
An Implementation of Causal Memories

using the Writing Semantic

R. Baldoni ∗, C. Spaziani and S. Tucci-Piergiovanni D. Tulone

Dipartimento di Informatica e Sistemistica Bell-Laboratories

Universita’ di Roma ”La Sapienza” 700 Mountain Avenue

Via Salaria 113, I-00198 Roma, Italy Murray Hill, NJ 07974-0636, USA

baldoni@dis.uniroma1.it tulone@research.bell-labs.com

Abstract

Causal consistency has been introduced to increase wait-free concurrent accesses to a shared

memory. Contrarily to sequential consistency, causal consistency allows independent write oper-

ations, with respect to the causality relation, to be executed in different orders at each distinct

process. This paper introduces a protocol for fully replicated settings which exploits the writing

semantic and piggybacks on each update message related to a write operation an amount of con-

trol information which is O(n) where n is the number of processes. The protocol tracks causality

relation by taking transitive dependencies on write operations into account.

Keywords: Causal Memories, Writing Semantic, Replication, Distributed Coordination, Distributed Sys-

tems.

1 Introduction

Implementing a shared memory abstraction which preserves a given consistency criterion in an asynchronous

distributed system is a real challenge due to unpredictable latencies and failures. Programmers are more

comfortable to work with very strict consistency criteria like sequential consistency and atomic consistency.

These criteria impose all processes implementing the shared memory abstraction agree on logical (sequential

consistency [8]) or physical (atomic consistency [12]) execution order of a set of operations on the memory. Such

consistency criteria are then costly to implement if processes are deployed in a partially synchronous distributed

systems [5], or, even impossible (in deterministic way) in fully asynchronous distributed systems in the presence

of failures due to FLP impossibility result [6].

∗Corresponding Author: Fax n. + 39 06 85300849. Email: baldoni@dis.uniroma1.it.

1

This is the reason why weaker consistency critera such as PRAM (also called FIFO consistency) [10] and

causal consistency [1] have been introduced in the past. These consistency criteria allow to get better scalability

and performance with respect to more restrictive consistency criteria. In particular causal consistency ensures

that values returned by a read operation are consistent with the Lamport causality relation [9]. In a setting

where each process has a local copy of the shared memory locations, causal ordering ensures that readers can

access their local copy concurrently (wait-free) without the risk of an invalidation of those reads due to a write

operation. This enlarges the set of possible executions with respect to atomic and sequential consistency criteria.

To our knowledge, two protocols have been presented in the literature in the context of fully ([1]) and

partially replicated memory locations ([14]). To ensure causal ordering of readings each message that notifies

a write operation (update message) piggybacks a control information (i.e., actually a vector clock [11]) which

is at least O(n) where n is the number of processes (See section 3.5 for a deeper discussion). More specifically,

[1] works as follows: when an update message of a write operation arrives at a process out of causal order

(as w2(x)b at process p3 depicted in Figure 1(a)), the execution of that operation is delayed till all update

messages of causally preceding operations have been delivered (w1(x)a update message in figure 1(a)). To get

more efficiency causal consistency protocols, Raynal and Ahamad [14] introduce the notion of writing semantic.

This notion informally states that a process pi can write a new value b in the memory location x, (e.g. w(x)b)

as soon as it receives the w(x)b’s update message even though pi detects, looking into the control information

of w(x)b’s update message, there exists a causally preceding write operation on x, (e.g. w(x)a) not yet arrived

at pi. When the w(x)a’s update message arrives at pi, it is discarded as it contains an obsolete value. This

scenario is depicted in Figure 1(b). From an abstract point of view, the causality relation is actually preserved

as it is like w(x)a has arrived and executed first at pi and then it has been immediately overwritten by w(x)b.

w2(x)b

P1

P2

P3

w1(x)a

delay

(a)

w2(x)b

DISCARDED

P1

P2

P3

w1(x)a

delay

(b)

