
A Scalable and Intrusion–tolerant Digital
Time–stamping System

Daniela Tulone
University of Pisa, Italy and MIT CSAIL, USA

tulone@csail.mit.edu

Abstract— Secure digital time–stamps play a crucial role in
many applications that rely on the correctness of time–sensitive
information. Well–known time–stamping systems are based on
linking schemes which provide a relative temporal order by
linking requests together. Unfortunately, these schemes do not
scale well to large volume of requests, and have coarse granularity
and high latency. Therefore, they are unsuitable for very large
and dynamic systems, or applications requiring fine–grained and
short–lived timestamps, or timeliness, such as stock trading, e–
auctions, financial applications, aggregation of real–time sensitive
information, and temporal access control.

We propose a different scheme, based on real–time timestamps,
which overcomes those drawbacks and leads to a performance
enhancement. Our time–stamping system is intrusion–tolerant
and it is based on a novel robust time service suitable for very
large populations, on a robust threshold signature scheme, and on
quorum system techniques. We prove its correctness and liveness,
and compare its computational and communication complexity
to the complexity of tree–based linking scheme. Finally, we show
how the fine–granularity, improved scalability and efficiency of
our scheme make it particularly suitable to those applications
mentioned above, and also to mobile e–commerce.

I. INTRODUCTION

More than ever, security firms, banking institutions, on–line
services rely on electronic communications to conduct their
business. It is crucial for these applications to guarantee the
trustworthiness of their electronic records and give proof of
the time at which they were created or modified. A digital
time–stamping system (TSS) addresses this problem: it binds
authentically a request to a certain point in time, and provides
the ability to prove that. It usually consists of a time–stamping
server that issues, for each client request, a timestamp and a
non–malleable proof of its validity. Such a proof allows any
process to validate the timestamp associated to it. Clearly, the
TSS has to guarantee the correctness of the timestamps issued
in the presence of an adversary: the timestamp must represent
the time at which it was issued, and an adversary must not
back– or post–date it, or insert an old timestamp among those
previously issued.

There are many applications that require such a time–
binding both in wired and wireless networks: e–commerce,
financial applications, stock trading, aggregation of real–time
sensitive information. The vast majority of well–known TSS
systems [14], [4], [6], [18], [19], [8], [15], [1], including
commercial ones such as Surety Technology [26], are based
on linking schemes that link requests together by means of
a collision–resistant hash function, thus providing a relative
temporal order over the set of requests. They work well for ap-
plications involving long–term timestamps, such as e–archives
and intellectual property, but are unsuitable for applications
which involve very large systems or require fine–grained

and short–term timestamps to carry out sensitive tasks (i.e.,
temporal access control, financial transactions, stock market,
e–commerce, and aggregation of real–time information). It is
well–known that tree–based linking TSSs scale poorly to large
volume of requests, and have coarse timestamp granularity
and high client latency. These drawbacks are noticeable in
applications where low latency and system performance play
a crucial role, such as in those mentioned before. We discuss
deeply these pitfalls in Section II.
Contributions. In contrast with previous works, we focus
mainly on real–time applications requiring short–lived and
fine–grained digital time–stamps, and involving large and
dynamic systems. We propose a robust and scalable time–
stamping system (RSTS) for asynchronous systems, which is
resilient to Byzantine client and server failures, and relies only
on real–time digital timestamps. The RSTS is based on a novel
robust time service (RT), and on a robust threshold signature
scheme [7]. Notice that our RT primitive solves a problem that
is more general than the well–studied clock synchronization
problem since it provides a generic process (even mobile) with
an accurate time estimate based on some fixed infrastructure.
This problem has lower complexity than the clock synchro-
nization problem which requires periodic clock adjustments
among all processes, and whose cost becomes prohibitive in
very large systems. Notice that clock synchronization might
not be convenient in mobile applications, due to energy
constraints, and that the client side of most applications (i.e.,
Internet–based) do not require to be synchronized all the time,
but rather on–demand to perform some critical steps. The RT
service derives an estimate of the reference time from a subset
of servers. Such an estimate is accurate in the presence of
malicious intrusions. Notice that the RT service makes the
RSTS system highly flexible: we show in Section V how the
timestamps can be tuned according to the application needs.
Both the RT service and the RSTS system are built on top of
Byzantine quorum systems [17] to improve the load balancing
and the scalability of the system, and reduce the access cost per
operation. Since in a real setting an adversary can compromise
more than a threshold of servers during a sufficient large
interval, and the private RSTS can become compromised,
a practical TSS should also employ proactive security, and
resolve disputes in case of key revocation. As discussed in
Section V, our RSTS can address both issues, though these
features do not represent the core of our proposal. In Section
V-E we discuss in details the following RSTS features which

are difficult to achieve with linking schemes:
• Robustness: intrusion–tolerance and availability, dispute

resolution in case of key revocation, no trusted dealer,
and reduced vulnerability to DoS attacks;

• System performance: high scalability, better load balanc-
ing and response time;

• Fine–grained timestamps consisting of real–time values,
more expressive and portable than relative timestamps,
and flexibility to the application needs.

The paper is structured as follows: Section II discusses related
works, and Section III describes our system model and the
techniques used. In Section IV we present our RT service,
and describe our RSTS in Section V, and prove its correctness.
We also analyze its complexity and compare it with tree–like
linking schemes. In Section VI we briefly show how to apply
the RSTS to a stock–market, an e–action, aggregation of real–
time sensitive information, and mobile e–commerce.

