
Persistent Objects in the Fleet System

Dahlia Malkhi� Michael K. Reitery Daniela Tuloney Elisha Ziskindy

Abstract

Fleet is a middleware system implementing a distributed
repository for persistent Java objects. Fleet is primarily tar-
geted for supporting highly critical applications: in partic-
ular, the objects it stores maintain correct semantics despite
the arbitrary failure (including hostile corruption) of a lim-
ited number of Fleet servers and, for some object types, of
clients allowed to invoke methods on those objects. Fleet
is designed to be highly available, dynamically extensible
with new object types, and scalable to large numbers of
servers and clients. Previous papers described the replica-
tion technology underlying Fleet; in this paper we describe
the design of Fleet objects, including how new objects are
introduced into the system, how they are named, and their
default semantics.

1. Introduction

Persistent shared objects are a useful abstraction for
building concurrent and distributed programs. A shared ob-
ject encapsulates state and provides methods to operate on
that state that can be invoked from different clients, possi-
bly concurrently and from different physical locations in a
network. Persistence of the object implies that the object
outlives the client who created it (and other clients); i.e., it
will be available to new clients that arrive after its creator
has vanished. Implementing persistent shared objects for
distributed clients has been the goal of both research efforts
(e.g., [LCSA99]) and products alike (e.g., JavaSpaces; see
java.sun.com/products/javaspaces/).

Object persistence requires a supporting infrastructure
in which object state can be stored. In this paper, we de-

�School of Computer Science and Engineering, Hebrew University of
Jerusalem, Israel; email: dalia@cs.huji.ac.il

ySecure Systems Research Department, Bell Labs, Lucent Technolo-
gies, Murray Hill, New Jersey, USA; email: freiter,daniela,
eziskindg@research.bell-labs.com

This document is based upon work supported by DARPA and the U.S.
Air Force Research Laboratory under Contract No. F30602-99-C-0165.
Any opinions, findings, conclusions or recommendations expressed in this
document are those of the author(s) and do not necessarily reflect the views
of DARPA or the U.S. Air Force Research Laboratory.

scribe Fleet, a software middleware system implementing
persistent Fleet objects using replication, in a manner that
survives the arbitrary corruption of a threshold of a Fleet
object’s replicas. The Fleet architecture consists of persis-
tent servers and (potentially transient) clients. Servers hold
replicas of object state and provide support for implement-
ing method invocations on each Fleet object. Clients share
information indirectly through servers by invoking meth-
ods on Fleet objects. Previous papers [MR98a, MR98b,
MR00, MRW00, MRWW01, CMR01] described the vari-
ous quorum-based replication protocols supporting object
replication in Fleet. These technologies provide Fleet ob-
jects with their fault tolerance and scalability features:

� Fault tolerance: Fleet protocols are designed to allow
for the arbitrary (Byzantine [LSP82]) failure of a lim-
ited number of Fleet servers. For applications that re-
quest it, Fleet monitors servers to detect when the num-
ber of faulty Fleet servers is approaching that tolerable
limit [AMPR99]. The Fleet protocols also tolerate the
benign (e.g., crash) failure of arbitrarily many clients
invoking methods on Fleet objects. Certain special-
ized Fleet objects even tolerate Byzantine client fail-
ures, but since few objects have useful semantics under
Byzantine client failures, Fleet focuses on supporting
the benign client case for general objects.

� Scalability: Fleet protocols are designed to scale
well in both the number of clients and the number
of servers. This is achieved via object replication
using Byzantine quorum systems [MR98a, MRW00,
MRWW01], which enable each operation on a Fleet
object to be performed at a small subset of servers at
which the object is replicated. This results in better
load balancing across servers and lower access costs
per operation as compared to prior approaches for
implementing Byzantine-fault-tolerant objects, which
perform each operation at every server at which the
object is replicated.

In this paper, we describe the design of Fleet objects on
top of these quorum-based replication technologies. Specif-
ically, here we focus on the following properties provided
by Fleet objects:

In Proceedings of DISCEX-II, June 2001.



� Concurrent semantics: Fleet provides a generic proto-
col for turning any regular Java object into a shared
object with linearizable [HW90] concurrent seman-
tics. Intuitively, this means that the return values from
(possibly concurrent) invocations on the object are the
same as those returned in some execution in which
each operation is executed instantaneously at a distinct
point in real time between the time of its invocation
and the time of its response. In particular, linearizable
Fleet objects can be used in applications as if they are
accessed sequentially.

� Liveness: During periods of stability—i.e., com-
munication between clients and servers is timely—
operations on a Fleet object complete with probabil-
ity one. More precisely, t concurrent operations on a
Fleet object complete in expected time O(t) once the
system stabilizes. Certain specialized Fleet objects of-
fer even stronger availability guarantees, such as wait-
freedom [Her91]. However, since wait-freedom is
known to be impossible to implement for general ob-
jects [Her91], conditional liveness properties such as
ours are a necessity.

� Autonomy: Each Fleet object is replicated at a set, or
universe, of Fleet servers designated by the applica-
tion, depending on the level of fault tolerance desired
by the creator of the object. In particular, the universes
of different Fleet objects can be chosen independently,
and may or may not overlap.

� Isolation: Fleet supports configurations in which mul-
tiple users’ or applications’ Fleet objects are imple-
mented using possibly overlapping universes of Fleet
servers. To support this, each Fleet object is created
within a name space that groups the Fleet objects of
a user or application, and that allows only the cre-
ator of the name space to place new objects within it.
Provided that an application searches for Fleet objects
in the proper name spaces, the presence of objects in
other name spaces—even if implemented on the same
Fleet servers—will not interfere with the application.
Name spaces are location-independent, i.e., a name
space can contain Fleet objects replicated at entirely
distinct universes of Fleet servers.

