
On the Feasibility of Time Estimation under Isolation

Conditions in Wireless Sensor Networks

Daniela Tulone
Department of Computer Science
University of Pisa, Italy

Abstract. We study the problem of providing a sensor with an accurate estimate of
the time, from a novel perspective which is complementary to the well-studied clock
synchronization problem. More precisely, we analyze the case in which a sensor
node is temporarily unable to run a clock synchronization protocol due to failures
or intermittent connectivity, or is willing to skip one or more clock adjustments to
save energy, but still requires an accurate estimate of the reference time.

We propose and analyze two simple and efficient clock reading methods, one
deterministic and the other probabilistic, which are designed to work in synergy
with a clock synchronization protocol. Our deterministic method achieves a better
time accuracy by exploiting information regarding the sign of the deviation of the
hardware clock from the reference time. This algorithm leads to noticeable energy
savings since it can be applied to reduce the frequency of the periodic clock ad-
justments by a factor of 2, while maintaining the same error bound. Moreover, our
method is of theoretical interest since it shows how a stronger but realistic clock
model leads to a refinement of the optimality bound for the maximum deviation of a
clock that is periodically synchronized. We also propose two simple versions of this
algorithm: a method that guarantees the monotonicity of the clock values, and a
generalization that improves the accuracy in case of clock stability.

Our probabilistic method is based on time series forecasting, and provides a prob-
abilistically accurate estimate of the reference time with a constant error bound. It
is more flexible than our previous methods since it does not depend on the frequency
at which clock synchronization occurs, and can be dynamically tuned according to
the application requirements and resource availability. All these methods have broad
applicability for their generality. In sensor networks they can be applied to improve
the clock accuracy of a sensor node in conditions of network isolation, or to reduce
the frequency of the clock adjustments, thus saving energy and increasing the system
lifetime.

Keywords: Clock synchronization, clock drift, sensor networks, energy conserva-
tion, time series models, resource efficiency.

1. Introduction

As in any distributed computer system, the computation of an accurate
estimate of the reference time is an important issue in wireless sensor
networks (WSN). Time synchronization is critical in many sensornet
tasks such as object tracking, surveillance, duplicate detection, power-
saving duty cycling, or distributed beam-forming. It plays a crucial role

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

TimeEstimation.tex; 17/08/2006; 16:25; p.1

2 Daniela Tulone

also in data integration and sensor reading fusion, which rely on data
time-stamps. In fact, the lack of synchronization among sensor clocks
can result in inaccurate time-stamping due to the different clock drift,
and can lead to falsely reorder events or even reverse them, thus affect-
ing data correctness. Time synchronization is relevant also for TDMA
medium access scheduling for low-energy radio operation. In fact, since
listening and transmitting are both energy-expensive operations in a
low-power radio, a common technique is to turn the radio off, waking
up only briefly to exchange short messages before going back to sleep
[20]. Therefore, the lack of synchronization among sensor clocks can
result in message lost, and consequently energy waste. Clearly, there
are many other settings in which time synchronization plays a crucial
role, since sensor applications are spawning in different domains (i.e.
environmental, military, scientific, health, civilian [19]).

All these applications explain the growing attention for the clock
synchronization problem in WSN, and the large volume of work ap-
peared in the last few years [1–18]. In fact, as pointed out by Elson et
al.[2], WSN show some unique characteristics that preclude the appli-
cation of well-known clock synchronization protocols designed for wired
networks, such as NTP [34]. A time synchronization service in WSN has
to meet challenges that are substantially different from those present
in infrastructure-based networks and that are related to the sensor’s
limited hardware and bandwidth. For instance, energy conservation
is a critical issue for WSN due to the limited battery source of the
sensor nodes. Other major issues in the design of clock synchronization
protocols in WSN are adaptability to changes in the network topology
and dynamic reconfigurability, and scalability since WSN can consist
of few thousands of sensors (e.g., in environmental monitoring). In
addition, due to battery depletion or destruction of the sensors, WSN
show a higher failure probability than in wired networks, and changes
in the environment can dramatically affect radio propagation causing
frequent network topology changes and network partitions. Moreover,
at high densities WSN become much more likely to suffer communica-
tion failures due to contention for their shared communication medium.
All these elements rule out the appropriateness of existing clock syn-
chronization protocols designed for wired networks to WSN, and show
the need for energy-efficient, adaptable and robust time services. These
requirements have been object of intense study in the last few years.

1.1. Motivations

In the last few years several clock synchronization protocols for WSN
have been proposed [1–17] based on different approaches, such as the

TimeEstimation.tex; 17/08/2006; 16:25; p.2

On the Feasibility of Time Estimation under Isolation Conditions in WSN 3

Reference Broadcast Synchronization (RBS) proposed by Elson et al.
[1] which exploits the physical radio broadcast, or hierarchical ap-
proaches [6, 5, 9], or interval-based [12, 13], or probabilistic approaches
[4]. However, despite their diversity they all share a common view-
point: each sensor derives a notion of time (global or relative) through
messages exchanged with its neighbors, periodically or on demand.

Clearly, adjusting sensor clocks is energy consuming since it involves
the transmission of several messages across the network. In WSN trans-
mitting messages and listening are highly-expensive operations, and
consume much more power than processing data. In [20] Pottie and
Kaiser make concrete the effect of this constraint with an example:
they compared the energy required to transmit 1 bit over 100 meters,
to the energy used by a general purpose processor with 100 MIPS/W
to execute 3 million instructions. Since the synchronization of each
sensor clock is guaranteed by exchanging messages with its neighbors,
the consumption of energy involved in synchronizing clocks is notice-
able and can affect the system lifetime especially in case of long-term
systems or high clock accuracy requirements. As a result, reducing the
frequency of periodic clock synchronization results in noticeable energy
savings and in a natural extension of the network lifetime. The works
of Elson et al. [1] and Römer [3], develop this idea by avoiding clock
synchronization, thus leaving sensor clocks run undisciplined. In RBS
[1] each sensor builds a table consisting of relative clock offsets and
drifts that relates the local clock with the other nodes in the network.
This table is updated only when needed through expensive message
exchanges among each neighbor. Therefore, energy is saved via a post-
facto synchronization which exploits the fact that sensor clocks might
not need to be synchronized all the time. However, this approach is
not suitable for a number of WSN applications such as tracking, or
surveillance, because of its latency in the convergence time. Recently,
PalChaudhuri et al. [4] have proposed an adaptive clock synchroniza-
tion protocol, based on the RBS, that provides a probabilistic bound
on the clock accuracy, thus allowing for a trade-off between accuracy
and resource requirements.

Energy-efficiency, mobility, and self-configuration requirements, as
well as the high jitter in multi-hop transmissions, show the need for
protocols which are more local in nature. The theoretical result of Fan
and Lynch [18] emphasizes that. They introduced a property for clock
synchronization, called gradient property, which requires that the skew
(deviation) between two clocks forms a gradient with respect to the
distance between nodes. Their worst case clock skew between two nodes
shows that clock synchronization is not a local property, in the sense
that the clock skew between two nodes depends not only on the distance

TimeEstimation.tex; 17/08/2006; 16:25; p.3

4 Daniela Tulone

between nodes, but also on the size of the network. As a consequence,
the TDMA will fail as the network grows.

There are other elements specific to WSN, that support the need
for more local protocols. For instance, there are cases in which a sensor
node is temporarily unable to synchronize its clock to its neighbors’s
due to process failures, or intermittent connectivity, or topological
changes in the network, or temporary obstructions (e.g., in environ-
mental monitoring [19]). Note that these situations are related to the
intrinsic nature of the WSN, and therefore should be taken into consid-
eration as well. All these considerations (energy requirements, failures,
mobility, high jitter) motivated us to study the accuracy of a clock in
case a node is unable to communicate with other nodes.

1.2. Internal vs. external clock synchronization

Several clock synchronization protocols in WSN [3, 16, 14, 13, 1, 4] focus
on internal clock synchronization, which provides a constant bound
on the deviation between any two clocks. This choice is motivated
by energy reasons. In fact, external clock synchronization assumes the
existence of some time source which provides an accurate estimate of
the reference time (i.e., a node equipped with a GPS receiver [35]).
Since this equipment is energy-hungry, it can induce extra energy re-
quirements. In addition, clocks that are internally synchronized with
maximum error λ are externally synchronized with error bound 2λ,
however the error can grow unbounded in case of internal synchroniza-
tion and network partitions. Note that external clock synchronization is
more suitable for applications where sensors are tightly coupled to the
physical world, and in some case it becomes necessary. For instance, in
vehicle tracking applications the system can predict the vehicle moving
direction and speed by matching the sensor location and sensing time
at which it approached the sensor. Without an agreement on the global
time, the data from different sensors cannot be matched up. Moreover,
applications involving data coordination, or mobility, or detection of
anomalies (e.g., gas leaks, seismic detection) require the notion of global
time. In addition, we show here that clock information can be used
to estimate the reference time in condition of node isolation or net-
work partitions. All these reasons motivated us to analyze the external
clock synchronization, that is the problem of estimating the reference
time (or global time). This choice is also supported by recent work
[15, 9, 11, 6, 17, 10].

