
10

Efficient Control and Communication Paradigms for Coarse-Grained
Spatial Architectures

MICHAEL PELLAUER*, ANGSHUMAN PARASHAR*, MICHAEL ADLER,
BUSHRA AHSAN, RANDY ALLMON, NEAL CRAGO*, KERMIN FLEMING,
MOHIT GAMBHIR, AAMER JALEEL*, and TUSHAR KRISHNA**, Intel
DANIEL LUSTIG, Princeton University
STEPHEN MARESH, VLADIMIR PAVLOV, and RACHID RAYESS, Intel
ANTONIA ZHAI, University of Minnesota
JOEL EMER, Intel* and MIT

There has been recent interest in exploring the acceleration of nonvectorizable workloads with spatially
programmed architectures that are designed to efficiently exploit pipeline parallelism. Such an architecture
faces two main problems: how to efficiently control each processing element (PE) in the system, and how to
facilitate inter-PE communication without the overheads of traditional shared-memory coherent memory. In
this article, we explore solving these problems using triggered instructions and latency-insensitive channels.
Triggered instructions completely eliminate the program counter (PC) and allow programs to transition
concisely between states without explicit branch instructions. Latency-insensitive channels allow efficient
communication of inter-PE control information while simultaneously enabling flexible code placement and
improving tolerance for variable events such as cache accesses. Together, these approaches provide a unified
mechanism to avoid overserialized execution, essentially achieving the effect of techniques such as dynamic
instruction reordering and multithreading.

Our analysis shows that a spatial accelerator using triggered instructions and latency-insensitive channels
can achieve 8× greater area-normalized performance than a traditional general-purpose processor. Further
analysis shows that triggered control reduces the number of static and dynamic instructions in the critical
paths by 62% and 64%, respectively, over a PC-style baseline, increasing the performance of the spatial
programming approach by 2.0×.

Categories and Subject Descriptors: C.1.3 [Computer Systems Organization]: Processor Architectures

General Terms: Design, Architecture, Processor, Hardware

Additional Key Words and Phrases: Spatial programming, reconfigurable accelerators

ACM Reference Format:
Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra Ahsan, Randy Allmon, Neal Crago, Kermin
Fleming, Mohit Gambhir, Aamer Jaleel, Tushar Krishna, Daniel Lustig, Stephen Maresh, Vladimir Pavlov,
Rachid Rayess, Antonia Zhai, and Joel Emer. 2015. Efficient control and communication paradigms for
coarse-grained spatial architectures. ACM Trans. Comput. Syst. 33, 3, Article 10 (September 2015), 32
pages.
DOI: http://dx.doi.org/10.1145/2754930

∗New affiliation: NVIDIA.
∗∗New affiliation: Georgia Institute of Technology.
Authors’ addresses: M. Pellauer, A. Parashar, M. Adler, B. Ahsan, R. Allmon, N. Crago, K. Fleming, M.
Gambhir, A. Jaleel, T. Krishna, S. Maresh, V. Pavlov, R. Rayess, and J. Emer, Intel Corporation, 77 Reed
Road, Hudson, MA 01749.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0734-2071/2015/09-ART10 $15.00
DOI: http://dx.doi.org/10.1145/2754930

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

http://dx.doi.org/10.1145/2754930
http://dx.doi.org/10.1145/2754930

10:2 M. Pellauer et al.

1. INTRODUCTION

Recently, single-instruction-multiple-data/single-instruction-multiple-thread (SIMD/
SIMT) accelerators such as GPGPUs have been shown to be effective as offload engines
when paired with general-purpose CPUs. This results in a complementary approach
where the CPU is responsible for running the operating system and irregular programs,
and the accelerator executes inner loops of uniform data-parallel code. The abundant
number of threads allows the accelerator to bury long-latency events such as cache
misses and maintain good utilization of its datapaths.

Unfortunately, not every workload exhibits sufficiently uniform data parallelism to
take advantage of the efficiencies of this pairing. There remain many important work-
loads whose best-known implementation involves asynchronous actors performing dif-
ferent tasks while frequently communicating with neighboring actors. The computation
and communication characteristics of these workloads cause them to map efficiently
onto spatially programmed architectures such as field-programmable gate arrays (FP-
GAs). Furthermore, several important workload domains exhibit such kernels, such
as signal processing, media codecs, cryptography, compression, pattern matching, and
sorting. As such, one way to boost the performance efficiency of these workloads is to
add a new spatially programmed accelerator to the system, complementing the existing
SIMD/SIMT accelerators.

Although FPGAs are very general in their ability to map the compute, control, and
communication structure of a workload, their lookup table (LUT)-based datapaths are
oriented toward arbitrary logic prototyping rather than algorithmic acceleration. An
alternative is to use a tiled array of coarse-grained datapaths more like a processor’s
arithmetic logic unit (ALU)—a coarse-grained reconfigurable array (CGRA) [Mirsky
and DeHon 1996; Hauser and Wawrzynek 1997; Mei et al. 2003]. However, CGRAs
come with several challenges as well. How should each individual ALU be controlled?
How should the ALUs communicate data with each other, especially given that com-
munication is frequent? If a producer is not mapped onto a datapath directly adjacent
to a consumer will the program fail?

Several prior works [Burger et al. 2004; Govindaraju et al. 2011; Swanson et al. 2007]
have proposed spatial architectures with a network of ALU-based processing elements
(PEs) onto which operations are scheduled in systolic or dataflow order, with limited
or no autonomous control at the PE level. Other approaches incorporate autonomous
control at each PE using a program counter (PC) [Taylor et al. 2002; Yu et al. 2006;
Panesar et al. 2006]. Unfortunately, as we will show, PC sequencing of ALU operations
introduces several inefficiencies when attempting to capture intra- and inter-ALU
control patterns of a frequently communicating spatially programmed fabric.