Figure 1: Example of writing semantic

The protocol of Raynal and Ahamad [14], adapted to a fully replicated setting, piggybacks on each update

message a control information which is the maximum between O(n) and O(m), where m is the number of

replicated objects. In this paper we provide a protocol exploiting writing semantic which guarantees causal

consistency of a shared memory system by piggybacking on each update message a control information which is

O(n). More specifically, the protocol piggybacks into an update message of a write operation w(x) issued by pi:

(i) a vector of size n which represents to the pi’s knowledge the sequence numbers of the last write operation on

2

x executed by each process (used for detecting obsolete values) (ii) a set of write operations which represents the

causal barrier of w(x). i.e., w(x) cannot be executed at a process till all the elements in its causal barrier have

been executed . The idea of causal barrier was presented for the first time in [13] in the context of guaranteeing

causal message deliveries within multimedia applications.

Compared to the protocol of Raynal and Ahamad [14], the one presented in this paper is well-suited to

settings where the number of shared memory locations is more than n. Moreover, from a pedagogical point

of view it clearly separates data structures for managing writing semantic and the ones for ensuring causal

consistency.

The paper is structured into 4 sections. Section 2 presents the model. Section 3 presents the protocol and

the relative data structures and Section 4 introduces some discussion points.

2 Shared Memory Model

We consider a finite set of sequential processes Π ≡ {p1, p2, . . . pn} interacting via a shared memoryM composed

by m locations x1, x2, . . . xm. The locations can be accessed through read and write operations. A write

operation executed by a process pi, denoted wi(x)v, stores a new value v in location x. A read operation

executed by a process pi, denoted ri(x)v, returns to pi the value v stored in location x.1

A local history of a process pi, denoted hi, is a set of read ad write operations. If pi issues two operations

o1 and o2 and o1 is issued first, then o1 precedes o2 in process order of pi. This precedence relation is denoted

by o1 7→poi o2.

Definition 1. A history, denoted H, is a collection of local histories 〈h1, h2, . . . hn〉 one for each process.

Operations issued by distinct processes in H are related by the write-into relation. Formally write-into

relation, denoted 7→wo, is defined as follow:

• if o1 7→wo o2, then there are x and v such that o1 = w(x)v and o2 = r(x)v;

• for any operation o2, there is at most one o1 such that o1 7→wo o2;

• if o2 = r(x)v for some x and there is no o1 such that o1 7→wo o2, then v = ⊥; that is, a read with no write

must read the initial value.

We denote as causal order relation (o1 7→co o2) the transitive closure of the union of the local history’s

relations 7→poi and the relation 7→wo. In other words o1 7→co o2 if and only if:

• o1 7→poi o2 for some pi;

• o1 7→wo o2;

• ∃o3 : o1 7→co o3 and o3 7→co o2.

1Whenever not necessary we omit the value v and the identifier of the process that issued the operation

3

If o1 and o2 are two operations belonging to H, we said that o1 and o2 are concurrent w.r.t. 7→co, denoted

by o1||o2, if and only if ¬(o1 7→co o2) and ¬(o2 7→co o1).

Let as note that Ĥ = (H, 7→co), is a partial order. We call such a partial order execution history of H.

Definition 2. A read event belonging to H, denoted r(x)v, is legal if

∃w(x)v : w(x)v 7→co r(x)v ∧ 6 ∃w(x)v′ : w(x)v 7→co w(x)v′ 7→co r(x)v

Definition 3. An execution history, denoted Ĥ, is legal if all read operation in H are legal.

Definition 4. An execution history Ĥ = (H,→) is causally consistent iff

1. Ĥ is legal;

2. 7→co⇒→;

As processes are sequential the definition of causal memory allows to each process to see a specific linear

extension of the partial order Ĥ. More specifically, this allows concurrent writes to be viewed in different orders

by different processes.