II. RELATED WORKS

Several linking schemes [14], [6], [15], [8], [9] have been
proposed, ranging from linear linking [14] to tree–like linking.
The tree–like linking scheme, proposed first by Benaloh and de
Mare [6] and then by Haber and Stornetta [4], [15], improves
linear linking in terms of storage space, verification costs,
and it is more robust for relying on the lifetime of collision–
resistant hash functions that is longer than in digital signatures
[22]. These features make this scheme the mostly used linking
scheme, also by commercial TSS [26]. In a tree–like linking
TSS the time–stamping procedure runs in rounds: the server
collects requests submitted by the clients during a round, and
computes the Merkle hash tree whose leaves are the requests.
The root value of the tree is concatenated with the value
obtained from the preceding round, and hashed again to obtain
the actual round value [22]. Clearly, requests submitted during
the same round appear to occur simultaneously. The timestamp
contains information necessary to rebuild the tree branch of
the correspondent request in the Merkle tree to let the client
verify its validity. Since a malicious server could subvert the
order of the timestamps, the server periodically publishes the
round values to a trusted and public medium (i.e. newspaper).
This occurs rarely (i.e. hourly) since it is time consuming
and costly, while the round duration is kept short (i.e. every
minute) since it determines the timestamp granularity. Tree–
like schemes present the following drawbacks, noticeable in
real–time and e–commerce applications, and not present in our
RSTS for its different approach.
• As pointed out in [22], tree–based TSS do not scale

well to high volume of requests since the cost of time–
stamping and verifying, and the size of the timestamp
grow with the number of requests submitted per round.
This makes the TSS particularly vulnerable to DoS
attacks. Massias et al [22] propose different levels of
timestamp authority to improve scalability, however this
does not provide a full answer to the problem. They also
address the portability of timestamps issued by different
TSS systems by distinguishing documents for internal and

external use. However, this strategy is very costly and not
flexible.

• A client has to wait for the completion of the round in
order to get its timestamp.

• The granularity of the timestamps depends on the round
duration, which is usually 1 minute. Notice that there
is an inherent trade–off between granularity, and system
performance (computational cost, memory). Moreover,
since the round duration is a–priori fixed, it is unlike
to fit the volume of client requests which is usually
unpredictable.

• Since clients need guarantees of accountability, the server
has to take extra steps to convince them that it cannot
cheat by subverting the order of timestamps between
publishing. There have been several attempts to minimize
the trustworthiness of the TSS in the past, based on
trusted digital notary [2], [9], [26], or on binary linking
[8], or on authentication graphs [9]. However, all these
solutions are costly and rely on a centralized timestamp
authority and trusted storage medium. Ansper et al.
[1] address TSS availability in case of crash failures
by using multiple servers. However, their work cannot
be extended to Byzantine failures, and does not scale
well to high volume of requests and large populations.
Note that an intrusion–tolerant TSS based on tree–like
linking scheme has high complexity, since servers have to
maintain a consistent view, with additional computational
and communication costs. Maniatis et al [18] proposed
an architecture for an intrusion–tolerant TSS based on
linking scheme which relies on randomized agreement.
The public storage medium should also be robust to crash
and intrusions.A different approach based on distributed trust was proposed

by Haber and Stornetta [14]. It relies on digital signatures, and
a secure pseudo–random generator to select the nodes to con-
tact. As pointed out in [22], this scheme is not practical since it
requires a very large set of nodes available for time–stamping.
Little attention has been paid to TSS based on real–time
timestamps. The straightforward solution of hashing–and–
signing a request has been disregarded [8], [22] for requiring
unconditional trust of the timestamp authority, and because of
the unreliability of old timestamps after a leakage of the private
signature key. RSTS overcomes these problems by using our
RT service and a robust threshold signature scheme. The RT
service has independent interest for studying a problem that
is more general than the well–studied clock synchronization
problem, and for addressing both scalability and robustness. In
fact, clock synchronization protocols suitable for large systems
in a WAN, are based on a hierarchical network structure,
but assume a weaker abstract fault model [23], [28]. The RT
has optimal time accuracy, and improved performance than
previous solutions [3], [13], [25] for using quorum systems.

III. PRELIMINARIES

A. System model

Our system model consists of a set of n servers S1, . . . , Sn

responsible for time–stamping requests, and a dynamic set

of clients that submit requests to a subset of servers. Mes-
sages can be arbitrarily delayed but not indefinitely. This
assumption is realistic since it is reasonable to assume that
network instabilities and denial of service (DoS) attacks are
reparable. In addition, we assume that communications are
authenticated, and that each server has an additional read–
only storage medium where it logs the significant events
necessary to resolve disputes in case of key revocations.
Clearly, if servers employ proactive security they must satisfy
the standard assumptions [11] (i.e. be equipped with a secure
co–processor, a watchdog timer that periodically interrupts
processing and hands control to a recovery monitor, and a
read–only memory).
Adversary model. Similarly to [11], [29], our RSTS system
employs proactive security: each server periodically reboots
and refreshes sensitive data stored locally (i.e. authentication
keys and secret shares). Therefore, it tolerates any number
of faults provided that fewer than one fourth of the servers
become faulty within a time window that is the time elapsed
between consecutive refreshes. A malicious adversary can
compromise b servers during a time window, eavesdrop the
network, delay messages though not indefinitely, and collude
with clients. We assume a computationally bounded adversary
so that with very high probability it is unable to forge digital
signatures, or find collisions of one–way hash functions.
Clients can fail by crash and be malicious.
Byzantine quorum system. Our protocols are built on top
of a b–masking Byzantine quorum system [17], a collection
of subsets of servers (quorums) such that (1) any two subsets
overlap in at least 2b + 1 servers (consistency property), and
(2) for any failure configuration there is a quorum consisting
of correct servers (availability property). Notice that b < n

4 .
Clock model. Each process has a hardware clock H(t) with
maximum drift rate ρ, with ρ ≈ 10−5. Therefore, for any
real time t2 > t1 it measures the passage of time in [t1, t2]
with maximum error ρ(t2 − t1). Each server maintains a
virtual clock C(t) which is periodically synchronized to a
more accurate time source, so that it always deviates from
the reference time by at most Λ time units.