� Extensibility: Fleet supports the dynamic introduction
of new protocols for implementing Fleet objects. In
this way, an application developer can use standard
Fleet objects where convenient (i.e., Fleet objects us-
ing the standard Fleet protocols) and can customize
these protocols, or create entirely new protocols, on
a per-object basis. Such custom code is dynamically
loaded into Fleet and, using Fleet itself for persistent

storage, is available for use by other clients and by the
Fleet servers.

The main goal of this paper is to provide an overview
of the abstractions that Fleet supports for the application
developer, though a coherent coverage also requires some
introduction to Fleet internals. Particular algorithms and
protocols used in the system will not be detailed here. The
Fleet architecture, and several of the key Fleet protocols,
e.g., for implementing various kinds of linearizable objects,
for monitoring the system for faults, and for diffusing up-
dates throughout the system, have been detailed elsewhere
(see [MR98b, AMPR99, MMR99, MR00, CMR01]).

The remainder of this paper is structured as follows. In
Section 2 we describe related work. We minimally intro-
duce the Fleet architecture on Section 3, and describe the
behavior of Fleet objects in Section 4. Naming Fleet ob-
jects, and the requisite mechanisms for fully defining a Fleet
object, are described in Section 5. We provide some cau-
tions regarding manners of combining Fleet objects in Sec-
tion 6. In Section 7, we briefly describe the aspects of a
Fleet server that are relevant to a developer. We provide
preliminary performance results for Fleet in Section 8, and
conclude in Section 9.

2. Related work

We begin by placing the concurrent semantics of Fleet
objects into perspective. In Fleet, the default object shar-
ing semantics provided is linearizability [HW90] (though
other semantics are provided by specific Fleet objects).
Linearizability ensures atomic (indivisible) method invo-
cation semantics on replicated objects as defined by Lam-
port [Lam86]. Generally, there are three data replica-
tion techniques supporting linearizable semantics: primary-
backup (PB), in which a designated primary server re-
sponds to each method invocation; state machine replication
(SMR), in which each each server performs and responds to
every method invocation; and quorum replication as used
in Fleet. PB is not suited to masking Byzantine server fail-
ures (since the primary could fail), and so Fleet differs from
PB systems in this regard. Though SMR can mask Byzan-
tine failures (e.g., see [Sch90]), Fleet differs in its attention
to scaling as a function of the number n of servers over
which an object is replicated. Because of its underlying
quorum replication technology, clients can perform oper-
ations on Fleet objects by interacting with as few as O(

p
n)

servers. The price that Fleet pays for this better scalability,
however, is weaker fault-tolerance: state machine replica-
tion can mask up to n=3 faulty servers, whereas the quo-
rum techniques underlying Fleet can mask at most up to
n=4 [MR98a]. Another differentiating aspect of Fleet is its
extensibility, which to our knowledge has not been a goal of
prior systems of this type.

2



Concurrent semantics stronger than linearizability in-
clude transactional semantics, whereby a group of opera-
tions (a transaction) on multiple objects, possibly nested,
is done indivisibly. Transactions are traditionally sought
in database systems; for a comparison of replication tech-
niques in databases and distributed systems, see [WPS+00].
Our design differs in its attention to scale, and to arbitrary
failures, whereas database replication methods traditionally
focus on smaller systems with benign failures only.

Fleet can also be compared to persistent, distributed stor-
age facilities for Java objects, notably JavaSpaces. Objects
can be written to and read from a JavaSpace, and support
is provided for handling concurrent access and performing
distributed transactions. JavaSpaces itself does not address
fault tolerance issues, but other systems built on top of it
have attempted to address these issues. One such system
is Globe [LS99], which extends JavaSpaces to provide sup-
port for benign fault tolerance (by using replicated JavaS-
paces) and scalability (by partitioning a set of JavaSpaces
into disjoint subsets). Fleet’s attention to arbitrary failures
distinguishes it from systems such as Globe.

Also related to Fleet are several systems implementing
scalable data storage using wide-scale replication, such as
the Eternity service [And96], Publius [WRC00] and Inter-
memory [CEG+99]. A first difference from Fleet is that
these systems do not support richer objects than read-write
files. Moreover, even the read-write files they support are
intended to be primarily read-only, as they do not specify
semantics for reads that execute concurrently with writes.

Finally, the Fleet effort grew out of a predecessor system
called Phalanx [MR98b], which was based on similar prin-
ciples as Fleet, e.g., quorum access with high availability
and tolerance to arbitrary failures. However, Phalanx only
implemented read-write files (versus arbitrary objects), was
not designed for extensibility, and reached a level of ma-
turity and performance far below our goals in Fleet. Fleet
shares only some design aspects with Phalanx; no Phalanx
code, in particular, is present in Fleet.

3. Overview of the Fleet architecture

A “Fleet object” is merely an abstraction. There is no
single Java object that implements it. Rather, it refers to
the collection of client-resident stubs and server-resident
object replicas that together provide clients with an emu-
lation of a shared object. The client-side stubs for Fleet
objects are called FOHandles (for “Fleet Object Handle”).
On the server side, Fleet servers store object replicas called
FOReplicas (for “Fleet Object Replicas”), each of which
maintains a copy of the state of a Fleet object and sup-
ports method invocations on it. Together, FOHandles and
FOReplicas implement protocols for executing a client’s
method invocations on a FOHandle, while hiding from the

FOHandles

Fleet client

FOReplicas FOReplicas FOReplicas

FOReplicas FOReplicas FOReplicas FOReplicas

Fleet servers

Figure 1. Fleet object components

client the details of performing these accesses consistently
across FOReplicas. Figure 1 depicts these Fleet object
components residing at servers and clients. FONames (for
“Fleet Object Name”) are used to uniquely describe a Fleet
object; from these, both FOHandles and FOReplicas can be
generated.

