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Abstract. We study mechanism design where the objective is to maximize the residual surplus,

i.e., the total value of the outcome minus the payments charged to the agents, by truthful

mechanisms. The motivation comes from applications where the payments charged are not in

the form of actual monetary transfers, but take the form of wasted resources. We consider a

general mechanism design setting with m discrete outcomes and n multidimensional agents. We

present two randomized truthful mechanisms that extract an O(logm) fraction of the maximum

social surplus as residual surplus. The first mechanism achieves an O(logm)-approximation to

the social surplus, which is improved to an O(1)-approximation by the second mechanism. An

interesting feature of the second mechanism is that it optimizes over an appropriately restricted

space of probability distributions, thus achieving an efficient tradeoff between social surplus and

the total amount of payments charged to the agents.

1 Introduction

The extensive use of monetary transfers in Mechanism Design is due to the fact that so little

can be implemented truthfully in their absence (see e.g., [20]). On the other hand, if monetary

transfers are available (and their use is acceptable and feasible in the particular application),

the famous Vickrey-Clarke-Groves (VCG) mechanism succeeds in truthfully maximizing the

social surplus (a.k.a. the social welfare, that is the total value generated for the agents),

albeit with possibly very large monetary transfers from the agents to the mechanism. In many

typical mechanism design settings (e.g., mechanisms for public good allocation or auctions for

allocation of private goods), large monetary transfers are acceptable just because the revenue

of the mechanism is not lost and may be either redistributed among the agents (see e.g., [11,

12]) or invested in favor of the society.

However, there are mechanism design settings where monetary transfers are not acceptable

(due to practical or ethical reasons) and the payments required for truthful implementation

take the form of wasted resources, a.k.a. money burning, instead of actual monetary transfers.

One could think of the time wasted in “computational” challenges (e.g., captcha) or in waiting
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queues or lists (e.g., in hospitals [2] or in popular events or places), where each agent’s waiting

time serves as an implicit proof of how much the agent values the service (see also [13, 4] for

more examples in the same direction). Assuming that the value of the wasted resources is

measured in the same unit as the agent valuations, the natural objective in such settings is

to maximize the net gain of the agents. This is quantified by the social surplus minus the

payments charged to the agents and is usually referred to as the residual surplus (a.k.a. the

social utility).

Within the Algorithmic Game Theory community, the general idea of money burning and

residual surplus maximization by truthful mechanisms was first considered by Hartline and

Roughgarden [13]. They considered single-unit and k-unit (unit demand) auctions and pre-

sented a family of truthful prior-free mechanisms that guarantee at least a constant fraction

of the optimal (w.r.t. the residual surplus) Bayesian mechanism. Their mechanisms random-

ize among a VCG auction and a randomized posted price mechanism. To show that these

mechanisms achieve an O(1)-approximation to the residual surplus extracted by an optimal

Bayesian mechanism with complete knowledge of the agents’ distribution (under the i.i.d. as-

sumption), Hartline and Roughgarden used Myerson’s theorem and characterized the optimal

Bayesian mechanism for single-parameter agents. They also proved that if we compare the

residual surplus of a truthful mechanism to the maximum social surplus, the best possible

approximation guarantee for k-unit unit-demand auctions is Θ(1+log(n/k)), where n denotes

the number of agents participating in the auction.

1.1 Contribution and Techniques

In this work, we consider residual surplus maximization by truthful mechanisms in a gen-

eral mechanism design setting with m discrete outcomes and n multidimensional agents with

general nonnegative valuations over the outcomes. Due to the fact that residual surplus max-

imization is closely related to revenue maximization, establishing a characterization of the

optimal (w.r.t. the residual surplus) truthful Bayesian mechanism, as in [13], for multidi-

mensional agents is a daunting task and far beyond the scope of this work. Actually, such

a characterization not only would allow for a strong approximation guarantee (e.g., a con-

stant approximation ratio) for the residual surplus, but would also provide a much better

understanding of revenue-optimal mechanisms for multidimensional agents. Characterizing

revenue-optimal mechanisms, even in relatively simple domains with multiple goods, is an

important and extensively studied problem in mechanism design (see e.g., the surveys [22,

16] for some of the previous work on the problem). Therefore, instead of characterizing the

optimal Bayesian mechanism and comparing the residual surplus of our mechanisms against

the optimal residual surplus, we evaluate the performance of our mechanisms by comparing

their residual surplus against the maximum social surplus. In fact, we present mechanisms

that achieve nontrivial approximation guarantees w.r.t. both the residual surplus and the so-

cial surplus. Our main contribution is two randomized truthful mechanisms that approximate

residual surplus within a best possible factor of O(logm), thus extending [13, Theorem 5.2]

to general multidimensional domains.
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Probably the simplest candidate mechanisms for residual surplus maximization are the

random allocation, where each outcome is selected with probability 1/m, and the VCG mech-

anism. It is not hard to see that the approximation ratio of the random allocation for both

the residual surplus and the social surplus is m. Moreover, VCG cannot approximate the

residual surplus within a factor better than m even for the simple case of m uniform i.i.d.

single-minded agents (see Proposition 1). A natural way to approximate residual surplus is

through a careful tradeoff between VCG, which optimizes the social surplus, but may result

in a poor residual surplus due to high payments, and the random allocation on appropriately

selected subsets of outcomes, which is truthful without payments and thus, translates all the

social surplus into residual surplus.

Exploiting this intuition and building on the mechanism of [13, Theorem 5.2], we present

a randomized truthful mechanism that approximates both the residual surplus and the so-

cial surplus within a factor of O(logm) (Theorem 2). The idea of the mechanism is to draw

a random integer j from 0 to logm, select a random outcome i among the best (in total

value) 2j outcomes and apply VCG payments. Hartline and Roughgarden [13, Theorem 5.2]

proved that in k-unit unit-demand auctions with n agents, this mechanism is truthful and

that its social and residual surplus approximate the maximum social surplus within a factor

of Θ(1 + log(n/k)). The key step in our analysis is to show that in terms of residual surplus

maximization, the worst-case instances correspond to single item auctions (Lemma 1). Then,

the upper bound of [13, Theorem 5.2] carries over to our multidimensional setting. More-

over, since the single item auction is a special case of our setting, the lower bound of [13,

Proposition 5.1] implies that our approximation ratio is asymptotically tight.