In this article, we explore addressing these issues using triggered instructions and
latency-insensitive channels. Triggered instructions remove the PC completely, instead
allowing the PE to concisely transition between states of one or more finite-state ma-
chines (FSMs) without executing instructions in the datapath to determine the next
state. Latency-insensitive channels allow efficient communication of inter-PE control
information while simultaneously enabling flexible module placement and improving
tolerance for unpredictable events such as cache accesses. Together, these approaches
provide a unified mechanism to avoid overserialized execution, essentially achieving
the effect of techniques such as dynamic instruction reordering and multithread-
ing, which each require distinct hardware mechanisms in a traditional sequential
architecture.

We evaluate out approach by simulating a spatially programmed accelerator on a
range of workloads. Our analysis for this set of workloads, which span a range of
algorithm classes not known to exhibit extensive uniform data parallelism, shows

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:3

Fig. 1. Overview of the spatial programming approach.

that such an accelerator can achieve 8× greater area-normalized performance than
a traditional general-purpose processor. We provide further analysis of both a set of
common control idioms and the critical paths of the workload programs to illustrate
how a triggered instruction architecture (TIA) contributes to this performance gain.

2. BACKGROUND AND MOTIVATION

2.1. Spatially Programmed Architectures

Spatial programming is a paradigm whereby an algorithm’s dataflow graph is bro-
ken into regions, which are connected by producer-consumer relationships. Input data
is then streamed through this pipelined graph. Figure 1 contrasts this to a more
traditional multiple-instruction-multiple-data (MIMD) approach. In MIMD, core n is
responsible for executing a full loop iteration containing each instruction A, B, C, . . . of
the sequential body, keeping the intermediate data bn, cn, and so on, locally in its regis-
ter file. Cross-core communication is rare and is ideally protected with synchronization
primitives such as barriers.

In contrast, in a spatial approach, a single small core is responsible for executing
instruction A for all iterations, with another core executing instruction B. Intermediate
data is passed to the next datapath rather than being kept locally. Therefore, no single
PE will execute an entire loop body—essentially, the program has been transposed
between time and space. Pedagogically, it is clearest to imagine the extreme approach
of mapping one instruction to each PE, but in practice there can be benefits to keeping a
small control sequence or FSM local. Ideally, the number of operations in each pipeline
stage is kept small, as performance is usually determined by the rate-limiting step.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:4 M. Pellauer et al.

For an “embarrassingly” parallel program like that shown in Figure 1(a), it may seem
like a SIMD/SIMT architecture will be a strictly more efficient execution substrate, and
so the spatial transposition is not needed. In practice, there exists a large category of
interesting programs that contain loop-carried dependencies. As Figure 1(c) shows,
these require cross-iteration data passing and skew the program’s dataflow graph
in such a way as to prevent vectorization. However, these programs are naturally
implementable in the spatial approach simply by using local registers to bypass the
cross-iteration data to the next instruction. In fact, the spatial program shown in
Figure 1(d) can implement programs such as in Figure 1(a) and (c) with no change in
code mapping and no degradation of performance—the only difference is whether the
output of instruction A is recirculated via a local register or not.

Just as data-parallel algorithms see large efficiency boosts when run on a vector
engine, workloads that are naturally amenable to spatial programming can see sig-
nificant boosts when run on an enabling architecture. A traditional processor would
execute such programs serially over time, but this does not result in any noticeable
efficiency gain and may even be slower than other expressions of the algorithm. An
MIMD multicore can improve this by mapping different stages onto different cores,
but the small number of cores available relative to the large number of stages in the
dataflow graph means that each core must multiplex between several stages, so the
rate-limiting step generally remains large. Additionally, cross-thread communication
can generally only occur via shared virtual memory (SVM), which uses a coherence
protocol to actually interact with the on-chip network (OCN) and perform the data
transfers.

In contrast, a typical spatial-programming architecture is a fabric of hundreds of
small PEs connected directly via an OCN that is exposed directly to the ISA. Given
enough PEs, an algorithm may be taken to the extreme of mapping the entire dataflow
graph into the spatial fabric, resulting in a very fine-grained pipeline. This is the
approach taken by a number of reconfigurable architectures.

FPGAs are the most successful spatially programmed reconfigurable architecture
in use today. FPGAs are designed to emulate a broad range of logic circuits because
they are primarily targeted at ASIC prototyping and replacement. Consequently, they
use very fine-grain reconfigurable elements such as LUTs [Compton and Hauck 2002;
Marquardt et al. 2000]. The LUTs are chained into larger operations using flexible-
but-expensive OCNs. This generality limits the clock speed at which mapped designs
can be run while also creating a large search space of solutions for place and route
algorithms, leading to long compilation times.

When using reconfigurable architectures for direct algorithmic acceleration instead
of logic prototyping, these issues can be partially addressed by the observation that
the class of operations that the reconfigurable architecture needs to cover is more
limited—particularly when used in conjunction with a traditional CPU. As observed by
several efforts [Mirsky and DeHon 1996; Hauser and Wawrzynek 1997; Mei et al. 2003],
this limited class of operations creates opportunities to achieve higher area density
and better power/performance efficiency than conventional FPGAs while retaining
sufficient flexibility. This has led to several proposals [Burger et al. 2004; Panesar
et al. 2006; Taylor et al. 2002; Swanson et al. 2007; Mirsky and DeHon 1996; Hauser
and Wawrzynek 1997; Mei et al. 2003] that use an array of coarser-grained multibit
ALUs as the datapath of PEs in a spatially programmed architecture.

Within the domain of array-of-ALU approaches is a class of architectures that do
not feature any autonomous control mechanism inside each ALU. These architectures
are either purely systolic [Kung 1986], statically map only one operation per ALU
[Govindaraju et al. 2011], or schedule operations onto the ALUs in strict dataflow or-
der [Burger et al. 2004]. These architectures rely on being able to transform control

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:5

Fig. 2. Example of a spatially programmed sort.

flow graphs into predicated dataflow graphs. Such approaches are effective at map-
ping the control structures of a subset of problems but do not approach the flexibility
or generality of architectures with internal autonomous control at each PE. Another
class of proposals calls for general autonomously controlled PEs [Taylor et al. 2002;
Yu et al. 2006; Panesar et al. 2006] using variants of the existing PC-based control
model.

