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Abstract—While research in large vocabulary continuous
speech recognition (LVCSR) has sparked the development of
many state of the art research ideas, research in this domain
suffers from two main drawbacks. First, because of the large
number of parameters and poorly labeled transcriptions, gaining
insight into further improvements based on error analysis is
very difficult. Second, LVCSR systems often take a significantly
longer time to train and test new research ideas compared to
small vocabulary tasks. A small vocabulary task like TIMIT
provides a phonetically rich and hand-labeled corpus and offers
a good test bed to study algorithmic improvements. However,
oftentimes research ideas explored for small vocabulary tasks
do not always provide gains on LVCSR systems. In this paper,
we address these issues by taking the standard “recipe” used in
typical LVCSR systems and applying it to the TIMIT phonetic
recognition corpus, which provides a standard benchmark to
compare methods. We find that at the speaker-independent (SI)
level, our results offer comparable performance to other SI
HMM systems. By taking advantage of speaker adaptation and
discriminative training techniques commonly used in LVCSR
systems, we achieve an error rate of 20%, the best results reported
on the TIMIT task to date, moving us closer to the human
reported phonetic recognition error rate of 15%. We propose
the use of this system as the baseline for future research and
believe that it will serve as a good framework to explore ideas
that will carry over to LVCSR systems.

I. INTRODUCTION

Speech recognition research in the past few years has
focused heavily on large vocabulary continuous speech recog-
nition (LVCSR). Large vocabulary corpora are attractive as
they provide a testbed for which to tackle many real-world
problems such as noisy speech, accented speech, large vocab-
ulary modeling and real-time decoding. Research in LVCSR,
particularly in the areas of discriminative training and speaker
adaptation, have resulted in a significant improvement in
performance and an increase in usage of speech recognition
systems. However, LVCSR research suffers from two major
drawbacks. First, because of the large number of parameters
and poorly labeled transcriptions, gaining insight into further
improvements based on error analysis is very difficult. Second,
model training typically requires many hours compared to
small vocabulary, providing challenges for testing new ideas.

However, many ideas which have shown good gains on
small vocabulary tasks do not necessarily translate to gains
in LVCSR. For example, as we will demonstrate in this work,
Mel-Scale Cepstral Coefficients (MFCCs) have been shown to
offer better performance on certain small vocabulary corpora

compared to Perceptual Linear Predictive (PLP) features.
However, once discriminative and speaker adaptive training
methods are incorporated, the performance using the two
different feature sets are the same. In addition, conditional
random fields [1] have also shown promising results for pho-
netic recognition, but require a some-what structured dataset,
and thus currently have not been heavily explored in LVCSR.

Furthermore, models which have shown success on small
vocabulary tasks can be computationally expensive in large
vocabulary systems. For example, while recurrent neural nets
(RNNs) have demonstrated good performance on both on
small and large vocabulary tasks [2], these methods are
computationally expensive to train acoustic models, and thus
have not been heavily pursued for LVCSR. In addition, while
Hidden Trajectory Models (HTMs) have also shown promising
results for small vocabulary phonetic recognition, the compu-
tationally expensive decoding process [3] again provides for a
computational challenge when applied to large vocabulary.

In this paper, we introduce a framework to address the
problem of training and error analysis in LVCSR systems,
as well as gains not carrying through to from small scale to
large scale tasks. Specifically, we explore applying a complete
LVCSR system to a small vocabulary corpus. Most LVCSR
systems, including our IBM Recognizer [4], utilize a specific
“recipe” during acoustic model training. First a set of speaker
independent (SI) models are built. Next, a set of speaker
adapted (SA) models are built for each speaker or speaker
cluster. Finally, a discriminative training step is employed to
produce a set of discriminative features and models for further
error rate reduction. This recipe has shown considerable gains
on conversational speech [4] and broadcast news [5] tasks.