For randomized mechanisms with m discrete possible outcomes, the space of all possible

random allocations coincides with the space of all possible probability distributions with

support size m. If a mechanism results in a particular random allocation over the outcomes,

then each outcome is chosen and implemented with the corresponding probability. Hence, in

general, one may regard the feasible region of a randomized mechanism as the m-dimensional

unit simplex, which contains all probability distributions with support size m.

Building on this understanding, our second mechanism optimizes the social surplus (using

VCG) over a carefully defined subspace of the m-dimensional unit simplex. Intuitively, if we

optimized over the unit simplex, we could achieve an optimal social surplus, but with a poor

residual surplus, due to the high payments when the two best outcomes are close in total value.

So, we define a subspace that is slightly curved close to the vertices of the m-dimensional unit

simplex (see also Figure 1), thus achieving a significant decrease in the payments if the best

outcomes are close in total value. Due to this fact, our second mechanism is partial, in the

sense that with probability 1 − ε, it may not implement any outcome. For any ε > 0, the

approximation ratio is 1 + ε for the social surplus and O( (1+ε)
2

ε logm) for the residual surplus

(Theorem 3). Hence, this mechanism achieves an essentially best possible approximation ratio

for the residual surplus and a constant approximation to the social surplus, significantly

improving on our first mechanism. The main idea behind this mechanism is that by restricting

the solution space appropriately, we can achieve a tradeoff between the social surplus and the

total amount of payments charged to the agents. Moreover, for mechanisms that achieve an
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almost optimal social surplus, the payments required for truthfulness decrease significantly

faster than the resulting social surplus. We believe that such mechanisms, which are based

on carefully chosen restricted subspaces and provide smooth tradeoffs between approximation

ratio and payments, are of independent interest and may find other applications in mechanism

design settings with restricted payments.

Our mechanisms run in time polynomial in the total number of outcomes m and in the

number of agents n. In domains that allow for succinct input representation (e.g., Combi-

natorial Auctions, Combinatorial Public Projects), m is usually exponential in the size of

the input. This is not surprising, since our approximation guarantees are significantly bet-

ter than known lower bounds on the polynomial-time approximability of several NP-hard

optimization problems. In certain domains, we can combine our mechanisms with existing

Maximal-in-Range mechanisms so that the combined mechanism runs in time polynomial in

the number of agents n and in the cardinality of the ground set on which the set of out-

comes is defined (e.g., this coincides with the number of items in Combinatorial Auctions

and in Combinatorial Public Projects), even though the number of outcomes m may be ex-

ponential in these parameters. For subadditive Combinatorial Public Projects, for example,

we can use the Maximal-in-Range mechanism of [23, Section 3.2] and obtain a randomized

polynomial-time truthful mechanism with O(min{k,
√
u})-approximation to the social sur-

plus and O(min{k,
√
u} log u)-approximation to the residual surplus, where u is the number

of items and k is the size of the project.

1.2 Related Work

There is much work on (mostly polynomial-time) truthful mechanisms with monetary trans-

fers that seek to maximize (exactly or approximately) the social surplus. In this general

agenda, our work is closest in spirit to mechanisms with frugal payments (see e.g., [1, 7]).

Moreover, our partial allocation mechanism was inspired by the work of Cole, Gkatzelis and

Goel [5], where they present a truthful partial allocation mechanism that does not resort to

monetary transfers and achieves an 1/e-approximate proportionally fair division of divisible

items by wasting roughly an 1/e fraction of each agent’s value in the optimal allocation.

Interestingly, the wasted item value for each agent in [5] is equal to the corresponding VCG

payment. Thus, a partial allocation of items is used to simulate VCG payments and the mecha-

nism becomes truthful without monetary transfers. This, in turn, implies that the entire social

surplus of the mechanism is translated into residual surplus. In our second mechanism, we use

the idea of partial allocations to decrease the total amount of payments required for truthful-

ness, so that the residual surplus is within a logarithmic factor of the mechanism’s (and the

optimal) social surplus.

Prior to [13], Chakravarty and Kaplan [4] characterized the Bayesian mechanism of max-

imum residual surplus in multi-unit (unit demand) auctions. More recently, Braverman et al.

[2] considered residual surplus optimization in health care service allocation, but they focused

on the complexity of computing efficient equilibrium allocations, instead of approximately

truthful mechanisms.
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An orthogonal direction is that of revenue redistribution (see e.g, [3, 11, 12] and the ref-

erences therein). Although most of the literature focuses on maximizing the amount of re-

distributed VCG payments, some positive results in this direction concern residual surplus

optimization relaxing the requirement for social surplus maximization (see e.g., [12]). Our

viewpoint and results are incomparable, both technically and conceptually, to those in the

area of redistribution mechanisms. A crucial difference is that in any efficient redistribution

mechanism, certain agents should receive payments (this is unavoidable if one insists on ef-

ficiency and individual rationality, see e.g., [15]). In our setting, where payments are in the

form of wasted social surplus, such redistribution is infeasible.

1.3 Organization

We start, in Section 2, with formally introducing the notation, the model, and some well known

technical facts. In Section 3, we show that VCG cannot achieve any nontrivial approximation

ratio to the residual surplus, even in a very simple setting, and explain why the best possible

approximation ratio to the residual surplus is at least logarithmic in the number of outcomes.

In Section 4, we present a randomized truthful mechanism that approximates both the residual

surplus and the social surplus within a logarithmic factor. In Section 5, we present a truthful

randomized mechanism, based on the idea of smooth partial allocations, which achieves a

logarithmic approximation ratio to the residual surplus and a constant approximation ratio

to the social surplus. We conclude with some discussion and some directions for further

research in Section 6. An extended abstract of this work appears in [9].

2 Notation and Preliminaries

For any integer m, we let [m] := {1, . . . ,m}. We denote the j-th coordinate of a vector v by

vj . For a vector v = (v1, . . . , vm) and an index i ∈ [m], v−i denotes v without coordinate

i. For a vector v ∈ Rm and some ` ≥ 1, v` := (v`1, . . . , v
`
m) denotes the coordinate-wise `-th

power of v and ‖v‖` := (
∑m

j=1 v
`
j)

1/` is the `-norm of v. For convenience, we let |v| := ‖v‖1
denote the 1-norm and ‖v‖∞ := maxj∈[m]{vj} denote the infinity norm of v.

2.1 The Setting

We consider a general mechanism design setting with a finite set of possible outcomes O.

