Dantzig selector with and without isometric transformations. First,
notice that without isometric transformations the ABCS method out-
performs the LASSO method when the number of features is above
40. This illustrates that by using ABCS to obtain better estimates of
β, the classification accuracy is improved over LASSO.

The figure also illustrates that similar trends hold when isometric
transformations are applied. Using these transformations, the ABCS
method and LASSO method perform similarly when the number
of features is less than 20. However, as the number of features
grows, the ABCS technique offers better performance compared the
LASSO method. In fact, the ABCS method is able to achieve 0.0%
error rate when using more than 80 features.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a technique to guarantee that the sens-
ing matrix H was isometric. Applying this transformation to fMRI
classification, we found that having isometrically transformed data
offered improvements in classification accuracy for both the LASSO
and Dantzig selector techniques. In addition, we developed an
ABCS technique which utilizes a semi-gaussian prior to obtain com-
plete statistics on the estimate of β. We found that this ABCS
method outperformed the popular LASSO method, with and with-
out isometric transformations. In fact, the ABCS technique with iso-
metric transformations was able to achieve a 0.0% error rate. In the
future, we would like to perform better convergence assessments for
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Fig. 1. Classification Errors for Different CS Methods

Step 2 of the ABCS technique, which will allow us to have a better
idea of when to stop iterating Step 2, rather than choosing a large
fixed number. In addition, we would like to explore applying the
ABCS method to other machine learning tasks, where CS has been
relatively unexplored.
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