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ABSTRACT
We propose an energy-efficient framework, called SAF, for
approximate querying and clustering of nodes in a sensor
network. SAF uses simple time series forecasting models to
predict sensor readings. The idea is to build these local mod-
els at each node, transmit them to the root of the network
(the ”sink”), and use them to approximately answer user
queries. Our approach dramatically reduces communication
relative to previous approaches for querying sensor networks
by exploiting properties of these local models, since each sen-
sor communicates with the sink only when its local model
varies due to changes in the underlying data distribution. In
our experimental results performed on a trace of real data,
we observed on average about 150 message transmissions
from each sensor over a week (including the learning phase)
to correctly predict temperatures to within +/- 0.5◦C.

SAF also provides a mechanism to detect data similarities
between nodes and organize nodes into clusters at the sink at
no additional communication cost. This is again achieved by
exploiting properties of our local time series models, and by
means of a novel definition of data similarity between nodes
that is based not on raw data but on the prediction values.
Our clustering algorithm is both very efficient and provably
optimal in the number of clusters. Our clusters have sev-
eral interesting features: first, they can capture similarity
between far away nodes that are not geographically adja-
cent; second, cluster membership to variations in sensors’
local models; third, nodes within a cluster are not required
to track the membership of other nodes in the cluster. We
present a number of simulation-based experimental results
that demonstrate these properties of SAF.

Categories and Subject Descriptors: C.2.4 [Distributed
Systems]: Distributed Databases

General Terms: Management, Performance

Keywords: Data collection, sensor networks, energy,
data stream, query, models.
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1. INTRODUCTION
There has been a great deal of interest in recent years in

developing systems to collect data from wireless sensor net-
works. Applications include environmental monitoring [21],
agriculture [5], industrial monitoring, and process control [1].
Several systems (e.g., Cougar [22], TinyDB [20], and directed
diffusion [16]) for querying such networks have been devel-
oped. These existing systems typically collect data from all
of the nodes in a network at a regular rate to a sink node,
where readings are combined and processed just as in a stan-
dard streaming database system.

Much recent work has applied statistical modeling tech-
niques to approximate query answering in sensor networks
[11, 8, 17, 25]. However, most of these approaches [11, 8]
require a large amount of communication between the sink
and each sensor during an initial learning phase where mod-
els are built, which is energy-consuming and vulnerable to
communication failures. In addition, this expensive learn-
ing phase means that these models do not adapt well to
variations in the statistical distribution of data at a node,
since variations may require the model to be recomputed.
Unfortunately, such variations commonly occur in physical
phenomena of the sort sensor networks are often used to
monitor. In contrast, in this paper we propose an approxi-
mate querying framework based on time series models that
have an inexpensive learning phase, making our approach
very adaptable to changes in the distribution of data at sen-
sors.

In our framework, called SAF (for Similarity-based Adap-
tive Framework), queries are answered using lightweight lin-
ear time series models built by each node from a small num-
ber of readings (enabling models to be quickly re-learned)
and stored at the sink. Sensor nodes and the sink only com-
municate occasionally to exchange models or answer queries
that require more accuracy than the stored models can pro-
vide. We show that SAF is capable of detecting outlier val-
ues (isolated data anomalies), periods of data instability,
and data similarities among sensor nodes. Our approach to
similarity detection works even under dynamic conditions
(e.g., node mobility, data distribution variation, or unstable
communication channels).

SAF uses simple linear time series models that consists
of a time-varying function Tr, called trend component, and a
stationary autoregressive (AR) component X(t) representing
the divergence of the phenomenon from Tr over time. We
chose this model because, as shown in our experimental re-
sults, it is capable of predicting data produced by real-world



sensors measuring physical phenomena like ambient light,
temperature, and humidity that evolve slowly over time, is
computationally tractable on modern-generation sensor net-
works, and is cheap to learn. In contrast with other ap-
proaches [11, 8], nodes learn these models locally (requiring
no communication), whenever a novel monitoring algorithm
we have developed detects that the local model is no longer
a good fit for the data. When this occurs, the sensor relearns
the model and transmits its coefficients to the sink. The sta-
tionary AR component X(t) allows us to compute bounds
that are used by the sink when predicting sensor values.
That means that SAF does not require periodic readings to
ensure a given accuracy as in PAQ [25]. Moreover, the sta-
tionary component allows SAF to provide other interesting
properties such as the ability to detect outliers and periods
of data instability (highly noisy data).

In addition, we can use SAF to detect data similarity be-
tween sensors, and group them into clusters using the model
coefficients stored at the sink. Clustering has a number
of applications in sensor networks, including intrusion and
anomaly detection (when one sensor is not behaving like
others it was previously clustered with), redundancy anal-
ysis (determining that multiple sensors in a particular lo-
cation are providing no additional information as they are
always similar to each other), and various kinds of physical
modeling (observing, for example, that temperatures or soil
moisture levels in a particular region are similar over a range
of time may be useful to domain scientists.) Grouping sensor
nodes into clusters under dynamic conditions is a complex
problem requiring continuous monitoring and adaptation of
cluster membership. This problem has been studied also in
the context of query answering [25, 8]. However, in these
proposals the communication cost involved in computing and
maintaining clusters can be high, especially under dynamic
conditions. Unlike previous methods, our approach to de-
tecting node similarities requires no additional communica-
tion. Our method detects similarities at the sink and not at
the sensor nodes, and it relies on a novel definition of data
similarity, which is based not on raw data as in previous
approaches but on prediction values. More precisely, we de-
tect node similarity based on the bounds derived from the
models stored at the sink.