We employ the interval–based paradigm introduced by
Marzullo and Owicki [21]: each server maintains a time
interval I(t)=[C(t)−E(t), C(t)+E(t)], with E(t) maximum
error for C(t). Clearly, I(t) is correct at time t if it contains t.
If ρ is a valid drift bound, then I(t) is a correct time interval
[21]. We apply Cristian’s probabilistic reading method [12] to
estimate a remote clock for its simplicity. A process estimates
a remote clock based on the clock value returned by the remote
process, and the round trip delay elapsed between its sending
and arrival time. The method assumes a minimum round trip
delay m, and a maximum acceptable delay M , tunable by
the application. If the round trip delay exceeds M , the sender
discards the message and retries.

B. TSS specifications

The target of a TSS is to authentically bind a timestamp to a
request so that the time and its authenticity can be respectively

measured and verified at some later time. A digital time–
stamping system consists of a triple of protocols:

1) A time–stamping protocol tstamp(x) that on an input
x produces 〈Tx, σx〉 with Tx timestamp of x, and σx

proof of its authenticity.
2) A verification protocol verify(x, Tx, σx) that given

〈x, Tx, σx〉 verifies the authenticity of the timestamp Tx

associated to x.
3) An audit protocol that verifies whether the TSS carries

out its duty.
The usual requirements for a digital timestamp can be sum-
marized as followings:
• Correctness: tstamp(x) binds authentically a request x

to a timestamp Tx representing the time at which the
request has been issued, and provides a proof σx for
that; verify(x, Tx, σx) succeeds only if Tx is a correct
timestamp for x.

• Data Integrity: an adversary cannot tamper Tx by back–
or post–dating it, or modify the request x, or insert an
old timestamp among the timestamps previously issued.

• Availability: tstamp(x) and verify(x, Tx, σx) must be
always available despite failures.

C. Cryptographic tools

Threshold signature scheme. Our RSTS relies on a robust
(b, n) threshold signatures scheme. We assume the existence
of a RSTS private and public key: the RSTS certified public
key is available to clients, and the correspondent private key is
initially secretly shared among the servers, so that b+1 secret
shares are sufficient to compute it, but b shares do not provide
any information to our adversary model. Upon receiving a
sign request a server Sj generates a partial signature σj based
on its secret share. The validity of a signature share can
be verified, and b + 1 valid partial signatures can produce
a digital signature verifiable with the RSTS public key. In
a secure threshold signature scheme, it is infeasible for a
computationally bounded adversary to produce b + 1 valid
signature shares on a forged message to be combined and form
a valid signature. We apply the threshold signature scheme
proposed by Boldyreva [7] for its optimal resiliency relevant
to our discussion, and for being robust and more efficient than
other schemes (i.e., it does not involve server interactions,
and produces short partial signatures, approximately 160 bits).
However, other schemes can be applied.
Proactive security. Since an adversary might compromise
more than b servers in a sufficiently large time interval, servers
periodically refresh the shares of the private RSTS key. We
apply the asynchronous proactive refresh protocol proposed
by Cachin et al.[10] for its efficiency. It guarantees liveness
if the adversary does not delay messages during the refresh
protocol for longer than a time window. If this occurs, the
private RSTS key may become unaccessible, and a new key
pair has to be generated.
One–way hash functions. A user submits the message digest
of its request (i.e. it applies MD5 one–way hash function) to
guarantee data privacy and improve the network bandwidth.

Puzzle techniques. Our RSTS system uses client puzzle [16]
to contain the effects of DoS attacks. In case of high server
load, a server asks a client to pay a tax in terms of a
computational effort, in order to sign the client request.

IV. A BUILDING BLOCK: THE RT SERVICE

In this section we present a simple and robust time service
(RT) built on top of quorum systems and resilient to Byzantine
failures. The RT service returns an estimate of the current
reference time which is accurate up to a constant error ε,
despite b Byzantine server failures. Clearly, the presence of
malicious failures, the uncertainty of the message delays, and
the use of quorum systems increase the complexity of com-
puting constant ε. However, the application of the Marzullo
fault–tolerant average algorithm [20], and an adaptation of the
Cristian probabilistic clock reading [12] to estimate the server
time interval at the current time, simplifies noticeably this
problem. In Lemma 2 we show how it is possible to bound the
error by means of properties of the b–masking quorum systems
and of the Marzullo algorithm. We denote by {ri}i∈Q

Q←− f
a remote call invoking f on a quorum Q, and receiving the
set of replies {ri}i∈Q from servers in Q. The minimum one–
way message delay is m, and the maximum round–trip delay
acceptable by the application is M .

RT:

1) while (true)
2) t0 ← H(now)

3) {Ij}j∈Q
Q←− time()

4) if (H(now)− t0)(1− ρ) ≤ M
5) T ← Aver({Exp(Ij)}j∈Q)
6) return T
7) end while

Fig. 1. The time service.