The PC-based control model paired with SVM has historically been the best choice
for MIMD CPUs that run arbitrary and irregular programs. In the remainder of this
section, we demonstrate that these existing paradigms introduce unacceptable ineffi-
ciencies in the context of spatial programming.

2.2. Spatial Programming Example

As a concrete example, let us explore how a well-known workload can benefit from
spatial programming. Consider the simple spatially mapped sorting program shown
in Figure 2. In this approach, the worker PEs communicate in a straight pipeline. The
unsorted array is streamed in by the first PE. Each PE simply compares the incoming
element to the largest element seen so far. The larger of the two values is kept, and the
smaller sent on. Thus, after processing k elements, worker 0 will be holding the largest
element and worker k − 1 the smallest. The sorted result can then be streamed out to
memory through the same straightline communication network.

This example represents a limited toy workload in many ways—it requires k PEs
to sort an array of size k, and worker 0 will do k − 1 comparisons while worker k − 1
will only do 1 (an insertion sort, with a total of k2 comparisons). However, despite its
naivete, this workload demonstrates some remarkable properties. First, the utilization
of the datapaths is quite good—in the final step, all k datapaths can simultaneously
execute a comparison, with an overall average of k

2 per cycle. Second, the communication
between PEs is local and parallel—on a typical mesh network fabric, it is easy to
map this workload so that no network contention will ever occur. The communication
flows are completely statically determined by the configuration—no dynamic packet
routing is required. Finally—and most interestingly—this approach sorts an array of
size k with exactly k loads and k stores. The loads and stores that a traditional CPU
must use to overcome its relatively small register file are replaced by direct PE-to-PE
communication. This reduction in memory operations is critical in understanding the
benefits of spatial programming. We have been able to characterize the benefits as
follows:

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:6 M. Pellauer et al.

Fig. 3. A more realistic spatial merge sort.

—Direct communication uses roughly 20× lower power than communication through
an L1 cache, as the overheads of tag matching, load-store queue search, address
translation, and large data array read are removed.

—Cache coherence overheads including network traffic and latency are likewise
removed.

—Reduced memory traffic lowers cache pressure, which in turn increases effective
memory bandwidth for remaining traffic.

Finally, it is straightforward to expand our toy example into a realistic merge sort
engine able to sort a list of any size (Figure 3). First, we begin by programming a PE
into a small control FSM that handles breaking the array into subarrays of size k and
looping (this control loop could also be executed on the main CPU, as the sorting passes
can be quite long). Second, we slightly change the worker PEs’ programming so that
they are doing a merge of two distinct sorted sublists. With these changes, our toy
workload is now a radix k merge sort capable of sorting a list of size n in n ∗ logk(n)
loads. Because k can be in the hundreds for a reconfigurable fabric, the benefits can be
quite large. In our experiments, we observed 17× fewer memory operations compared
to a general-purpose CPU and an area-normalized performance improvement of 8.8×
(see Section 6), which is better than the currently best-known GPGPU performance
[Merrill and Grimshaw 2010].

2.3. Limitations of PC-Based Control

To illustrate the inefficiencies of existing MIMD paradigms in the spatial programming
context, let us code the merge sort PE shown in Figure 3. We first explore whether a
completely unmodified ISA is suitable for this task. In a multicore system, the typical
approach is to use SVM for the queue buffering, along with sophisticated polling mech-
anisms such as memory monitors for communicating occupancy. As shown in Figure 4,
such a style introduces many inefficient instructions for pointer chasing, addressing
offset arithmetic, and head/tail comparisons just to set up the user-specified sort com-
parison inherent to the algorithm. Even if the queues are not stalled and the monitors
unnecessary, the loop would execute an average of 32 instructions per sort comparison

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:7

Fig. 4. Merge sort worker representation using SVM queues introduces unacceptable overheads per com-
parison. Methods such as memory monitors can avoid active polling but do not reduce pointer chasing and
load/store latency between disparate caches.

in the best case, including seven loads and three stores. Furthermore, in a spatially pro-
grammed fabric having hundreds of PEs communicating using shared memory would
create unacceptable bandwidth bottlenecks. It would also be wasteful—communicating
with your neighbor should not have to go through a centralized location.

Instead, let us modify the ISA to expose direct communication channels between
PEs as data registers and status bits. The ISA must contain a mechanism to query
if the input channels are not empty and output channels are not full, to read the
first element, and to enqueue and dequeue. Furthermore, we add an architecturally
visible tag to the channel that merge sort uses to indicate that the end of a sorted
sublist has been reached (EOL). We name the resulting theoretical assembly language
PC+RegQueue and give a representation of the merge sort PE in Figure 5. This code
removes all of the problematic memory references and pointer manipulation from the
original example, but several inefficiencies are still noticeable. First, it uses active
polling to test the register-mapped queue status—an obvious power waste. Second, it
falls victim to overserialization. For example, if new data on listA arrives before that
on listB, there is no opportunity to begin processing the listA-specific part of the
code. Finally, the code is quite branch heavy when compared to that typically found on
a traditional core, and some of these branches are hard to predict.

This illustrates that simply augmenting a traditional RISC-style ISA with a channel-
based communication paradigm is not sufficient to enable efficient spatial program-
ming. To be fair to this PC-based ISA, we must try to improve the architecture somehow.
Figure 6 summarizes the techniques that we explore next.

One idea to improve queue accesses is to allow destructive reads of input channels.
In such an ISA, the SRC fields of the instruction are supplemented with a bit indi-
cating whether a dequeue is desired. This is an important improvement because it
reduces both static and dynamic instruction count. Merge sort’s implementation on
this architecture can remove three instructions compared to Figure 5.