We propose a very efficient and provably correct clustering
algorithm based on our definition of similarity. The main
merit of our method consists of transforming the complex
problem of computing and maintaining clusters that evolve
over time into the simple 1–dimensional problem of grouping
intervals of equal width into larger intervals. Our algorithm
is provably optimal in the number of clusters and it has run-
ning time O(n lg n), where n is the number of nodes. This
clustering algorithm has the further benefit that it does not
require nodes in the same cluster to be geographically co-
located, and does not require nodes to communicate at all
with each other, thus making the clusters highly adaptable,
at no additional cost. These features make our approach
well-suited to mobile networks, offering a simple solution to
the difficult task of computing and maintaining clusters de-
spite the rapidly changing network topology that typically
characterizes mobile networks. In summary, the main con-
tributions of our work are:

• We propose a query framework based on time series

forecasting for approximately answering user queries
and detecting outliers and data inconsistency that re-
duces the amount of communication over previous pro-
posals [11, 8, 25]. This is achieved using novel bounds,
and enhanced models and algorithms with respect to
PAQ. We present a detailed simulation-based study of
our methods running on a trace of data collected from a
real sensor network that demonstrates the advantages
of SAF mentioned above.

• We study the problem of detecting and tracking data
similarities under dynamic conditions. We propose an
efficient, provably correct and optimal clustering al-
gorithm that is able to group together similar nodes
under highly dynamic conditions at no additional com-
munication cost. Our method is built on top of a novel
definition of data similarity based on data models.

In summary, SAF shows the following features: (1) it de-
tects outliers and periods of data instability; (2) it reduces
the amount of communication between each node and the
sink; (3) it detects data similarities among nodes at no addi-
tional cost, even in case of high mobility; (4) it is resilient to
transmission failures and varations in the data distribution;
(5) it does not require a priori knowledge of the probability
distribution of sensor values.

Summary of the paper. We describe our system model in
Section 2, and illustrate our time series model and the moni-
toring and adaptation algorithms in Section 3. We illustrate
and analyze our centralized query framework in Section 4,
and introduce our notion of data similarity and propose and
analyze our clustering algorithm in Section 5. In Section
6 we present detailed simulation results regarding the sta-
bility and the efficiency of our centralized query framework
and our clustering algorithm. In Section 7 we compare our
work with previous query approaches in sensor networks and
other related work, and conclude. We have omitted proofs
from this paper due to space limitations; we refer the reader
to [24] for details.

2. SYSTEM MODEL
A SAF network consists of a collection S of sensor nodes

and one or more sink nodes. Each node is equipped with
some sensing capability, performing readings on m physical
sensors, F1, F2, . . . , Fm, each of which evolves over time. For
example, we might say that F1 =temperature, and F2 =light.
We assume that each node obtains a reading from each Fi

once every Γ time units. We have designed our framework
to work with a range of sensor nodes, including low-end de-
vices like the Berkeley Motes [10], with just a few kilobytes of
memory and slow, 8-bit processors. Note that sensor clocks
are not required to be synchronized since nodes work asyn-
chronously. Nodes in a sensor network are organized in a
multi-hop topology, with several radio hops between any
pair of nodes in the network. We organize the network into
a routing tree, rooted at the sink, which is connected to a
gateway PC that can be used to communicate with the user.
In this paper, we focus on answering queries of the form,
which are issued from this gateway:

SELECT sensorlist

WHERE P(F1, . . . , Fm) ERROR x
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Figure 1: Temperature at sensor 34 over 26 days,
and details from one day.

where P(F1, . . . , Fm) is a predicate over F1, . . . , Fm consist-
ing of atoms of types Fi ∈ [a, b], Fi > a, and Fi < b where
a, b are user-specified. Here ERROR x denotes that the user
is tolerant to a maximum absolute error in the query result.
For example, the user might issue the query SELECT nodeid,

temp WHERE temp > 25◦C ERROR .1◦C, which would report
the temperature at each node to within .1◦C. To simplify our
presentation we consider queries over one measurement F ,
though our results generalize in a straightforward manner.

3. LOCAL FORECASTING MODEL
In this section we describe our model, which is computed

and maintained at each node, and the algorithms run by
each node for learning its model and monitoring its quality.

3.1 Our model
Physical phenomena are usually complex and require so-

phisticated prediction models with a long learning phase in
order to produce an accurate prediction. However, it is im-
practical for many low-end sensor network nodes to build
such sophisticated models, due to their high computational
cost and memory requirements. Our idea is not to model
the physical phenomena in its entirety but only within a
time interval W of a few hours, using a simple model. This
relies on the observation that in most cases physical phe-
nomena change relatively slowly within a time window W of
few hours. Hence, our choice of the model is driven by the
following metrics: (1) efficiency in terms of computational
cost and memory requirements; (2) duration of the learning
phase; (3) accuracy of the predictions; (4) model stability
(duration of the time window W ).

Our sensing model. We model F as a stationary time se-
ries model. Specifically, we consider an autoregressive model
AR(q), a subclass of ARMA models whose prediction is given
by a linear combination of the previous q values. A time se-
ries is weakly stationary if its mean E(Xt) does not depend
on t, and its covariance Cov(Ft+h, Ft) is independent of t for
any h ∈ Z. The reader is referred to Brockwell and Davis [4]
for a detailed discussion of ARMA modeling.