Figure 1 illustrates the client side of the protocol: the client
pools time information from quorum Q, line 1:3. If the round
trip delay is less than M , it approximates the server time
interval at the current time. More precisely, if I = [l, L] is
the interval sent by a server, the client computes interval
Exp(I) := [l + m(1 − ρ), L + (1 + ρ)2(D − m)] where
D is the round trip delay computed by the client. We call
Exp(I) expanded interval of I . Function Aver() returns the
midpoint of the Marzullo fault–tolerant average interval [20]
derived from the set of the expanded intervals. The Marzullo
average interval of q intervals among which at most b can be
faulty, is the interval with left side equal to the maximum left
side contained in q−b intervals, and right side equal to the
minimum right side contained in q−b intervals. If the round–
trip delay exceeds M , the client contacts another quorum. The
following lemmas prove the correctness of the RT service.
Lemma 1 follows from the fact that ρ is a maximum drift rate
of the hardware clock.

Lemma 1: Let I be a correct time interval sent by a server at
time t, then Exp(I) is a correct interval at the time t′ at which
it was received, with m(1 − ρ) ≤ t′ − t ≤ (1 + ρ)2(D −m)
and D round trip delay.

Theorem 1: (Marzullo [20]) Let I be a set of q intervals
and b < b q

2c, then the fault-tolerant average interval is smaller
than the 2b + 1 smallest interval in I.

Lemma 2: If server clocks deviate from the real time by at
most Λ time units, the value returned by RT is accurate with
maximum error Λ + M−2m+ρM

2 .
Proof: The size of a quorum of a b–masking quorum

system is greater than 3b. In fact, if by contradiction there
exists a quorum Q of size 3b, and b servers in Q fail
leaving 2b correct servers in Q, then each quorum contains
at least one faulty server because of the consistency property,
thus contradicting the availability property. Therefore, a client
invoking RT receives at least 2b+1 correct time intervals. The
correctness and accuracy of the resulting time interval follows
from Lemma 1 and Theorem 1.

The computational cost of RT at the client side is O(q log q)
with q quorum size [20]. Notice that, when applied to syn-
chronize a known set of clocks, RT leads to a performance
improvement with respect to previous protocols [3], [13], [25]
since it reduces the access cost, and improves the system load
balancing and scalability.
Resiliency. Theorem 1 does not provide a bound on the size
of the average interval if q = 2b+1, since b malicious servers
could send a very large interval. However, if a client knows
the accuracy Λ of server clocks (reasonable assumption), it can
discard intervals larger than 2Λ. In this way, it communicates
with only 2b + 1 servers, thus improving the access cost per
operation and increasing the resiliency to b < n

3 .
Notice that assuming a maximum delay M could make

the client vulnerable to DoS attacks (i.e., if the adversary
consistently delay messages). We show in Section V-A how
to overcome this problem by making M a variable.

V. THE RSTS SYSTEM

In this section we describe the RSTS system which produces
real–time timestamps. It is built on top of our RT service and
uses a robust (b, n) threshold signature scheme. Note that the
fact of relying only on real–time timestamps when ordering
requests introduces new issues compared to linking schemes
since the timestamp has to represent trustworthily the real time
at which it was issued and it must not be back– or post–
dated by malicious clients or servers, and because of the delay
uncertainty (it should not be assumed to be bounded to reduce
DoS vulnerabilities). The definition of the time associate to a
request and of the party that is in charge of computing it,
is crucial in the design of an intrusion–tolerant TSS based
on real–time timestamps. We illustrate our solution to these
problems in Section V-A.
A. Protocol overview

The high–level idea underlying the RSTS is very simple:
the protocol is invoked by a client on message digest x of its
request, and consists of two phases (Section V-E shows also
a one–phase protocol). In the first phase called getT ime, the
client computes the value Tx of the timestamp of x, by running
the RT service. In the second phase called sign, it asks a subset
of 2b + 1 servers (half of the servers) to produce a partial
signature σx of 〈x, Tx〉, and then gathers b + 1 correct partial
signatures to produce a signature σx of 〈x, Tx〉 verifiable with
the RSTS public key. The reason for such a design is threefold:

1) Since both client and servers can be malicious and
collude, they can validate each other: servers validate
timestamp Tx before signing it, thus preventing a ma-
licious client from back– or post–dating it during the
execution of the protocol for more than M − 2m + 2Λ
time units, with M maximum admissible round trip de-
lay, and 2m minimum feasible round trip delay. It allows
to filter out requests semantically incorrect, and provide
some protection from DoS attacks against servers by
means of client puzzles.

2) It makes the RSTS more flexible since timestamp Tx can
be tuned according to the application needs (see Section
VI). The following three options are available:

• Tx can be the time at which the client sends a
getTime request (error ρM is negligible to our
discussion). This choice is suitable for applications
in which clients compete for a resource (i.e., e–
auction). Our presentation follows this approach.

• Tx can be the earliest time at which the client
completes RSTS. This choice is useful for temporal
access control where Tx establishes the access time
to a sensitive resource.

• Tx can approximate the time at which the servers
receive the getTime request and send some infor-
mation (i.e., stock market, quoting).

3) The getT ime phase dismisses clients from having their
clock securely synchronized to an external reference
source. This can be advantageous for applications in-
volving a very large number of transient clients, such as
Internet–based or mobile applications.