TimeEstimation.tex; 17/08/2006; 16:25; p.4

On the Feasibility of Time Estimation under Isolation Conditions in WSN 5

1.3. Our perspective

The general goal of this paper is to try to maintain sensor clocks
synchronized to the reference time within a constant error bound un-
der all circumstances. We bring the idea of designing a more local
time synchronization service discussed in Section 1.1 to the extreme
consequences by studying the behavior of a single clock without in-
teractions with other nodes, which is a novel perspective of studying
the time estimation problem. In the literature the time accuracy has
been always guaranteed through periodic clock adjustments to a more
accurate time source. In fact, the lower bound for the maximum clock
deviation [23, 24] takes into account a maximum error growth ρ∆t, with
ρ maximum drift rate of the hardware clock and ∆t time elapsed since
the last synchronization. We investigate here ways to derive additional
clock information that allow us to reduce the maximum error growth
and improve the clock accuracy.

The problem of improving the clock accuracy between effective syn-
chronization is of both theoretical and practical interest, as we show
in Sections 5.4–5.5. It can be applied to any type of networks, but has
a remarkable impact on WSN since it addresses the cases in which a
sensor node is unable to communicate with other nodes due to failures
or topology changes or intermittent connectivity, or it turns off its
radio to conserve energy, thus skipping one or more clock adjustments.
Therefore, this paper provides a first answer to the question: “what time
accuracy can be provided in case of node isolation or low-energy?”

1.4. Contributions

The contributions of this work consist of our novel viewpoint mentioned
in Section 1.3, a class of deterministic clock reading methods, and a
probabilistic method.
Novel perspective. Our first contribution consists in studying the
time synchronization problem in WSN from a different viewpoint, which
is complementary to all previous work focusing on periodic clock ad-
justments. We tackle the problem of improving the accuracy of a clock
between adjustments using information regarding the deviation of the
hardware clock from the reference time. For this purpose we introduce a
metric, called cumulative hardware drift rate, that provides information
on the behavior of the hardware clock since its initialization, in contrast
with the drift rate that provides only local information.
The deterministic methods. We propose a deterministic clock read-
ing method, called DCR, that reduces the maximum error growth
between clock adjustments by a factor of 2 using the sign of the clock
deviation. It can be applied to any type of networks to improve the

TimeEstimation.tex; 17/08/2006; 16:25; p.5

6 Daniela Tulone

clock accuracy. However, it is particularly suitable for WSN since it
can be applied to (1) save energy and improve network bandwidth by
reducing the frequency of the clock synchronization by a factor of 2
while maintaining the same time uncertainty, or (2) improve the clock
accuracy in case a node is temporarily isolated. Note that the DCR
method is of theoretical interest since it leads to a refinement of the
optimality bound for the maximum clock deviation.

In addition, we show a simple version of the DCR method, which
guarantees the monotonicity of the clock values, property that is crucial
in several sensor applications (e.g., object tracking). We also propose a
generalization of the DCR method, called GDCR, that does not depend
on the sign of the global deviation (the deviation of the hardware clock
from the reference time), and that leads to an improvement over the
DCR method in case of clock stability.
The probabilistic method. We propose a generic probabilistic method,
called PCR, that is based on an adaptation of time series forecasting
for WSN, and provides a probabilistically accurate estimate of the
reference time with a constant error bound. It computes a prediction of
the clock deviation based on a narrow window of past events. The PCR
method is more general than our deterministic methods since it does
not assume a specific frequency at which the clock is synchronized (i.e.,
it provides a probabilistic time estimate with a constant error also in
the case the node has “skipped” more than one clock adjustment). It is
important to note that all our clock reading methods can be adapted
to work in synergy with clock synchronization protocols (such as [12]
that works for sporadic clock synchronization) to improve the clock
accuracy and save energy.

Organization of the paper. The rest of the paper is organized as
follows: Section 2 compares related work, and Section 3 presents our
clock model and the techniques used. We define in Section 4 the cumu-
lative drift rate used by the DCR and GDCR methods, and illustrate
its differences with the hardware drift rate. In Section 5 we illustrate
and analyze our DCR method and its revised versions, and discuss the
refinement of the optimality bound for external clock synchronization.
In Section 6 we present and analyze our PCR method based on time
series forecasting, and then conclude the paper.

2. Related work

Clock synchronization protocols in WSN. In the last few years
a very large volume of clock synchronization protocols have been pro-
posed [1–17] which differ among them in their approach: some of them

TimeEstimation.tex; 17/08/2006; 16:25; p.6

On the Feasibility of Time Estimation under Isolation Conditions in WSN 7

focus mainly on time accuracy, others on energy conservation, or scala-
bility, or mobility. For instance, proposals such as RBS [1] and [4, 3, 9]
based on a receiver-to-receiver synchronization scheme, provide a very
accurate estimate of the relative clock offset and skew since they reduce
the time-critical path which contributes largely to non-deterministic la-
tency. Other solutions such as [6, 11, 16, 14, 15] are based on the sender-
to-receiver synchronization. To save energy, some protocols [1, 3, 4] do
not synchronize local clocks but leave them run undisciplined; [1] adopts
a post-facto synchronization to avoid unnecessary transmissions. This
exploits the fact that sensor clocks do not need to be synchronized all
the time. However, as mentioned in Section 1.1, because of its large
convergence time this guarantee is too weak for applications such as
tracking or TDMA. In addition, the number of messages exchanged
in [1] is quite high and does not scale well as it is O(m · n2) where
n is the number of nodes and m the number of broadcasts needed
to have an accurate time estimate. Our methods show some similar-
ity with [1, 3] since they do not synchronize the local clock to avoid
additional complexity, but provide a time estimation. To avoid unnec-
essary clock synchronization, some protocols such as TSync [5] adopt
a on-demand strategy combining a push and pull mechanism. Some
protocols [5, 6, 11, 17, 8, 14, 7] focus particularly on scalability and
efficiency in a large-scale WSN and employ a hierarchical structure,
others [6, 5, 11, 8, 3, 9] are particularly geared to mobility and fo-
cus on self-configurability, others such as [12, 13] employ, similarly to
our work, an interval-based paradigm which seems more suitable to
many WSN applications. However, despite their diversity all of these
proposals provide a common notion of time (global or relative) via
message transmissions. As mentioned in the Introduction, our view is
very different since we focus on the clock behavior of a specific sensor
node, and our algorithm is designed to work between clock synchroniza-
tion. As a result, our algorithms are local and do not involve message
transmissions. For this reason it is not possible to compare them to
previous clock synchronization protocols, though our methods must
work in synergy with a clock synchronization protocol.
Drift-based clock synchronization. Improving the accuracy of a
set of distributed clocks by exploiting information related to the clock
behavior is not a novel idea: for instance, Schossmaier et al. [31, 30]
and NTP [34] include information regarding the hardware drift rate
in their clock adjustments. Fetzer and Cristian show in [26] how to
build clocks with bounded drift rate from components off-the-shelf,
and achieve high accuracy by means of drift synchronized clocks. Their
work diverges from ours for their strong assumptions (i.e. requiring
hardware support). Our work differs from all previous proposals mainly

TimeEstimation.tex; 17/08/2006; 16:25; p.7

8 Daniela Tulone

for two reasons: 1) for reducing the maximum error growth ρ∆t between
synchronization, and 2) for exploiting the deviation accumulated by the
hardware clock since its initialization, in contrast with the hardware
drift rate that captures the local speed of the clock.
Probabilistic approaches. There are few protocols that are proba-
bilistic in nature: for instance, the probabilistic remote clock reading
protocol proposed by Cristian [25], or Cristian and Fetzer’s probabilis-
tic clock synchronization protocol [33]. Statistical techniques are also
applied in NTP [34] to compute, during synchronization, an accurate
approximation of the time based on the timestamps received from the
neighbors. As discussed before, Palchaundhuri et al. [4] have proposed
a probabilistic protocol for WSN based on the RBS, to save energy.
However, these solutions diverge significantly from ours for requiring
message transmissions.

Time series forecasting techniques are broadly used in finance, to
forecast physical phenomena, or to improve quality of service. For
instance, they have been applied by Wolski [42] to provide dynamic
resource performance forecast, such as to predict the TCP/IP end-to-
end throughput and latency. However, the application of time series
models to WSN is novel. We are also not aware of any probabilistic
study regarding the clock deviation between synchronization. Vernotte
et al. [36] apply an autoregressive linear model to estimate the time un-
certainty of the on-board oscillator for different type of noise. However,
their view is very different from ours since their target is to determine
how the maximum error is related to the noise level of the clock in
order to classify clocks.

3. Preliminaries

3.1. Clock model

Each sensor node has access to a local hardware clock whose function
is denoted by H(t). A hardware clock typically consists of an oscillator
and a counting register that is incremented by the ticks of the oscillator.
A hardware clock has a given granularity g: a tick of the oscillator incre-
ments the value of the hardware clock by g time units. Because of the
impressions of the oscillator, variations in the temperature, pressure,
and aging, a hardware clock can drift apart from the real time.

The hardware drift rate function, denoted by ρ̂(t), is defined as the
first derivative of H(t) with respect to time minus 1, that is ρ̂(t) =
H ′(t) − 1, and provides a measure for the punctual variation of the

TimeEstimation.tex; 17/08/2006; 16:25; p.8

On the Feasibility of Time Estimation under Isolation Conditions in WSN 9

clock speed. It is common practice to assume a maximum drift rate ρ
for the hardware clock. Note that ρ is a constant specified by the manu-
facturer, and represents the maximum difference between the expected
frequency of the oscillator and its actual frequency. For most quartz
clocks available on personal computers ρ is of the order of 10−4−10−6,
it is larger in cheap sensor oscillators.