FOReplicas are accessed using Byzantine quorum sys-
tems [MR98a, MRW00, MRWW01] for efficiency, surviv-
ability and scalability. Briefly, a quorum system is a set
of subsets (quorums) of servers (i.e., FOReplicas) such
that any two quorums intersect. Fleet objects are con-
structed with quorum systems designed to mask b arbitrary
server failures, which typically requires that quorums in-
tersect in 2b + 1 or 3b + 1 FOReplicas depending on the
method invocation protocol used to implement the Fleet ob-
ject (see [MR98a, CMR01]). Our claims of scalability for
Fleet derive largely from the use of quorums in these pro-
tocols. For example, Byzantine quorum systems can be de-
signed with quorums of size only O(

p
bn) where n is the

number of servers (FOReplicas) used in the implementation
of the object [MRW00, MRWW01].

FOReplicas are deployed on Fleet servers on an as-
needed basis. That is, a FOReplica for a Fleet object is in-
stantiated on a server (from a FOName; see Section 5) only
once that server is invoked by a FOHandle for that Fleet ob-
ject (or otherwise receives updates for it; see Section 7.3).
Since only a quorum of servers is involved in emulating a
method invocation on a Fleet object, a FOReplica may not
be deployed on a particular server in the Fleet object’s uni-
verse for an indefinite period of time.

3



4. Fleet objects

A Fleet object looks to an application much like a remote
Java object. In Java, a remote object is one whose meth-
ods can be invoked from outside the Java Virtual Machine
(JVM) in which it resides, and the process of doing this is
called remote method invocation (RMI). Before invoking a
method on a remote object, the calling process must obtain a
reference (called a stub) for the remote object. Each method
invocation on this stub is then translated to a method invo-
cation on the remote object.

Java’s RMI is a useful analogy for how an application
works with Fleet objects. A reference to a Fleet object, i.e.,
the analog of an RMI stub, is a FOHandle. An application
can invoke methods on the FOHandle, and each such invo-
cation emulates an invocation of the “remote” Fleet object
to which it refers. Rather than remote invocation on a sin-
gle remote object, method invocations of a FOHandle are
implemented using distributed protocols involving the col-
lection of FOReplicas that reside on Fleet servers.

4.1. Method invocation semantics

The semantics of method invocations on Fleet objects are
completely dependent on the implementations of the FO-
Handle and FOReplica for the Fleet object. There are three
ways in which Fleet objects (i.e., FOHandles and FORepli-
cas) can be constructed in applications.

Off-the-shelf objects. An application may instantiate and
use certain types of objects that are implemented in Fleet
already, of which there are a few. One type of object sup-
ported in Fleet deserving special attention is a write-once
file, whose method invocation semantics tolerates arbitrary
client failures, in addition to a limited number of arbitrary
server failures. This Fleet object enables its creator to write
a Java object (of an arbitrary serializable type) to this file,
but once this is done, the Fleet object cannot be modified
any more. Moreover, if two writes to the file are attempted
concurrently, at most one (but possibly none) will succeed.
Therefore, if any two clients read this file, and both reads
return an object, then the returned objects are the same.
In this sense, this Fleet object implements an abstraction
much like Byzantine agreement [LSP82]: no two clients
can read different objects from this file, even if the writer
of the file does not follow the correct write protocol. It is
strictly weaker than Byzantine agreement, and hence pos-
sible to implement, since it may remain unwritten forever
if no client succeeds in writing it. This Fleet object is very
useful within the system, as will be discussed in Section 5.3.
The protocol by which this object is implemented is similar
to the “untrusted writer” protocol of [MR98b].

Custom objects. A sophisticated application developer
can implement a custom object by developing her own FO-
Handle and FOReplica, to execute a method invocation pro-
tocol enforcing any method semantics she chooses.1 For
example, the programmer has flexibility in terms of the se-
mantics of concurrent method invocations on the Fleet ob-
ject, and the behavior of the method invocations, in the face
of benign or arbitrary failures of clients (i.e., FOHandles)
or Fleet servers (i.e., FOReplicas). The steps an application
developer must take in order to introduce custom FOHan-
dles and FOReplicas into Fleet are discussed in Section 5.3.

Default method invocation protocol. Because dis-
tributed protocols for tolerating failures (particularly of an
arbitrary nature) and for ensuring correct semantics in the
face of concurrency can be quite complex, we expect that
most applications will not build custom method invocation
protocols for their Fleet objects. As a result, in Fleet we
have focused on providing support for what we expect to be
the method invocation semantics desired by most applica-
tions. Specifically, Fleet provides a method invocation pro-
tocol [CMR01] whose concurrent semantics mimic those
of a Java remote object: each executes at some time be-
tween its invocation by the application and its response to
the application, and even concurrent invocations appear to
execute in some serial order. Formally, this is known as lin-
earizable semantics [HW90]. An application developer can
utilize this protocol to “Fleet-ify” any object and provide
distributed emulation of the object that guarantees serial-
ization of its method invocations consistently on replicated
servers. For example, an application may have a Java object
implementing the interface of a FIFO queue (with methods
“enqueue” and “dequeue”) and turn it into a Fleet object
with the same interface using the default method invocation
protocol. Fleet provides tools for automatically generating
Fleet objects in this way.

The default method invocation protocol tolerates a num-
ber of arbitrary server (i.e., FOReplica) failures that is con-
figured when the Fleet object is created, and any number
of benign client failures. We opted to support only benign
client failures in this protocol because few objects provide
useful semantics if accessed by arbitrarily faulty clients—
e.g., a file object that can be overwritten by a client that
fails arbitrarily (and thus can write garbage to the file) can
be tolerated by few applications—and because protocols for
accommodating arbitrary client failures are much more ex-
pensive (c.f., [MR00, MMRT00]).

1The programmer is, however, limited by security restrictions on FO-
Handles and FOReplicas, as will be discussed in Subsection 7.2.

4



4.2. Liveness

The liveness semantics of Fleet objects refers to the
guarantees provided regarding when method invocations on
Fleet objects will return. In general, these depend on the
implementation of the method invocation protocol.