Round trip delay. Because of the Cristian remote clock
reading, getTime requests with a round trip delay larger than
M are discarded. This might result in a client vulnerability
since an adversary could launch a DoS attack by simply
delaying getTime requests, and could be a serious threat for
applications in which timeliness is crucial (i.e. e–bidding).
This problem is overcome if the client transmits the round
trip delay Mx of its getTime request, and asks servers to sign
it along with x, Tx, provided Mx ≥ 2m. Clearly, the smaller
Mx, the more accurate the timestamp Tx.

Puzzle techniques. Since in the real setting an adversary can
launch a DoS attack, we provide some defence against it. In
case of high server load, the server replies to a getTime request
by asking the client to solve a puzzle before sending a sign
request. In normal conditions servers do not send any puzzle.
We call a server that sends no puzzle, ready to sign. The
difficulty of the puzzle [16] (number of bits to guess) is tuned
by the server according to its load, however it is bounded to
protect clients against attacks launched by Byzantine servers.
Below is the high–level description of the RSTS system.

Client side:
send getTime request 〈x〉 to quorum Q
compute round trip delay Mx
compute Tx
if 6 ∃2b + 1 servers ready in Q

solve necessary puzzles spj
send sign request 〈x, Tx, Mx〉 to 2b + 1 servers in Q
assemble b + 1 correct partial signatures

Server side:
getTime(x)

if high load
computes puzzle pj

send 〈I(t)〉 and optionally pj

sign(x, Tx, Mx)
if valid request

compute partial signature σj
write to removable log Lw
send 〈σj〉

Key revocation. In our target applications involving short–
lived timestamps, key revocation does not play a crucial role.
However, for completeness we provide a basic mechanism
to resolve disputes in case of key revocation. If the RSTS
secret key has been compromised, the RSTS resolves disputes
by means of server logs. Upon computing a partial signature
for 〈x, Tx,Mx〉, the server inserts it into a local hash table
Lw relative to the current time window. At the end of each
time window and before rebooting, the server stores Lw on
a read–only removable secondary storage. A timestamp Tx

issued before the key revocation time and still in use, can
be validated by sending a request for 〈x, Tx,Mx, σx〉 to all
servers. Each server verifies the signature σx, and looks for
entry 〈x, Tx,Mx〉 in its correspondent log (secondary storage
for timestamps with lifetime longer than the time window, and
local hash table otherwise). If Tx is contained in at least b+1
server logs, then it is authentic.

B. The time–stamping protocol

We describe here the RSTS protocol in more details, Figures
2 and 3 illustrate its client and server side. Subscriptions of
Mx, Tx are omitted whenever it is clear their context.

Upon receiving a getTime request, a server returns its
current time interval I(now), and in case of high server load
computes a fresh puzzle pj for request x. It inserts x, the
current time t, and if necessary the solution yj for puzzle
pj , into a temporary hash table R, (Fig 3 getTime:1-6). This
allows the server to validate later T , filter out requests that
do not follow the semantic of the protocol, and contain DoS
attacks. Entries in R older than τ time units are periodically
removed, with τ parameter greater than the time estimated
to solve the most difficult puzzle and transmit it. Upon
receiving a quorum of responses, the client computes the round
trip delay M and timestamp T , (Fig 2:3-4). In the normal
case the client detects 2b + 1 servers ready and asks them
to sign 〈x,M, T 〉. Otherwise, it has to solve some puzzle
and calls solvePuzzle which spawns one thread for each
puzzle to solve. Clearly, other strategies can be employed by
solvePuzzle depending on the application requirements: it
can try to solve as many puzzles as possible to improve the
resiliency of the sign phase, or use also a timeout. We denote
by S the subset of 2b + 1 servers of Q which are ready or
whose puzzle has been solved.

In the second phase, the client asks servers in S to sign
〈x, T, M〉, Fig 2:9. Upon receiving a sign request, the server
verifies its correctness and validates T , and yj if needed,
Fig 3 sign:1-2. Then, it computes a partial signature σj for

tstamp(x):

1) t0 ← H(now)

2) {〈Ij , pj〉}j∈Q
Q←− getTime(x)

3) M ← H(now)− t0
4) T ← Aver({Exp(Ij)}i∈Q)−M
5) if notReady()
6) solvePuzzles()
7) PS ← ⊥
8) while ((|PS| < 2b + 1) ∧ (H(now)− t0 < η))

9) {σj}j∈S′
S←− sign(x, T, M, yj)

10) PS ← PS ∪ {σj}j∈S′
11) if (|PS| ≥ 2b + 1)
12) σ ←assemble(PS)
13) return 〈x, T, M, σ〉
14) else
15) S ← toContact()
16) end while

Fig. 2. The client side.

getTime(x) :
1) t ← C(now)
2) if (highLoad)
3) pj ← puzzle(x, t, yj)
4) else
5) pj ←⊥
6) R ← R ∪ 〈x, t, yj〉
7) return 〈I(now), pj〉

sign(x, T, M, yj) :
1) if (〈x, yj〉 ∈ R ∧ M > 2m)
2) if m− Λ < t− T < M −m + Λ
3) σj ←psign(x, T, M)
4) R ← R \ 〈x, t, yj〉
5) Lw ← Lw ∪ 〈x, T, M〉
6) return σj
7) else return ⊥

Fig. 3. Server Sj .