We assume that each node reads F every Γ time units,
and denote the history of these values as v1, . . . , vi, . . .. In
our previous work [25] we modeled F as a weakly station-
ary zero-mean AR model plus a constant (the mean value
over the training sample). This model is suitable for cases

in which the phenomenon does not vary rapidly. In case of a
rapid increase or decrease of the phenomenon’s values within
an hour, such a model requires frequent updates at higher
communication cost. For example, Figure 1 shows the tem-
perature read during 26 days by a sensor node placed inside
a building in the presence of air conditioning, and a snapshot
of 5 hours. Note that the activation/deactivation of the air
conditioning causes rapid changes in the temperature – for
example, around time = 770,000, the temperature suddenly
drops as a result of AC activation. To reduce the need to re-
learn models in the presence of such instability, we enhance
our previous model by including a temporal function that
models a linear trend in the data during a time window W .
As a result, we model phenomenon F as follows:

F (t) = mt + X(t)

where F (t) denotes the real value of F at time t, mt denotes
the value of the trend component at time t, and X(t) is a
weakly stationary AR(q) time series [4]. In our discussion
we consider a linear trend component mt = a + b · t, where
a and b are real constants. X(t) is a weakly stationary zero-
mean AR(q) time series, with a short prediction window q,
which ensures cheap learning/re-learning and low memory
requirements. In addition, using a small prediction window
allows us to neglect seasonal components [4]. For simplicity
of presentation, we assume q = 3 in the remainder of this
paper. Our stationary component X(t) is an AR(3) time
series with Gaussian white noise of zero-mean and maximum
standard deviation b(Γ) between readings, as follows:

X(t) = α X(t−1)+β X(t−2)+γ X(t−3)+b(ω)N(0, 1) (1)

where α, β, γ are real constants. Since X(t) is stationary,
then α + β + γ < 1. Note that function b(ω) represents the
standard deviation of the white noise, and as a result it pro-
vides a measurement of the quality of our prediction model.
It increases with the elapsed time ω since the previous read-
ing, since the accuracy of the prediction usually degrades
over time.

The predictor P (t) of value F (t) at time t is given by the
value of the current trend mt plus the predictor of X(t),
which is a linear combination of the increments or decre-
ments of the last three readings with respect to their trend
component (at time ti−1, ti−2, ti−3). More precisely, the pre-
diction of F (t) at time ti−1 < t < ti is given as follows:

P (t) = mt+α(vi−1−mti−1)+β(vi−2−mti−2)+γ(vi−3−mti−3)

We call vt−P (t) the prediction error at time t, provided vt is
the sensor reading at time t. The following lemma computes
the error bound and error probability associated with P (t).
It follows from our assumption of a Gaussian white noise of
zero mean and maximum standard deviation b(Γ). We refer
the reader to [24] for the analysis and further details.

Lemma 1. Let P (t) be the prediction of F at time t as-
sociated with model (1), and let ε = ν b(Γ), where ν is a
real-valued constant larger than 1. Then, the actual value
at time t is contained in [P (t)− ε, P (t) + ε] with error prob-
ability at most 1

ν2 .

As a result, readings with a prediction error larger than
ε are classified as anomalies with error probability smaller
than ν−2, and they are handled specially. This feature is



crucial for monitoring and adapting the model, as we discuss
in the following section.

3.2 Monitoring and adapting algorithms
During the learning phase the sensor node performs a

reading every Γ time units, and inserts each reading into
a queue V of recent readings. After performing N readings,
the node computes the coefficients a and b of the trend com-
ponent based on the data contained in V = {vt1 , . . . , vtN }
by applying least square regression. That is, it computes
the parameters a and b that minimize

PN
i=1 (vti −mti)

2.
Then, it computes a queue Dv containing the difference of
each value in V with from its predicted trend value, that is
xti = vti −mti for each xti ∈ Dv. The node uses the data
contained in Dv to compute the coefficients α, β and γ of
X(t) by applying least-squares regression, and it computes
the standard deviation of the white noise b(Γ) between read-
ings. Therefore, at the end of the learning phase the node
has computed the model coefficients a, b, α, β, γ, b(Γ) that
uniquely identify the model, and transmits them to the sink.
The least-square regression, computation amounts to solving
two systems of two and three unknowns (respectively) and
is tractable on low-end sensor hardware. The impact of the
size of the training sample V will be discussed in Section 6.

As mentioned above, our linear model must be adaptable
in order to effectively predict non-linear phenomena. Hence,
the node periodically monitors its local model and updates it
as needed. This design allows the node to detect anomalies
relative to the previous history of sensed data. We classify
anomalies as either outliers, which are transient mispredic-
tions that the model simply does not account for, or distribu-
tion changes, which are persistent mispredictions suggesting
that the model needs to be re-learned, either because of a
faulty sensor or a fundamental shift in the data being sensed.
Note that nodes can locally re-learn and update their mod-
els without communicating with the sink or other nodes. In
addition, this re-learning requires a small amount of data
and has low computational and memory requirements.

Monitoring algorithm. We use a monitoring algorithm to
track the quality of the predictions of the model. Each node
starts monitoring its model just after the learning phase. It
takes a reading every Γ time units and updates a queue V ,
which contains the most recent N values. The main tasks of
the monitoring algorithm consist of detecting (1) variations
in the data distribution, and (2) outlier values.

+δ-ε -δ +ε0

Model fits data well 

OutliersOutliers

Figure 2: Monitoring prediction error.