The next idea is to replace the active polling with a select—an indirect jump based
on queue status bits. This is a marginal improvement in instruction count but does
not help power efficiency. A better idea is to add implicit stalling to the ISA. In this
case, the queue registers such as %in0 would be treated specially—any instruction that
attempts to read/write them would require the issue logic to test the empty/full bits
and delay issue until the status becomes correct. Merge sort’s implementation on this
architecture is the same as in Figure 5 but removes the first three instructions entirely.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:8 M. Pellauer et al.

Fig. 5. PC+RegQueue ISA merge sort worker representation using register-mapped queues.

Fig. 6. Adding features to a PC-based ISA to improve efficiency for spatial programming.

Of course, the downside of this is that the ALU will not be used when the PE is stalled.
Therefore, the next logical extension is to consider a limited form of multithreading. In
this ISA, any read/write of a queue would make the thread eligible to be switched out
and replaced with a ready one. This is a promising approach, but we believe that the
overheads associated with it—duplication of state resources, additional muxing, and
scheduling fairness—run counter to the fundamental spatial-architecture principle of

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:9

Fig. 7. PC+Augmented ISA merge sort worker.

replicating simple PEs. In other words, the cost-to-benefit ratio of multithreading is
unattractive. We reject out-of-order issue for similar reasons.

The final ISA extension we consider is predication. We define a variant of our ISA
that is able to test and set a dedicated set of Boolean predicate registers. Figure 7
shows a reimplementation of the merge sort worker in a language with predication,
implicit stalling, and destructive reads. It is interesting to note how little predication
improves the control flow of the example. This is because of several limitations:

—Instructions are unable to read multiple predicate registers at once (inefficient
conjunction).

—Composing multiple predicates into more complex Boolean expressions (disjunctions,
etc.) must be done using the ALU itself.

—Jumping between regions requires that the predicate expectations be set correctly.
(Note that the branch from a_done is forced to use p2 with a positive polarity.)

—Predicated false instructions introduce bubbles into the pipeline (see Section 5).

Taken together, these inefficiencies mean that conditional branching remains the
most efficient way to express the majority of the code in Figure 7. Although we could
continue to try to add features to PC-based schemes to improve efficiency, in the re-
mainder of the article we demonstrate that taking a different approach altogether can
efficiently address these issues while simultaneously removing overserialization and
providing the benefits of multithreading.

3. LOCAL PE CONTROL: TRIGGERED INSTRUCTIONS

A large degree of the inefficiency discussed in the previous section stems from the
issue of efficiently composing Boolean control flow decisions. To overcome this, we
draw inspiration from the historical computing paradigm of guarded actions, a field
that has a rich technical heritage including Dijkstra’s language of guarded commands
[Dijkstra 1975], Chandy and Misra’s Unity [Chandy and Misra 1988], and the Bluespec
hardware description language [Bluespec, Inc. 2007].

Computation in a traditional guarded action system is described using rules com-
posed of actions (state transitions) and guards (Boolean expressions that describe when
a certain action is legal to apply). A scheduler is responsible for evaluating the guards
of the actions in the system and posting ready actions for execution, taking into account

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:10 M. Pellauer et al.

ALGORITHM 1: Traditional Guarded Action Merge Sort Worker
rule sendA
when listA. f irst() �= EOL and listB. f irst() �= EOL and listA.data < listB.data do

outList.send(listA. f irst());
listA.deq();

end rule

rule sendB
when listA. f irst() �= EOL and listB. f irst() �= EOL and listA.data ≥ listB.data do

outList.send(listB. f irst());
listB.deq();

end rule

rule drainA
when listA. f irst() �= EOL and listB. f irst() = EOL do

outList.send(listA. f irst());
listA.deq();

end rule

rule drainB
when listA. f irst() = EOL and listB. f irst() �= EOL do

outList.send(listB. f irst());
listB.deq();

end rule

rule bothDone
when listA. f irst() = EOL and listB. f irst() = EOL do

listA.deq();
listB.deq();

end rule

both interaction parallelism and available execution resources. Algorithm 1 illustrates
our merge sort worker in traditional guarded action form. Note how this paradigm
naturally separates the representation of data transformation (via actions) from the
representation of control flow (via guards). Additionally, the inherent side effect–free
nature of the guards means that they are a good candidate for parallel evaluation by a
hardware scheduler.

A TIA applies this concept directly to controlling the scheduling of operations on
a PE’s datapath at an instruction-level granularity. In the historical guarded action
programming paradigm, arbitrary Boolean expressions are allowed in the guard, and
arbitrary data transformations can be described in the action. To adapt this concept
into an implementable ISA, both must be bounded in complexity. Furthermore, the
scheduler must have the potential for efficient implementation in hardware. To this
end, we define a limited set of operations and state updates that can be performed by
the datapath (instructions) and a limited language of Boolean expressions (triggers)
built from a variety of possible queries on a PE’s architectural state.

The architectural state of our proposed TIA PE is composed of the following elements:

—A set of data registers (R/W)
—A set of predicate registers (R/W)
—A set of input-channel head elements (R-only)
—A set of output-channel tail elements (W-only).

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:11

Each channel has three components—data, a tag, and a status predicate that reflects
whether an input channel is empty or an output channel is full. Tags do not have any
special semantic meaning—the programmer can use them in a variety of ways.

A trigger is a programmer-specified Boolean expression formed from the logical con-
junction1 of a set of queries on the PE’s architectural state. Triggers are evaluated by
a hardware scheduler (described shortly). The set of allowable trigger query functions
are carefully chosen to maintain scheduler efficiency while allowing for a large degree
of generality in the useful expressions. These query functions are as follows:

—Predicate register values (optionally negated): A trigger can specify a require-
ment for one or more predicate registers to be either true or false—for example, p0
&& !p1 && p7.

—Input/Output channel status (implicit): The scheduler implicitly adds the empty
status bits for each operand input channel to the trigger for an instruction. Simi-
larly, a not-full check is implicitly added to each output channel that an instruction
attempts to write. The programmer does not have to worry about these conditions
but must understand while writing code that the hardware will check them. This
facilitates convenient, fine-grained, producer/consumer interaction.