Fleet’s default method invocation protocol probabilisti-
cally ensures completion of each method invocation during
periods of system stability, i.e., when message transmis-
sion delay between Fleet clients and servers is bounded by
a known constant. More specifically, when the system is
stable, this protocol ensures that t concurrent method invo-
cations on the Fleet object complete in expected O(t) time.

Particular Fleet objects (e.g., see [MR98b]) provide a
stronger liveness property called wait-freedom [Her91]. In-
formally, this means that any method invocation by a client
that does not fail will eventually complete and return. In
Fleet, this property is conditioned on an assumption about
the number of servers that simultaneously fail but is not
conditioned on the behavior or failure of other clients. In-
deed, independence from other clients is intrinsic to the
definition of wait-freedom. Unfortunately, wait-freedom is
known to be impossible to implement for any object with se-
mantics stronger than a read-write file [Her91]. As a result,
our richer Fleet objects provide necessarily weaker liveness
guarantees.

5. Fleet object naming

To create a FOHandle for a Fleet object, an application
must first obtain a FOName (“Fleet Object Name”) for the
Fleet object. A FOName is simply a collection of fields that
together constitute a globally unique identifier for the Fleet
object. In this section we introduce the fields that constitute
a FOName and explain their significance for the implemen-
tation of the corresponding Fleet object.

Specifying these fields necessarily exposes some inter-
nals of the Fleet architecture. As a result, an application
programmer must be familiar with these internals in order
to create and deploy new Fleet objects in her application.
However, these details can be hidden from an application
that uses only already-deployed Fleet objects; simply re-
trieving opaque FONames for the objects of interest suffices
to enable an application to invoke methods on them. In par-
ticular, Fleet provides a utility class that takes a FOName
and returns an appropriate FOHandle for invoking the Fleet
object with that FOName.

5.1. Quorum system

As discussed in Section 3, the Fleet protocols are de-
signed around the principle that a FOHandle need commu-
nicate with only a quorum of FOReplicas to complete a

method invocation on the Fleet object it represents. The ap-
plication is free to choose for each Fleet object the Fleet
servers at which the FOReplicas will reside (the “auton-
omy” property in Section 1), the number of arbitrary server
(FOReplica) failures the Fleet object will tolerate, and the
quorums used for accessing the object. Hence, a component
of a FOName is a quorum system description, including a
list of Fleet servers at which FOReplicas should exist for
the Fleet object and the subsets of them that constitute quo-
rums. A quorum system description must be provided by
the application that creates the Fleet object.

5.2. Name space

Each Fleet object is created within a name space spec-
ified by the application. Abstractly, a name space groups
Fleet objects that are somehow related, e.g., as part of the
same application or created by the same user. A name space
provides a primitive form of access control, in that generally
only the application that creates a name space may create
Fleet objects within it or delete Fleet objects from it. It is
this mechanism that provides the “isolation” property de-
scribed in Section 1.

A name space is identified within a FOName by a pub-
lic key of a digital signature scheme, presently either an
RSA [RSA78] or DSA [Kra93] public key. An application
can create a new name space at any time simply by gener-
ating a new public key pair locally. Any Fleet object whose
FOName contains that public key is then considered part of
that name space, provided that the FOName also includes a
digital signature of all other fields that can be verified using
the public key that it contains.

The requirement that each FOName contain a valid dig-
ital signature by the private key corresponding to the pub-
lic key of its name space enforces the aforementioned ac-
cess control. This access control implements a useful form
of isolation between different applications, since it pre-
vents the mistaken or deliberate insertion of Fleet objects
into name spaces where they do not belong. That is, if a
distributed application employs only Fleet objects from a
certain name space whose creator is trusted, then the cre-
ation of new Fleet objects by others (necessarily in a differ-
ent name space), even with FOReplicas on the same Fleet
servers, will not interfere with the application. Similarly,
Fleet servers require a request signed by the private key cor-
responding to the public key in a FOName before deleting
the local FOReplica for the Fleet object with that FOName.
So, others cannot capriciously delete an application’s Fleet
objects.

These isolation properties may be restrictive for some
applications, particularly those in which, e.g., the parties
creating and deleting a Fleet object are intended to be dif-
ferent. More flexible access control mechanisms are needed

5



for such cases. As a simple example, presently Fleet enables
a Fleet object to be created within a name space that is sub-
ordinated to that of the party intended to delete it. Fleet im-
plements this by creating a new “subordinate” name space
(i.e., public key pair) and specifying this new name space
in the FOName of the new Fleet object. Fleet then adds an
additional field to this FOName, which is the private key of
the subordinate name space encrypted under the public key
of the deleting party’s name space. In this way, the deleting
party can recover the private key of the subordinate name
space to delete the Fleet object (or similarly add new ob-
jects to the name space).

5.3. Code files and initialization arguments

As discussed previously, an application can dynamically
introduce Fleet objects and, more specifically, a new FO-
Handle and FOReplica implementing a new type of Fleet
object. For such a Fleet object, it will be necessary for
clients other than the Fleet object’s creator to obtain the
Java class files (i.e., executable code) and initialization ar-
guments for the FOHandle of this Fleet object in order to
instantiate one. Similarly, a Fleet server will need to obtain
the class files and initialization arguments for its FOReplica
in order to instantiate and host it.

Java itself provides support for automatically dissemi-
nating class files for Java objects. When an object is serial-
ized, a URL naming a web server where the class file for the
object is located can be embedded in the serialized version
of the object. In this way, when the object is deserialized,
the Java runtime can retrieve the class file from this URL
and reconstitute the object. We have opted against using
this facility in Fleet, however, for several reasons. First, if
a client or Fleet server relied on a web server to retrieve the
class files for a Fleet object, then this Fleet object would be
only as available as that web server. Second, this mecha-
nism is unnecessary for Fleet, since Fleet already has avail-
able a much more reliable means of disseminating informa-
tion such as class files, namely Fleet itself.