Figure 2 graphically illustrates the monitoring algorithm,
which relies on the assumption that the white noise follows
a Gaussian distribution with zero-mean and standard devi-

ation b(Γ), and on Lemma 1. This lemma proves that a
value whose prediction error (in its absolute value) exceeds
ε does not belong to the data distribution with error proba-
bility smaller than ν−2. However, in order to have a model
capable of predicting the current data distribution and of de-
tecting outliers, we consider an additional threshold δ where
1.2 b(Γ) < δ < νb(Γ). This parameter is used to detect
when the model is beginning to be a poor fit for the data,
as shown in Figure 2. If the prediction error falls outside
[−ε, ε] and no anomalies have been reported recently (i.e.,
the prediction error of previous readings was contained in
[−δ, δ]), we classify that value as an outlier with error prob-
ability smaller than ν−2 according to Lemma 1, and monitor
future readings because the model may no longer be a good
fit. If the prediction error falls outside [−ε, ε] and it is not
an isolated anomaly, the node re-learns the model since it is
probably no longer a good fit for the data distribution. For
simplicity of presentation we avoid several technical details
(see for more details [24]), and illustrate the three main cases
that occur when monitoring the prediction error:

1. If the error prediction is contained in [−δ, δ] the model
is a good fit for the current data distribution. In this
case the node simply updates its local queue V .

2. If it falls within [−δ,−ε] ∪ [δ, ε] then the model might
mispredict the data. To determine that, the node
opens a monitor window of size MW (if it is not open)
during which it monitors the occurrences of these “par-
tial anomalies”. At the end of the monitor window the
node relearns the model only if the number of these
partial anomalies exceeds a given threshold (e.g., MW

2
).

The node computes the new model based on its local
queue V as done at the end of the learning phase, and
transmits the new coefficients to the sink.

3. If the prediction error falls outside [−ε, ε], it is either
an outlier valuer (isolated anomaly), or the data distri-
bution has changed. If the model has been a good fit
for the data so far, the node classifies that value as a
suspected outlier, sends a notification to the sink, and
opens a monitor window if it is not open. The node re-
learns the model at the second occurrence of an outlier
and transmits the new model coefficients to the sink.
Note that the node also follows these steps if it detects
that the model is not stationary (a condition will be
discussed in Section 4).

Adapting the model. As mentioned above, the moni-
toring algorithm can trigger a model update. In this case,
the node computes the model coefficients based on its local
queue V similarly to the initial learning phase. However,
there are cases, although rare, in which the node is unable
to compute a stationary component. This occurs if the data
contained in V is inconsistent or if the data distribution has
an abrupt change (e.g., in our data trace we reported occa-
sional discontinuities up to 1-2◦C between consecutive read-
ings despite the typical differences being only a few tenths
of a degree). In this case the data stored in V is inconsistent
and it is not possible to compute a stationary X(t) compo-
nent. If the node is unable to compute a stationary model,
it performs the following steps to improve model stability:
(1) it removes data noise by applying filtering techniques to



smooth outliers, and (2) it dynamically reduces the size of
the training set to decrease the effect of a rapid change in
the data distribution. If these attempts fail, the node sends
an invalid notification to the sink, and attempts to re-learn
the model after a time interval called invalid monitor win-
dow. Note that during the invalid time window the local
model is invalid, therefore the sink cannot use it to answer
user queries, and if required it has to communicate directly
with the node. However, in conditions of data inconsistency
where values differ unpredictably in a short time period, it
might be more relevant for an application to know that the
node is under unstable conditions (information provided by
SAF) than to know the sensor values. For instance, knowing
when data inconsistency occurred can be relevant for scien-
tific studies to determine the cause of an event and possible
correlations. In Section 6 we will discuss in depth the be-
havior of the invalid time and how the size of the invalid
monitoring window affects the invalid time.

The following lemma provides a link between the model
computed at the sensor node and the copy maintained at
the sink, and it is useful to prove the correctness of our
centralized query system. It follows from the monitoring
algorithm and Lemma 1.

Lemma 2. The copy of the local model of node i stored
at the sink is such that vt ∈ [P (t) − ε, P (t) + ε] with error
probability at most ν−2, provided the model is valid.

4. OUR QUERY FRAMEWORK
In this section we describe our centralized framework for

approximately answering user queries at the sink. This is
achieved by ensuring consistency between the model in use
at each sensor and its copy stored at the sink, and by pro-
viding a bound on the current sensor value. As discussed
in Section 3, the time series X(t) is a stationary zero-mean
AR time series with Gaussian white noise. X(t) represents
the variation of the sensor reading at time t with respect
to its trend component at time t. The stationarity of X(t)
allows us to bound X(t) by applying Chebychev inequality
since the mean of X(t) and its standard deviation does not
change over time (see [4]). Since sensor models are different,
we denote the standard deviation of X(t) at node Si by σi,
the standard deviation of the white noise at Si by bi(Γ), and
the trend value at node Si at time t by mi

t. The following
lemma provides a bound of the value sensed by a sensor node
at a given point in time.

Lemma 3. The reading of sensor Si at time t is contained
in [mi

t − (εi + ωi), m
i
t + (εi + ωi)], where ωi = κσi and εi =

νbi(Γ), with error probability smaller than ν−2 + κ−2.

The bound provided by Lemma 3 is crucial to prove the
correctness of the query algorithm, and it allows the sink to
approximately answer queries without communicating with
the sensors or requiring periodic readings from each sensor
to compute their prediction. As described in Section 3, each
sensor Si transmits its model coefficients to the sink at the
end of the learning phase. The local models stored at the
sink correspond to the current data distribution of each sen-
sor, since each sensor immediately reports any change in its
model to the sink by transmitting the new coefficients or an

invalidation message. The sink responds to an invalid no-
tification by adding the sensor node into a list U of nodes
whose model is unstable. It removes that node from list U
upon receiving the coefficients of the new model. The sink
answers query Q of the form:

SELECT sensorlist

WHERE Q ERROR Q.e

Note that the query answer is based on previous readings.
(i.e., if nodes sense values at time iΓ for i = 1, 2, . . ., then
the answer of query Q submitted at time t ∈ [iΓ, (i+1)Γ) for
i = 1, 2, . . . is relative to the data produced at time iΓ.) For
each node Si, the sink checks if the node’s model is stable
and if the uncertainty (error) specified in the query Q.e is
larger or equal than the current uncertainty provided by the
model at Si. If this is the case, the sink checks if the current
trend value mi

t at Si satisfies condition Q.cond and, if so,
adds the predicted value to the list N of query answers. If
the sensor is unstable or the accuracy provided by its model
does not satisfy the query Q, the sink forwards the query
request directly to the node.