—Tag comparisons against input channels: A trigger may specify a value that an
input channel’s tag must match—for example, in0.tag == EOL.

An instruction represents a set of data and predicate computations on operands
drawn from the architectural state. Instructions selected by the scheduler are exe-
cuted on the PE’s datapath. An instruction has the following read, compute, and write
capabilities:

—An instruction may read a number of operands, each of which can be data at the
head of an input channel, a data register, or the vector of predicate registers.

—An instruction may perform a data computation using one of the standard functions
provided by the datapath’s ALU. It may also generate one or more predicate values
that are either constants (true/false) or derived from the ALU result via a limited set
of datapath-supported functions, such as reduction AND, OR, and XOR operations;
bit extractions; and ALU flags such as overflow.

—An instruction may write the data result and/or the derived predicate result into
a set of destinations within the architectural state of the PE. Data results can be
written into the tail of an output channel, a data register, or the vector of predicate
registers. Predicate results can be written into one or more predicate registers.

Figure 8 shows our merge sort expressed using triggered instructions. Note the den-
sity of the trigger control decisions—each trigger reads at least two explicit Boolean
predicates. Additionally, conditions for the queues being notEmpty or notFull are rec-
ognized implicitly. Only the comparison between the actual multibit queue data values
is done using the ALU datapath, as represented by the doCheck instruction. Predi-
cate p0 is used to indicate that the check has been performed, whereas p1 holds the
result of the comparison. Note also the lack of overserialization. Only the explicitly
programmer-managed sequencing using p0 is present.

An example TIA PE is illustrated in Figure 9. The PE is preconfigured with a static
set of instructions. The triggers for these instructions are then continuously evaluated
by a dedicated hardware scheduler that dispatches legal instructions to the datapath
for execution. At any given scheduling step, the trigger for zero, one, or more instruc-
tions can evaluate to true. The guarded action model—and by extension our triggered

1Although the architecture natively allows only conjunctions in trigger expressions, disjunctions can be
emulated by creating a separate triggered instruction for each disjunctive term.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:12 M. Pellauer et al.

Fig. 8. Triggered instruction merge sort worker.

instruction model—allows all such instructions to fire in parallel subject to datapath
resource constraints and conflicts.

The high-level microarchitecture of a TIA hardware scheduler is shown in Figure 10.
The scheduler uses standard combinatorial logic to evaluate the programmer-specified
query functions for each trigger based on values in the architectural state elements.
This yields a set of instructions that are eligible for execution, among which the sched-
uler selects one or more depending on the datapath resources available. The example
shown in this figure illustrates a scalar datapath that can only fire one instruction per
cycle, and therefore the scheduler selects one out of the available set of ready-to-fire
instructions using a priority encoder.

As with any architecture, a TIA is subject to a number of parameterization op-
tions and their associated cost-vs.-benefit trade-offs. Architectural parameters include
the number of instances of each class of architectural state element (data registers,
predicate registers, etc.), the set of data and predicate functions supported by the
datapath, the scope and flexibility of the trigger functions, and the number of input
operands and output destinations. The design space of microarchitectural alternatives
includes scheduler implementation choices, scalar vs. superscalar datapaths, pipelining

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:13

Fig. 9. A triggered instruction based PE.

Fig. 10. Microarchitecture of a TIA scheduler.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:14 M. Pellauer et al.

Fig. 11. Example PE architecture parameters.

strategies, and so forth. An exhaustive investigation of the entire design space is outside
the scope of this work. To provide the reader with some intuition on what a reasonably
balanced TIA PE could look like, we provide an example architectural configuration in
Figure 11. This is also the configuration used for our evaluation in Section 6.

3.1. Observations on the Triggered Model

Having defined the basic structure of a TIA, we are now in a position to make some
key observations:

—A TIA PE does not have a PC or any notion of a static sequence of instructions.
Instead, there is a limited pool of triggered instructions that are constantly bidding
for execution on the datapath. This fits very naturally into a spatial programming
model where each PE is statically configured with a small pool of instructions instead
of streaming in a sequence of instructions from an instruction cache.

—Observe that there are no branch or jump instructions in the triggered ISA—every
instruction in the pool is eligible for execution if its trigger conditions are met. Thus,
every triggered instruction can be viewed as a multiway branch into a number of
possible states in an FSM.

—With clever use of predicate registers, a TIA can be made to emulate the behavior
of other control paradigms. For example, a sequential architecture can be emulated
by setting up a vector of predicate registers to represent the current state in a
sequence—essentially, a PC. Predicate registers can also be used to emulate classic
predication modes, branch delay slots, and speculative execution. Triggered instruc-
tions is a superset of many traditional control paradigms. The cost of this generality
is scheduler area and timing complexity, which imposes a restriction on the number
of triggers (and thus the number of instructions) that the hardware can monitor at
all times. Whereas this restriction would be crippling for a temporally programmed
architecture, it is reasonable in a spatially programmed framework because of the
low number of instructions typically mapped to a pipeline stage in a spatial workload.

—The hardware scheduler is built from combinatorial logic—it simply is a tree of AND
gates. This means that only the state equations that require reevaluation will cause
the corresponding wires in the scheduler logic to swing and consume dynamic power.
In the absence of channel activity or internal state changes, the scheduler does not
consume any dynamic power whatsoever. The same control equations would have
been evaluated using a chain of branches in a PC-based architecture.