We denote the number of outcomes |O| by m. There is a set of n strategic agents, each

with a private non-negative value for every outcome. The valuation of each agent i is given

by a vector vi ∈ Rm+ , where vij is the valuation of agent i for outcome j. We refer to the

vector of all valuations v = (v1, . . . ,vn) as a valuation profile. For a valuation profile v,

w(v) := v1 + . . . + vn is the vector with the total value (or simply, the weight) of each

outcome. We usually write w, instead of w(v), and w−i, instead of w(v−i), when v is clear

from the context. For a valuation profile v and valuation z, (v−i, z) denotes the profile where

vector vi is replaced by vector z.
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2.2 Allocation Rules and Mechanisms

For a finite set S, ∆(S) denotes the unit simplex over S, that is the set of vectors in R|S|+ with

non-negative coordinates summing up to 1. Throughout this work, ∆(S) should be understood

as the set of all probability distributions over S. A (randomized) allocation rule is a function

f : (Rm+ )n → ∆(O), mapping valuation profiles to m-dimensional probability vectors over the

outcomes. Then fj(v) denotes the probability that outcome j is chosen and implemented by

the randomized allocation rule f on valuation profile v. Hence, outcome j is selected with

probability equal to the j-th coordinate of the m-dimensional probability vector output by

the randomized allocation rule f . This notation is very convenient since it allows us to think

of randomized allocation rules as m-dimensional vectors in the unit simplex ∆(O) over the set

of outcomes O. Then, several quantities of interest, such as the expected utility, the expected

social surplus, the payments and the expected residual surplus can be expressed simply as

the dot-product of two m-dimensional vectors.

Specifically, the expected value of an agent i is equal to vi · f(v). Throughout this work,

we consider allocation rules that are strongly anonymous, in the sense that f(v) depends only

on the total value w(v) of the outcomes. Hence, we sometimes write the allocation rules as

functions of the weight vector w(v) (or simply, of w, when v is clear from the context).

A payment rule is a function p : (Rm+ )n → Rn mapping valuation profiles to a payment

for each agent. A mechanism is a pair M = (f, p) which on a valuation profile v, outputs a

probability vector f(v) over the outcomes and charges each agent i an amount of pi(v).

The expected utility of agent i on a valuation profile v under mechanism M = (f, p) is

ui(v) := vi · f(v)− pi(v) .

We assume that each agent i aims to maximize his expected utility ui.

We require that our mechanisms are truthful and individually rational in expectation.

A randomized mechanism M = (f, p) is truthful (in expectation) if for every agent i, any

valuation profile v and any possible valuation v′i of agent i,

vi · f(v)− pi(v) ≥ vi · f(v−i,v
′
i)− pi(v−i,v′i) ,

For brevity, we usually write that a randomized mechanism is truthful, with the understanding

that this means that the mechanism is truthful in expectation (unless stated otherwise).

A randomized mechanismM = (f, p) is individually rational (in expectation) if for every

agent i and any valuation profile v,

vi · f(v)− pi(v) ≥ 0 .

2.3 Objectives and Approximation

Let M = (f, p) be some mechanism and let v be any valuation profile. We denote the total

amount of payments of M on input v by

P (v) :=
∑
i

pi(v).
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In this work, we are interested in maximizing the social surplus and the residual surplus. The

social surplus of M on v is

S(v) :=
∑
i

vi · f(v) = w · f(v) .

The residual surplus of M on v is

R(v) := S(v)− P (v) =
∑
i

ui(v) .

The social surplus and residual surplus of any mechanism on valuation profile v is at most

‖w(v)‖∞. We say that a mechanism M is ρ-approximate for the social surplus (resp. the

residual surplus) if for any valuation profile v, S(v) ≥ ‖w(v)‖∞/ρ (resp. R(v) ≥ ‖w(v)‖∞/ρ).

We say that a mechanism M is (ρ1, ρ2)-approximate for the social surplus and the residual

surplus if M is ρ1-approximate for the social surplus and ρ2-approximate for the residual

surplus. For brevity, we usually write simply thatM is (ρ1, ρ2)-approximate, without explicitly

referring to the social surplus and to the residual surplus.

2.4 Maximal-in-Distributional-Range Mechanisms

We mostly consider randomized allocation rules f such that there is a subset S ⊆ ∆(O) of

probability distributions over O (a.k.a. the range of f) over which f optimizes on any input

v. Namely, for any valuation profile v, f(v) = arg maxs∈S s ·w. Then, any mechanism M =

(f, p), which is based on such a randomized allocation rule f and uses VCG payments pi(v) =

w−i · f(v−i) −w−i · f(v), is called a Maximal-in-Distributional-Range (MIDR) mechanism.

From the analysis of the VCG mechanism (see e.g., [20]), we know that MIDR mechanisms

are truthful in expectation and individually rational in expectation. Mechanism 1, presented

in Section 4, is a random selection of the MIDR mechanisms introduced in Definition 1.

The mechanism presented in Section 5 is MIDR. These mechanisms achieve truthfulness in

expectation through the use of VCG payments.

We observe that using a simple payment transformation described in [8], an MIDR

mechanism (with VCG payments) can become truthful in expectation and individually ra-

tional in the universal sense. Specifically, let us consider some agent i and let pi(v) =

w−i · f(v−i) − w−i · f(v) denote the VCG payment for agent i on some valuation profile

v. When outcome j is selected, we charge agent i with pij = pi(v)
vi·f(v) vij . It is not hard to verify

that the expected payments do not change, and thus, truthfulness is not affected. Moreover,

since pi(v) ≤ vi · f(v), because w−i · f(v−i) ≤ w−i · f(v) + vi · f(v) = w · f(v), the mecha-

nism is now individually rational. Hence, we no longer distinguish between mechanisms that

are individually rational in expectation and mechanisms that are individually rational in the

universal sense.

3 A Lower Bound on the Approximability of Residual Surplus

In social surplus maximization, monetary transfers can be used freely to truthfully elicit the

agents’ preferences. In residual surplus maximization, on the other hand, the transfers needed
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for the truthful implementation of some mechanisms may comprise a significant portion of

the social surplus, thus prohibiting any non-trivial approximation guarantees.