Our experiments are conducted on the TIMIT corpus [6].
Our motivation of applying our LVCSR system to TIMIT is
threefold. First, it provides a fair benchmark for comparing
the performance of our LVCSR recipe to other state of the
art results on this phonetic recognition task. Second, having
time-aligned phonetic transcriptions allows for a detailed error
analysis and suggests areas for future improvements in LVCSR
research. Third, exploring this LVCSR recipe on TIMIT pro-
vides a framework for testing new LVCSR ideas. Specifically,
if others can quickly apply new ideas to TIMIT using this
LVCSR recipe, and are able to achieve improvements on top
of speaker adaptation and discriminative training, then we
believe similar gains will be seen on a large scale task. For



example, gains first seen using discriminative training on small
vocabulary [7] have translated into huge gains for LVCSR [8].
In addition, improvements seen on TIMIT using neural nets
[2] have also been successfully applied to LVCSR systems [9].

Our phonetic recognition experiments reveal that at the SI
level, we are able to achieve a phonetic error rate (PER) of
25.6%, which compares to one of the best SI-Hidden Markov
Model (HMM) results reported in the literature ([10]). Next,
we find that utilizing discriminative training, the results are
significantly better than the performance of other discrimina-
tive training systems on the TIMIT task [11]. Incorporating
speaker adaptation allows us to achieve an error rate of
20.0%. To our knowledge, we believe that utilizing our full
system offers the best results on the TIMIT task to date. A
spectrogram reading experiment in [12] reported a human level
error rate of reading phonemes of approximately 15.0%. Our
error rate of 20.0% illustrates the benefits of an LVCSR recipe
for speech recognition, pushing speech research closer towards
the ultimate goal of reaching human-level performance. A
further error analysis indicates that most of the errors are
due to confusions between phonemes within the same manner
class, suggesting areas for future possible LVCSR research.

The rest of this paper is organized as follows. In Section II,
an overview of the IBM LVCSR System used for experiments
in this paper is provided. Section III outlines the experiments
performed, while Section IV analyzes the results. A discussion
of implications for LVCSR research of applying this LVCSR
recipe on small vocabulary tasks is presented in Section V.
Finally, Section VI summarizes the main contributions of the
paper and discusses future work.

II. SYSTEM ARCHITECTURE

The LVCSR recognizer at IBM operates in a series of steps,
as indicated in Figure 1. First, feature vectors are extracted
from the speech signal. Next, a set of speaker independent
(SI) sub-word unit models are trained. Then, using the set of
SI models, a set of speaker adapted (SA) features and models
are learned. Finally, feature and model space discriminative
training is applied on top of the SA system. Below each
component of the process is described in more detail.

A. Front-end Processing

A speech utterance is first chunked into 20ms frames, with
a frame-shift of 5 ms. Each frame can either be represented
by 13 dimensional MFCCs or 19 dimensional PLP features.
Features are then mean and variance normalized on a per
utterance basis. Then, at each frame, a series of consecutive
frames surrounding this frame are joined together and a Linear
Discriminative Analysis (LDA) transform is applied to project
the feature vector down to 40 dimensions.

B. Speaker Independent Acoustic Modeling

In SI modeling, each sub-word unit is a phoneme, repre-
sented by a 3 state left-to-right Hidden Markov Model (HMM)
with no skip states. The output distribution of each state
is modeled by a Gaussian Mixture Model (GMM). First a

Fig. 1. Block Diagram of Various Stages in the IBM LVCSR System

series of a set of context-independent (CI) models are trained
using information from the transcription. Maximum likelihood
(ML) estimation is used to train parameters of the HMM. The
training of CI models produces a set of state-level alignments
of the speech against their corresponding transcripts.

The CI models are then used for bootstrapping the training
of a set of more complex triphone context-dependent (CD)
models, which can capture more acoustic variability. These
CD models are also modeled by a 3-state left-to-right HMM
with no skip states. As with most speech recognizers, due to
data availability issues in modeling all possible CD triphones,
a clustering procedure is employed to share data across various
CD models. First, a set of united CD HMMs are estimated for
each possible triphone combination. Next a top-down decision
tree is grown for each phone, and states belonging to the
same phone are tied together. The questions used to generate
a top-down decision tree are the standard questions used in
HTK for TIMIT [13]. However, due to data limitations in
a small vocabulary task such a TIMIT, we explore using a
global decision tree to tie together phones. Specifically, a data-
driven set of 13 broad phonetic classes (BPCs) is specified, and
phones in the same BPC are tied together. After the clustering
learns a set of CD states, a set of GMMs is trained for each
state. The number of GMMs for each CD state is not fixed,
but is rather a function of the number of frames assigned to
that state. First, a set of low complexity GMMs are used to
model each state, and the Gaussian components are split and
grown in subsequent training iterations.