All together, triggered instructions allow individual PEs to efficiently react to in-
coming messages, making an intelligent decision based on the local state of the PE. A
TI scheduler uses a single unified scheme to monitor both the one-bit channel status
registers and the local predicate registers to quickly and cheaply make a trigger deci-
sion. Spatial PEs are the “endpoints” of producer/consumer relationships. In the next
section, we present an efficient scheme for the actual transport of control and data
between producers and consumers.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:15

4. COMMUNICATIONS AND INTER-PE CONTROL

Triggered instructions capture the local control logic programmed onto a single PE,
but the spatial fabric must also support some form of inter-PE coordination and data
passing. One possibility is to design a global control architecture with a centralized
“master” directing nonautonomous PEs. However, access to shared centralized control
state is likely to be expensive and limit scalability of the fabric. Distributed control,
although scalable, often makes it challenging to map an algorithm into a distributed
program without either introducing bugs and deadlocks or using knowledge about
properties of the underlying network fabric. Existing spatial fabrics have solved this
using systolic or synchronous networking schemes that cause neighboring PEs to move
exactly in lockstep, which can limit performance.2

4.1. Latency-Insensitive Channels: A Flexible Architectural Foundation

To make this mapping process tractable while avoiding oversynchronization, we take
inspiration from prior work on a fully distributed and scalable control paradigm based
on latency-insensitive design [Carloni et al. 2001]. This paradigm has previously been
successfully applied to hardware design [Pellauer et al. 2009; Vijayaraghavan and
Arvind 2009], FPGA-based algorithm mapping [Fleming et al. 2012], and hardware-
software communication [King et al. 2012].

In this design paradigm, local modules (whether hardware or software) are unable to
make assumptions about the timing characteristics involved regarding communicating
with other modules in the system. Instead, coordination is piggybacked onto data
communications. The arrival (or absence) of a message on an input communication
channel is itself an implicit form of control synchronization. This works well in a
spatial architecture because of the significant amount of inter-PE dataflow required to
achieve fine-grained producer-consumer pipelines. These dual-purpose communication
channels are called latency-insensitive channels [Fleming et al. 2012].

A properly latency-insensitive system has the following properties:

—Modules connected via latency-insensitive channels do not share any data or control
state except through these channels.

—Latency-insensitive channels are nonlossy, in-order channels. Transmitted messages
remain in the channel until dequeued by the receiver.

—Traffic on any given latency-insensitive channel is not allowed to indefinitely block
the delivery of traffic on any other channel.

—Latency-insensitive channels allow at least one message in flight (i.e., have at least
one buffer). Each channel may allow more, but the exact amount may not be known
statically.

—Modules connected via a latency-insensitive channel are not allowed to make any
assumptions about the total amount of buffering available in the channel, nor about
the latency of message delivery along the channel.

As a corollary to the preceding points, if producer P0 serially sends messages A
and B down channel 0, and producer P1 sends C and D down channel 1, then a con-
sumer reading both channels may receive the messages in the following legal orders:
A, B, C, D or A, C, B, D or A, C, D, B or C, A, B, D or C, A, D, B or C, D, A, B. Which of
these orderings is actually observed at runtime may be unpredictable (i.e., because
of network congestion), and therefore a properly latency-insensitive program must be
able to tolerate all of them (although they may not all be observed in practice).

2There is an analogy between a traditional SIMD architecture and a systolic spatial fabric. Both approaches
seek to obtain cheaper hardware implementation by potentially limiting performance to that of the slowest
thread or PE, respectively.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:16 M. Pellauer et al.

We choose the latency-insensitive paradigm because the restrictions it imposes allow
the architectural interface of the communication network (i.e., the channel interface
described in Section 3) to be separated from the implementation and topology of the
network. For example, a latency-insensitive channel can be implemented simply as
a register with a valid bit or as a deep memory-based circular ring buffer. A latency-
insensitive module or program should be functionally oblivious to these implementation
choices (although performance may vary).

Furthermore, properly latency-insensitive code may be deployed in a variety of differ-
ent mapping scenarios. In one deployment, a producer module may be placed directly
next to a consumer, with an uncontended direct link between them that contains a
small amount of buffering. Later, the same code may be deployed in a scenario where
the same producer is far from the consumer, and the data must travel heavily con-
tended network links, but is also given more buffering as a result. These scenarios
may certainly differ in performance, but latency insensitivity should ensure that the
program always produces the correct result. This gives spatial architects a large degree
of freedom when developing efficient mapping algorithms.

4.2. Efficient Channel Implementation via Static Virtual Circuits

As we will show in Section 6, a distributed program for typical spatial workload con-
tains a large number of cross-PE channels. It is unrealistic to assume that hardware
can provision dedicated wires to achieve full bandwidth for all flows—and indeed,
nearest neighbor communication is too restrictive to cover all cases. Luckily, there
is an abundance of prior art on building OCNs that create shared virtual channels
(VCs) for traditional MIMD processors [Dally and Towles 2003; Peh and Jerger 2009].
These channels have the ordering and nonblocking requirements that we desire, while
efficiently multiplexing limited wire and buffer resources dynamically, and using es-
tablished flow-control crediting techniques to achieve good bandwidth.

Unfortunately, these solutions use dynamic packet routers with deep pipelines that
are not a good fit for spatial architectures. These routers are typically designed for a
scenario where each network node is a traditional processor core, which amortizes the
cost of the router. In contrast, each PE in a spatial architecture is much smaller, which
makes a traditional dynamic router impractical. Furthermore, this level of dynamism
is actually not needed in a spatial context. In a typical multicore, the overwhelming ma-
jority of traffic on the OCN is coherence-protocol traffic. Caching schemes intentionally
hash the packet destination to distributed home nodes to avoid creating hotspots and
bottlenecks. In such a scenario, dynamic packet addressing and deadlock-free routing
schemes are fundamental requirements.

In contrast, in the spatial scenario, the producer/consumer flows are statically deter-
mined when the program is loaded during the configuration step. Most flows are nearest
neighbor and often can be mapped so that there is no contention (see Section 6). We can
leverage these facts to create statically allocated virtual circuits through the OCN. We
can then map the programming construct of latency-insensitive channels onto these
circuits, which multiplex limited physical link wires between the flows mapped onto
them on a hop-by-hop basis, while maintaining nonblocking and deadlock freedom via
reverse credit flows, which are similarly statically mapped and managed.

When connecting spatial PEs, these circuits have the following advantages over
traditional VC multiplexing:

—A circuit’s route can be determined solely by the mapper (or programmer) and need
not take the most direct route to the destination, such as for congestion avoidance.