〈x, T, M〉, and logs this event in Lw, Fig 3 sign:3-5. As
soon as the client receives 2b + 1 partial signatures, it calls
assemble() which verifies the validity of b + 1 partial signa-
tures (chosen uniformly at random) and produces a signature
σx, Fig 2:11-12. Notice that b + 1 correct partial signatures
are sufficient to produce a valid digital signature, but are
not sufficient to guarantee the validity of the timestamp in
case of key revocation (though this might not be relevant
for short–lived timestamps). However, in order to resolve
disputes the client waits for 2b + 1 partial signatures. This
justifies the while loop at line Fig 2:8, which terminates as
soon as the client receives 2b + 1 partial signatures or after
η = (1− ρ)(m + τ −Λ) time units elapsed since the getTime
invocation. In fact, a client might not receive soon a server
reply because of process crash, or longer message delay.
Different strategies can be employed if the client does not
receive immediately 2b + 1 partial signatures: the client can
re–contact the remaining servers in Q (Fig 2:15), or attempt to
produce σx from at least b+1 partial signatures to improve the
response time, and if successful return T while contacting in
the background the remaining servers to guarantee a quorum
of 2b + 1 acknowledgments.

C. Correctness analysis of the RSTS

We say that timestamp Tx associate to x and issued by the
RSTS, is authentic if at least one correct server has computed
a partial signature of 〈x, Tx,Mx〉, where Tx approximates
within a constant ε the real time at which the client invoked
getT ime. If we want to resolve disputes in case of key
revocation, we have to strengthen this condition and say that
Tx is authentic if at least b+1 correct servers have computed
the partial signature.

Theorem 2: (Correctness and data integrity) If the RSTS
secret key has not been compromised, then any timestamp

Tx issued by the RSTS and equipped with a valid signature
σx, is authentic. An adversary cannot tamper Tx by back–
or post–dating it by more than ϕ = Mx − 2m + 2Λ time
units, or modify the request associated to it, or insert an old
timestamp in the list of timestamps previously delivered. If
the RSTS private key was revoked at time Trev , timestamps
issued before Trev − ϕ remain valid.

Proof: If the RSTS secret key has not been compromised,
a timestamp Tx endowed with a valid signature σx, is authentic
because of the security of the underlying threshold signature
scheme [7]. Since at least b + 1 correct servers validate Tx,
it approximates the getTime invocation time (we choose this
option) with a constant error. Therefore, a malicious client
cannot back– or post–date it by more than Mx − 2m + 2Λ
time units. Moreover, the client request with message digest x
cannot be tampered by a computationally–bounded adversary.
Any timestamp issued before the key revocation time can be
verified by means of server logs, since at most b servers can
be compromised within a time window.

Theorem 3: (Availability) The RSTS system is always
available if the network eventually stabilize.

Proof: Each remote call in tstamp completes because
of the quorum availability, and since at most b servers can be
faulty during a time window. In fact, each remote quorum call
returns despite b failures in the quorum. The client succeeds in
sending a sign request to a quorum of 2b + 1 servers because
the difficulty of the correct puzzles is bounded. Therefore,
tstamp terminates if the network eventually stabilize, since
the client requires only 2b + 1 partial signatures from a
quorum set Q containing at least 3b servers, and because of
the robustness of the underlying threshold signature scheme
that terminates despite half failures. Clearly the verification
procedure is always available since it is local.

D. Performance analysis

Tree–linking TSS RSTS
Comp. cost (server) O(N lg N) CP
Comp. cost (client) O(lg N) O(q lg q) + CV
Comm. cost O(n lg N) O(q)

Computational cost of RSTS. The computational cost of
time–stamping is dominated by the computation of the partial
signature σj , and depends on the threshold scheme used
(e.g., in Boldyreva’s scheme [7] σj = 〈x, Tx,Mx〉sj with sj

secret share). In normal conditions, the client cost is given
by CT + sCPV + CS where CT = O(q lg q) is the cost
of computing Tx and q the quorum size, sCPV is the cost
of verifying s partial signatures with b + 1 ≤ s ≤ 2b + 1,
and CS is the cost of producing signature σx verifiable by
the RSTS public key. In case of high system load the client
cost is increased by the cost of solving puzzles. We show in
Section VI that a low–powered client can delegate a proxy (not
necessary trusted) to verify the partial signatures and assemble
them, thus reducing the cost to CT + CV , where CV is the
cost of verifying σx.
Communication cost of RSTS. Notice that the size of
Tx and σx is constant, and that the size of the signatures
produced by applying [7] is much shorter than usual signatures
(i.e. 160 bits), thus improving the network bandwidth. In

addition, servers do not communicate among them during
time–stamping, and the client communicates with a subset of
servers: a fraction of 3

4 servers is involved during the getTime
phase, and 1

2 during the sign phase.
Performance comparison with tree–like linking TSS. The
cost of time–stamping grows with the number N of requests
submitted at a round, since it is given by the cost of computing
the Merkle hash tree, and the authenticated path (timestamp)
for each request. In case of a complete tree, it is O(c N lg N)
with c (constant) cost of computing the hash function. This
makes the TSS more vulnerable to DoS attacks. In addition,
the server has to periodically publish the round values, and
this is a costly procedure. The cost of verifying a timestamp
at the client side is given by the cost of rebuilding the tree
branch of the hash Merkle tree, that is O(c lg N). Note that
in some TSS, the client has to interact also with an on–line
server to verify a timestamp. In any cases, it has to wait at
least for the completion of the round. Since the size of the
timestamp is O(d log N) with d size of the message digest,
the communication complexity of an intrusion–tolerant TSS
based on tree–like linking scheme with n servers [18] is
O(nd log N).