More specifically, a FOName for each Fleet object O
contains a field that is a FOName of a write-once file (it-
self a Fleet object) as described in Section 4. This write-
once file, called the code file for O, is intended to contain
all of the Java class files (in the form of a Jar file) needed to
instantiate and execute a FOHandle or FOReplica for O.

The application that creates O is required to provide the
FOName of a code file that can be embedded in the FON-
ame of O. For example, an application can create the code
file using the same quorum system as is provided for O, so
that the code file has at least the fault-tolerance and avail-
ability characteristics as O. By this indirect reference to
the code file, the FOName for O is kept reasonably sized,
and furthermore, a single code file’s FOName can be listed

within several different Fleet objects’ FONames, thereby
avoiding having many copies of the class files. Note that
the FOName for the code file itself contains a null FOName
for its code file, since the class files needed to implement
a write-once file are part of the core Fleet distribution; i.e.,
any Fleet client or server should already have them.

Any party holding the FOName for O can then extract
the FOName of its code file, instantiate a FOHandle for it,
read the Jar file it contains, and then instantiate a FOHandle
or FOReplica for O. This entire process is performed in-
visibly to the application and is integrated into Java’s Class-
Loader mechanism so that only if a class file is not available
locally is a code file consulted. Moreover, since there is a
separate ClassLoader per code file, name clashes between
the class names of different applications are avoided.

An application writing a code file needs to determine all
the relevant class files and collect them into a Jar file. This
task is assisted in Fleet by a dynamic loading facility that
infers for any given Java class (or package) the additional
classes required to execute it. The dynamic loading facility
scans the byte-code of its parameter class(es) to find any
dependencies on other classes. The reason for performing a
byte-code scan is that Java’s class reflection does not expose
fields used internally by methods, which are only reflected
in the byte-code.

Initialization arguments for the FOHandle and
FOReplica of a Fleet object could similarly be pro-
vided within a write-once file. However, presently in Fleet
we explicitly list these arguments within the FOName of
the Fleet object. We have chosen this because we expect
initialization arguments to be smaller and possibly more
variable among Fleet objects of the same type.

5.4. String description

The quorum system, name space, class files and initial-
ization arguments made accessible in a FOName enable
any party to create a FOHandle or FOReplica for the cor-
responding Fleet object. They also enable a server to de-
termine whether the creator of the Fleet object intended for
one of its FOReplicas to be hosted at that server. However,
these fields are not enough to give each Fleet object a unique
name, since it is our intention that applications be able to
create multiple Fleet objects of the same type (and possibly
initialization arguments) using the same quorum system and
name space. For this reason, there is an additional field in
a FOName that an application can specify, namely a string
description of the Fleet object. This is included in the FON-
ame mainly so that applications can provide different de-
scriptions and/or text names for different Fleet objects. An
application can additionally use them in any way it chooses,
e.g., to provide a human-readable description of the object’s
purpose and semantics.

6



6. Combining Fleet objects

It may be natural in applications for one Fleet object
to refer to other Fleet objects. For example, an applica-
tion may have a Java object implementing the interface of a
FIFO queue (with methods “enqueue” and “dequeue”) and
turn it into a shared queue O using the default method in-
vocation protocol. It then may need to enqueue other Fleet
objects on O. There are two potential pitfalls that the ap-
plication developer should consider when combining Fleet
objects in this way.

First, care must be taken to ensure that another client that
dequeues a Fleet object from O can instantiate a FOHandle
for it, in case the dequeued object is one for which the class
files are not already stored locally at that client. This can
dictate how Fleet objects must be enqueued on O, for which
there are two possibilities:

1. In the first approach, FOHandles of Fleet objects are
enqueued on O. This approach is the easiest to in-
tegrate with existing applications—as when replacing
local or remote Java objects with Fleet objects in an ex-
isting application—since the FOHandle simply takes
the place of the object or stub being replaced. How-
ever, this approach is guaranteed to work only if the
class files for any Fleet object enqueued on O are also
available in the code file for O (see Section 5.3). If
instead a client instantiates a FOHandle for O and de-
queues an element from it, and if this element is a FO-
Handle for a Fleet object for which the client does not
possess the class files,2 then its attempt to instantiate
the element will result in a ClassNotFoundException.
Thus, this approach is best employed when both O and
the Fleet objects enqueued on it are part of a single ap-
plication for which the class files can be written to a
single code file.

2. In the second approach, FONames of Fleet objects are
enqueued on O. This approach is somewhat more
complex to integrate with existing applications, since
replacing one object of the application with a Fleet ob-
ject may require its FOHandle in some places (where
the object is invoked) and its FOName in others (where
the object is enqueued on O). However, this approach
does not require any prior arrangement of the class files
for O and other Fleet objects enqueued on it; rather,
they can be treated completely independently.

A second potential pitfall arises from the fact that Fleet
does not support transactional semantics. Thus, if a method

2More precisely, the same ClassLoader that loaded the FOHandle for
O must have access to these class files. Since a separate ClassLoader is
instantiated per code file, this implies that these class files must be available
in the code file for O.

invocation on a Fleet object results in a nested call on an-
other Fleet object, no guarantee is made on the semantics
of this multi-object operation. Indeed, the present imple-
mentation would risk performing the nested invocations of
Fleet objects multiple times, and in arbitrary orders relative
to other invocations on those objects. In this sense, Fleet
objects do not compose. Stronger semantics for nested in-
vocations of Fleet objects is a topic of ongoing work.

7. Fleet servers

So far we have said little about Fleet servers, since we
have focused in this paper on the abstraction of Fleet ob-
jects provided to applications. Nevertheless, certain aspects
of Fleet servers are relevant to application developers who
build custom Fleet objects, and so in this section we discuss
these features.