To obtain a lower bound on the approximability of the residual surplus by truthful mech-

anisms, we observe that the single-item auction can be easily cast as a special case of our

general mechanism design setting. To show this, we restrict our attention to m outcomes and

m agents, with each agent i having a value vi ≥ 0 for outcome i and a value of 0 for each of

the remaining outcomes. For brevity, we call such agents single minded. Hence, it suffices to

show a lower bound on the approximability of the residual surplus by truthful mechanisms

for the special case of single-minded agents. However, even in this special case, such a lower

bound cannot be simply based on a single valuation profile where every mechanism would

perform poorly. The reason is that the trivial dictatorial mechanism can output the optimal

allocation on any fixed valuation profile and charge zero payments. We therefore need to eval-

uate mechanisms over a large collection of valuation profiles. To this end, we use Myerson’s

characterization of truthful single-item auctions.

Theorem 1 (Myerson [19]). Let M = (f, p) be any truthful mechanism and let v any

valuation profile, where each agent i has some value vi > 0 only for outcome i and vi is drawn

independently from a probability distribution Di with cumulative distribution function Di(v)

and probability density function di(v). Then,

E[P (v)] = E[φ · f(v)] , with φi = vi −
1−Di(vi)

di(vi)
.

Theorem 1 determines the expected amount of payments charged by any truthful alloca-

tion rule. This, in turn, determines the expected residual surplus in terms of the allocation

rule. By plugging in an appropriate distribution, we come up with lower bounds on the residual

surplus of truthful mechanisms.

Proposition 1. The Vickrey Auction cannot approximate residual surplus within a factor

better than m.

Proof. Assume that the agent values are drawn from the uniform distribution over [0, 1].

For the uniform distribution φi = 2vi − 1. By direct calculations, we obtain that E[R(v)] =

1−E[‖w(v)‖∞]. The expected maximum value of m independent and identically distributed

(i.i.d.) uniform random variables in [0, 1] is m
m+1 . Therefore, E[R(v)] = E[‖w(v)‖∞]/m. By

the probabilistic method, there exists a profile v for which R(v) ≤ ‖w(v)‖∞/m . ut

The proof of Proposition 1 shows that the VCG mechanism for the natural case of uniform

i.i.d. single-minded agents approximates the residual surplus within a factor no better than

m. Namely, VCG on this simple class of instances achieves an approximation ratio no better

than the worst case approximation ratio of the simple random allocation. The reason for the

poor performance of VCG on these instances is that the expectation of the second largest

value of m i.i.d. uniform random variables in [0, 1] is m−1
m+1 , i.e., very close to their expected

maximum value. So, the expected payment is very large and the expected residual surplus is

only 1/(m + 1). On the other hand, the random allocation on this simple class of instances
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achieves an approximation ratio of roughly 2 for both the social surplus and the residual

surplus, since the expected value of any agent is 1/2, while the maximum value is less than

1 and no payments are required. However, the standard trick of combining VCG and the

random allocation fails to achieve a good approximation ratio to the residual surplus on

simple instances with single-minded agents3.

More generally, the reason that VCG fails to achieve a good approximation ratio is that

aiming to maximize the social surplus, it has to charge every agent his critical value. This

results in a large total amount of payments and does not allow the high social surplus of

the VCG mechanism to be translated into an almost as high residual surplus. We therefore

need to come up with mechanisms that instead of maximizing the social surplus, employ

suboptimal allocations to reduce payments, while preserving a significant amount of social

surplus. Our goal is to achieve the best possible worst-case guarantee for residual surplus

maximization. A lower bound on the best approximation ratio in our setting can be obtained

from [13, Proposition 5.1]. Since the proof is simple and informative, we include it here for

completeness.

Proposition 2 (Hartline and Roughgarden [13]). No truthful mechanism can approxi-

mate residual surplus within a factor of o(logm).

Proof. We consider m agents drawn from the exponential distribution. Then, in Theorem 1,

we have that di(v) = e−v, Di(v) = 1− e−v and φi = vi − 1 for all agents i. Hence, we obtain

that

E[P (v)] = E[w · f(v)− |f(v)|] = E[S(v)− 1] .

By linearity of expectation, E[R(v)] = 1. It is not hard to verify that the expected maximum

value of m i.i.d. exponential random variables is equal to Hm, where Hm denotes the m-th

harmonic number. Then

E[R(v)] = E
[
‖w‖∞
Hm

]
.

Therefore, by the probabilistic method, there is a valuation profile v for which the approxi-

mation ratio for the residual surplus is at least logarithmic. ut

4 Achieving Best-Possible Residual Surplus Guarantees

In this section, we present a randomized truthful mechanism that approximates both the social

surplus and the residual surplus within a logarithmic factor for multidimensional agents. Our

mechanism builds on the mechanism of [13, Theorem 5.2], which is truthful and approximates

both the social surplus and the residual surplus of a k-unit unit-demand auction with m

agents within a factor of Θ(1 + log(m/k)). For single-item auctions, the mechanism restricts

3 For example, we consider an instance with m agents and m outcomes, where each agent i has some value

vi > 0 only for outcome i and v1 = 1, v2 = 1 − ε and v3 = · · · = vm = ε, for any small ε > 0. Then,

the residual surplus of VCG is ε and the expected residual surplus of the random allocation is ε + 2−ε
m

.

Since the optimal social surplus is 1, any randomization between VCG and the random allocation yields an

approximation ratio of Ω(1/ε).
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Mechanism 1 An (O(logm), O(logm))-approximate mechanism.

Choose j uniformly at random from {0, 1, 2, . . . , logm} and let k ← 2j

Output the probability vector Topk(v) over outcomes

Charge each agent i with pki (v) = w−i · Topk(v−i)−w−i · Topk(v)

the allocation to the agents with the 2j highest bids, for an integer j, 0 ≤ j ≤ logm, selected

uniformly at random. Then, an agent selected randomly among them gets the item and is

charged with the (2j + 1)-th highest bid (this is the critical bid for this group of agents, the

payment is 0 if j = logm). Intuitively, the mechanism performs well because for at least one

integer j, the difference between the 2j−1-th highest bid and the (2j + 1)-th highest bid is

within a constant factor of the maximum bid, which is equal to the maximum social surplus

(see also the proof of Theorem 2).

Next, we extend this mechanism and its analysis to the general setting of m discrete out-

comes and n multidimensional agents. We start with defining the following class of allocation

rules, which generalize the allocation rules used in the mechanism of [13, Theorem 5.2].