Note that in order to make our centralized query answer-
ing scalable with respect to the number of sensor nodes,
each node must send a notification to the sink each time
the prediction error of a reading exceeds ±ε (including out-
lier values). In fact, if nodes do not notify outlier values,
then the error probability associated with the query answer
grows with the number of sensor nodes because of Lemma 3.
Note that parameters ν and κ represent the stability of the
model, since the node recomputes its model if the prediction
error exceeds εi = ν bi(Γ) or if |X(t)| ≥ ωi where ωi = κσi.
Therefore, larger values of parameters κ and ν correspond
to more stable models. Clearly, there is a trade–off between
stability and accuracy since the error bound increases as κ
and ν increase. However, it is possible to use smaller param-
eters ν and κ in case the application requires high accuracy
since each node monitors if |X(t)| ≤ ωi and |vt−P (t)| ≤ εi.
In fact, our model can be used in two different ways:
(1) the parameters κ and ν can be fixed a priori, which
implies that the model has a variable error bound εi that
increases dynamically in the presence of data instability;
(2) the parameters κ and ν can be computed dynamically
such that εi + ωi meets the user accuracy bound, that is
εi + ωi is equal to the maximum query uncertainty. The
following lemma proves the correctness of our centralized
framework.

Lemma 4. For each user query Q the query algorithm re-
turns a list L of nodes that correctly answer Q from their
previous readings provided the nodes contained in L are alive.

Note that since each node communicates rarely with the
sink, nodes may fail silently without the sink noticing for
some time. This issue can be addressed by having the sink
periodically monitoring the status of each sensor node.

5. DETECTING NODE SIMILARITIES
In this section, we describe and analyze our approach to

clustering nodes using a novel definition of data similarity
based on local models. Our notion of data similarity based
on predicted values allows us to transform the difficult prob-
lem of computing and maintaining clusters under dynamic



conditions into the simple problem of grouping intervals of
equal width into a larger interval of width θ. Clustering has
a number of uses in sensor applications including:

• Detecting redundant sensors, that is, sensors that can
be moved to a new location or removed from the net-
work because they provide little additional information
over other sensors in their cluster.

• Intrusion and anomaly detection, where one sensor that
was previously in a cluster with others is no longer in
the same cluster, indicating that some event has oc-
curred that may merit the attention of the user.

• Modeling of physical phenomenon, such as soil mois-
ture or temperature isolines, which are used in a variety
of scientific domains.

We note that there is a large amount of prior work on
data similarity and on time series similarity (see [15] for a
survey of recent methods). However, previous work detects
similarities using raw data. Such methods are undesirable
in sensor networks since they require a large number of data
transmissions from each node to the sink.

In contrast, our goal is to derive data similarities based
on the local models which are stored at the sink, since this
information is already maintained by the sink. To the best of
our knowledge, detecting data stream similarities by means
of their forecasting models, and in particular by means of
their prediction values, is novel. We rely on this definition for
building clusters at the sink, and for defining the compound
AR model associated with each cluster.

5.1 Model-similarity definition
Before introducing our notion of data similarity between

two sensor nodes, we define a temporal distance function
d, called prediction distance, and our notion of θ-similarity
based on d, where θ is a positive real constant.

Definition 1. The prediction distance between any two
sensor nodes in S at some point in time, is a function d : S×
S × T → R such that d(Si, Sj , t)= |P i(t)−P j(t)| ∀Si, Sj ∈
S ∀ t ∈ T , where P i(t) and P j(t) are the predicted values of
sensors i and j at time t, respectively.

Definition 2. Sensor nodes Sj and Sk are θ–similar at
time t, where θ is a positive real constant, if and only if
d(Si, Sj , t) ≤ θ.

A subset of nodes A ⊆ S is θ–similar at time t if any two
nodes in A are θ–similar at time t. We group nodes that
are similar into θ–clusters. Since clusters change over time
according to the local data distribution, we define Cθ(t) to
be a set of subsets of S, called θ-clusters, such that each
C ∈ Cθ(t) is θ-similar at time t,

S
C∈Cθ(t) C = S. Lemma 5

provides a criterion for detecting θ–similarities between two
nodes at some point in time that relies on Lemma 3. We
denote the lower bound mi

t−ωi of P i(t) at sensor node Si, as
li, and the upper bound mi

t +ωi as Li. Moreover, we denote
ϑ = max{L1 − l1, . . . , Ln − ln}. The following lemma says
that given two nodes Si and Sj , if the maximum distance
between any point in [li, Li] and any point in [lj , Lj ] does
not exceed θ, then Si and Sj are θ–similar.

Lemma 5. Given nodes Si and Sj, if |Li − Lj | + ϑ ≤ θ,
then Si and Sj are θ–similar at time t.

