How Does Batch Normalization Help Optimization?

Shibani Santurkar*, Dimitris Tsipras*, Andrew Ilyas*, Aleksander Madry

Massachusetts Institute of Technology

Batch Normalization (BatchNorm)

 \Rightarrow Used almost by default in most architectures (7k+ citations)

How does BatchNorm help training?

Why does BatchNorm work?

Reducing Internal Covariate Shift (ICS) by normalizing activations

[When training deep models, the input distribution of each layer changes over time.] The change in the distributions of layers' inputs presents a problem because the layers need to continuously adapt to the new distribution.

[loffe, Szegedy 2015]

But: Is that really what happens?

A closer look at activation distributions

Layer inputs over training:

 \Rightarrow No apparent difference between models with and without BN

What if we introduce additional (artificial) ICS?

Specifically: We add **time-varying** noise (with **non-zero mean**) to the **outputs** of BatchNorm layers

Result: Increased instability, yet **no** apparent decrease in performance ⇒ Stability and performance seem to **not** be strongly connected

An optimization-based notion of ICS?

Idea: Measure change in gradient due to previous layer updates

We observe:

- \rightarrow In deep linear models there is essentially no such change altogether
- ightarrow In VGG networks, the changes caused by the updates to previous layers are similar for both standard and batch normalized networks

Roots of BatchNorm's success

Our approach: Examine the loss and gradient landscape

Specifically: Measure variation of loss and gradient over λ

 \Rightarrow Loss and gradients significantly better behaved for BatchNorm

Impact of adding a BatchNorm layer

We show:

- \Rightarrow Loss is **provably** more Lipschitz wrt y
- \Rightarrow Gradients wrt y are **provably** more predictive (and hence reliable)
- \Rightarrow Translates into similar **worst-case** improvements for W

Future directions

- → Better normalization schemes
 - (Normalizing by other norms offer similar improvements)
- \rightarrow Understand BatchNorm's impact on generalization
- → More broadly: Study the other elements of our DL toolkit in depth

Full version at arxiv:1805.11604