Definition 1. For some integer k ∈ [m], the Topk allocation rule on input v, orders outcomes

in non-increasing order of their weight, w1 ≥ . . . ≥ wm (breaking ties lexicographically) and

assigns probability 1/k to the first k outcomes. Formally, Topk(v) = arg maxs∈Sk
s ·w, where

the range Sk is the set of all vectors in ∆(O) with k coordinates equal to 1/k and m − k

coordinates equal to 0 (in case of ties, the lexicographically smaller vector s is returned).

By definition, the class of Topk allocation rules maximizes the social surplus over the

range Sk ⊆ ∆(O) consisting of all probability vectors with exactly k coordinates equal to 1/k.

Therefore, they can be turned into truthful and individually rational mechanisms using the

VCG payment scheme, as explained in Section 2.4. We denote mechanisms of this family by

Mk = (Topk, p
k). Each such mechanism achieves a different approximation guarantee, as a

function of k, with respect to the social surplus and to the residual surplus. By randomiz-

ing over k, we can combine these guarantees, while maintaining truthfulness and individual

rationality. In Mechanism 1, we use this approach to achieve a best possible approximation

ratio for the residual surplus by randomizing over exponentially increasing values of k (as in

the mechanism of [13, Theorem 5.2]). For simplicity we assume that m is a power of 2 (as we

can always pad valuation vectors vi with zero value outcomes).

Mechanism 1 is a randomization over an appropriate selection of Mk mechanisms, where

the indices k are independent of the input v. As a result, Mechanism 1 is truthful and

individually rational. In order to quantify its efficiency w.r.t. the residual surplus, we first

show that the worst-case instances for Mechanism 1 are those corresponding to the simple

single-item auction, where there is a single agent with positive valuation for each outcome.

Lemma 1. For any valuation profile v = (v1, . . . ,vn), the residual surplus of Mechanism 1

on v is no less than its residual surplus on the valuation profile y = (y1, . . . ,ym), where each

yi = (0, . . . , wi(v), . . . , 0) is the valuation of a single-minded agent i with yii = wi(v) for

outcome i and yij = 0 for any other outcome i 6= j.
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Before we proceed with the formal proof of Lemma 1, let us provide the intuition behind

the proof and describe its main steps. Since Mechanism 1 is a randomization over mechanisms

Mk, it suffices to show the lemma for each mechanismMk separately. The proof of the lemma

consists of two key steps:

– First, we show that if an agent has positive value for multiple outcomes, splitting this

agent into single-minded agents (one for each outcome) can only decrease the residual

surplus of the mechanism. This holds since the “competition” between agents increases,

and as a result, so do the payments, thus decreasing the residual surplus. We note here

that the social surplus is not affected, since the mechanismMk is strongly anonymous and

depends only on the weight of each outcome, which is not affected by this transformation.

By induction, we transform any valuation profile to one with single-minded agents without

increasing the residual surplus.

– Next, we show that if there are multiple single-minded agents for the same outcome, joining

their values into a single agent can only decrease the residual surplus. The reason is that

the value that the agents should “prove” (in the form of payments) to the mechanism is

initially split among them, and can only increase as they aggregate their values. A single

agent with high value is more critical for the auction than many agents with small values.

Again by induction we can transform any valuation profile with single-minded agents

to a valuation profile with one single-minded agent per outcome, without increasing the

residual surplus.

Proof. We proceed to formally state and prove the two claims above. We fix an integer k ∈ [m]

and consider the corresponding mechanismMk = (Topk, p
k). For simplicity of notation, we let

f denote the allocation of Topk and let p denote the corresponding VCG payments throughout

the proof. Let v be an arbitrary valuation profile and let i be any agent. The utility of agent

i under mechanism Mk is

ui(v) = vi · f(v)− pi(v)

= vi · f(v)− (w−i · f(v−i)−w−i · f(v))

= w · f(v)−w−i · f(v−i) . (1)

If agent i is not single-minded, there are multiple coordinates of vi that are strictly positive,

let j be one of them. We split vi into y1 = vijej and y2 = vi − y1, where ej the unit vector

in the direction j. We denote these two agents with indices i1 and i2 respectively. Clearly,

splitting agent i into agents i1 and i2 does not affect the weight vector w of the outcomes

(and thus the allocation of the mechanism). Moreover, for any agent different from i, splitting

vi into y1 and y2 does not change the weight vector w−i of the other agents. Therefore, the

utility of any agent different from i does not change. Hence, for the first claim, it suffices

to show that the combined utility of agents i1 and i2 is no more than the utility of agent i.

Formally, it suffices to show that

ui(v) ≥ ui1(v−i,y1,y2) + ui2(v−i,y1,y2) . (2)

11



We first observe that

ui2(v−i,y1,y2) = w · f(v)−w(v−i,y1) · f(v−i,y1)

= w · f(v)−w−i · f(v−i)− (w(v−i,y1) · f(v−i,y1)−w−i · f(v−i))

= ui(v)− ui1(v−i,y1) .

Then, we can rewrite (2) as

ui1(v−i,y1,y2) ≤ ui1(v−i,y1) .

So, it suffices to show that the utility of a single-minded agent does not decrease when the

total value of the competing outcomes decreases.

Since we break ties between outcomes in a consistent (lexicographic) way, tie-breaking is

irrelevant to the analysis of the mechanism. Hence, we assume, for simplicity, that no ties

occur. The mechanism allocates probability 1/k to the top k outcomes and 0 to the rest of

them. Let wcrit denote the minimum weight amongst the outcomes with positive probability

on valuation profile v−i. Then, applying (1) for the utility of the single-minded agent i1, we

obtain that

ui1(v−i,y1) =


|y1|/k if wj(v−i) ≥ wcrit,
0 if wj(v−i,y1) < wcrit,

(|y1|+wj(v−i)− wcrit)/k if wj(v−i,y1) ≥ wcrit > wj(v−i).