If ρ is a valid upper bound of the drift rate of the hardware clock,
then for any real time t1 < t2 the hardware clock function H(t) mea-
sures the passage of time in [t1, t2] with an error of at most ρ(t2−t1)+g.
That is,

(1− ρ)(t2 − t1)− g ≤ H(t2)−H(t1) ≤ (1 + ρ)(t2 − t1) + g (1)

For t1 = 0 and for a negligible initial error, it implies that

(1− ρ) t− g ≤ H(t) ≤ (1 + ρ) t + g

In our discussion we ignore terms of order ρ2 or smaller, and equate
(1 ± ρ)−1 to (1 ∓ ρ). For simplicity of presentation we ignore also the
granularity of the hardware clock. However, our discussion remains
valid for non-negligible granularity.

Note that due to the very restricted hardware sensor clocks be-
have differently than computer clocks. For instance, as pointed out
by [6], Berkleley Mote sensors [21] with Tiny OS [22] do not have fine
granularity. The lack of fine granularity is motivated by the limited
energy supply, since high frequency of clock ticks leads to higher power
consumption. This shows even at the hardware level a trade-off between
accuracy and energy consumption. Therefore, a reasonable frequency
should be determined in a task-directed fashion. Our methods can be
extended to take into account the variability of the clock granularity.

3.2. The interval-based paradigm

We adopt the interval-based paradigm, originally proposed by Marzullo
and Owicki [28] and later refined by Shmidt and Shossmaier [32], for
its advantages in WSN over time estimates, as pointed out by [12, 13].
For instance, it allows to obtain guaranteed bounds from sensor data
fusion, and to enter in a fail-safe state when the time uncertainty grows
excessively large.

We assume that each sensor maintains a virtual clock function C(t)
that is synchronized periodically 1, namely every Γ time units, to a
more accurate estimate of the current time. We assume for simplicity
that the clock synchronization occurs at real time t1, t2, . . . , ti, . . . with

1 Sections 5 and Section 6 shows how to relax this assumption.

TimeEstimation.tex; 17/08/2006; 16:25; p.9

10 Daniela Tulone

ti ≈ i Γ, and that clock C(t) is synchronized at the ith synchronization
to Ti (value derived by running a clock synchronization protocol or
from a more accurate source), with maximum inherited error ε.

The time interval of C(t), denoted by IC(t), is a function map-
ping real time values to clock values and such that IC(t) = [C(t) −
E(t), C(t) + E(t)] for each t ∈ [ti, ti+1) and i > 0, with C(t) =
H(t)+(Ti−H(ti)) and error bound E(t) = ε+ρ(H(t)−H(ti)). A time
interval IC(t) is correct at time t if t ∈ IC(t).

Notations: from now on we denote for simplicity H(t) − H(ti) by
∆H, the time at which the last synchronization occurred by ti, the
time elapsed since the previous synchronization t− ti by ∆t, the error
growth since its last synchronization by ρ∆H, the maximum error in
[ti, t], by η = ε+ρΓ. Since the time Γ elapsed between two consecutive
clock adjustments is not large, we can neglect terms of order ρ2Γ or
smaller. This implies that ∀t1, t2 such that t2 − t1 ≤ Γ, ρ∆t ≈ ρ∆H.

T
ε

T + ∆H
ε + ρ∆Hmax error < η

time est.

3ΓΓ t2Γ

Figure 1. Periodic clock synchronization

Figure 1 illustrates the periodic clock adjustments performed at
time Γ, 2Γ and 3Γ. Clearly, since E(t) grows with the time elapsed
since its last synchronization, if the time elapsed between two effective
synchronization increases, then the maximum error bound E(t) exceeds
η = ε + ρΓ.

3.3. Problem statement

Our goal is to try to provide a time estimate with the same error
bound η in case the sensor node is unable or unwilling to synchronize
its local clock. Note that t1, . . . , ti, . . . represent the real time at which

T

ε

T + ∆H

ε + ρ∆H > η

t

max error

Γ 2Γ 4Γ

time est.

Figure 2. Irregular clock synchronization

TimeEstimation.tex; 17/08/2006; 16:25; p.10

On the Feasibility of Time Estimation under Isolation Conditions in WSN 11

the sensor clock is actually synchronized by exchanging messages with
other nodes. For simplicity we assume that each node in the network
tries to synchronize its clock at a regular basis, that is, (ti − ti−1) is
a multiple of Γ. This assumption is reasonable in WSN since sensors
sleep most of the time to save energy battery. Figure 2 shows a scenario
in which clock synchronization occurs at time Γ, 2Γ, and 4Γ and the
error associated with the evaluation of t is larger than η since ∆H > Γ.

3.4. Time series forecasting

In this section we briefly review some basic concepts from time series
forecasting that will be applied to the PCR method in Section 6. We
refer the reader to [37] for further discussion on time series forecasting.
A time series is a set of observations xt, each one being recorded at
a specific time t. An important part of the analysis of time series is
the selection of a suitable probability model for the data. To allow for
the possibly unpredictable nature of future observations, it is natural to
suppose that each observation xt is a realized value of a certain random
variable Xt (often denoted as X(t)).

DEFINITION 1. A time series model for the observed data {xt} is a
specification of the joint distributions (or possibly only the means and
covariances) of the sequence of random variables {Xt} of which {xt} is
postulated to be a realization.

Clearly, if we wish to make predictions, then we must assume that
something does not vary over time. Therefore, an important step to
time series modeling is to remove trend and seasonal components to
get a stationary time series (or weakly stationary). Loosely speaking,
a time series {Xt} is stationary if it has statistical properties similar
to those of the time-shifted series {Xt+h} for each integer h. More
precisely, {Xt} is weakly stationary if its mean function µX(t) and its
covariance function γX(t + h, t) are independent of t for each h.

The class of linear time series model, which includes the class of
autoregressive moving average (ARMA) models, provides a general
framework for studying stationary processes. The ARMA processes
are defined by linear difference equations with constant coefficients.
One of the key properties is the existence and uniqueness of stationary
solutions of the defining equations.

DEFINITION 2. {Xt} is an ARMA(p, q) process if {Xt} is stationary
and for every t,

Xt − φ1Xt−1 − . . .− φpXt−p = Zt + θ1Zt−1 + . . . + θqZt−q

TimeEstimation.tex; 17/08/2006; 16:25; p.11

12 Daniela Tulone

where {Zt} ∼ WN(0, σ2) and the polynomials (1 − φ1z − . . . − φpz
p)

and (1− θ1z − . . .− θqz
q) have no common factors.

Notice that {Zt} is a series of uncorrelated random variables, each
with zero mean and σ2 variance. Such a sequence is referred as white
noise and denoted by WN(0, σ2). An autoregressive model of degree
p, denoted by AR(p), is a particular type of ARMA model with q = 0.
We use autoregressive models to predict the current deviation of the
clock because of their simplicity and efficiency, which make them more
suitable than general ARMA models in low-cost sensors.

4. Exploiting the global clock deviation

We study the deviation of the hardware clock from the reference time,
accumulated since its initialization. This will allow us to derive informa-
tion useful to maintain the error bound within a constant η. In fact, the
global deviation of the hardware clock provides not only information
regarding the behavior of the clock at that point in time, but also a
sort of fingerprint of the clock history since its initialization. We exploit
this fact by introducing a metric called cumulative drift rate.

4.1. The cumulative drift rate

We denote the clock deviation function by D. It is a function mapping
real time values into reals and such that D(t) = t −H(t) for any real
time t > 0. Clearly, since the hardware clock runs undisciplined, D(t)
can grow unbounded. We write D(t) as D(t) = δ(t) · t, where δ(t) is a
function similar to the hardware drift rate function ρ̂(t), and it is called
cumulative hardware drift rate function.

DEFINITION 3. The cumulative hardware drift rate δ is a function
mapping real time values into reals and such that δ(t) = H(t)−t

t for any
real time value t > 0.

To simplify the notation, we denote sometimes δ(t) with δt. Clearly,
the hardware clock function can be written as H(t) = (1+δt) t for any
real time t > 0. Similarly to the hardware drift rate, the cumulative
hardware drift δ(t) is contained in [−ρ, ρ] for any t > 0. This is a
simple derivation from the stronger assumption (1) in Section 3.1.

TimeEstimation.tex; 17/08/2006; 16:25; p.12

On the Feasibility of Time Estimation under Isolation Conditions in WSN 13

4.2. Hardware drift rate vs. cumulative drift

As mentioned before, the cumulative drift provides information about
the clock deviation accumulated since its initial time, while the hard-
ware drift rate provides local information since it represents the speed
of the clock at that time. Figure 3 illustrates graphically the differences

t

T H(t)

τ

d
dt

H(τ)

(1 + δ(τ))t

(1− ρ)t

(1 + ρ)t

Figure 3. The hardware clock function H(t), the cumulative drift δ(τ), and the
hardware drift rate ρ(τ) at time τ .

between the two metrics: the hardware drift rate ρ̂(t), and the cumu-
lative drift rate δ(t). The graph shows the hardware clock function
H(t) limited by the lines (1 ± ρ) t, the cumulative drift δ(τ) at real
time τ , and the hardware drift rate ρ̂(τ). The dashed line bisector
represents the reference time. The hardware drift ρ̂(τ) represents the
slope of the tangent of the clock function minus 1, while the cumulative
drift δ(τ) is the slope of the line passing by the origin O and H(τ),
minus 1. The relation between ρ̂(t) and δ(t) is provided by the equation
ρ̂(t) = dδ(t)

dt t + δ(t).