C. Speaker Adapted Acoustic Modeling

After a set of SI models are designed, they are used to
bootstrap the training of a set of SA models. In SA modeling,
first vocal tract length normalization (VTLN) is applied,
followed by a feature/model space adaptation. Both steps are



discussed below in more detail.
1) Vocal Tract Length Normalization: The length of a

speaker’s vocal tract is often a large factor in speaker vari-
ability. VTLN is a popular technique used to reduce this
variability. In this procedure, a scaling factor is learned for
each speaker that warps the speech from this speaker into a
canonical speaker with an average vocal tract length. The warp
is applied to the given set of acoustic features before they are
LDA transformed. After the warp, features are again spliced
together at each frame and an LDA transform is applied to
produce a set of 40 dimensional “warped” features.

2) Feature/Model Space Adaptation: After VTLN, the
“warped” features are adapted for each speaker using a
popular feature adaptation method known as feature space
Maximum Likelihood Linear Regression (fMLLR) [14]. Next,
using the adapted fMLLR features, the set of CD models are
adapted to each speaker using a technique known as Maximum
Likelihood Linear Regression (MLLR) [14]. For MLLR, an
eight-level binary regression tree is used, which is built by
successively splitting the nodes in a top-down manner using a
soft K-means algorithm.

D. Discriminative Training

Finally, the SA ML models are used to used to bootstrap
the training of a set of discriminatively trained features and
models. A variety of criterions can be used for discrimina-
tive training, including Minimum Phone Error (MPE) [8],
Maximum Mutual Information (MMI) and Boosted Maximum
Mutual Information (BMMI) [8]. In this paper, we explore
using the BMMI criterion to design a set of discriminatively
trained features. Then using these new fBMMI features, a
second discriminative step using the BMMI criterion is applied
to produce a set of discriminatively trained models. Finally,
MLLR transforms are applied to the discriminatively trained
models. Please note that the discriminative training step can
occur Section II-B after a set of CD ML models are trained.
However, discriminative training is usually done after SA
models are built (i.e., Section II-C), as we have observed this to
provide larger gains. To fairly compare our results on TIMIT
to other results, in this work we will explore discriminative
training after both the SI CD and SA CD stages.

III. EXPERIMENTS

The experiments in this paper are conducted on TIMIT
[6], a continuous speech recognition corpus recorded and
transcribed by Texas Instruments (TI) and the Massachusetts
Institute of Technology (MIT), respectively. It contains over
6,300 phonetically rich utterances read by 630 speakers. The
sentences from the corpus are divided into three sets. The
standard NIST training set consists of 3,696 sentences, used to
train various models used by the recognizer. The development
set is composed of 400 utterances and is used to train various
tuning parameters in the LVCSR system. The full test set
includes 944 utterances, while the core test set is a subset
of the full test set containing 192 utterances.

In accordance with standard experimentation on TIMIT
[15], the 61 phonetic labels are collapsed into a set of 48
for acoustic model training, ignoring the glottal stop [q].
A set of CI HMMs are trained using information from the
phonetic transcription. The output distribution of each CI state
is a 32-component diagonalized-covariance GMM. The CI
models are then used for bootstrapping the training of a set
of triphone CD HMMs. Due to the small vocabulary nature
of the task, a global-tree clustering algorithm described in
Section II-B is used, which allows for both states and phones
to be tied together. Totally the CD system has 2,400 states and
15,000 Gaussian components, which was chosen to optimize
performance on the development set. The number of training
iterations for each stage of the LVCSR process was also chosen
to optimize performance on the dev set and avoid overtraining.
A trigram language model is used for all experiments.

For testing purposes, the standard practice is to collapse the
48 trained labels into a smaller set of 39 labels [15]. A variety
of experiments are conducted to compare different stages
in our LVCSR process to results reported in the literature.
More specifically, we first compare the performance of the
IBM CI system, followed by an investigation of the behavior
of the IBM CD system. Third, we analyze the benefits to
discriminative training. Fourth, we explore the results when
feature and speaker adaptation are performed. All phonetic
error rates (PERs) are reported on the TIMIT core test set.