(3)

Since fj(v−i,y1) = 1/k if wj(v−i,y1) ≥ wcrit, and fj(v−i,y1) = 0 otherwise, we can rewrite

(3) as

ui1(v−i,y1) = fj(v−i,y1)(|y1|+ min{wj(v−i)− wcrit, 0}) . (4)

Let now w′crit denote the minimum weight of an outcome with positive probability on

valuation profile (v−i,y2). Repeating the analysis above with the valuation profile (v−i,y2)

in the place of the valuation profile v−i, we show that

ui1(v−i,y1,y2) = fj(v−i,y1,y2)(|y1|+ min{wj(v−i,y2)− w′crit, 0}) . (5)

By construction wj(y2) = 0, implying that wj(v−i,y2) = wj(v−i). Also, we have that

w′crit ≥ wcrit, since valuation y2 is non-negative and the mechanism is monotone. Therefore,

min{wj(v−i,y2)− w′crit, 0} ≤ min{wj(v−i)− wcrit, 0} .

Moreover, since wj(v−i,y1) = wj(v−i,y2,y1) and the total weight of any outcome in w(v−i)

does not exceed the total weight of the corresponding outcome in w(v−i,y2), we obtain that

fj(v−i,y1,y2) ≤ fj(v−i,y1) .

Multiplying these inequalities (since f is non-negative), and using (4) and (5), we get that

ui1(v−i,y1,y2) ≤ ui1(v−i,y1).

12



Hence, we have showed that by splitting the valuation vi of agent i into an agent i2
with valuation y2 and a single-minded agent i1 with valuation y1, the residual surplus of

the mechanism can only decrease. Applying the claim inductively, we can replace every agent

with a set of single-minded agents, without increasing the residual surplus of the mechanism.

We now proceed to show that by joining the single-minded agents of an outcome can only

decrease the residual surplus. The technical details are quite similar to the first part of the

proof. Let v some valuation profile containing only single-minded agents. For some outcome

j, assume there exist two agents with positive value for it, va and vb. We combine their

valuations into a new valuation vc = va + vb. Denoting by v−ab the profile without them, we

need to show that

uc(v−ab,vc) ≤ ua(v) + ub(v) ,

which, by calculations similar to those after (2), is equivalent to

ua(v−ab,va) ≤ ua(v−ab,va,vb) .

Thus, it suffices to prove that the utility of a single-minded agent increases when there are

more single-minded agents bidding on the same outcome. Similarly to the previous part,

let wcrit denote the mimimum weight of an outcome allocated positive probability on the

valuation profile v−ab and w′crit the same quantity on the valuation profile (v−ab,vb). Then,

in parallel to (4),

ua(v−ab,va) = fj(v−ab,va)(|va|+ min{wj(v−ab)− wcrit, 0}) ,

ua(v−ab,va,vb) = fj(v−ab,va,vb)(|va|+ min{wj(v−ab,vb)− w′crit, 0}) .

Since wi(vb) = 0 for i 6= j and wj(vb) ≥ 0,

fj(v−ab,va) ≤ fj(v−ab,va,vb) and wj(v−ab) ≤ wj(v−ab,vb) .

Multiplying the inequalities (since f is non-negative) and substituting, we conclude that

ua(v−ab,va) ≤ ua(v−ab,va,vb) .

ut

Using Lemma 1, we can lower bound the performance of Mechanism 1 in the general case,

by its performance in the case of the single-item auction.

Theorem 2. Mechanism 1 is truthful, individually rational and (O(logm), O(logm))-

approximate for the social surplus and the residual surplus.

Proof. We first observe that the transformation described in the proof of Lemma 1 does not

affect the social surplus achieved by Topk allocation rules. The reason is that Topk allocations

are strongly anonymous, i.e., the resulting probability vector over outcomes only depends on

the total value w of the outcomes. It is not hard to verify that the weight vector w(v) remains

unchanged during the agent splitting and the agent joining operations applied to v in the
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proof of Lemma 1. Therefore, applying Lemma 1 does not affect the social surplus achieved

by Mechanism 1.

We can now use Lemma 1 and the analysis of [13, Theorem 5.2] and show that Mechanism 1

is (O(logm), O(logm))-approximate for the social surplus and for the residual surplus. For

completeness, we provide a formal proof of the approximation ratio below.

Claim (Hartline and Roughgarden [13, Theorem 5.2]). In the special case of single-item auc-

tions, Mechanism 1 is (2(logm+ 1), 2(logm+ 1))-approximate for the social surplus and the

residual surplus.

Proof (of the Claim). For single-item auctions, the valuation of each agent i consists of a

single number vi ≥ 0. Suppose that the agents are ordered in nonincreasing order of values,

that is v1 ≥ v2 ≥ . . . ≥ vn. The VCG payments of Topk are identical for the top k agents and

equal to vk+1. Therefore, the expected residual surplus of mechanism Mk is

Rk(v) =

k∑
i=1

(vi − vk+1)/k .

For k = 1, R1(v) = v1 − v2 ≥ (v1 − v2)/2. For k > 1, setting un+1 = 0, we get that

Rk(v) ≥ (vk/2+1 − vk+1)/2 .

Each mechanism Mk is invoked with probability 1
1+logm . So, we obtain that

R(v) =
1

1 + logm

∑
k

(vk/2+1 − vk+1)/2 =
v1

2(1 + logm)
,

where v1 is the maximum social surplus (and the maximum residual surplus) that a mechanism

could achieve. ut

Lemma 1 shows that the single-item auction is the worst case instance for Mechanism 1

w.r.t. the residual surplus. Thus, the analysis of this case implies an upper bound on the

approximation ratio of Mechanism 1. In addition to the fact that the expected social surplus

of Mechanism 1 is not affected by Lemma 1 and thus, the approximation ratio for the social

surplus is at most 2(logm + 1) by the claim above, we observe that a slightly stronger ap-

proximation ratio for the social surplus follows directly from the fact that the outcome with

the maximum total value is chosen with probability 1/(1 + logm). ut

The analysis above is essentially tight, as we can see by the case where v = (v1, 0, . . . , 0)

and each agent i ∈ [n] is a single-minded agent with value v1/n for outcome 1. Then, the

resulting social surplus and residual surplus are

1

1 + logm

log2m∑
i=0

‖w‖∞
2i

 ≤ 2‖w‖∞
1 + logm

.

Hence, the approximation ratio of O(logm) is tight for both the social surplus and the residual

surplus.
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5 Optimizing Residual Surplus without Sacrificing Social Surplus

The mechanism presented in Section 4 approximates residual surplus within a logarithmic

factor, which is best possible. However, it does so by wasting a large portion of the optimal

social surplus, since the approximation ratio for the social surplus is also logarithmic. The

impossibility result of Proposition 2 does not imply that a better approximation ratio for social

surplus is impossible. In this section, we present an MIDR mechanism that approximates both

social and residual surplus within optimal factors simultaneously.