To a first approximation, a Fleet server is a hollow
shell in which FOReplicas can execute: the Fleet server
does little more than dispatch each incoming request to a
FOReplica (possibly after creating the FOReplica as dis-
cussed in Section 5.3) and return the FOReplica’s response,
after checkpointing the FOReplica state to disk if neces-
sary. In particular, the actual method invocation protocols
for Fleet objects are implemented in the FOReplicas them-
selves. Thus, the behaviors of Fleet servers that are mainly
relevant for application developers are in how they make
themselves and the Fleet objects they represent accessible
to clients, and in how they restrict the behavior of FORepli-
cas they host for security purposes.

7.1. Advertising Fleet objects

A Fleet server provides an interface that enables any
client to learn the FONames of Fleet objects for which the
server currently is hosting a FOReplica. This interface pro-
vides rich searching capabilities to enable clients, e.g., to
search for FONames in particular name spaces or with par-
ticular string descriptions, or representing Fleet objects of
a particular type. As described in Section 5, once a client
obtains the FOName for a Fleet object, it can instantiate a
FOHandle for it and invoke methods on it.

Therefore, the remaining challenge for a Fleet client is to
find Fleet servers themselves. This is not a problem unique
to Fleet servers, in that any network service must make
some means of addressing it available to potential clients.
We anticipate that most applications needing the reliabil-
ity and security of Fleet would also predistribute addresses
of their intended (and presumably trusted) Fleet servers to
its client components. Nevertheless, Fleet servers can fur-
ther employ any means of advertising their presence that is
useful for potential clients. At the time of this writing, for
example, each Fleet server advertises itself as a Jini service

7



(see www.sun.com/jini/) that can be located via the
Jini discovery protocol. We emphasize, however, that this
is merely for convenience; Jini is not sufficiently secure or
reliable to act as a basis for critical applications to find their
intended Fleet servers.

7.2. Restricting FOReplicas

Since FOReplicas for Fleet objects of potentially mutu-
ally distrusting applications can coexist on the same Fleet
servers, it is important that a Fleet server isolate FORepli-
cas from one another. For example, if one FOReplica could
corrupt another on the same Fleet server, then the failure as-
sumptions on which the latter’s Fleet object are based could
be at risk of being violated. Because FOReplicas execute in
a Fleet server within the same JVM, the problem of isolat-
ing one FOReplica from another is similar to the problem
of isolating one Java applet from another in the same JVM.
A solution to the latter has been a central requirement un-
derlying Java’s viability as a mobile code technology, and
correspondingly has received a considerable amount of at-
tention (see, e.g., [MF99]). We are fortunately able to bring
much of this development to bear on the problem of isolat-
ing FOReplicas from one another.

Direct interaction between FOReplicas in the same Fleet
server is limited by disallowing one FOReplica to obtain a
reference to another. Type safety of Java then prevents one
FOReplica from invoking the methods of another, for exam-
ple. In particular, FOReplicas are not remote objects, and
so methods of a FOReplica cannot be directly invoked from
outside the Fleet server. Limiting the propagation of refer-
ences to FOReplicas within the JVM, and making judicious
use of Java’s access levels (i.e., private, protected, public)
for methods and variables of FOReplicas, help to ensure
that FOReplicas can be invoked only by the Fleet server
classes (versus other FOReplicas) and in the intended ways.

Indirect interactions between FOReplicas is a broader
issue that we address mainly by limiting the capabilities
granted to each FOReplica. FOReplicas are “sandboxed”
with even fewer default privileges than would be granted to
an untrusted applet loaded into the JVM of an off-the-shelf
browser. In particular, FOReplicas do not have privileges to
conduct network I/O or disk I/O, and thus cannot manipu-
late the checkpoint files of other FOReplicas, for example.3

One threat that we have not fully addressed is resource
clogging attacks whereby, for example, a FOReplica could
create an enormous object of size larger than the maxi-
mum heap size for the Fleet server and thus cause the Fleet
server to halt. Approaches to restrict, or monitor and re-
act to, resource usage of untrusted code running within a

3Checkpointing does not require that FOReplicas have disk access per-
missions. Rather, the Fleet server performs the disk I/O needed to check-
point the state of a FOReplica.

JVM is the topic of much current and promising research
(e.g., see [HCC+98, TL98, CvE98, BHL00, RCW01]). We
anticipate that such work will soon yield better JVMs that
offer both the performance advantages of running within a
single JVM and less vulnerability to resource-consumptive
code. Fleet servers (and clients) should make use of such
platforms when they become available.

7.3. Propagation

One service that Fleet servers provide for FOReplicas
is update propagation, by which an update applied at one
FOReplica can be diffused to the other FOReplicas of that
Fleet object. Update propagation is done in the background,
outside any specific Fleet object protocol, and transparently
to the client application. While the properties of Fleet ob-
jects that we have described so far do not require propaga-
tion, propagation can nevertheless be useful to improve a
Fleet object’s properties when certain quorum systems are
used or in the case of a network partition; see [MMR99].

A Fleet server must be informed about which updates to
propagate to other servers. To this end, each FOReplica can
export an event whenever it is updated. This event encapsu-
lates the object-specific update to be propagated. The prop-
agation module in a Fleet server monitors these events for
every FOReplica it hosts. It maintains the updates captured
in these events in a set to propagate to other Fleet servers.

Periodically, each server propagates a collection of re-
cently accumulated updates to other servers. The al-
gorithm determining the target of diffusion is described
in [MMR99]. The implementation aggregates diffusion for
multiple Fleet objects and sends a collection of updates in
one message in each round of propagation. This is compli-
cated, however, by the fact that different Fleet objects have
FOReplicas at different sets of servers. Therefore, in each
round, a server selects targets for all of its of pending up-
dates, such that there is one target for each update. It then
packs all updates destined to a particular target in one mes-
sage, and sends it. In this way, the cost of diffusion is amor-
tized over multiple object updates, to the extent possible by
their respective universe overlap.