IV. RESULTS

In this section, we present our results on TIMIT for various
stages in the LVCSR framework.

A. Speaker Independent System

1) Context Independent System: Since many CD systems
are designed from bootstrapping CI models, we first explore
the behavior of our CI models. Table I compares the results
of various CI systems reported in the literature. As we can
see, the IBM system has the lowest PER of all systems. We
believe one major explanation for the improved performance
over other techniques is the use of robust features which are
mean and variance normalized and then LDA transformed. The
benefit of having good performance from CI models will be
discussed in more detail in the next section.

TABLE I
COMPARISON OF CI SYSTEMS ON TIMIT CORE TEST SET

System PER (%)
3-state CI HMM [13] 38.3

CI Segment-Based System[16] 35.9
7-state CI HMM [15] 35.9

IBM, 3-state CI HMM (this paper) 27.7

2) Context Dependent System - Maximum Likelihood
Trained: In order to train a set of CD models, models
can either be bootstrapped using CI models, or trained us-
ing phonetic transcriptions. Table II compares the results
on CD models for the two initial model procedures. The
table indicates that bootstrapping from CI models provides



a slight improvement over using phonetic transcriptions. The
benefit to bootstrapping from CI models is that the sequence
of states within a particular phone is determined from a
force alignment using the CI models, as opposed to having
state alignments across a particulary phone evenly split when
underlying phonetic transcripts are used. While subsequent
iterations of training CD models remove this constraint on
state alignments when using phonetic transcriptions, the poor
initial state alignment provided from using phonetic transcrip-
tions leads to a slightly higher PER after multiple training
iterations compared to when CD models are bootstrapped from
CI models, as shown by Table II.

TABLE II
IBM CD SYSTEMS ON TIMIT CORE TEST SET FOR DIFFERENT CI

BOOSTING METHODS

System PER (%)
IBM CD HMMs - trained from transcripts 25.9
IBM CD HMMs - bootstrapped from CI 25.6

Most LVCSR systems utilize a top-down decision tree
to tie states together. However, because of data limitations
on a small-scale task like TIMIT, we utilize a clustering
technique, discussed in Section II-B, where both states and
phones are grouped together at the phone class level. Table III
compares the results of the two clustering techniques. Tying
both states and phones, allowing better data sharing, offers a
0.7% improvement over tying just states.

TABLE III
IBM CD SYSTEMS ON TIMIT CORE TEST SET FOR DIFFERENT

CLUSTERING TECHNIQUES

System PER (%)
IBM CD HMMs - state tying 26.1

IBM CD HMMs - state+phone tying 25.6

To further analyze the performance of our CD system, Table
IV compares the results of various CD systems reported in the
literature. For fair comparison, please note that none of these
systems are discriminatively trained. The IBM CD system
offers a PER of 25.6%, which performs better than the HMM
systems listed in [13] and [17], and comparable to [10]. Further
improvements in PER were achieved in [18], though the total
acoustic model scoring was produced by combining scores
produced from separate HMM and HTM systems. In addition,
the results in [19] are achieved using a combination of feature
sets, rather than one feature as is done in the HMM systems.
Typically the use of specialized features has not been shown to
provide gains in LVCSR systems once additional techniques
such as speaker adaptation and discriminative training are
applied, as discussed in more detail in Section V. Therefore, it
would be interesting to see if the specialized features in [19]
are able to provide gains on top of the LVCSR recipe.

3) Context Dependent System - Discriminatively Trained:
Discriminatively trained acoustic models have been shown
to significantly improve error rates compared to ML trained
models, as these discriminative models have more power to

TABLE IV
COMPARISON OF CD ML TRAINED SYSTEMS ON TIMIT CORE TEST SET

System PER (%)
Triphone Discrete HMMs [15] 33.9
CD Segment-Based Model [16] 30.5

Triphone Continuous HMMs [17] 26.6
Generalized Triphone HMMs [13] 26.3

Recurrent Neural Nets [2] 26.1
Bayesian Triphone [10] 25.6

IBM CD HMMs (this paper) 25.6
Monophone HTMs [18] 24.8

CD Segment-Based Model, Heterogeneous Measurements [19] 24.4

better differentiate between confusable sounds, such as “ma”
and “na”. In this work, we use a large margin discrimina-
tive training approach using the Boosted Maximum Mutual
Information (BMMI) criterion [8]. We apply discriminative
training first to the feature space and then the model space, as
past research has indicated that method allows for significant
improvements in word error rate [8]. Please note that we
also explored the MPE criterion, though the objective function
appeared sensitive to the phone accuracy counts for phonetic
recognition and therefore little gain was found. Similar results
were also observed in [20].