4.3. Cumulative drift variations

The most significant difference between the hardware drift rate and
the cumulative hardware drift is represented by their variation with
respect to the real time. As mentioned in Section 3.1, the variation
of the hardware drift rate is related mainly to external factors, and
therefore can occur at any time during the system lifetime. In contrast,
the maximum variation of the cumulative drift during a fixed time

TimeEstimation.tex; 17/08/2006; 16:25; p.13

14 Daniela Tulone

interval decreases over time. In fact, for any time t2, t1 with 0 < t1 < t2,
we can derive the following inequality based on inequality (1) in Section
3.1

−ρ(t2 − t1)− g ≤ δt2t2 − δt1t1 ≤ ρ(t2 − t1) + g

Let us write δt2 as δt2 = δt1 + x, where x is the variation of the
cumulative drift in [t1, t2], and replace it in the previous relation,

−(ρ + δt1)(t2 − t1)− g ≤ x t2 ≤ (ρ− δt1)(t2 − t1) + g

Since |δt1 | ≤ ρ, then

|x| ≤ 2ρ(t2 − t1) + g

t2
(2)

If t2 ≥ β(t2 − t1) with β > 1, then |x| ≤ 2ρβ−1. This means that the
variation of the cumulative drift in [t1, t2] can be considered irrelevant
after a sufficient large time t2, intuitively after accumulating enough
clock information. For instance, if t2 ≥ ρ−1(t2− t1) we can neglect x in
accordance with our assumption in Section 3.1, since it has order ρ2.
This is likely to occur faster in case of an inaccurate oscillator, such as
a sensor oscillator which has a higher maximum drift rate.

Property (2) is useful for our DCR method to support the stability
of the sign of the cumulative drift between synchronization. It will be
discussed in Section 5.2. Note that this property cannot erroneously
lead us to think that after a certain time it is possible to approximate
the cumulative drift at time t2 with the same precision relative to the
previous synchronization, since approximating x to zero does not mean
that x · t2 is negligible!

5. A deterministic clock reading method

We present in this section our deterministic clock reading methods,
which are designed to work between synchronization and provide a
more accurate estimate of the reference time, without adjusting the
local clock. More precisely, the DCR method reduces by half the error
growth since its last synchronization by exploiting the sign of the cumu-
lative drift. The GDCR method additionally reduces the error growth
in case of clock stability. They can be applied to any type of networks,
but as discussed previously, they have a bigger impact in WSN due to
its limited resources and characteristics.

TimeEstimation.tex; 17/08/2006; 16:25; p.14

On the Feasibility of Time Estimation under Isolation Conditions in WSN 15

5.1. The DCR method

Our DCR method is designed to reduce the maximum error growth
ρ∆H between adjustments without the aid of external data. It is based
on the observation that increasing the inherited error ε by a quantity
ρ∆H proportional to its maximum drift rate, leads in most cases to a
conservative approach, since it does not take into account any informa-
tion regarding the clock deviation or the drift rate. We show here that
such information can be used to improve the clock accuracy.

In the interval-based paradigm, improving the time accuracy is equiv-
alent to reducing the size of the time interval I(t), while maintaining its
correctness. Our method is based on the intuition that the composition
of two clocks, one proceeding faster than the reference time and the
other slower, results in a more precise clock. Figure 4 illustrates that:
it shows the time interval of clock C(t) proceeding faster than the real
time, and the time interval of clock F (t) going slower.

C(t)

F(t)

t

Figure 4. Intersection of time intervals IC(t) and IF (t)

Clearly, the intersection of two correct time intervals, as the one
shown in Figure 4, is correct and it is smaller in size than the previous
intervals, and therefore more accurate. These are some of the intuitions
that have driven us to study the sign of the cumulative drift and its
variation between two consecutive clock adjustments.

The idea underlying our algorithm is very simple: if the node detects
no variation in the sign of the cumulative drift since its last clock ad-
justment, it computes an associate clock function F proceeding in the
opposite direction with respect to C(t), and returns the time interval
IC(t) ∩ IF (t). This simple idea brings two issues:

1. Detect the sign of the cumulative drift at time ti and t;

2. Compute an associate clock function for C(t).

TimeEstimation.tex; 17/08/2006; 16:25; p.15

16 Daniela Tulone

The first issue can be solved by simply comparing the value of the
hardware clock with the left and right side of the time interval of clock
C(t). Let us suppose that the last synchronization occurred at time ti,
and that Ti is an accurate approximation of real time ti with maximum
error ε. Because of the correctness of IC(t) at time ti and t, if H(ti) >
Ti + ε + ρ∆H (or H(ti) < Ti − ε − ρ∆H) then the hardware clock is
clearly faster (or slower) than the real time at time ti, and it will be
faster (or slower) at time t > ti. Note that this is a feature of the DCR
method and it can be applied to save energy, as shown in Section 5.2.
In addition, the accuracy of this test improves over time, and since it
exploits the clock deviation, it works better with cheap oscillators such
as sensor oscillators. For instance, drifts smaller than ρ

2 can be detected
after 2ερ−1 time units, that is less than 100s for ρ = 10−4 and ε = 5µs.

The second issue is the most crucial for the DCR method. Before
computing our associate clock function we define the clock properties
that can lead to an improvement of the error growth at least by a factor
of 2. We introduce this constraint because we are interested in the case
in which a sensor has to skip at least one clock synchronization due to
network isolation or low-energy. Therefore, we define a class of clock
functions AC,t called associate clock functions of C(t) at time t.

DEFINITION 4. F ∈ AC,t at time t ∈ [ti, ti+1) if it satisfies the
following properties:

1. F is a clock function defined in [ti, ti+1) with ρ valid drift bound at
time ti and t;

2. F (ti) = C(ti);

3. |F (t)− C(t)| ≥ ρ∆H.

Note that condition 3 provides an upper bound 2ε + ρ∆H on the size
of the time interval IC(t) ∩ IF (t), and condition 2 implies that clocks
C(t) and F (t) have the same maximum error E(t) = ε + ρ∆H during
[ti, ti+1).

In this section we consider hardware clocks with a more restricted
clock variation than (1). In Section 4.3, we have shown that the varia-
tion of the cumulative drift x = δt − δti in [ti, t] is bounded as follows

−(ρ + δti)∆t

t
≤ x ≤ (ρ− δti)∆t

t
(3)

The DCR method relies on the following refinement of the previous
bound. Its applicability is discussed in Section 5.2.

Assumption A1 : The variation of the cumulative drift in [ti, t]
for any real time ti < t < ti+1, is bounded by condition (3) and by
these additional constraints:

TimeEstimation.tex; 17/08/2006; 16:25; p.16

On the Feasibility of Time Estimation under Isolation Conditions in WSN 17

- If δt and δti ≤ 0 then − (ρ+δti)∆t

t ≤ x ≤ − δti∆t

t

- If δt and δti > 0 then − δti∆t

t ≤ x ≤ (ρ−δti)∆t

t

The associate clock function of C(t) in [ti, ti+1) computed by our
DCR method is defined as followings:

A(t) :=
{

C(t) + ρ ∆H for δti , δt ≤ 0
C(t)− ρ ∆H for δti , δt > 0

Intuitively, if the hardware clock is going faster at time ti and t, we
compute a function which is slower with respect to the virtual clock
C(t) by a variable term −ρ∆H, proportional to the minimum drift
rate and to the time elapsed since the last synchronization (note that
ρ∆t ≈ ρ∆H because of our assumption in Section 3.2).

Figure 5 illustrates the DCR method. It checks if the sign of the
cumulative drift of the hardware clock is unchanged in ti and t, line
(1). If this occurs, the method returns the midpoint of the time inter-
val IC(t) ∩ IA(t) representing the time estimate, and its error bound,
line (2). Otherwise it returns C(t) with error bound E(t), line (4). In
Section 5.2 we discuss the meaning of condition at line (1), and show
that experiments performed on sensors by Dan and Hai [5] confirm its
verifiability.

DCR(t ∈ (ti, ti+1))

1) if (|H(ti)− Ti| ≥ ε + ρ∆H)
2) return 〈A(t)+C(t)

2 , ε + ρ∆H
2 〉

3) else
4) return 〈C(t), ε + ρ∆H〉

Figure 5. The DCR method.

The following lemmas prove the correctness of the DCR method:
they show the correctness of the time interval IC(t)∩IA(t) when the sign
of the cumulative drift is unchanged. The correctness of time interval
IC(t) follows from the drift bound ρ, condition (1) in Section 3.1, as
shown in [28].

LEMMA 1. If the sign of the cumulative drift remains unchanged at
time ti and t, and A1 is verified, then A(t) ∈ AC,t.