E. RSTS features

We motivate here those RSTS features briefly mentioned in
the Introduction following the same order.
Robustness. We proved in Section V-C that the RSTS sys-
tem is intrusion–tolerant and always available if the network
eventually stabilize. It does not require a trusted dealer or/and
a public storage medium. In fact, the accountability of the
system is based on the assumption that no more than b servers
are compromised within a time window. Our scheme makes
both servers and clients less vulnerable to DoS attacks with
respect to linking schemes as discussed in Section V-D for
not grouping requests into rounds, and also for considering
unbounded delays and using puzzle techniques as discussed in
Section V-A. Clearly, brute force DoS attacks are still possible.
In case the RSTS private key is revoked, the RSTS system
resolves disputes and guarantees the validity of timestamps
issued before the revocation time. It is important to note
that the order imposed by RSTS on the client requests is
a refinement of client invocation/response time for RSTS.
This reduces the degree of concurrency among requests, thus
providing more accurate time–stamps and reducing the degree
of freedom of an adversary. As mentioned in the Introduction,
linking schemes seem not to be suitable for intrusion–tolerant
TSS because of their high complexity [18].
System performance. Our scheme is more scalable to high
volume of requests then linking schemes since both time–
stamping and verification costs are constant and timestamps
are fixed–size, as shown in Section V-D. In addition, the use
of quorum systems improve the system load balancing and its
scalability: only half of the servers are asked to compute a
partial signature. Moreover, in our scheme the client latency
depends mainly on the transmission delay which is usually
few order less than the duration round of linking schemes.
Clearly, the scalability of RSTS has to be also evaluated by
experimental results. However, because of the simplicity of the

RSTS and its dependance on the package used for threshold
signature, it does not seem much instructive to run experiments
on its simple implementation, but rather on a more interesting
application (see Section VI), as we plan to do. Also, currently
it is not possible to compare the response time of the RSTS
with an intrusion–tolerant linking TSS (see Section II).
Fine–granularity and flexibility. Our RSTS produces fine–
grained real–time timestamps, which are more expressive and
easy to compare across different system. As shown before,
RSTS is highly flexible and tunable to the application needs.
One–phase RSTS. The getTime phase can be skipped if the
message delays are bounded (i.e. in a LAN), and client clocks
are securely synchronized to a reference source. In fact, the
client can set timestamp T to its clock value, and servers can
validate T since message delays are bounded.

VI. RSTS APPLICATIONS

We discuss here some applications involving very large
systems, and requiring fine granularity and good response
time, for which RSTS is particularly suitable.
E–stock market. Fine granularity, timeliness, and high scal-
ability play an important role in stock markets such as the
NASDAQ, the fastest growing electronic stock exchange with
transactions conducted over computer networks across an in-
ternational area. A stock market transaction involves investors
(buyers or sellers), and the stock exchange: sellers/buyers wish
to sell/buy shares of a certain company, and the stock exchange
ensures that the transactions are committed in a proper and
timely manner. The RSTS suits well buy/sell transactions
of the investors, especially market orders where stocks are
bought/sold at the current price. It also takes into account
transmission delays. More generally, RSTS is applicable to
any financial service that provides quoting services and real
time snapshots of the market.
E–auctions. A sealed–bid auction is an electronic system in
which secret bids are issued for an advertised item, and once
the bidding period closes, the bids are opened and the winner
is determined according to some publicly known rule. It is
used in the sale of artwork or real estate, or in auctioning
of government procurement contracts, or by Internet services
such as EBay. Note that time–stamping plays a crucial role not
only during the bidding period to guarantee the correctness
of the bidders, but also to protect the auction system from
misbehavior of insiders in charge of executing and overseeing
the auction (i.e. to avoid manipulations of the closing time).
Our RSTS suits well e–auctions and applications where the
users compete for a resource, for its fine–granularity, good
response time, and for being non–repudiated.
Mobile e–commerce. Mobile e–payments and mobile Internet
services are becoming more popular. Clearly, time–stamping is
crucial in any financial transaction and e–payment. The RSTS
is particularly suitable for mobile e–commerce because it takes
into account energy conservation and low bandwidth. In fact,
since 2b+1 partial signatures are sufficient to produce a correct
digital signature, a low–powered client might delegate a proxy
(not necessary trusted) to assemble the partial signatures. In

a cellular network, the base station could act as a proxy and
assemble the partial signatures on behalf of the mobile node.
In this way, the client has to verify the correctness of the
digital signature based on its certified RSTS public key.
Information aggregation. RSTS could be used by news agen-
cies (i.e., Reuters, government agencies), or press/newscaster
centers that gather information from different sources, and
require fresh and reliable information (i.e., in case of breaking
news). RSTS can be also applied to provide financial infor-
mation to private customers equipped with RSS alerts.

VII. CONCLUSION

We have proposed and analyzed an intrusion–tolerant TSS
based on a novel and robust time service. In contrast with
previous solutions based on linking schemes, it has fine
granularity, better response time, and it is highly scalable. Our
RSTS can have a noticeable impact on those applications, both
in wired and wireless networks, where linking schemes seem
unsuitable. We have discussed some of these applications,
such as e–stock market, e–auctions, mobile e–commerce,
information aggregation, and quoting services.

REFERENCES

[1] A. Ansper, A. Buldas, M. Saarepera and J. Willemson Improving
the Availability of Time-stamping Services, In Proc. of the 6th
Australian Conference, 360-375, Jul 2001.

