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Adversarial Examples: A Challenge for ML Systems The Robust Features Model
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Why are ML models so sensitive to small perturbations? From “max accuracy” view: All features are good
Useless features the Useful features that are It NRFs are (Often) gOOd: Models want to use them
model is unreasonably responsible for good |

sensitive to classification Thus: Models use NRFs — adversarial examples
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Adversary only changes these features to
create an adversarial example
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Prevailing theme: They stem from bugs/aberrations rowards ‘el

Robust features: dog Robust features: dog
Non-robust features: dog Non-robust features: cat

A Simple Experiment RFs misleading but NRFs suffice for generalization
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Directly Manipulating Features

“Robust” Data: Standard training — robust models
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So: We train on a totally “mislabeled” dataset but
expect performance on a “correct” dataset
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o Dataset
Training Data
CIFAR-10 ImageNetp
Standard Dataset 95.3% 96.6% ” St Training — Adv Trelning Sti;f;‘%’;g Stjsrgzig:f
“Mislabeled” Dataset 43.7% 64.4%

Robust Optimization: Makes NRFs useless for learning
— Need more data to learn from only RFs (cf. [Schmidt et al., 2018])

Result: nontrivial accuracy on the original task — Trade-off between robustness/accuracy (cf. [Tsipras et al., 2019])
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Implications

ML models do not work the way we expect them to

Adversarial examples: A "human-based" phenomenon?

Transfer Attacks: Models rely on similar NRFs
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Interpretability: May need to be enforced at training time

A Theoretical Framework

— We consider (robust) MLE classification between Gaussians
— Vulnerability is misalignment between the data geometry and
adversary's (/,) geometry

— Shows that robust optimization better aligns these geometries

Maximum likelihood estimate 100 True Parameters (¢ = 0) 100 Robust parameters, e =1.0 100 Robust parameters, € =10.0
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Moving Forward

— Do we want our models to rely on NRFs?
— How should we think of interpretability?

Robustness as a goal beyond security /reliability?

Python Library
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