Theorem 3. For any ε > 0, there is a truthful and individually rational mechanism M that

is (1 + ε, (1+ε)
2

ε lnm)-approximate for the social surplus and the residual surplus.

Remark 1. We should highlight that one can obtain the guarantees of Theorem 3 simply by

randomizing, with some constant probability, between the VCG mechanism and Mechanism 1.

Nevertheless, the mechanism of Theorem 3 follows from a more principled approach, which

yields smooth allocation rules (in the analytical sense, i.e., the probability distribution of the

mechanism is a smooth function of any component of the input), and may be of independent

interest.

5.1 The Mechanism

Similarly to the previous mechanism, we need a careful tradeoff between the VCG mechanism

and suboptimal allocations close to the uniform mechanism. We note that the VCG mechanism

achieves an optimal social surplus by selecting the best outcome in the unit simplex ∆(O).

Here, we optimize on a surface that is close to the unit simplex, but slightly curved towards

the pure outcomes, in order to reduce the payments when the best outcomes are close in

weight. To this end, we define a mechanism by optimizing on the following family of convex

subsets of ∆(O):

Sk =

{
s ∈ Rm+

∣∣ ‖s‖k ≤ 1

m1−1/k

}
. (6)

For any k ≥ 1 or for k =∞, we define the allocation rule fk(v) = arg maxs∈Sk
s ·w(v). Since

this allocation rule optimizes over the convex set Sk, it can be combined with VCG payments

and give an MIDR mechanism that is truthful in expectation and individually rational, as

explained in Section 2.4. So, from now on, we do not distinguish between the allocation rule

fk and the corresponding mechanism.

The reason that VCG cannot provide non-trivial approximation guarantees for residual

welfare maximization is that if the weight vector for, say, two outcomes is (1, 1 + ε), the

mechanism outputs the second outcome instead of a mixture of both. Such a mechanism

requires high payments in order to truthfully distinguish between the outcomes, leading to a

negligible residual surplus. In contrast, the mechanism with allocation fk outputs a “smooth

max” over outcomes leading to a significantly reduced amount of payments (see also Figure 1).

Lemma 2. For any k ≥ 1, the closed form of the allocation rule fk is

fk(v) =
1

m1−1/k
w(v)

1
k−1

||w(v)
1

k−1 ||k
.
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Fig. 1. Optimizing on the convex sets Sk defined in (6) for m = 2 outcomes and for k = 1.4, k = 2 and k = 4,

respectively.

Proof. The outcome of the allocation rule fk(v) is the vector s that optimizes w · s subject

to ‖s‖k ≤ m−
k−1
k . By Minkowski’s inequality, (6) defines a strictly convex space. Therefore,

the optimal point lies on the boundary of the space Sk, at the extreme point in the direction

of w. The boundary is defined by

‖s‖k = m−
k−1
k ⇐⇒ ‖s‖kk = m−(k−1) .

Since we seek the extreme point in the direction of w, w must be perpendicular to the

boundary at the optimal point. Therefore, at the optimal point s∗, the gradient of the surface

is in the direction of w. Namely, there is some c such that

∇(‖s∗‖kk) = cw ⇐⇒ s∗ =
( c
k

) 1
k−1

w
1

k−1 .

Moreover, s∗ needs to be on the surface of Sk. Thus,

‖s∗‖kk =
1

mk−1 ⇐⇒
( c
k

) 1
k−1

=
1

m
k−1
k ‖w‖

1
k−1
k

k−1

.

Substituting in the equation for s∗ concludes the proof. ut

We are interested in allocation rules with Sk close to S1. So, we set k = `/(`− 1) for some

integer ` ≥ 1. The resulting allocation is

f`(v) =
1

m1/`

w(v)`−1

||w(v)`−1|| `
`−1

. (7)

Applying (7) for `→∞, we obtain an allocation with probability that tends to 1 for the

outcome with the highest total value. On the other hand, applying (7) for ` = 1, we obtain

the random allocation with probability 1/m for each outcome. Hence, the allocation rules

defined by (7) exhibit a transition between the optimal solution and the random allocation.

Moreover, the allocation is partial in the sense that for ` ∈ (1,∞), |f`(v)| < 1 and there is a

positive probability that f` does not implement any outcome. Intuitively, sampling outcomes
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according to the `-th power corresponds to a notion of “smooth max” operator. The higher

the value of `, the higher the resemblance to the true max, and the higher the sensitivity

to input changes. Very roughly speaking, high input sensitivity implies that the mechanism

relies on the exact bid values, leading to a high amount of payments, since payments act as

“proof of value” for the agents.

5.2 Social Surplus Guarantees

The social surplus of the allocation rule f` depends on how well its range approximates the

unit simplex.

Lemma 3. For any ` ≥ 1, the allocation rule f` described by (7) has an expected social

surplus of

S(v) = ‖w‖`/m1/`

and approximates the maximum social surplus within a factor of m1/`.

Proof. For any vector a ,
‖a`‖1
‖a`−1‖ `

`−1

= ‖a‖` . (8)

The approximation ratio follows from

w · f(v) =
1

m1/`
· w ·w

`−1

‖w`−1‖ `
`−1

Eq. (8)
=
‖w‖`
m1/`

≥ ‖w‖∞
m1/`

.

The analysis is tight, because when v consists of a single-minded agent with unit value,

w · f(v) = 1
m1/` and ‖w‖∞ = 1. ut

We highlight that the approximation ratio is exactly the distance of range Sk from the

unit simplex at the extreme points of the unit simplex.

5.3 Bounding the Total Payments

We proceed to study the amount of payments charged by the mechanism. The payments of

agent i are computed as follows

pi(v) = w−i · f(v−i)−w−i · f(v)

=
1

m1/`
·

(
‖w−i‖` − ‖w‖` +

vi ·w`−1

‖w‖`−1`

)
.

Next, summing up the payment charged to each agent i by the mechanism, we bound the

total amount of payments.

Lemma 4. For any integer ` ≥ 1, the total amount of payments charged by the mechanism

described by (7) to the agents is at most

P (v) ≤ 1

m1/`
·
(

1− 1

`

)
· ‖w(v)‖` (9)
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Proof. Summing up the individual payments, we obtain that

n∑
i=1

pi(v) =
1

m1/`
·

(
(
∑

i vi) ·w
‖w‖l−1`

−
∑
i

(‖w‖` − ‖w−i‖`)

)

=
1

m1/`
·

(
‖w‖` −

∑
i

(‖w‖` − ‖w−i‖`)

)
.