When a server receives a collection of propagated up-
dates, it sorts them into “buckets” of identical updates per
Fleet object. Only when an update is received from b + 1
different servers hosting a FOReplica for this Fleet object,
where b is the resilience threshold of the object’s mask-
ing quorum system, it is accepted and applied to the lo-
cal FOReplica for that Fleet object. The delay analysis
in [MMR99] indicates how many propagation rounds it will
take an update to reach the entire system. The Fleet servers
garbage collect the updates from their propagation queues
based on this predicted delay.

8



8. Performance

In this section we report performance results for our
present implementation of method invocations on a Fleet
object using Fleet’s default method invocation protocol. We
describe performance for two variations of this protocol,
which we refer to here as “general” and “deterministic”.
These terms refer not to the implementation of the proto-
col, but rather to the kinds of Fleet objects they support: the
“general” protocol supports even Fleet objects with nonde-
terministic interface specifications, whereas the “determin-
istic” protocol requires that the Fleet object have a deter-
ministic specification. In terms of performance, the primary
distinction between these protocols is that the general proto-
col invokes methods on the state of a Fleet object at a client
(i.e., the client resolves any nondeterminism) and copies the
object state back to a quorum. In the deterministic protocol,
method invocations on the state of a Fleet object are per-
formed by each server in a quorum.

The cost of the generality in the general protocol comes
primarily as the state of the replicated Fleet object grows,
since the full state is copied back to servers. For this rea-
son, in this section we execute tests involving three types of
objects, namely “small”, “medium” and “large”. A “small”
object has a state of negligible size. A “medium” object has
a state of size roughly 158 Kbytes in these tests. A “large”
object has a state of roughly 312 Kbytes.

Other parameters of these tests are the quorum size q,
the number n of FOReplicas of the Fleet object being in-
voked, and its fault-tolerance threshold b. To provide a con-
servative estimate of performance, we chose relationships
among these parameters to induce worst-case performance
as a function of the quorum size q. In particular, we chose
a variation of the threshold quorum system of [MR98a]
that exhibits relatively poor load-balancing properties (but
is otherwise attractive for its fault-tolerance and simplicity);
in this quorum system, q = d(n+3b+1)=2e. In addition, b
was chosen to be the maximum possible, i.e., b = dn=5e�1.
This choice of b minimizes n for a given q, thereby further
limiting opportunities for load balancing in tests involving
multiple clients, and maximizes the processing performed
by each client (which grows as a function of b).

The tests reported in this section were performed on a
collection of 450 MHz Pentium II computers running Red-
Hat Linux 6.1 and JDK 1.3 with HotSpot. The number of
computers used in our tests was limited to 10. Thus, for any
q > 6, at least one computer was required to host multi-
ple Java virtual machines running either a FOReplica or a
client’s FOHandle. This resulted in contention for the com-
puter’s resources when the protocol execution required par-
ticipation of multiple components on the same host. This is
one more way in which the numbers of this section present
a conservative picture of Fleet performance.

The average method invocation response time experi-
enced by a single client that repeatedly invoked a method
on a Fleet object is shown in Figure 2. The curves in this
graph demonstrate performance for various combinations of
small, medium or large Fleet objects and the general or de-
terministic protocol. The performance of the general and
deterministic protocols are the same for small objects, and
so there is only one curve for both of these cases. Each plot-
ted point is the average response time as computed over 150
invocations. As discussed previously, the performance dif-
ference between the general and deterministic protocols for
medium and large objects results from technical differences
between these protocols that results in more generality for
the first but also more overhead when used with Fleet ob-
jects with nontrivial state.

Average method invocation response time experienced
by each of multiple clients invoking methods concurrently
on the same Fleet object with quorums of size q = 10 is
shown in Figure 3. In these tests each client performed 200
method invocations sequentially on the object. All clients
started at roughly the same time (upon receiving a multicast
signal to begin). The plotted points are the method response
times, obtained by first averaging each client’s 200 method
invocation response times and second averaging these val-
ues across all clients. These averages are plotted versus the
number of clients.

Our belief that method invocation response time will
scale well as a function of n derives from the observation
that for an appropriate choice of quorum system—of which
our choice above is not an example—n can grow roughly
quadratically as a function of q (see [MRW00, MRWW01]).
Therefore, it is reasonable to expect that the performance
demonstrated in Figures 2 and 3 for a given value of q can
persist even in a system with n = 
(q2) if b is small.

Though Fleet is largely functional at this point, its im-
plementation is far from mature, and there are many oppor-
tunities for optimizations that we have not yet exhausted.
We thus believe that future results will reveal better perfor-
mance still.

9. Conclusion

The goal of Fleet is to provide a foundation on which
critical and scalable distributed applications can be built.
Fleet supports the abstraction of persistent shared objects,
by which clients can communicate by performing method
invocations on these objects. To support critical applica-
tions, Fleet provides protocols for building persistent ob-
jects that tolerate arbitrary (Byzantine) server failures, and
provides the name space abstraction to limit interference be-
tween the objects of different applications. Fleet is fully
extensible with new object types, which can employ the
default Fleet method invocation protocols or other custom

9



0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

q

b = dn=5e � 1, q = d(n+ 3b+ 1)=2e

large object, general

3
33

3
3
33

33
3

33
3

3
3 3

3 3
3

3
3
3

3
33

large object, deterministic

+ + + + + + +
+ + +

+ +
+

+
+ + + +

+

+ + +
+

+
+

medium object, general

2 2
2 2

2 2
2

2 2
2

2
2 2

2
2 2

2 2
2

2 2 2
2 2

2

medium object, deterministic

� � � � � � �
� � � � � � � � � � � � � � � � �

�
small object

4444444 444 444 444 444 444 44

4

Figure 2. Single-client method response time (msecs) with quorums of size q

600

700

800

900

1000

1100

1200

1300

1 2 3 4 5 6 7 8 9 10

number of concurrent clients

b = 2, q = 10

small object

3

3 3

3

3
3

3

3

3
3

3

Figure 3. Multiple client method response time (msecs) with quorums of size q = 10

10



protocols. Those implemented using the default method
invocation protocols enjoy strong (linearizable) concurrent
semantics and a probabilistic approximation to the wait-
freedom liveness property. Moreover, Fleet’s use of Byzan-
tine quorum systems for object replication enables an abil-
ity to scale that is unique among systems that can tolerate
arbitrary server failures.