Proof Let us suppose δti , δt > 0. We show that ρ is the maximum drift
rate of A(t) in [ti, ti+1). The associate function A(t) can be written in

TimeEstimation.tex; 17/08/2006; 16:25; p.17

18 Daniela Tulone

[ti, ti+1) as following:

A(t) = (1− ρ)H(t) + Ti − (1− ρ)H(ti)

Then, by writing A(t) in terms of the cumulative drift

A(t)−A(ti) = (1− ρ + δt − ρδt)t− (1− ρ + δti − ρδti)ti

Since δt, δti > 0 and δtt− δtiti ≥ 0 for assumption A1, then

A(t)−A(ti) ≥ (1− ρ)(t− t1)

Clearly, since the associate function is slower than C(t) by ρ∆H, then
A(t)−A(ti) ≤ t− t1, which is stronger than condition 1. Since C(ti) =
A(ti) and C(t)−A(t) = ρ∆H, then A(t) ∈ AC,t. Similarly, if δti , δt ≤ 0.
2

LEMMA 2. For any real time t ≥ ti if |H(ti) − Ti| ≥ ε + ρ∆H, and
A1 is verified, then the DCR method returns an estimate of time t with
maximum error ε + ρ

2∆H.

Proof Let us suppose that H(ti) ≥ Ti + E(t) for t ≥ ti. In this
case the hardware clock is clearly proceeding faster at time ti since
δtiti ≥ Ti − ti + ε + ρ∆t and |Ti − ti| ≤ ε. Therefore, δtt ≥ 0 since
δtiti ≥ ρ∆t, and because −ρ∆t+δtiti ≤ δtt ≤ ρ∆t+δtiti from inequality
(1) in Section 3.1. Notice that IC(t) is a correct time interval because
ρ is a valid drift bound of the hardware clock. Since the time interval
IA(t) is correct because of Lemma 1, then IC(t)∩IA(t) is a correct time
interval and its size is equal to 2ε + ρ∆H. 2

5.2. Considerations

Enhanced accuracy. A natural comment on the DCR method is that
it works only if the sign of the cumulative drift is unchanged since
the previous synchronization, and the clock drift does not vary
too much. As shown in Section 4.3, since the hardware clock H(t)
runs undisciplined and the cumulative drift represents the global
deviation of the clock, its maximum variation decreases with the
time, in contrast with the drift rate that captures only the local be-
havior of the clock. That implies that after an initialization stage,
if the global deviation of the clock is positive, it remains most
likely positive in the following 2Γ time units, since in most cases
the deviation accumulated by the hardware clock is larger than
2ρΓ+ε. In addition, assumption A1 refines the bound for the vari-
ation of the hardware drift, but this limitation is realistic in most

TimeEstimation.tex; 17/08/2006; 16:25; p.18

On the Feasibility of Time Estimation under Isolation Conditions in WSN 19

cases, as shown by the experiments performed by Dai and Han [5]
on GPS-enabled sensors. They use the Mantis Nymph hardware
platform integrated with a GPS chip with a time accuracy within
0.2µs to estimate the deviation of the actual duration between
two consecutive pulses from the expected duration. A statistical
analysis of their data revealed them a roughly normal distribution
of the clock drift (local drift) with a mean value greater than the
expected value, 1 sec, for some sensors (i.e. 1, 000, 009 µs) and
smaller for others. This shows that on the average some sensor
clocks drift faster than the reference time and others slower.

Efficiency and simplicity. The DCR method is extremely simple and
efficient since it involves only numeric comparisons and the com-
putation of C(t)+A(t)

2 . As a result, it is particularly suitable to be
implemented at low-cost sensors.

Monotonic clock function. It is known that instantaneous clock syn-
chronization can cause time discontinuities if for example a virtual
clock is going faster then the reference time and is adjusted to
a value smaller than its current clock value. This can cause in-
consistencies in time-stamping with serious consequences for the
application. To avoid this problem some synchronization protocols
such as [24], adjust the clock to the maximum clock value. How-
ever, this approach can increase the deviation of the virtual clock
from the reference time. In [16] Mock et al. propose a continuous
clock for wireless networks that avoids time discrepancies by grad-
ually speeding up or slowing down the clock rate. However, this
approach suffers from a run-time overhead since clocks need to be
adjusted at every clock tick.

We adapt our DCR method to efficiently guarantee a weaker prop-
erty, which ensures that all of the clock readings are monotonically
increasing. We call this revised version IDCR, for Increasing De-
terministic Clock Reading Method. The IDCR method builds on
the DCR method and on the observation that a sensor does not
require that its virtual clock function is monotonically increasing
at any time, but that the clock readings are increasing and that
their associate maximum error is bounded. In our case each clock
reading is performed by invoking IDCR, and therefore value Ti

received at the ith synchronization is not considered as a clock
reading. This simple observation simplifies noticeably our problem
since it is easier to guarantee that a clock reading is larger than its
previous one (denoted as lastV alue). Note that this simplification
reduces the computational cost, thus conserving energy.

TimeEstimation.tex; 17/08/2006; 16:25; p.19

20 Daniela Tulone

The values returned by the DCR method are clearly monoton-
ically increasing between adjustments since both C(t) and A(t)
are increasing between adjustments, and the auxiliary function
A(t) is computed during the entire interval (ti, ti+1), because of
condition |H(ti) − Ti| ≥ ε + ρ∆ (see Figure 5:1). However, when
considering time intervals larger than Γ, the DCR method can
return values that are not monotonically increasing (e.g., if C(t) is
set back at some synchronization). This problem can be solved by
slowing down the growth of the previous clock function, and more
precisely by computing function lastV alue + ρ∆H.

The IDCR method is illustrated in Figure 6. It invokes the DCR
method, and compares it with the clock value previously read,
Figure 6:1–2. If the value returned by the DCR method is not larger
than the previous reading, it returns the previous value increased
by term ρ(H(t) − h), where H(t) − h represents the time elapsed
since the previous clock reading measured by the hardware clock,
Figure 6:6. The purpose of this minimal increment is to slow down
the growth of the previous virtual clock in order to be able to
apply the new one. Lemma 3 provides bounds on the maximum
time interval necessary for the new virtual clock function to “catch
up” with the previous one, and the maximum error associated to
the value returned by IDCR.

IDCR(t)
1) 〈T, e〉 ← DCR(t)
2) if T > lastV alue
3) lastV alue ← T
4) err ← e
5) else
6) lastV alue ← lastV alue + ρ(H(t)− h)
7) err ← err + (1 + ρ)(H(t)− h)
9) h ← H(t)
10) return 〈lastV alue, err〉

Figure 6. The IDCR method.

LEMMA 3. Function IDCR is a monotonically increasing func-
tion. When slowing down the virtual clock C(t), the error bound is
increased by less than 2ε + ρ(2ε + Γ), if the clock is adjusted every
Γ time units and Γ > 2ε + 1.

TimeEstimation.tex; 17/08/2006; 16:25; p.20

On the Feasibility of Time Estimation under Isolation Conditions in WSN 21

Proof IDCR is monotonically increasing between adjustments
because both C(t) and A(t) are increasing in that interval. If C(t)
is set back at time ti and DCR(t) < lastV alue at time t > ti, then
lastV alue + ρ(H(t)− h) is computed, which is clearly larger than
lastV alue.

In order to compute the maximum error associate to IDCR(t),
we consider the worst case in which the DRC method returns
〈C(t), E(t)〉. Since IC(t) is a correct time interval, then the virtual
clock cannot be set back at time ti more than ε+ρΓ plus the error
ε associate to Ti. Let us suppose that lastV alue is the last reading
performed at time ti, then since ρ∆t ≈ ρ∆H, we want to compute
the maximum time ∆t elapsed since ti such that

lastV alue + ρ∆t < Ti + (1 + ρ)∆t

Since lastV alue − Ti ≤ 2ε + ρΓ, this condition is always satisfied
for ∆t ≥ 2ε + ρΓ. Term ρΓ is less than 1 for reasonable choices of
Γ. Therefore, the maximum error performed when slowing down
the previous clock function is increased by at most (1+ρ)(2ε+ρΓ).
2

5.3. A generalization of the DCR method

In this section we sketch a generalization of the DCR method, called
GDCR, which is simpler than the DCR method, and it does not rely
on the sign of the cumulative drift rate. The GDCR method is based
on the observation, supported by experiments performed on computer
clocks, that in most cases the variation of the hardware drift is much
smaller than 2ρ. As a result, we consider the following more general
assumption derived by inequality (1) in Section 3.1:

Assumption A2 : the variation of the cumulative drift in [ti, t] for
0 < ti < t, is bounded by the following expression:

l ∆t ≤ δtt− δtiti ≤ u ∆t (4)

where l ≥ −ρ, and u ≤ ρ.

In contrast with the DCR method, GDCR does not need to compute
the sign of the hardware clock deviation or an auxiliary clock function
A(t). It is not based on the intersection of two time intervals, one going
faster than the real time and the other going slower, but on assumption
A2. It computes the following clock function:

F (t) = C(t)− l∆H

TimeEstimation.tex; 17/08/2006; 16:25; p.21

22 Daniela Tulone

for t ∈ (ti, ti+1), and returns the midpoint of the time interval

Î(t) = [F (t)− ε− d∆H, F (t) + ε]

with d = u− l, and size 2ε + d∆H. We show in Lemma 4 that interval
Î(t) is always correct provided assumption A2.

LEMMA 4. If assumption A2 is verified, then the GDCR method re-
turns an accurate estimate of the reference time with maximum error
ε + d

2∆H.