Let us finally remark that if we replace point 1 of Definition 4 with:

1. there exists a linear extension of Ĥ where all read events in H are legal;

we get another way to define sequential consistency [8, 15].

3 An Implementation of Causal Memory using Message Passing

This section presents an implementation of causal memory using message passing. It requires correct processes

and reliable channels (a sent message is eventually received exactly once, no spurious messages can be ever

delivered).

Each process pi maintains a local copy Mi of the abstract shared memory M and issues read and write

operations. Each time pi issues a read operation, it actually reads immediately (i.e., without delay) the value ac-

cessing its own copy Mi. When pi issues a write operation, it sends an update message to all the processes which

are responsible to add the necessary synchronizations between update messages to respect causal consistency.

3.1 Causality Graph

The causality graph of a distributed execution Ĥ = (H,→) is a directed acyclic graph whose vertices are all

write operation in H, such that there is a direct edge from w(x) to w(y) (denoted w(x) ; w(y)) if

1. w(x) 7→co w(y) and

2. 6 ∃w(z) : w(x) 7→co w(z) and w(z) 7→co w(y)

4

We say that w(x) is an immediate predecessor of w(y). It should be noted that as each process can issue

a write operation at a time, a write operation v can have at most n immediate predecessors, one from each

process.

In Figure 2 is shown an example of computation in which update messages, establishing causality relation among

write operations, are depicted by thick line. Figure 3 shows the causality graph associated with the computation

of Figure 2 .

Let +
; denote the transitive closure of ;. Two write operations w(x) and w(y) are said to be concurrent if

neither of them is a predecessor of the other in the causality graph, i.e., ¬(w(x) +
; w(y)) and ¬(w(y) +

; w(x)).

w(y)a w(x)f
P1

P4

P3

P2

w(y)b

w(x)d

w(y)ew(x)c

discard

w(y)a w(x)f
P1

P4

P3

P2

w(y)b

w(x)d

w(y)ew(x)c

discard

P1

P4

P3

P2

w(y)b

w(x)d

w(y)ew(x)c

discard

Figure 2: Example of message pattern

w(y)a

w(x)d

w(y)b

w(x)c w(y)e

w(x)f

w(y)a

w(x)d

w(y)b

w(x)c w(y)e

w(x)f

Figure 3: Causality graph of the message pattern of Figure 2

5

3.2 Writing semantic

To reduce the number of synchronizations among update messages of write operations, improving thus per-

formance, Raynal and Ahamad observed in [14] that in a specific condition, based on writing semantic of a

shared memory, a message of a write operation w can be early delivered at a process pi even though a message

of a write operation w′ (such that w′ 7→co w) has not arrived at pi yet (i.e., the execution of operation w is

intentionally actually done out-of-causal order) provided that w′ is not executed by pi (i.e., the update message

of w′ is discarded by pi). In this way, from the pi’s viewpoint it is like the operation w′ has been virtually

executed immediately (and atomically) before the execution of w (i.e., no read between the execution of o′ and

o). This guarantees causally consistent executions.

From a formal point of view the writing semantic (WS) condition, introduced by Raynal-Ahamad, can be

expressed as follows using the relation ;:

(WS)

if (w(x)a +
; w(x)b) and (6 ∃w(z) : w(x)a +

; w(z) and w(z) +
; w(x)b)

then the value b can be applied at the location x of process pi as soon as the relative update message is received

(no need to wait for the message related to w(x)a).

In the following we refer w(x)a as the obsolete value and w(x)b as the overwrite value.

Let us consider the causality graph depicted in Figure 3: the write operation w(x)f is an overwrite of the

write operation w(x)d. This means that if a process p4 (see Figure 2) receives w(x)f , it applies the overwrite

value f immediately and then it will discard the w(x)d’s update message that carries the obsolete value d.