Table V compares the results of variously discriminatively
trained systems on the TIMIT Core test set. The feature and
model space discriminative training are indicated as fBMMI
and BMMI respectively. Since it is somewhat difficult to com-
pare error rates for different discriminative training methods,
as the baseline ML error rates are different, we have also
provided the relative improvement provided by discriminative
training over ML for each method. Note that our discriminative
training methods provide a large relative improvement in PER
ML trained models and the best results of all discriminatively
trained methods from an absolute perspective.

TABLE V
COMPARISON OF CD DISCRIMINATIVELY TRAINED SYSTEMS ON TIMIT

CORE TEST SET

System PER (%) Rel. PER Red. from ML
MMI Training [7] 28.2 4.2

Large-Margin Training [11] 28.2 13.8
P-MCE [20] 27.0 6.5

IBM fBMMI (this paper) 22.7 11.3
IBM fBMMI+BMMI (this paper) 22.7 11.3

B. Speaker Adaptive System

In most LVCSR systems, after a set of SI CD models
are built, a set of SA models are trained. In this process,
first VTLN is applied to reduce speaker variability. Next,
the features are transformed for each speaker using fMLLR.
This series of steps is known as speaker adaptive training
(SAT). Next, feature and model space discriminative training is
applied on top of the SAT system, as typical LVCSR systems
have found better gains applying discriminative training after
SAT rather than before. Finally, the discriminatively trained
models are further adapted using MLLR. Table VI shows
the error rates for each stage of this process. The SAT stage



provides a 2.9% decrease in PER. Note that while the PER
increases from the VTL stage, we found better performance
using an fMLLR+VTL system (22.7% PER) rather than just
applying fMLLR (23.5% PER). Discriminative training allows
for a further 2.3% reduction in PER, and applying MLLR on
top of this provides a PER of 20.0%.

We would particularly like to comment on the error rate
of 20.0%, which to our knowledge is the lowest reported
error rate on the TIMIT task to date. In [12], human level
error rate of reading phonemes from speech spectrograms was
measured at approximately a 15.0%. We believe that our error
rate of 20% illustrates the benefits of an LVCSR recipe for
speech recognition, pushing speech research closer towards
the ultimate goal of reaching human-level performance.

TABLE VI
PER FOR VARIOUS LVCSR STAGES ON TIMIT CORE TEST SET

System PER (%)
SI System 25.6

+VTL 26.2
+fMLLR 22.7
+fBMMI 20.4
+BMMI 20.4
+MLLR 20.0

C. Error Analysis

The benefit of using TIMIT for LVCSR research is that
it allows for a detailed error analysis, which we present in
this section. First, we analyze the error rates for each stage
of the LVCSR recipe. Figure 2 shows the breakdown of
error rates (log-scale) for each stage of the process within 3
BPCs, namely vowels/semivowels, stops and closures/silence.
Here the error rate was calculated by counting the number
of insertions, deletions and substitutions that occur for all
phonemes within a particular BPC. A few points can be
observed from the figure. First, notice that the PER within
the stop class decreases more than 18% from the CI to BMMI
stage. Due to their short durational nature, stops are one of
the more difficult phonemes to model with an HMM. Most
of the reduction in error rate at each LVCSR stage is due
to improved modeling of stop consonants. Second, the PER
for the silence/closure class remains relatively constant for all
LVCSR stages. Similar trends were also observed for nasals,
strong fricatives and weak fricatives. Third, notice that the
PER within the vowel class increases approximately 10% from
the CI to CD stage. A closer analysis revealed that most error
rates were due to short-duration monothongs (i.e. [ah], [eh],
[ih]). This implies that when bootstrapping from CI models
at the CD level rather than using phonetic transcriptions as is
done at the CI level, determining the boundaries of these short-
duration phonemes during training can be difficult, leading
to poor modeling. This suggests that duration modeling may
improve results in the future.