[2] A. Ansper, A. Buldas, M. Roos, J. Willemson, Efficient long-term
validation of digital signatures. In Proc. of the 4th International
Workshop on Practice and Theory in Public Key Cryptography,
pp 402-415, Feb 2001.

[3] B.Barak, S.Halevi, A.Herzberg, D.Naor. Clock synchronization
with faults and recoveries. In Proc. of the 9th Symp. on Principles
of Distributed Computing, pp. 133-142, Jul 2000.

[4] D. Bayer, S. Haber, Improving the efficiency and reliability of
digital time-stamping. In Sequences II: Methods in Communica-
tion, Security, and Computer Science, 329-334, 1993.

[5] J. Benaloh, M. de Mare One-Way Accumulators: A Decentral-
ized Alternative to Digital Sinatures. Advances in Cryptology -
EUROCRYPT ’93, pp. 274-285, May 1993.

[6] J. Benaloh, M. de Mare Efficient Broadcast Time-Stamping. Tech.
Rep. 1, Clarkson University, Dept. of Mathematics and Computer
Science, Aug 1991.

[7] A. Boldyreva Efficient threshold signatures, multisignatures and
blind signatures based on the Gap-Diffie-Hellman-group signa-
ture scheme. In Proc. 6th Intl. Workshop on Practice and Theory
in Public Key Cryptography, pp. 31-46, Jan 2003.

[8] A. Buldas, P. Laud, H. Lipmaa and J. Willemson Time-
Stamping with Binary Linking Schemes. Advances in Cryptology
- CRYPTO ’98, pages 486–501, Aug 1998.

[9] A. Buldas, H. Lipmaa, B. Schoenmakers, Optimally efficient
accountable time-stamping. In Proc. 3rd Intl. Work. on Practice
and Theory in Public Key Cryptography, pp. 293-305, 2000.

[10] C. Cachin, K. Kursawe, A. Lysyanskaya, R. Strobl Asyn-
chronous verifiable secret sharing and proactive cryptosystems.
In Proc. of the 9th Conf. on Computer and Communications
Security, pp. 88-97, Nov 2002.

[11] M. Castro, B. Liskov Practical byzantine fault tolerance and
proactive recovery. ACM Trans. Computer Systems 20(4): 398-
461 (2002).

[12] F. Cristian Probabilistic clock synchronization. Distributed
Computing 3(3), pp. 146-158, 1989.

[13] C. Fetzer and F. Cristian. Integrating external and internal clock
synchronization. Journal of Real-Time Systems, 12(2), pp. 123-
171, Mar 1997.

[14] S. Haber, W. Stornetta How to Time-Stamp a Digital Document
J. Cryptology, 3(2), pp. 99-111.

[15] S. Haber and W. S. Stornetta Secure Names for Bit–Strings
In Proc. of the 4th Conf. on Computer and Communications
Security, pp. 28–35, Apr 1997.

[16] A. Juels, J. Brainard Client puzzles: a cryptographic coun-
termeasure against connection depletion attacks. In Proc. of
Networks and Distributed Security Systems, pp. 151-165, 1999.

[17] D.Malkhi, M.Reiter, A.Wool The load and availability of Byzan-
tine Quorum Systems. SIAM J.Computing 29(6), pp. 1889-1906,
(2000).

[18] P. Maniatis, T.J. Giuli, M. Baker, Building Trusted Dis-
tributed Services Across Administrative Domains, Tech. Rep.
cs.DC/0106058, http://www.arxiv.org/abs/cs.DC/0106058, 2001.

[19] P. Maniatis, M. Baker, Enabling the Long-Term Archival of
Signed Documents through Time Stamping. In Proc. of the
USENIX Conf. on File and Storage Tech., pp. 31-45, Jan 2002.

[20] K. Marzullo. Tolerating Failures of Continuous-Valued Sensors.
ACM Trans. on Computer Systems, 8(4), pp. 284-304, Nov 1990.

[21] K. Marzullo, S. Owicki. Maintaining the Time in a Distributed
System. In Proc. of the 2nd ACM Symp. on Principles of
Distributed Computing pp. 295-305, Aug 1983.

[22] H. Massias, X. Serret Avila, J.-J. Quisquater Timestamps: Main
issues on their use and implementation. In Proc. of the 8th
Workshop on Enabling Technologies, pp.178-183, 1999.

[23] D.L. Mills Improved algorithms for synchronizing computer
network clocks. IEEE/ACM Trans. Networks 3(3), pp. 245-254,
June 1995.

[24] B. Preneel, B. Van Rompay, J.-J. Quisquater, H.Massias, J.
Serret Avila Design of a timestamping system. WP3 Tech. Rep.,
1998.

[25] K. Schossmaier, B. Weiss. An algorithm for fault–tolerant clock
state&rate synchronization. Proc. of the 18th IEEE Symp. on
Reliable Distributed Systems, pp. 36-47, Oct 1999.

[26] Surety Inc. http://www.surety.com
[27] D. Tulone How Efficiently and Accurately Can a Process Get the

Reference Time? Brief Announcement Intl. Symp. of Distributed
Computing, pp. 25-32, October 2003.

[28] P. Verissimo, L. Rodrigues, A. Casimiro. Cesiumspray: a pre-
cise and accurate global clock service for large-scale systems.
Real-Time Systems, 12(3), pp. 243-294, May 1997.

[29] L. Zhou, F. B. Schneider, R. Van Renesse, COCA: A secure
distributed online certification authority, ACM Transactions on
Computer Systems (TOCS), Volume 20, Issue 4, 329 - 368, 2002.