3.3 Data Structure

Each process pi manages a local variable #seq (initially set to zero) in which it stores the sequence number of

its last write operation. A write operation w(x)a is uniquely identified by an operation timestamp t which is a

triple (sender identity, sequence number, variable). As an example w(x)f issued by p1 in Figure 2 is identified

by the timestamp (1, 2, x).

In the next subsections we present the data structures needed (i) to track causal dependencies among

operations on the causality graph and (ii) to take into account the writing semantic.

3.3.1 Handling the Causality Graph: the IP set

Figure 3 shows that the execution of w(x)f cannot occur before the execution of all the other write operations.

But, due to transitive dependencies, the execution of w(x)f can depend only on its direct predecessors w(x)d

and w(y)e as w(x)d can be only executed after w(y)a and w(y)b, and, w(y)e can be executed only after the

execution of w(x)c. As remarked in [4], this simple observation allows us to reduce the control information

6

piggybacked on update messages with respect to solutions (e.g. [1]) that always piggyback a vector of integers

of size n.

We denote as immediate predecessor set (IPi) at process pi the set of operation timestamps whose corre-

sponding write operations would immediately precede a write operation issued at that time by pi.

Each time a write operation w is executed at pi, w is added into IPi. When a process pi issues a write

operation with a timestamp ts then IPi is set to ts.

3.3.2 Applying writing semantic: the DEL array

If a process pi receives an update message of a write operation w(x)a issued by pj whose timestamp is say

(j, 25, x), then assume pi executes w(x)a, all update messages related to write operations on variable x issued

by pj with sequence number less than 25 are actually overwritten. This information has to be transferred to

the receiving processes when pi issues a write operation in order that receivers can discard obsolete values (if

any).

At this aim, each process manages an array DELi : array [1 . . . n; 1, . . .m] of Integers. The component

DELi[j, x] = #seq expresses the knowledge of pi on the sequence number of the last write operation on variable

x executed by pj .

Each element of the array is initially set to zero, each time a write operation w(x)a is issued by pi, the

column of DELi related x, denoted DELi[∗, x], is piggybacked to the update message.

When a process pi receives an update message with a timestamp (j, #seq, x) piggybacking DEL[∗, x],

after executing the corresponding write operation, it updates DELi[∗, x] by doing a component wise maximum

between DELi[∗, x] and DEL[∗, x] and finally sets DELi[j, x] to #seq.

3.3.3 Guaranteeing Causal Consistency: the CB and the LCB set

A write operation w(x)f should be executed at each process once all the immediate predecessors of w(x)f have

been executed but the ones that are made obsolete by w(x)f due to writing semantic (e.g. w(x)d in Figure

3). On the other hand, if we do not constraint the execution of w(x)f to the one of w(x)d, w(x)f has to be

executed anyway after all the immediate predecessors of w(x)d in order the execution be causally consistent

(see Figure 3). All write operations that constraint the execution of a given write operation w form the causal

barrier of w. To manage the causal barrier of a write operation, we introduce two data structures: CB and

LCB.

Intuitively, the causal barrier of a write operation w(x) is formed by a set of operation timestamps. This

set includes (i) the timestamps of each operation w(y) that immediately precedes w(x) with x 6= y and (ii) for

each immediately predecessor w′(x) of w(x), all timestamps of the operations belonging to the causal barrier of

w′(x).

Let us note that from previous intuitive definition, the size of a causal barrier would have, as complexity,

the number of write operations executed during the computation. However a simple observation on the program

7

w(y)a

w(x)d

w(y)b

w(x)c w(y)e

w(x)f

CBw(x)f

CBw(y)e

w(y)a

w(x)d

w(y)b

w(x)c w(y)e

w(x)f

CBw(x)f

CBw(y)e

Figure 4: Example of causal barriers of the message pattern depicted in Figure 2

order allows to reduce the size of the causal barrier to a data structure of O(n) through a filtering statement.

