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Adversarial Examples: A Challenge for ML Systems

Why are ML models so sensitive to small perturbations?

Prevailing theme: They stem from bugs/aberrations

A Simple Experiment

Adversarial 
perturbation 
towards “cat” 

1. Make adversarial example towards the other class 
2. Relabel the image as the target class  
3. Train with new dataset but test on the original test set
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So: We train on a totally “mislabeled” dataset but
expect performance on a “correct” dataset

Training Data
Dataset

CIFAR-10 ImageNetR
Standard Dataset 95.3% 96.6%
“Mislabeled” Dataset 43.7% 64.4%

Result: nontrivial accuracy on the original task

The Robust Features Model

From “max accuracy” view: All features are good
If NRFs are (often) good: Models want to use them

Thus: Models use NRFs → adversarial examples

Adversarial example 
towards “cat” dog
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Robust features: dog 
Non-robust features: dog

Robust features: dog 
Non-robust features: cat

The Simple Experiment:  
A Second Look

New training set

cat

RFs misleading but NRFs suffice for generalization

Directly Manipulating Features
“Robust” Data: Standard training → robust models

Robust Optimization: Makes NRFs useless for learning
→ Need more data to learn from only RFs (cf. [Schmidt et al., 2018])
→ Trade-off between robustness/accuracy (cf. [Tsipras et al., 2019])

Implications

ML models do not work the way we expect them to

Adversarial examples: A "human-based" phenomenon?

Transfer Attacks: Models rely on similar NRFs
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Interpretability: May need to be enforced at training time

A Theoretical Framework
→ We consider (robust) MLE classification between Gaussians
→ Vulnerability is misalignment between the data geometry and
adversary’s (`2) geometry
→ Shows that robust optimization better aligns these geometries
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Robust parameters, = 1.0
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Robust parameters, = 10.0

Moving Forward
→ Do we want our models to rely on NRFs?
→ How should we think of interpretability?

Robustness as a goal beyond security/reliability?
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