5.2 The clustering algorithm
The clustering algorithm, illustrated in Figure 3, is run

at the sink and returns a list of θ-clusters. It is based on
the fact that P (t) ∈ [li, Li] as shown in the proof of Lemma
3, and uses a provably-optimal greedy approach. The algo-
rithm operates over a list of nodes’ upper bounds of P (t)
sorted in decreasing order, L1 ≥ . . . ≥ Ln. As we show be-
low, ordering the sensors in this way allows us to perform
clustering in an efficient and optimal manner. The algorithm
also maintains a set C of records, one per cluster. The record
for the kth cluster, Ck, contains two fields: an upper bound,
Ck.v, denoting the largest L value of any sensor in the clus-
ter, and a set Ck.set of the cluster’s constituent members.
We call Ck.v the pivot of the cluster, and maintain it as we
are processing the sorted list of upper bounds. We call the
sensor node associated with Ck.v the pivot sensor. For each
pivot sensor the algorithm computes a maximal θ-cluster
containing it.

clusters(θ, AR[1, . . . , n])
1) D[1, . . . , n]← parseData(AR[1, . . . , n])
2) ϑ← max1≤i≤n{D[i].u−D[i].l}
3) k ← 1
4) Ck.v ← D[1].u
5) Ck.set← {D[1].id}
6) for j = 2 to n do
7) if (Ck.v −D[j].u + ϑ ≤ θ)
8) Ck.set← Ck.set ∪ {D[j].id}
9) else
10) k ← k + 1
11) Ck.v ← D[j].u
12) Ck.set← {D[j].id}
13)return C[1,...,k]

Figure 3: Clustering algorithm.

Specifically, the clustering algorithm receives as input the
parameter θ, and an array AR[1, . . . , n] of n records such
that each AR[i] contains the coefficients of the AR model at
node Si. The algorithm returns a set of θ-clusters denoted by
C[1,...,k]. It begins by invoking the procedure parseData (Fig
3:1) which returns an array D[1, . . . , n] of records, such that
each record D[i] contains the upper bound D[i].u, and the
sensor node identifier D[i].id. Function parseData computes
each upper bound Li as mi

t + ωi. It then creates the array
D[1, . . . , n] and sorts it with respect to the upper bound
values in decreasing order.

The cluster sets are progressively inserted into a list of
records C[1,...,k], where k indicates the number of clusters
computed so far. Ck.v is initialized when the cluster is cre-
ated and Ck.set is maintained as nodes in D are scanned.
The pivot value Ck.v is used to detect (in a greedy fashion)
if the current sensor node (in the for loop) is θ-similar to
each node in Ck.set. This is done by checking if the pivot
value diverges from the lower value of the current node by no
more than θ units, as in Figure 3:7. If a sensor node is not
similar to the pivot sensor, then its upper bound becomes
the new pivot value Ck.v and its cluster’s pivot Ck.set is set
to its identifier, as shown in Figure 3:10-12.



We have analyzed the clustering algorithm, proving its
correctness and its optimality with respect to the number
of clusters it computes, and providing bounds on its compu-
tational cost. We refer the reader to [24] for the analysis.
The following corollary of Lemma 5 is used in proving the
correctness of the clustering algorithm.

Corollary 1. Let us suppose that Li1 ≥ . . . ≥ Lin is
the sorted list of L1, . . . , Ln in decreasing order. If Lij −
Lik + ϑ ≤ θ, for j < k, then sensor nodes Sij and Sik are
θ–similar provided their AR coefficients do not change and
θ > 2max {ε1, . . . , εn}.

Lemma 6. (Correctness and Optimality) The clustering
algorithm returns a list of θ-clusters. It is optimal in the
number of clusters with respect to our criterion.

The computational cost of computing clusters is domi-
nated by sorting the vector of upper bounds, and therefore
is O(n log n), where n is the current number of sensor nodes.

5.3 Model vs. geographic clusters.
Other clustering approaches have been proposed for sensor

networks (e.g., PAQ [25] and Ken [8]). Those approaches,
however, grouped together geographically co-located sensor
nodes (e.g., within their radio broadcast), rather than form-
ing clusters irrespective of node location. We call those clus-
ters geographic clusters. Our θ-clusters offer a number of
advantages that are hard to achieved when using geographic
clusters. We mention below some of these benefits:

Our model clusters are more general and capture stronger
data similarities among sensors than geographical clusters
as they detect similarities among far away sensors that are
not geographically adjacent. As a result, our approach leads
to larger clusters.

Adapting local clusters to variations in the data distri-
bution or sensor failures is a difficult and communication-
intensive task for a distributed system, which requires node
coordination. Our approach avoids these problems by re-
lying on local models and computing clusters at the sink.
This design allows sensors to be unaware of their cluster
membership and of variations in the cluster members’ data
distribution and in the user parameter θ. This allows the
sink to quickly adapt to changes in any sensor’s model.

Note that model clusters are resilient to node mobility
since the notion of model-similarity does not depend on the
geographic position of the sensors. Moreover, since they cap-
ture sensor similarities across the network, our clusters can
be used to study data correlations among different geograph-
ical subregions in a large sensor network.

6. PERFORMANCE EVALUATION
In this section we discuss our experimental results based

on a trace of real data.

6.1 Simulation results
Our simulations were performed on a trace of real data

from the Intel, Berkeley research lab (http://db.csail.
mit.edu/labdata/labdata.html), which consists of about
a month’s worth of light, temperature, humidity, and volt-
age readings collected at a centralized base-station approxi-
mately every thirty seconds from 50 sensors. We have imple-
mented our model and the algorithms described in Sections

3–5, and we have simulated the asynchronous behavior of the
sensor nodes based on data points derived from that trace.
The system and the simulator are written in Java.