Let us suppose two write operations w(y) and w(z) issued by the same process pi whose timestamps, denoted

(i,#seqy, y) and (i, #seqz, z) with #seqy < #seqz, belong to the causal barrier of w(x). There is no point

in keeping the timestamp of w(y) in the causal barrier of w(x) as the constraint on the the execution of w(x)

imposed by w(z) transitively implies the one of w(y) due to the program order on pi. Following this observation,

the causal barrier can be formally defined as follows:

Definition 5. The causal barrier (CBw(x)) of a write operation w(x) is a set of operation timestamps at most

one for each process. This set includes the timestamp with the greatest sequence number one for each process

taken from the set of timestamps formed by (i) the timestamps of each operation w(y) that immediately precedes

w(x) with x 6= y and (ii) for each immediately predecessor w′(x) of w(x), all timestamps of the operations

belonging to CBw′(x).

As an example Figure 4 shows the causal barrier of w(x)f . This data structure has therefore a complexity

that only in the worst case is O(n).

From an operational point of view, in order to guarantee causal consistency, each w(x)v’s update message

sent by pi has to piggyback as control information CBw(x)v. In this way, when a destination process pi receives

an update message related to w(x)v, pi will execute w(x)v (i.e., the value v will be stored in Mi[x]) as soon as

the following predicate (P) becomes true:

∀(k, d, `) ∈ CBw(x)v : (d ≤ DELj [k, `]) (P)

When a process pi issues a w(x)v, to build CBw(x)v needs (i) IPi and (ii) the causal barriers of all the

8

immediate predecessors in IPi. To realize the second point pi needs a data structure, denoted LCBi, which

memorizes such causal barriers. LCB is therefore a set of causal barriers. It is initialized to ∅, each time a

write operation is executed at pi the corresponding causal barrier is added to LCBi and after pi issues a write

operation w(x)v, LCBi is set to CBw(x)v.

3.4 Protocol Behavior

When a process pi wants to read a location x, pi returns immediately, by using a single assignment statement,

the value stored in the location x of local copy of M. The read is legal due to the fact that the execution of a

single statement is atomic and then the procedure will return the last value written into the location.

1 Write(x, v)

2 begin

3 #seqi := #seqi + 1; CB(i,#seq,x) := ∅;
4 for each (k, d, `) ∈ IPi :: if (` = x)

5 then CB(i,#seq,x) := CB(i,#seq,x)

S
CB(k,d,`) ∈ LCBi;

6 else CB(i,#seq,x) := CB(i,#seq,x)

S
(k, d, `);

7 ∀pk CB(i,#seq,x) :=
S

k=1,...n(max#seq(CB(i,#seq,x)|pk));

8 send [“Write”, x, v, #seqi, DELi[∗, x], CB(i,#seq,x)] to Π;

9 IPi := {(i, #seqi, x)}; LCBi := {CB(i,#seq,x)};
10 end

Figure 5: Write operation executed by a process pi

When a process pi wants to a write operation wi(x)v, then it executes the procedure Write(x, v) depicted

in Figure 5. In details, it first increments its sequence number and initializes the causal barrier of w(x)v to

∅ (line 3). Then pi builds CBw(x)v (lines 4-6) based on IPi and LCBi as defined in Section 3.3.3. Line 7

actually compresses CBw(x)v obtained exiting from the for statement by leaving, according to Definition 5, into

CBw(x)v at most one timestamp for each distinct process. Then the update message of w(x)v is broadcast to

other processes piggybacking CBw(x)v (necessary for the causally ordered execution of w(x)v at receiver side),

DEL[∗, x] (to propagate knowledge on obsolete write operations on variable x) as well as x, #seq and the value

v. Finally IPi and LCBi are updated according to their definitions (line 9).

Each time a “Write” message is received by a process pi a new thread is spawned and the code of this thread

is depicted in Figure 6. First at line 2 it is checked if the operation is obsolete (i.e., to the knowledge of pi the

operation w(x)v has been overwritten). In the affirmative, the update message is discarded and the operation

is not executed. Otherwise, the write operation wait until all operations in CB(j,#seq,x) have been executed.