Therefore it suffices to show that∑
i

(‖w‖` − ‖w−i‖`) ≥
‖w‖`
`

.

The `-th power difference is bounded as follows

‖w‖`` − ‖w−i‖`` = (‖w‖` − ‖w−i‖`) ·
`−1∑
k=0

(‖w‖`−1−k` ‖w−i‖k` )

≤ (‖w‖` − ‖w−i‖`) · ` · ‖w‖`−1` .

For the rest of the proof, for a vector a, we denote its j-th coordinate by a[j]. Then,∑
i

‖w‖`` − ‖w−i‖``
` · ‖w‖`−1`

≥ ‖w‖`
`
⇐⇒

∑
i

(‖w‖`` − ‖w−i‖``) ≥ ‖w‖``

⇐⇒
n∑
i=1

 m∑
j=1

w`[j]−
n∑
j=1

w`
−i[j]

 ≥ m∑
j=1

w`[j]

⇐⇒
m∑
j=1

n∑
i=1

(w`[j]−w`
−i[j]) ≥

m∑
j=1

w`[j] .

We now prove that the inequality holds for each term separately. It holds that

w`[j]−w`
−i[j] ≥ (w[j]−w−i[j]) ·w`−1[j] = vi[j] ·w`−1[j] .

Summing over i, we obtain that∑
i

(w`[j]−w`
−i[j]) ≥

∑
i

vi[j] ·w`−1[j] = w[j] ·w`−1[j] = w`[j] ,

which concludes the proof. ut

5.4 Obtaining a Bound on Residual Surplus

Lemma 3 quantifies the expected social surplus of the mechanism and Lemma 4 provides an

upper bound on the total amount of payments charged to the agents. Combining them, we

obtain the following lower bound on the residual surplus of the mechanism:

R(v) = w · f(v)− P (v) ≥ ‖w‖`
`m1/`

≥ ‖w‖∞
`m1/`

.

We summarize our results in the following theorem.
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Theorem 4. For every integer ` ≥ 1, there is a truthful and individually rational mechanism

that is (m1/`, `m1/`)-approximate for the social surplus and the residual surplus.

The optimal point of this tradeoff in terms of residual surplus maximization is when

` = lnm (for simplicity, we assume that if ` is not an integer, it is rounded to the smallest

integer exceeding the given value).

Corollary 1. There is a truthful and individually rational mechanism that is (e, e lnm)-

approximate for the social surplus and the residual surplus.

Alternatively, setting ` = lnm
ln(1+ε) , we get the following:

Corollary 2. There is a truthful and individually rational mechanism which for any ε > 0,

is (1 + ε, (1+ε)
2

ε lnm)-approximate for the social surplus and the residual surplus.

An interesting property of our mechanism is that the set of outcomes can be a priori

restricted to some subset of the original outcome space O. If there is a subset (or range)

O′ ⊆ O of the set of all outcomes such that optimizing the social surplus over O′ provides a

good approximation guarantee to the optimal social surplus, we can apply our mechanism on

O′ (instead of O, without any other changes) and obtain a truthful mechanism with a similar

approximation guarantee for the social surplus and a logarithmic approximation guarantee

for the residual surplus. Mechanisms based on exact optimization over such a restricted set

of outcomes O′ are known as Maximal-in-Range (MIR) and have been extensively used to

obtain truthful VCG-based mechanisms that approximate the social surplus, when computing

the optimal social surplus corresponds to an NP-hard optimization problem (see e.g., the

MIR mechanism of [23, Section 3.2] that is truthful and approximates the social surplus for

subadditive Combinatorial Public Projects within a factor of O(min{k,
√
u}), where u is the

number of items and k is the size of the project). Hence, we obtain the following

Corollary 3. Let O′ ⊆ O be a subset of outcomes such that optimizing the social surplus

over O′ results in a ρ-approximation to the social surplus obtained by optimizing over the set

of all outcomes O. Then, we can obtain a truthful and individually rational mechanism which

for any ε > 0, is ((1 + ε)ρ, (1+ε)
2ρ

ε ln |O′|)-approximate for the social surplus and the residual

surplus.

6 Discussion and Directions for Further Research

We believe that the idea of reducing the total amount of payments charged to the agents by

optimizing over a (carefully selected) “smoothed” subspace of the simplex of all probability

distributions, which results in a partial allocation that does not depend heavily on the bid of

any particular agent, may be of independent interest and may have interesting applications

to other mechanism design settings where an upper bound on the payments is required. In

Section 5, we employ this approach and show how to translate the fact that the resulting

partial allocation does not depend heavily on any particular bid into a tradeoff between the

resulting social surplus and the total amount of payments required for truthfulness. This
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directly implies the approximation result for the residual surplus. In another recent work [10],

we use the same approach and show how to approximate the optimal social surplus within a

factor of 1 + ε by randomized mechanisms without money that achieve truthfulness through

selective verification of O(logm) agents. In retrospect, we think that the use of differential

privacy to the design of almost truthful or truthful mechanisms without money [17, 21] and

the use of the exponential mechanism to achieve truthful, differentially private and almost

optimal smooth allocations [14] can be regarded, at least to some extent, as instances of the

same general approach. That is because the exponential mechanism, on which the mechanisms

of [17, 21, 14] are based, is again MIDR with the entire unit simplex as range and a smooth

objective function equal to a convex combination of the expected social surplus and the

entropy of the resulting probability vector. The entropy in the objective function results in a

smooth allocation rule, which allows [17] to achieve a bounded deviation from truthfulness,

[21] to achieve truthfulness without money and a good additive approximation guarantee, and

[14] to achieve a tradeoff between additive approximation and the total amount of payments.

Another direction for further research is to investigate where our smooth tradeoff between

the social welfare and the total amount of payments required for truthfulness could have

any applications to mechanism design settings with budget-restricted bidders (see e.g. [6]

and the references therein). In a complementary direction, we found it quite interesting that

quasi-proportional mechanisms, very similar in spirit to our power-proportional mechanisms,

together with an all-pay or a winners-pay (non-truthful) payment scheme, were shown in [18]

to achieve high revenue at their unique pure Nash equilibrium.
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