Proof We have to show that t ∈ Î(t) for any ti < t < ti+1. We show
first that

F (t)− ε− d∆H ≤ t

Since C(t) = Ti + H(t)−H(ti), Ti − ti ≤ ε, and ρ∆H ≈ ρ∆t because
of our assumption in Section 3.2, then

F (t)− ε− d∆H ≤ t + δtt− δtiti − (l + d)∆H

The condition is verified since δtt − δtiti ≤ u∆t because of inequality
(4) and since d = u− l.
On the other hand F (t) + ε ≥ t since

F (t) + ε ≥ t + δtt− δtiti − l∆t

and δtt − δtiti ≥ l∆t. Therefore, t ∈ Î(t), and the GDCR method
returns the midpoint of Î(t) with maximum error ε + d

2∆H. 2

We briefly discuss here the pro and counts of using GDCR over DCR.

1. The GDCR method does not rely on the sign of the cumulative
drift. As a result, it is more general and suitable also in case of
very precise oscillators.

2. If u − l < ρ, then the GDCR method reduces the error bound
provided by DCR using assumption A2. Since a node is able to
estimate the drift of the hardware clock and the drift bound at clock
adjustments, if it detects that u − l < ρ it can apply the GDCR
method to estimate the time between synchronization. However,
note that an incorrect evaluation of u and l can compromise the
correctness of the GDCR method (e.g., in case of a sudden variation
in the clock stability). This is not an issue for the DCR method,
which is always correct.

TimeEstimation.tex; 17/08/2006; 16:25; p.22

On the Feasibility of Time Estimation under Isolation Conditions in WSN 23

5.4. A refinement of the lower bound

The DCR method shows that a stronger but realistic clock model can
lead to a refinement of the lower bound for the external deviation of
a clock that is periodically synchronized. Shrikanth and Toueg [24]
showed that the bound on the drift rate of a virtual clock from the
reference time is at least as large as the bound on the drift rate of
the physical clock. The lower bound computed later by Fetzer and
Cristian in [23] using a model similar to ours, is in line with the previous
bound [24]. Fetzer and Cristian showed that at any real time the best
maximum external deviation achievable by a clock synchronized at least
every Γ time units is equal to

∆ + Λ + ρ Γ

where Λ is the remote clock reading error, ∆ is the error performed
by the time source in estimating the reference time, and ρΓ is the
maximum error growth during Γ time units. The DCR method shows
that in most cases, after an initialization time it is possible to reduce
the error growth ρΓ by half, thus leading to the following expression

∆ + Λ +
ρ

2
Γ

The GDCR method can refine the previous expression to ∆+Λ+ u−l
2 Γ

in case u − l < ρ. This implies that under that assumption, which is
realistic in most cases, there exists a virtual clock with drift rate bound
smaller than ρ

2 . In conclusion, our deterministic methods are of theo-
retical interest because they suggest that a stronger but realistic clock
model leads to a refinement of the optimality bound for the maximum
deviation of a clock that is periodically synchronized.

5.5. Applications

Our methods are also of practical interest, and can be applied to WSN
as well as to wired networks. We sketch below some applications.

1. Energy saving. They can be used in WSN to save energy and
reduce communication since a node can decide at time ti if to skip
or not the next synchronization round at time ti +Γ. In fact, if the
deviation of the undisciplined hardware clock at time ti is greater
in absolute value than ε+2ρΓ, the node can surely apply the DCR
method during [ti, ti+2Γ] and estimate the time with error smaller
than η = ε + ρΓ. If u − l < ρ, the node can skip more than one
synchronization by applying GDCR.

TimeEstimation.tex; 17/08/2006; 16:25; p.23

24 Daniela Tulone

2. Network isolation. They can be applied in WSN to maintain
the same accuracy η in case the sensor node cannot synchronize
its clock because it is unable to communicate with other nodes
due to failures, or intermittent connectivity, or temporary physical
obstruction, or node mobility.

3. Improve the time accuracy. Because of our different viewpoint,
both methods can be combined with most existing clock synchro-
nization protocols in both wired and wireless networks to improve
the time accuracy and save energy.

4. Calibrated clocks. In wired networks these methods can also
coexist with calibrated clocks [26] to improve the time accuracy
by replacing the hardware clock function H(t) with a calibrated
one. This can be useful in real-time critical applications.

6. A probabilistic clock reading method

As discussed in the previous section, the DCR method allows a node to
reduce the frequency of its clock adjustments by a factor of 2, while the
GDCR method allows it to skip more clock adjustments in conditions of
clock stability. However, both methods rely on a stronger assumption
of the variation of the hardware drift rate. Therefore, it is natural
to question what time accuracy can be ensured if the node remains
isolated for a period longer than 2Γ time units, or the clock oscillator
is unstable such that our previous assumption cannot hold. In these
extreme situations where it is not possible to guarantee high accuracy,
probabilistic guarantees provide a reasonable answer for the needs of
most sensor applications. In this section we illustrate our probabilistic
PCR method that relaxes our assumption on the drift variation, and
uses statistical properties on the deviation of the hardware clock from
the reference time. More precisely, it is based on autoregressive (AR)
models, which are simple linear time series models. This choice is moti-
vated by their simplicity and efficiency, in terms of computational cost
and memory storage, that make this type of model suitable for low-
cost sensors. Clearly, there are machine learning and soft computing
approaches based on non-linear techniques [41] that are more versatile
than time series models and tolerate better chaotic components (e.g.,
artificial neural networks, recurrent neural networks [39], SVMP [40],
hidden Markov models [38]), however these techniques are costly and
not suitable to be implemented at low-cost sensor nodes.

TimeEstimation.tex; 17/08/2006; 16:25; p.24

On the Feasibility of Time Estimation under Isolation Conditions in WSN 25

6.1. Method overview

We propose here a general framework that provides a probabilistic
estimate of the reference time with uncertainty η = ε + ρΓ, in case
the sensor node “skip” a few clock adjustments. It is more general
than the DCR method since it is independent of the occurrences at
which the clock was synchronized. In addition, PCR is more flexible
than DCR since it allows the node to dynamically adjust the clock
accuracy according to the application requirements and energy bud-
get, and compute the frequency of the clock adjustments necessary to
guarantee a given accuracy.

The PCR method computes an estimate of the reference time by pre-
dicting the deviation of the hardware clock based on a short window of
past events. Therefore, the computation of a stationary autoregressive
model that is able to predict the clock deviation plays a crucial role
in the PCR method. A straightforward solution is to consider a time
series {Xti}i≥0 where Xti is the deviation D(ti) of the hardware clock
at synchronization time ti. However, this approach presents two main
problems:

1. The time series {Xti} contains some trend, since the deviation D(t)
varies over time, and also a seasonal component (e.g., related to
daily variations in the temperature).

2. The other problem is related with the intermittent clock synchro-
nization of the sensor node that does not necessarily provide mea-
sures on the clock deviation at regular intervals. This is a problem
because time series forecasting requires periodic observations.

The first problem is overcome by differentiating data and replacing
the original time series {Xti} with i ≥ 0, with {Ytj = Xtj − Xtj−1}
with j ≥ 1. It is reasonable to assume that the time series {Yti} is
weakly stationary and with zero mean. The second problem is solved
by normalizing the data series to variations occurred during Γ time
units. More precisely, if (ti− ti−1) = αiΓ, then Yti is a random variable
representing the average variation of the clock deviation during Γ time
units in [ti−1, ti]. Therefore, yti , which is the observed value of Yti , is
equal to D(ti)−D(ti−1)

αi
. To simplify the notation, we denote sometimes

by yi the ith observation yti derived from the (i − 1)th and ith clock
synchronization. Figure 7 shows the clock deviation (its accurate ap-
proximation) measured at the synchronization time t2, t3, t4 and t5 and
its variations y3, y4, y5 relative to the intervals [t2, t3], [t3, t4], and [t4, t5].
Value t represents the current reference time at which a time estimate
is requested.

TimeEstimation.tex; 17/08/2006; 16:25; p.25

26 Daniela Tulone

y3 y4 y5 yt

D(t2) D(t3) D(t4) D(t5)

tt2 t3 t4 t5t2 t3 t4 t5 t

Figure 7. Series of the observed values

Our target is to predict variable Yt, that is the average variation of
the clock deviation during Γ time units since its last clock adjustment
to provide a time estimate T = Ti + ∆H − Yt

∆H
Γ of t for any time

t ∈ (ti+1, ti), with uncertainty η. Intuitively, the time estimate T is
equal to the value of the virtual clock C(t) minus its predicted deviation
since its last synchronization. Condition (1) in Section 3.1 provides a
bound for Y (t), that is −ρΓ ≤ Yt ≤ ρΓ.

6.2. Our probabilistic model

Clearly, there are different ways to model our problem using the frame-
work sketched in the previous section. Because of the limited resources
of the sensors, we consider an autoregressive model AR(q) whose pre-
diction value is based on the last q observed values, and with a Gaussian
zero-mean white noise. The value at time t is given by the following
equation,

Y (t) = β1Y (t− 1) + β2Y (t− 2) + . . . + βqY (t− q) + b(ω)W

with β1, . . . , βq constants derived from the observed values, and b(ω)W
Gaussian white noise with zero mean. The choice of using this model,
and particularly an AR(3) model, was driven mainly by three factors
crucial in a WSN:

− Computational efficiency. The coefficients of an AR model are more
efficient to compute than in a general ARMA model. In fact, a
node learns an AR(3) model by computing the coefficients β1, β2

and β3. This can be done by calculating the least-square-error, and
therefore by solving a linear system in three unknowns.