Second, we analyze the substitution errors, which consti-
tutes the majority of the error rate, for the best performing
system at 20% PER. Figure 3 shows a confusion matrix of sub-
stitution errors for each phoneme, with phonemes within the
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Fig. 2. Error Rates (log-scale) within BPCs for various LVCSR Stages

same manner class also indicated. We find that approximately
80% of confusions occur within the same manner class, as was
similarly observed in [19]. A high number of confusions exists
because linguistic knowledge when recognizing a sequence of
phonemes as belonging to a word was not used in our system,
but was available in the experiment in [12].
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V. IMPLICATIONS FOR RESEARCH IN LVCSR
One benefit of using TIMIT for LVCSR research is that it

offers a phonetically rich and hand-labeled corpus, allowing
for a detailed error analysis. Because a reliable phonetic
transcript is often not available for LVCSR systems and the
number of parameters is very large, it is often hard to pinpoint
exact causes of errors. However, using the LVCSR recipe for
TIMIT allows for error analysis and potential improvements
for various aspects of LVCSR systems, for example improving
model topology and pronunciation generation.



Another benefit of TIMIT is that its provides a good
benchmark to quickly test solutions, which is often a problem
in most large vocabulary tasks. For example, parallelizing on
over 30 machines1, training more than 10 hours of TIMIT
training data for any stage in the LVCSR process took less
than one hour. In addition, parallelizing on over 30 machines,
decoding on the core test set took less than 5 minutes.

Oftentimes gains seen at the CD stage for different modeling
techniques do not always carry through once the SA and
discriminative training stages are applied, as these provide
most of the gains in LVCSR systems. For example, we have
observed that gains from various feature representations seen
at the CD stage on TIMIT do not consistently hold through
all stages. Table VII compares the results on the TIMIT for
various LVCSR stages using both MFCC and PLP features.
Notice that at the CD level, MFCC features provide better
performance than PLP features. However, at the SA stage, the
performance using both feature sets is the same. We believe
that if new research ideas, such as new acoustic features,
produce improvements on TIMIT using the entire LVCSR
recipe, than these ideas are able to withstand the discriminative
training and speaker adaptation stages, and will hopefully
result in gains on a large vocabulary task as well. This is one
of the major benefits for using TIMIT for LVCSR research.

TABLE VII
COMPARISON OF FEATURE CHOICES ON TIMIT CORE TEST SET

Stage MFCC-PER PLP-PER
CI 27.7 27.6

CD-ML 25.6 26.3
VTLN 26.2 24.1
fMLLR 22.7 22.7

VI. CONCLUSIONS

In this paper, we presented a framework for quickly testing
ideas for LVCSR systems on a small scale task. Specifically,
we analyzed the phonetic recognition performance of our IBM
LVCSR system on the TIMIT corpus. We showed that at the
speaker-independent level, our results were comparable to the
best previously published SI HMM results. In addition, uti-
lizing speaker adaptation and discriminating training provided
an error rate of 20%, the best results on the TIMIT task to
date, and moving us closer to human phonetic recognition
performance. We hope that this presented LVCSR “recipe” for
small scale tasks will provide a new framework for LVCSR
research. Specifically, if ideas can quickly be tested on TIMIT
corpus and gains are found using this recipe, these ideas can
subsequently be applied to an LVCSR system.

In the future, we would like to expand this work in a
number of directions. First, we are interested in seeing if new
features, such as articulatory features, will provide gains on
the TIMIT corpus using this LVCSR framework, and can thus
subsequently be applied to LVCSR systems. Secondly, many
LVCSR system lack the ability to process speech outwards
from reliable regions, something which humans take advantage

1Note that the machines used for training and testing were Intel Core Blade
Servers, with 3GHz Dual Core Processors.

of when processing speech. This method of processing speech
from reliable to unreliable regions, known as island-driven
search, is an area we are very interested in exploring in the
future. In addition, our analysis of within class confusions
hints that vowel performance in LVCSR can be improved by
merging together highly confusable vowels into one class (i.e.
[ih] and [ah]), which can aid in pronunciation generation by
reducing the number of pronunciations. In addition, due to
the high error rates within short and long vowels, voicing and
duration modeling in LVCSR might also improve error rates.
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