Note that the sensors used to produce the data trace
were placed inside a building equipped with air conditioning,
whose activations caused inconsistencies in the data distribu-
tion (with an average duration of 20-30 minutes) and abrupt
changes in the distribution of the data (e.g., rapid inversion
in the trend). We choose this data trace since the irregularity
of this data distribution provides a valid test for our frame-
work. Note that the trace we used include a large number of
missing readings because data was collected at a centralized
sink and the Berkeley Motes [10] used to capture the read-
ings were communicating over a lossy radio channel, with
more than 60% missing data. Indeed we observed intervals
of up to 7 hours of continuous missing data from some sen-
sors. In order to simulate the periodic sensing performed at
each node we applied linear interpolation with small random
noise to infer the values of these missing readings. Note that
several of those 50 sensors failed within a week, and only few
of them lasted over a period of 26 days. In our experiments,
when focusing on the behavior of the local model we chose
primarily long-lived sensors (e.g., sensor 45), and considered
sensor readings performed every 1 minute. We experimented
with several other sensors and found the results to be similar
to those shown here for sensor 45. The experiments reported
here focus on the temperature values. Since the quality of
the centralized model depends on the quality of our local
models, we analyze in depth the behavior of our local model
under the following metrics: (1) the total number of trans-
missions over the node lifetime; (2) the percentage of time
during which a local model was invalid; (3) the accuracy of
the model; (4) the stability of the model, that is the duration
of the time interval during which the model is valid; (5) the
number of similarity clusters computed by the sink.

SAF offers a number of trade-offs that can be tuned to
meet application requirements, such as the trade-off between
stability and error shown in Lemmas 1 and 3, or between
transmissions and accuracy, or between model stability and
invalid time in the presence of unstable data. We analyze
our local models and discuss some of the most relevant trade-
offs here. As mentioned in Section 4 our model can be used
in two ways: the local model can have a fixed user-defined
error, or a variable error that increases in the presence of
data instability. To simplify our presentation we focus here
on our model with a fixed error bound. We analyze the main
factors that influence our model in the light of the metrics
discussed above.

Training set. The training set usually has a clear impact
on the quality of the statistical model: a larger training set
typically leads to a more accurate model. However, this is
not true in our model since it is designed to predict the ob-
served phenomenon for a few hours, as discussed in Section
3. In fact, a learning phase larger than 1 hour (N > 60)
is usually not a good choice for our model (e.g., data col-
lected over 2 hours can show seasonal components). As a
result, the monitoring algorithm will trigger more frequent
model adaptations in case of larger training sets, and in the
presence of data inconsistencies the model is likely to be-
come invalid for a longer time when the training set is large
(although our algorithm dynamically reduces the learning
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Figure 4: Training set vs. Invalid time and Transmissions.

queue in the presence of inconsistent data). In addition, we
have observed that the error bound ε + ω of the model in-
creases as the duration of the learning phase grows, at least
for our mote data modeling temperatures. Figure 4 shows
the variation in the total number of transmissions performed
by node 45 over its system lifetime consisting of 26 days with
respect to the size of the training set N , and the variation
of the percentage of the total invalid time of the model with
respect to the node lifetime. Note that N corresponds to
the duration of the learning phase in minutes. These ex-
periments were performed using a fixed error of 0.5 degrees,
and an invalid time window of 5 minutes. The percentage
of total invalid time grows as N grows, and this confirms
what discussed above, while the total number of transmis-
sions slightly decreases due to the increase in the invalid time
during which there are no transmissions. Our analysis sug-
gests that N = 40 is a good choice for our data trace, which
we use in future experiments.
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Invalid window. The size of the invalid window becomes
relevant in case of data inconsistency (when the node is un-
able to adapt its model). If the node is unable to compute
the model it waits for the duration of the invalid window
and then attempts to recompute the model. As shown by
our experimental results, illustrated in Figure 5 relative to

sensor 45, the size of the invalid window has a clear impact
on the percentage of the total invalid time of the model over
the node lifetime. Figure 5 shows that the percentage of the
total invalid time increases as the size of the invalid window
increases. Also, in this case the increase of the invalid time
window leads to a slight reduction in the total number of
transmissions over 26 days. Our experiments suggest that a
good choice for the invalid time window is 5, which we use
in later experiments.
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Intervals during which the model is invalid. Figure
6 shows the occurrence and the duration of time intervals
during which the model could not be computed because of
inconsistent data over a 42 hour period. We plotted these
intervals during a 42 hour period on top of the tempera-
ture during that interval. To make the phenomenon more
evident we showed a period of high data inconsistency and
used a high stability parameter which increases the duration
of the invalid time under inconsistent data. Note that insta-
bility typically occurs when the value of the sensor changes
abruptly.
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Clustering data similarity. To assess the performance
of our clustering algorithm, we compare the number of θ-
clusters computed using our model-based approach to the
ideal number of clusters based on the true data values of the
sensors sent to the sink every minute. We ran our optimal



clustering algorithm over raw sensor data and over model
bounds from all 50 sensors over the entire set of readings
(about 27 days). Figure 7 shows that our clustering ap-
proach based on data models performs well. In fact, over 26
days the number of cluster models is slightly above the ideal
number of clusters that could be obtained by directly query-
ing each node (i.e., most of the time the number of model
clusters exceeds the ideal clusters by 2). Note that during
moments of instability or rapid variation in the data distri-
bution, the number of model clusters increases noticeably
as the error of the model increases. However, this does not
affect the average the performance of our approach. For ex-
ample, over the first week our model-based approach clusters
35 sensors into 4.2 clusters on average, whereas the average
of the ideal clusters is equal to 2.4 (note that the maximum
divergence of sensor readings varies from 2 to 8 degrees).
These experimental results show the efficiency of our clus-
tering approach since it allows us to detect data similarity at
no additional communication cost, both providing excellent
energy conservation and good accuracy.