—A uniform deadlock-free routing scheme such as X-Y routing is not needed, but rather
deadlock freedom can be ensured on a circuit-by-circuit basis.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:17

Fig. 12. Implementation details of the PE interface to a single input/output channel shown previously
in Figure 9. For simplicity, head/tail pointers are depicted. Smaller buffers could be implemented with
occupancy bits or cross-channel buffer-slot sharing schemes considered.

—Packets can be routed based solely on the channel ID that is transmitting rather
than through a control flit prepended to the message. This results in fewer bits
transmitted per message and simpler hardware per router.

—Similarly, the routing decision for each circuit can be distributed at configuration
time to each hop involved in that circuit. For example, if route 5 goes North-East-
East, this would result in “North” configured to entry 5 of the routing table of the
first hop, “East” to the second hop, and so on. This means that each router will only
see information local to its particular switch and will not pay energy transmitting
routing directions for following hops.

—At configuration time, different buffering resources may be allocated to different
flows depending on their expected criticality to program performance. This could be
used either to increase fairness or quality-of-service of the overall system.

Figure 12 depicts an implementation of a single input and output channel as they
interface with the PE’s scheduler and datapath. State elements with dotted borders are
written statically, during the configuration of the program, and define the virtual circuit
that implements the channel. This includes the link in/out and channel ID of the next
(or previous) hop that for data transmission. For the input channel, the multiplexer
into the data buffer is controlled statically by an unchanging value indicating which
incoming link’s data should be latched. This has a beneficial effect on both power
consumption and critical path. For output, the link direction a given channel is trying
to transmit onto is similarly statically determined.

Elements with dashed borders represent microarchitectural scoreboarding that is
invisible to the end user. This includes the current occupancy level of the local buffer
and current crediting status. Note that these credits are tracked between this hop
and the immediate next, and do not represent end-to-end flow control, which can
conservatively limit effective network bandwidth.

One important design decision is the placement of buffering both before and after the
PE. From a correctness standpoint, this buffering is overkill—it has been shown that

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:18 M. Pellauer et al.

Table I. Dynamic Instruction Cost of Common Intra-PE Control Idioms

buffering either input or output exclusively is sufficient. Within the latency-insensitive
design paradigm, we choose to use both because it allows the system to better tolerate
variability in latency. If a downstream consumer becomes temporarily slowed due to
congestion or cache misses, the producer PE may still prebuffer results into the output
channel, even if the channel itself is out of credits to downstream hops. Similarly, even
if a PE is stalled on some rare-but-slow operation, the network is still able to prebuffer
some amount of new input, reducing congestion and allowing for quick resumption
when the hiccup is resolved.

Note the natural fit between the input/output channels’ NotFull and NotEmpty
signals and the triggered instruction scheduler. To the trigger resolution logic, these
are simply extra 1-bit inputs, not really any different from local predicate registers.
Whether these 1-bit signals represent a complicated occupancy and/or credit status is
immaterial to the instruction scheduling decision.

Finally, note that the PEs can also be programmed to operate as network routers in
a multihop traversal by adding a triggered instruction that dequeues the data from an
input channel and enqueues it into an output channel.

In the following sections, we evaluate and quantify the benefit that the latency-
insensitive communication mechanism brings to common control paradigms found in
real workloads.

5. EVALUATION: CONTROL IDIOMS

In this section, we evaluate the quantitative benefit of triggered instructions and
latency-insensitive channels by examining a number of control idioms that arise fre-
quently in spatially programmed workloads.

Table I describes common control idioms that occur when controlling a single
PE and compares implementations of each idiom on a triggered architecture to

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:19

Table II. Dynamic Instruction Cost of Common Inter-PE Control Idioms

implementations on the PC+RegQueue and PC+Augmented architectures described
in Section 2. These idioms are generally related to efficiently encoding the graph of
a single FSM onto a given instruction set. Table II repeats this comparison using
common inter-PE communication paradigms using latency-insensitive channels, thus
demonstrating the efficacy of pairing each ISA with this scheme.

Across both tables, we see some general patterns emerging. First, TI is never less ef-
ficient than a PC-based approach—that is, it never requires more instructions. Second,
TI removes all control operations, such as branches. In a classic PC-based setting, the
accepted rule of thumb is that about one in every four to five instructions is a branch
[Emer and Clark 1984]. In this setting, TI’s expected benefit would be around 20%.
However, in Section 6.3, we demonstrate that the fine-grained producer-consumer na-
ture of spatially programmed codes means that control makes up 44% of all operations,
which increases the benefit of TI significantly.

Finally, TI removes the overserialization problem presented in Section 2.3. This has
several benefits, but they are harder to quantify directly. First, as the equations in
Table II demonstrate, there are certainly scenarios where overserialization results in
no penalty because the data arrives in the order that matches the static sequence chosen
by the compiler. If the compiler can precisely schedule cross-PE data delivery rates,
then it is possible that this deficiency will never be exposed. In practice, the numerous
sources of variable dynamic latency (memory hierarchy, network contention, data-
dependent divergence, etc.) mean that there is plenty of opportunity to take advantage
of the ability to break overserialization. Additionally, dealing with messages as they
arrive can allow backward credit flow to the producer PE to begin earlier, which can
increase effective OCN throughput.

Breaking overserialization can be accomplished by finding independent operations.
These can be found from two sources. The first source is local parallelism in the PE’s
dataflow graph, in which case computation can start as the data arrives (i.e., classical
dynamic instruction reordering). The second source arises when the spatial compiler

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:20 M. Pellauer et al.

chooses to place unrelated sections of the overall algorithm dataflow graph onto a
single PE, statically partitioning the registers between them and statically interleav-
ing operations (i.e., compiler-directed multithreading). On a PC-based architecture,
the serialization restriction is a significant barrier to a compiler’s ability to statically
partition one thread of control between unrelated sections of a single algorithm. The
dynamic data production/consumption rates must be known to schedule the code—both
for efficiency and to avoid deadlock. On a TI architecture, we expect compiler-directed
multithreading of non–rate-limiting PEs to be a common and important optimization.