− Memory saving. Relying on the last three observed values not only
improves the computational cost but also the memory usage of the
sensor, since it needs to store only the last three observed values
and its coefficients.

− Simplicity in the design and implementation, relevant in WSN.

TimeEstimation.tex; 17/08/2006; 16:25; p.26

On the Feasibility of Time Estimation under Isolation Conditions in WSN 27

− An AR model with a Gaussian white noise with zero mean allows
to derive strong properties for our time series, useful to compute
a bound for the error probability (see [37]).

It is important to note the inherent trade-off between efficiency (com-
putational cost and memory) and precision of the time estimate. In
fact, the time accuracy usually increases when using a higher number
of observed values, that is an AR(p) model with p > 3. We are currently
evaluating such a trade-off and the suitability of this model with respect
to others. More precisely, we consider the following AR(3) model:

Y (t) = β1Y (t− 1) + β2Y (t− 2) + β3Y (t− 3) + b(ω)W

in which the prediction of Y (t) depends on the last three observed values
of {yt} derived by the last four clock synchronization. We denote by
ti−3, ti−2, ti−1, and ti the time at which the last four synchronization
occurred. Therefore, in our case Y (t − 1) refers to Yti , Y (t − 2) to
Yti−1 , and Y (t− 3) to Yti−2 . Clearly, the prediction Yt of the variation
of the clock deviation occurred in [ti, t], depends on its variation in
[ti−1, ti], [ti−2, ti−1], and [ti−3, ti−2]. Notice that b(ω)W is a Gaussian
white noise of Y (t), with zero mean and standard deviation equal to
b(ω) with ω = t − ti. This is because the variations of the cumulative
drift are more likely to occur as ω grows. In this way we assume that
drift variations are more likely to occur during longer time intervals.
However, this does not affect the stationarity of the time series {Yt}.
Since b(ω) depends on the sensor clock (i.e. stability of the oscillator,
thermal isolation) and on the environmental fluctuations, it should be
tuned based on the network characteristics.

6.3. Predicting Y (t)

Our PCR method computes a prediction of Y (t) based on the last three
observed values of {yt}. To do this, we need to compute β1, β2, β3, that
is to find the linear combination of the last three values that forecast
Yt with minimum squared error. Therefore, β1, β2, β3 correspond to the
coefficients of the best linear predictor and are obtained by computing
the minimum of the following function

Q(β1, β2, β3) =
N∑

i=4

(yi − (β1yi−1 + β2yi−2 + β3yi−3))2

with N number of observations to consider. Therefore, β1, β2, β3 are
computed by solving the linear system of 3 linear equations in 3 un-

TimeEstimation.tex; 17/08/2006; 16:25; p.27

28 Daniela Tulone

known

∂Q(β1,β2,β3)
∂β1

= 0
∂Q(β1,β2,β3)

∂β2
= 0

∂Q(β1,β2,β3)
∂β3

= 0

Clearly, for an accurate estimate of the coefficients β1, β2, β3, the
number N of observed values should be large (i.e Box and Jenkins
suggest more than 50, see also [37]). However, storing these values might
be too expensive for a sensor because of its limited resources. For this
reason, during the learning phase, the sensor does not store these values
but the matrix 3× 4 associate to the linear system, and updates it at
each reading.

6.4. The PCR method

The PCR method consists of two procedures:

− setV ariables(Ti,H(ti)) invoked at each clock synchronization ti,
with Ti accurate estimate of ti computed by running a clock syn-
chronization protocol,

− PCR(t) returning an estimate of the current reference time t.

Figure 9 illustrates setV ariable(), and function PCR(t).

setVariables(Ti,H(ti)):

1) y[1] ← y[2]
2) y[2] ← y[3]
3) y[3].val ← Ti −H(ti)− lastDev
4) lastDev ← Ti −H(ti)
5) y[3].m ← round(H(ti)−lastClock

Γ)
6) lastClock ← H(ti)
7) N ← N + 1
8) if N < Ψ
9) updateMatrix()
10)else if N = Ψ
11) computeCoeff()

PCR(t):

1) if N < Ψ
2) l ← y[1].m + y[2].m + y[3].m
3) β[1] ← 2

3 − y[1].m
l

4) β[2] ← 2
3 − y[2].m

l

5) β[3] ← 2
3 − y[3].m

l
6) dev ← β[1]y[1].val + β[1]y[2].val + β[1]y[3].val
7) ∆H ← H(t)− lastClock
8) T ← Ti + ∆H − dev ∆H

Γ
9) return T

Figure 9. The PCR method.

The data structures used are the followings:

TimeEstimation.tex; 17/08/2006; 16:25; p.28

On the Feasibility of Time Estimation under Isolation Conditions in WSN 29

− an array y[0 .. 2] of records with two fields: y[j].val representing
the observed value yi−j relative to the time interval [ti−j , ti−j−1]
for j = 0, 1, 2, and y[j].m = ti−j−ti−j−1

Γ representing the times in
which the sensor was unable to get its clock synchronized;

− an integer matrix M = M(3 × 4) of the coefficients of the linear
system.

Array y[0 .. 2] is updated every time the sensor clock is synchronized
(Fig 9 setV ariables:1–5), while M is updated until the number of
observed data is sufficiently reasonable to compute the coefficients
β1, β2, β3 (Fig 9 setV ariables: 9,11), that is until it reaches a constant
threshold Ψ (i.e. Ψ = 50).

Usually services built on top of statistical models involving a learn-
ing phase become active only after the learning phase. However, since
time estimation is crucial in many sensor applications, and the clock
adjustments represent the inputs of the learning phase, and they might
be missing for the reasons discussed in the Introduction, we want to
provide some basic time estimation during the learning phase, but
with no bounded accuracy. During the initial phase the coefficients
β1, β2, β3 are the weights of the data yi, yi−1, yi−2 based on the time
interval associate to each increment. This is based on the consideration
that larger variations are more likely to occur in larger time intervals.
Therefore, values associated to smaller time intervals are considered
more accurate than values associated to larger ones. More precisely, if
J = [ti, ti−3] is the interval involved in the prediction, then weight
w1 = 2

3 − ti−ti−1

ti−ti−3
is associate with value y[1].val, w2 = 2

3 − ti−1−ti−2

ti−ti−3

with y[2].val, and w3 = 2
3 − ti−2−ti−3

ti−ti−3
with y[3].val (Fig 9 PCR:2–5).

Clearly w1 + w2 + w3 = 1.
The following lemma provides a bound for the error probability of

the time estimate T = PCR(t). It says that after the learning phase,
the time interval [T −η, T +η] is correct with probability at least 1− 1

ζ2

provided b(ω) < ρΓ
ζ .

LEMMA 5. If b(ω) < ρΓ
ζ then P ((T − t) > η) ≤ 1

ζ2

Proof If the ARMA process is driven by a Gaussian white noise,
as in our case, then Y (t) has a normal distribution N(λ, b(ω)2) with
λ = β1yi +β2yi−1 +β3yi−2. By applying Chebychev inequality we have
P (|Y − λ| ≥ ρΓ) ≤ 1

ζ2 , and therefore P ((T − t) > η) ≤ 1
ζ2 . 2

Since function b(ω) depends on the network and on the environ-
mental conditions, it is hard to write it in a generic analytical form,
and compute the maximum number of clock adjustments that a sensor

TimeEstimation.tex; 17/08/2006; 16:25; p.29

30 Daniela Tulone

can skip maintaining the same accuracy η. However, we can provide
a condition on the number x of skips that a sensor can perform with
maximum error η. In fact, a sensor node is able to compute at the
end of the learning phase the standard deviation of the white noise
at different data rate, that is, it can compute b(Γ), b(2Γ), . . . , b(aΓ).
Therefore, given a constant ζ > 1, if the standard variation of the white
noise during xΓ time units, with x positive integer, is less than ρΓ

ζ , the
sensor can skip x clock adjustments with error probability at most 1

ζ2 .
This relation shows an inherent trade-off between time accuracy and
energy efficiency.

Similarly to the DCR method, the PCR method can be applied to
to reduce the frequency of the clock synchronization, thus conserving
energy, or in case of node isolation. Note that it is highly flexible since
it allows the sensor node to tune the degree of the time accuracy (η, ζ)
according to the application requirements and resource optimization.

7. Conclusions and future works

We have studied the time synchronization problem from a novel per-
spective, which consists of reducing the clock error between synchro-
nization by exploiting information of the hardware clock. This per-
spective has a noticeable impact on WSN since it leads to energy
conservation and enhances the robustness of the sensor clock in the
presence of communication and node failures and mobility. For instance,
our DCR method can be applied to WSN to reduce by a factor of 2
the frequency at which clocks are synchronized with noticeable energy
and network bandwidth savings.

We have proposed also a probabilistic framework for time estimation
which is based on time series forecasting and it is highly flexible. We
believe that this scheme is general and can be applied to other problems
in sensor networks to save energy, such as the problem of efficiently
answering user queries at the sink regarding data produced. We are
currently working on this problem.