Then the value v is stored into the location x (line 6) and then all data structures are updated according to

their definition. Lines from 6 to 10 are executed atomically.

9

Figure 7 shows a message pattern with (i) the data structures piggybacked by update messages of w(x)f

and w(x)d and (ii) the evolution of the DEL array at process p4.

1 when (deliver [“Write”, x, v, #seq, DEL[∗, x], CB(j,#seq,x)] from pj) do

2 if ((#seq ≤ DELi[j, x])

3 then discard the “Write” message;

4 exit;

5 wait until (∀(k, d, `) ∈ CB(j,#seq,x) : d ≤ DELi[k, `]); % Synchronization to respect 7→co %

6 Mi[x] := v;

7 LCBi := LCBi

S{CB(j,#seq,x)};
8 IPi = IPi − CB(j,#seq,x)

S{(j, #seq, x)};
9 DELi[j, x] := #seq;

10 ∀k 6= j DELi[k, x] := max(DELi[k, x], DEL[k, x]);

Figure 6: Processing of an update message by a process pi

3.5 Discussion

Correctness Proof. The proof showing safety and liveness requirement is omitted due to lack of space as

it uses the typical induction techniques employed in [1, 2, 4]. However, it can be easily devised that:

• Liveness (i.e., no write operation remains blocked forever at a process) is ensured by the fact that either

a write operation w is overwritten by another one, say w′, at process pi. In this case w is discarded at

pi; or the write operation w waits all the operations in its causal barrier. Due to the fact that messages

cannot be lost and to the update rule of the data structure internal at each process, eventually w will be

executed at pi.

• Safety (i.e., the execution respects Definition 4) Point 2 of Definition 4 (i.e., write operations are causally

ordered) is ensured by the wait condition in Figure 6 that guarantees write operations are causally ordered

at each process (due to properties of transitive dependencies) and by the use of DEL array to ensure a

safe discard of obsolete values. Finally Point 1 of Definition 4 is trivially satisfied (in a wait-free way) as

each process reads a value from its local copy of the memory location. Therefore, each read operation

returns the last value written onto that location.

Comparison to prior solutions. The only solution that exploits the writing semantic ([14]) was designed

for a partially replicated setting. The simple adaptation of that protocol to a fully replicated setting would

imply a control information, piggybacked to each update, composed by two vectors of size O(n) and O(m)

respectively. On the other hand, the solution presented in this work piggybacks on each update message a

control information composed by two vectors of size O(n). More specifically, managing the writing semantic

10

P1

P4

P3

P2

w(y)a

w(y)b

w(x)d

w(y)ew(x)c

w(x)f

discard

1

11

1

1

11

1

1

1

11

11

1

1

11

11

DEL=[0,1,1,0]
CB={(1,1,y), (4,1,y), (2,1,y)}

DEL=[0,0,0,0]
CB={(1,1,y), (4,1,y)}

X Y X Y

P1
P2
P3
P4

P1
P2
P3
P4

Figure 7: Example of the message pattern of Figure 2 with some data structures

requires locally each process to be equipped with an array n ×m (i.e., DEL[]) and to attach to each message

a column of this array. Guaranteeing that the execution of a write operation is causally consistent requires to

attach a set of timestamps, the causal barrier, whose cardinality is at most n and each process has to be equipped

locally with a set of causal barriers that actually stores the casual barriers of the immediate predecessors of a

write operation issued by that process.

Then our solution is well-suited for environments in which the number of replicated objects (or memory

locations) m is greater than the number of processes n.