In this paper, we have described the current state of the
Fleet system with an eye toward the application developer.
We have described the basic components that comprise a
Fleet object (FOHandles and FOReplicas), how Fleet ob-
jects are named (using FONames), and how new Fleet ob-
jects can be introduced into the system. We have also quan-
tified Fleet’s performance in our current implementation.

Fleet is an ongoing project that presents many opportu-
nities for improvements and future research. Our ongoing
work includes maturing the system for security, reliability
and performance. We also continue to research ways to im-
prove the semantics of Fleet objects, such as more effective
ways of composing them.

References

[AMPR99] L. Alvisi, D. Malkhi, L. Pierce, and M. K. Reiter. Fault
detection for Byzantine quorum systems. In Proceedings
of the 7th IFIP Working Conference on Dependable Com-
puting for Critical Applications, pages 357–371, January
1999.

[And96] R. Anderson. The Eternity service. In Proceedings of
PRAGOCRYPT ’96, Czech Technical University Publish-
ing House, September 1996.

[BHL00] G. Back, W. C. Hsieh, and J. Lepreau. Processes in Kaf-
feOS: Isolation, resource management, and sharing in Java.
In Proceedings of the 4th Symposium on Operating Systems
Design and Implementation, October 2000.

[CEG+99] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti and
P. Yianilos. A prototype implementation of archival inter-
memory. In Proceedings of the 4th ACM Conference on
Digital Libraries, August 1999.

[CMR01] G. Chockler, D. Malkhi, and M. K. Reiter. Backoff pro-
tocols for distributed mutual exclusion and ordering. In
Proceedings of the 21st International Conference on Dis-
tributed Computing Systems, April 2001. To appear.

[CvE98] G. Czajkowski and T. von Eicken. JRes: A resource ac-
counting interface for Java. In Proceedings of the 1998
ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 21–35, October
1998.

[HCC+98] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing multiple protection domains
in Java. In Proceedings of the 1998 USENIX Annual Tech-
nical Conference, June 1998.

[Her91] M. P. Herlihy. Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems 13(1):124–
149, January 1991.

[HW90] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems 12(3):463–492,
July 1990.

[Kra93] D. W. Kravitz. Digital signature algorithm. U.S. Patent
5,231,668, 27 July 1993.

[Lam86] L. Lamport. “On interprocess communication (Part II: al-
gorithms)”. Distributed Computing 1:86-101, 1986.

[LCSA99] B. Liskov, M. Castro, L. Shrira and A. Adya. Providing per-
sistent objects in distributed systems. In Proceedings of the
13th European Conference on Object-Oriented Program-
ming, June 1999.

[LS99] J. Larsen and J. Spring. Globe: Global Object Exchange.
Masters Thesis, University of Copenhagen, October 1999.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Lan-
guages and Systems 4(3):382–401, July 1982.

[MF99] G. McGraw and E. F. Felten. Securing Java. Second edi-
tion, John Wiley & Sons, 1999.

[MMR99] D. Malkhi, Y. Mansour, and M. K. Reiter. On diffusing up-
dates in a Byzantine environment. In Proceedings of the
18th IEEE Symposium on Reliable Distributed Systems,
pages 134–143, October 1999.

[MMRT00] D. Malkhi, M. Merritt, M. K. Reiter, and G. Taubenfeld.
Objects shared by Byzantine processes. In Proceedings of
the 14th International Symposium on Distributed Comput-
ing (Lecture Notes in Computer Science 1914), pages 345-
359, Springer, October 2000.

[MR98a] D. Malkhi and M. K. Reiter. Byzantine quorum systems.
Distributed Computing 11(4):203–213, 1998.

[MR98b] D. Malkhi and M. Reiter. Secure and scalable replication in
Phalanx. In Proceedings of the 17th IEEE Symposium on
Reliable Distributed Systems, pages 51–58, October 1998.

[MR00] D. Malkhi and M. K. Reiter. An architecture for surviv-
able coordination in large-scale systems. IEEE Transac-
tions on Knowledge and Data Engineering 12(2):187–202,
March/April 2000.

[MRW00] D. Malkhi, M. K. Reiter, and A. Wool. The load and avail-
ability of Byzantine quorum systems. SIAM Journal of
Computing 29(6):1889–1906, 2000.

[MRWW01] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Prob-
abilistic quorum systems. Information and Computation,
2001. To appear.

[RCW01] A. Rudys, J. Clements and D. S. Wallach. Termination
in language-based systems. In Proceedings of the 2001
ISOC Network and Distributed Systems Security Sympo-
sium, February 2001.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM 21(2):120–126, Febru-
ary 1978.

[Sch90] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys 22(4):299–319, December 1990.

[TL98] P. Tullman and J. Lepreau. Nested Java processes: OS
structure for mobile code. In Proceedings of the 8th ACM
SIGOPS European Workshop, September 1998.

[WRC00] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A
robust, tamper-evident and censorship-resistant web pub-
lishing system. In Proceedings of the 9th USENIX Security
Symposium, August 2000.

[WPS+00] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme and
G. Alonso. “Understanding replication in databases and
distributed systems”. In Proceedings of the 20th inter-
national conference on distributed computing systems
(ICDCS 2000), pages 264-274, Taiwan, April 2000.

11