Both methods are novel, and leave several open issues both on the
theoretical and practical side. Because of the numerous differences
between computer and sensor clocks, we believe it is important to
study the behavior of the sensor oscillator and its cumulative drift on
real sensors and under different conditions. We plan to implement and
evaluate our methods on sensors and verify the suitability of our AR
model.

TimeEstimation.tex; 17/08/2006; 16:25; p.30

On the Feasibility of Time Estimation under Isolation Conditions in WSN 31

Acknowledgements

The author would like to thank Susanna Pelagatti for introducing her to
time series forecasting, Alessio Micheli, for helpful discussions on time
series forecasting and statistical models, and the anonymous referees
for their valuable comments.

References

1. J. Elson, L. Girod, and D. Estrin, Fine-grained network time synchronization
using Reference Broadcasts, In Proc. of the 5th Symp. on Operating Systems
Design and Implementation (OSDI ’02), Dec 2002.

2. J. Elson and K. Römer, Wireless sensor networks: a new regime for time
synchronization, ACM SIGCOMM Computer Communication Review, 33(1),
pp. 149–154, Jan 2003.

3. K. Römer, Time synchronization in ad hoc networks, In Proc. of the 2nd Intl.
Symp. on Mobile ad Hoc Networking and Computing (MobiHoc ’01), Oct 2001.

4. S.Palchaudhuri, A. Saha, and D. Johnson, Adaptive clock synchronization in
sensor networks, In Proc. of the 3rd Intl. Symp. on Information Processing in
Sensor Networks (IPSN ’04), Apr 2004.

5. H. Dai, and R. Han, TSync: a lightweight bidirectional time synchronization
service for wireless sensor networks, ACM SIGMOBILE Mobile Computing
and Communications Review, 8(1), pp. 125–139, Jan 2004.

6. S. Ganeriwal, R. Kumar, and M. B. Srivastava, Timing-sync protocol for sensor
networks, In Proc. of the 1st Conf. on Embedded Networked Sensor Systems
(SenSys 2003), Nov 2003.

7. A. Hu and S. D. Servetto, Time synch and localization: Asymptotically optimal
time synchronization in dense sensor networks, In Proc. of the 2nd ACM Intl.
Conf. on Wireless Sensor Networks and Applications, Sept 2003.

8. J.P. Sheu, C.M. Chao, and C.W. Sun, A clock synchronization for multi–
hop wireless ad hoc networks, In Proc. of the 24th Intl. Conf. on Distributed
Computing Systems (ICDCS ’04, pp. 574-581, Mar 2004.

9. G.Gao and J. Welch, Accurate multi–hop clock synchronization in mobile ad
hoc networks, In Proc. of the 33rd Intl. Conf. on Parallel Processing Workshops
(ICPP ’04), pp. 13–20, Aug 2004.

10. J. Elson, R. M. Karp, C. H. Papadimitriou, and S. Shenker, Global Syn-
chronization in Sensornets, In Proc. of the 6th Latin American Symp. on
Theoretical Informatics (LATIN ’04), pp. 609–624, Apr 2004.

11. J. van Greunen, and J. Rabaey, Time synch and localization: lightweight time
synchronization for sensor networks, In Proc. of the 2nd Intl. Conf. on Wireless
Sensor Networks and Applications, Sept 2003.

12. P.Blum, L.Meier, and L.Thiele, Improved interval–based clock synchronization
in sensor networks, In Proc. of the 3rd Intl. Symp. on Information Processing
in Sensor Networks (IPSN ’04), pp. 349-358, Apr 2004.

13. L.Meier, P.Blum, and L.Thiele, Internal synchronization of drift–costraint
clocks in ad–hoc sensor networks, In Proc. of the 5th Symp. of Mobile ad Hoc
Networking and Computing (MobiHoc ’04), pp. 90–97, May 2004.

TimeEstimation.tex; 17/08/2006; 16:25; p.31

32 Daniela Tulone

14. M. L. Sichitiu and C. Veerarittiphan Simple, accurate time synchronization
for wireless sensor networks, In Proc. of the Wireless Communications and
Networking Conference (WCNC ’03), Mar 2003.

15. Q. Li and D. Rus, Global clock synchronization in sensor networks, In Proc.
of the 23rd Conf. of the Communications Society (INFOCOM ’04), Mar 2004.

16. M. Mock, R. Frings, E. Nett, and S.Trikaliotis, Continuous clock synchroniza-
tion in wireless real–time applications, In Proc. of the 19th Symp. on Reliable
Distributed Systems (SRDS’00), pp. 125–134, Oct 2000.

17. W.Su, and I. Akyldiz, Time–diffusion sensor prootocol for sensor networks
Technical report, Georgia Institute of Technology, 2002.

18. R.Fan and N. Lynch, Gradient clock synchronization, In Proc. of 23rd Annual
Symp. on Principles of Distributed Computing (PODC ’04), pp. 320–327, Jul
2004.

19. I. Akyildiz , W. Su , Y. Sankarasubramaniam , and E. Cayirci, Wireless
sensor networks: a survey, Computer Networks, Intl. Journal of Computer
and Telecommunications Networking, 38(4), pp.393-422, Mar 2002.

20. G.J.Pottie, and W.J.Kaiser, Wireless integrated network sensors, Comm. of
the ACM, 43(5), pp. 551–558, 2000.

21. J. Polastre, R. Szewczyk, C. Sharp, and D. Culler The Mote Revolution:
Low Power Wireless Sensor Network Devices, In Proc. of Hot Chips 16: A
Symposium on High Performance Chips, Aug 2004.

22. TinyOS, http://webs.cs.berkeley.edu/tos/
23. C. Fetzer and F.Cristian, Integrating external and internal clock synchroniza-

tion, Journal of Real-Time Systems, 12(2), pp. 123-171, Mar 1997.
24. T.K. Srikanth, S. Toueg, Optimal clock synchronization, Journal of ACM,

34(3), pp. 626–645, 1987.
25. F.Cristian, Probabilistic clock synchronization, Distributed Computing 3(3),

pp. 146–158, 1989.
26. C.Fetzer, and F.Cristian, Building fault-tolerant hardware clocks, In Proc.

of the 7th IFIP Intl. Working Conf. on Dependable Computing for Critical
Applications, pp. 59-78, Jan 1999.

27. C.Liao, M.Martonosi, and D. Clark, Experience with adaptive globally–
synchronizing clock algorithm, In Proc. of the 11th Symp. on Parallel
Algorithms and Architectures (SPAA ’99), pp. 106–114, Jun 1999.

28. K.Marzullo, and S.Owicki, Maintaining the time in a distributed system, In
Proc. of the 2nd Annual Symp. on Principles of Distributed Computing (PODC
’83) pp. 295–305, Aug 1983.

29. P. Verissimo, L. Rodrigues, and A.Casimiro, Cesiumspray: a precise and accu-
rate global clock service for large-scale systems, Journal of Real-Time Systems,
12(3), pp. 243-294, May 1997.

30. K.Schossmaier, B.Weiss. An Algorithm for Fault–Tolerant Clock State&Rate
Synchronization. In Proc. of the 18th IEEE Symp. on Reliable Distributed
Systems (SRDS ’99), pp. 36-47, Oct 1999.

31. K. Schossmaier, An interval-based framework for clock rate synchronization,
In Proc. of the 16th Symp. on Principles of Distributed Computing (PODC
’97), pp. 169–178, Aug 1997.

32. U.Schmid, and K.Schossmaier, Interval-based clock synchronization, Journal
of Real-Time Systems 12(2), pp. 173-228, Mar 1997.

33. F. Cristian, and C. Fetzer, Probabilistic internal clock synchronization, In
Proc. of the 13th Symp. on Reliable Distributed Systems (SRDS ’94), pp.
22–31, Oct 1994.

TimeEstimation.tex; 17/08/2006; 16:25; p.32

On the Feasibility of Time Estimation under Isolation Conditions in WSN 33

34. D.L.Mills, Adaptive hybrid clock discipline algorithm for the Network Time
Protocol. Trans. Networking 6(5), pp. 505–514, Oct 1998.

35. The Science of Time–keeping. Hewlett Packard, application Note 1289.
36. F. Vernotte, J. Delporte, M. Brunet, and T. Tournier, Uncertainties of drift co-

efficients and extrapolation errors: application to clock prediction, Metrologia,
Feb 2001.

37. P. J. Brockwell, and R. A. Davis, Introduction to Time Series and Forecasting,
Springer Text in Statistics, 1994.

38. L. R. Rabinier, A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition, In Proc. of IEEE, 77(2), pp. 257–285, 1989.

39. J. L. Elman, Finding structure in time, Cognitive Science, 14:179.211, 1990.
40. V. N. Vapnik, The nature of statistical learning theory, Springer, New York,

1995.
41. J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural

Computation, Addison–Wesley: Redwood City, California, (1991).
42. R.Wolski, Dynamically forecasting network performance using the Network

Weather Service, Journal of Cluster Computing 1, pp. 119–132, 1998.
43. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein, Energy–

efficient computing for wildlife tracking: design trade–offs and early experience
with Zebranet. Proc. 10th Conf. on Architectural Support for Programming
Languages and Operating Systems, Oct 2002.

TimeEstimation.tex; 17/08/2006; 16:25; p.33

TimeEstimation.tex; 17/08/2006; 16:25; p.34