Let us finally point out that if we do not consider the writing semantic, CBw(x)v = IPi. Therefore the

predicate P of Section 3.3.3 becomes (i) the same to the one defined in [4] in the context of causal delivery of

messages; and (ii) equivalent to the predicate defined by Ahamad et al. in [1] based on vector clocks. This

equivalence can be easily proved as from the point of view of ensuring causality, a system of vector clock is

equivalent to a causal barrier which tracks immediate predecessor of an operation [4].

4 Conclusion

In this paper we proposed a protocol to guarantee causal consistency in a shared memory implemented in a

fully replicated setting. This protocol combines two interesting notions to get good performance (in terms for

example of local buffer reduction): the writing semantic (defined in [14]) and the transitive dependency tracking

11

to guarantee causally consistent executions (defined in [13]). The protocol piggybacks on each update message

a control information which is O(n). As it provides a clear separation of concerns among the two basic notions,

it can be used as a starting point for the development of other protocols in more complex settings such as

client/server and overlapping groups.

References

[1] M. Ahamad, G. Neiger, J.E. Burns, P. Kohli, P.W. Hutto. Causal Memory: Definitions, Implementation and

Programming, Distributed Computing, Vol. 9, No. 1, 1995, pp.37-49.

[2] R. Baldoni, A. Mostefaoui, and M.Raynal, Causal Delivery of Messages with Real-Time Data in Unreliable Networks,

Journal of Real-time Systems, Vol. 10, No. 3, 1996.

[3] R. Baldoni, M. Raynal. Fundamentals of Distributed Computing: A Practical Tour of Vector Clocks, IEEE Dis-

tributed Systems on-line, Vol. 3, No. 2, 2002.

[4] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal. Efficient Delta-Causal Broadcasting. International Journal of

Computer Systems Science and Engineering, Pages 263-271, September 1998.

[5] C. Dwork and N.A. Lynch L. Stockmeyer, Consensus in the Presence of Partial Synchrony, Journal of the ACM,

1988, 35(2), 288–323.

[6] M. Fischer and N. Lynch and M. Patterson, Impossibility of Distributed Consensus with One Faulty Process,

Journal of the ACM, 1985, 32(2), 374-382.

[7] M. Herlihy and J. Wing. Linearizability: a Correctness Condition for concurrent Objects, ACM TOPLAS, 12(3):

463-492, 1990

[8] L. Lamport, How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs, IEEE

Transactions on Computers, Vol. C-28, No. 9, 1979, pp. 690-691.

[9] Lamport L., Time, Clocks and the Ordering of Events in a Distributed System, Communications of the ACM,

21(7):558-565, 1978.

[10] Lipton R. and Sandberg J, PRAM: A scalable shared memory, Tech. Rep. CS-TR-180-88, Princeton University,

Sept. 1988.

[11] Mattern F., Virtual Time and Global States of Distributed Systems, Proc. ”Parallel and Distributed Algorithms”

Conference, (Cosnard, Quinton, Raynal, Robert Eds), North-Holland, pp. 215-226, 1988.

[12] J. Misra, Axioms for memory access in asynchronous hardware systems, ACM Transactions on Programming Lan-

guages and Systems, Vol.8, No. 1, 1986, pp.142-153.

[13] R. Prakash, M. Raynal, M. Singhal, An Efficient Causal Ordering Algorithm for Mobile Computing Environments,

Proc. 16th IEEE International Conference on Distributed Computing Systems (1996) pp.744-751

[14] M. Raynal, M. Ahamad, Exploiting Write Semantics in Implementig Partially Replicated Causal Objects, Proc. of

6th Euromicro Conference on Parallel and Distributed Systems, pp.175-164, Madrid, January 1998.

12

[15] M. Raynal, A. Schiper, From Causal Consistency to Sequential Consistency in Shared Memory Systems, Proc. 15th

Int. Conf. on Foundations of Software Technology & Theoretical Computer Science, Bangalore, India, Springer-

Verlag LNCS 1026 (P.S. Thiagarajan Ed.), 1995, pp. 180-194.

13