7. RELATED WORK
We group related work into approximate query approaches

for sensor networks, work on time series forecasting in sensor
networks and work on data stream mining.
Sensor Network Querying. There has been some work on
the use of probabilistic and time series models in sensor net-
works. As in SAF, [17, 8, 18, 25] rely on a keeping local and
global probabilistic in sync, to reduce the amount of commu-
nications between sensors and sink. We briefly compare our
framework with some previous approximate approaches and
show that our approach provides a good trade-off between
energy consumption and data accuracy, as well as several
other attractive properties. As shown in Figure 8, SAF in-
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Figure 8: Comparing features.

herits the desirable features provided by several different ap-
proaches. In fact, statistical models such as those employed
in Ken [8] have the ability to detect outlier values, time
intervals during which the data is inconsistent, and correla-
tions among different measurements. However, these models
(used in Ken [8] and BBQ [11]) require a large and expen-
sive training set of days or weeks at a high communication
cost during which each sensor node has to transmit periodic
readings to the sink (e.g., every 30–60 seconds). This train-

ing phase consumes valuable energy source and limits the
benefits of the probabilistic approach. This cost must be
paid each time the model is computed or adapted. In con-
trast, SAF has a short learning phase (i.e., < 1 hour) during
which each node does not have to communicate with the
sink. Moreover, BBQ and Ken are vulnerable to communi-
cation failures during training since the model at the sink is
built based on the data sent periodically by each node. That
may cause inconsistencies between the copies maintained at
nodes and at the sink. This problem is present to a small
extent also in PAQ [25] since each cluster head transmits
periodic readings to the sink, but is not present in SAF.

Kalman-based approaches (e.g., the method proposed by
Jain et al. [17]) are highly adaptable and require low commu-
nication between the sink and the sensor node, like SAF. In
fact, in our experiments we compared our local model with
Kalman filters [17] over our lab sensor data and found that
the total number of transmissions performed by the sensor
when using our model is comparable to the method of Jain
et al. [17]. However, Kalman filters are unable to provide
strong properties regarding the data distribution, nor can
they detect outliers or allow nodes to turn off their radio
during periods of data stability, in contrast with SAF. Note
that SAF also improves on PAQ [25], in that it uses a dif-
ferent model (including a trend component), and a greatly
improved clustering and data similarity detection algorithm.

The snapshot queries approach proposed by Kotidis [18] is
also similar to ours in that it exploits local models and cor-
relations, but it provides weaker guarantees. Other work,
such as the work by Olston et al. [6] shows how to approx-
imate answers queries in distributed environments with a
fixed bound on the error; these approaches, though sim-
ple, have the potential to offer far less reduction in com-
munication than model-based approaches such as ours and
those discussed above. Han et al. [14] show how similar
(non-probabilistic) techniques can be adapted to the sensor
network domain in an energy efficient way. Cormode and
Garofalakis [9] present a method for estimating the answers
to queries inside a sensor network using sketch-based meth-
ods to focus on computing complex aggregate queries inside
of a sensor network.
Time series forecasting in sensor networks. Our ap-
proach is similar to the one proposed in [23] for using AR
models built at each sensor node to reduce communications
in the context of time synchronization. That work did not
focus on querying or clustering issues, however. Lazaridis
and Mehrotra [19] use a different time-series method to cre-
ate a piecewise linear approximation of signals generated by
sensors, and send those approximations out of the network.
Their approach differs from ours in that they capture a large
time series and approximate it, rather than building a model
that can be used for prediction outside of the network. Other
time series approximation methods, based, for instance, on
wavelets [7, 12] have been proposed; these too strive to re-
duce communication but do not offer the same predictive
power as our methods. ARMA models have been widely
used outside the wireless sensor network domain as a way to
approximate and summarize time series with applications in
finance, communication, dynamic resource allocation, and a
variety of other domains. Brockwell and Davis [4] provide
an excellent introduction to time series models.



Data stream processing. One challenge associated with
analyzing data streams is dealing with the large quantity of
high-rate data. This has led to a number of summarization
techniques (e.g., sampling, synopsis data structures, and ag-
gregation [15, 2]). However, these techniques are not well-
suited for sensor networks because of their computational
complexity and memory requirements. The AR model pro-
vides a small and cheap fingerprint of the data stream pro-
duced at the sensor, and it performs well in presence of tem-
poral fluctuating data (as we showed in [25].) There has
also been a much work on data stream clustering [15, 3,
13]. However, these algorithms are not well–suited to sen-
sor networks due to their memory requirements and running
time which depends on the number of data stream points.
Our clustering algorithm (tailor–fit for our problem) is more
efficient because it groups subsequences of data streams ac-
cording to their AR models and has runtime that scales with
the number of nodes rather than the number of readings.

8. CONCLUSIONS
We have proposed an energy–efficient approximate query

framework which dramatically reduces the amount of com-
munication in sensor networks. Our scheme works by de-
tecting data similarities among sensor nodes by comparing
their local models rather than their raw data. This defini-
tion of similarity, coupled with the linearity of our models,
allowed us to derive an efficient clustering algorithm that
is provably optimal in the number of clusters formed by the
network. Our clusters have several interesting features: they
can change regularly with little overhead as nodes do not
keep track of their cluster membership, they can capture
similarity between far away sensors, and are well suited to
mobile networks. We have validated our approach both ana-
lytically and through simulation-based experimental results
on a trace of real data. Our simulations confirm the ana-
lytical results and offer encouraging preliminary proof of the
benefits of our approach.
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