To reiterate these benefits, since a TI architecture does not impose any ordering
between instructions unless explicitly specified, it can gain the ILP benefits of an
out-of-order issue processor without the expensive instruction window and reorder
buffer. Simultaneously, a TI machine can take advantage of multithreading without
duplicating data and control state, but by the compiler partitioning resources as it sees
fit. Of course, there is a hardware cost associated with this benefit—the TI PE must
have a scheduler (see Figure 10) that can efficiently evaluate the program’s triggers.

6. EVALUATION: WORKLOADS

6.1. Approach

The objective of our quantitative evaluation in this section is threefold:

(1) To demonstrate the effectiveness of a TIA-based spatial architecture compared to
a traditional high-performance sequential architecture

(2) To demonstrate the benefits of using TIA-based PEs in a spatial architecture com-
pared to PC-based PEs using the PC+RegQueue and PC+Augmented architectures
described in Section 2

(3) To demonstrate that latency-insensitive channels are an efficient and appropri-
ate paradigm for inter-PE communication, and represent a viable alternative to
transferring data via shared memory coherence protocols.

The main challenge with the first objective is that raw performance of a spatial
accelerator is a function of area and memory bandwidth allocated to the accelerator,
and parallelism available in the workload. Because spatial workloads generally exhibit
good scalability, providing raw performance requires assessing a particular design point
with a specific set of area/bandwidth values. However, since the purpose of this article is
to present a control paradigm for spatial architectures in general, we instead present
performance numbers area normalized against a typical host processor—namely, a
single 3.4GHz out-of-order superscalar Intel R© CoreTM i7-2600 core.

Our evaluation fabric is a scalable spatial architecture built from an array of TIA PEs
organized into blocks, which form the granularity of replication of the fabric. Each block
contains a grid of interconnected PEs, a set of scratchpad slices distributed across the
block, a private L1 cache, and a slice of a shared L2 cache that scales with the number
of blocks on the fabric. Figure 13 provides an illustration of a block and the parameters
that we use in our evaluation. Note that our evaluation PEs use 32-bit integer/fixed-
point datapaths and do not include hardware floating point units (which is orthogonal
to triggered instructions and beyond the scope of this evaluation). Area estimates of
each PE were obtained via implementation feasibility analysis discussed further in
Section 6.4. Area estimates for the caches, register files, multipliers, and OCN were
added using existing industry results. As a reference, 12 blocks (each including PEs,
caches, etc.) are about the same size as our baseline i7-2600 core (including L1 and L2
caches), normalized to the same technology node.

We developed a detailed cycle-accurate performance model of our spatial accelerator
using Asim, an established performance modeling infrastructure [Emer et al. 2002].

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:21

Fig. 13. Block illustration and parameters.

We model the detailed microarchitecture of each TIA PE in the array, the mesh inter-
connection network, L1 and L2 caches, and DRAM.

We evaluate our spatial fabric on application kernels from a variety of domains.
We do this under the assumption that the computationally intensive portions of the
workload will be offloaded from the main processor, which will handle peripheral tasks
like setting up the memory and handling rare-but-slow cases. As a baseline, we used
sequential software implementations running on the i7-2600 host processor. When
possible, we chose existing optimized workload implementations. In other cases, we
autovectorized the workload using the Intel C/C++ compiler (icc) version 13.0, enabling
processor-specific ISA extensions.

For our second evaluation objective, we analyze how much of the overall speedup
benefit is attributable to triggered instructions (as opposed to spatial programming
in general) using the same framework described earlier. We demonstrate this by ex-
amining the critical loops that form the rate-limiting steps in the spatial pipeline of
our workloads. We implemented the loops on spatial accelerators using the traditional
PC-based approaches. This analysis demonstrates how frequently the triggered in-
struction control idiom advantage presented in Tables I and II translates to practical
improvements.

For our third evaluation objective, we gather statistics of the channel usage of our
workloads. We begin by showing what percentage of the channels are related to memory
interaction, and what percentage represent more efficient direct inter-PE communica-
tion. We also gather statistics on potential for network conflicts, demonstrating how
different these static flows are from traditional dynamically routed packets. Finally, we
gather dynamic usage statistics, showing how much memory traffic and link contention
occur in practice, and to what extent latency-insensitive channels allow us to unlock
the potential bandwidth of our OCN and cache hierarchy.

6.2. Evaluation Application Kernels

For our analysis, we have purposely chosen workloads spanning the space of data
parallelism, pipeline parallelism, and graph parallelism. Table III presents an overview
of the chosen kernels.

The triggered instruction versions of these kernels were implemented directly in our
PE’s assembly language and hand mapped spatially across our fabric. (In the future,

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:22 M. Pellauer et al.

Table III. Target Workloads for Evaluation

Berkeley Dwarf Comparison Software
Workload [Asanovic et al. 2006] Domain Implementations
AES-CBC Combinational Logic Cryptography Intel reference using AES-ISA

extensions
KMP String Search Finite State Machines Various Nonpublic optimized

implementation
Dense Matrix
Multiply

Dense Linear Algebra Scientific
Computing

Intel MKL implementation [Geijin
and Watts 1997]

FFT Spectral Methods Signal
Processing

FFT-W with autovectorization

Graph500-BFS Graph Traversal Supercomputing Nonpublic optimized
implementation

k-Means
Clustering

Dense Linear Algebra Data Mining MineBench implementation with
autovectorization

Merge Sort Map/Reduce Databases Nonpublic optimized
implementation

Flow Classifier Finite State Machines Networking Nonpublic optimized
implementation

SHA-256 Combinational Logic Cryptography Intel reference (x86 assembly)

we expect this to be done by automated tools from higher-level source code.) We offer
these insights on the workloads’ amenability to spatial programming:

—AES-CBC: Encryption with cipher-block chaining implemented using a memoized
table in which byte substitution is performed. The algorithm is performed on a 4 x 4
grid of 8 bits apiece. One PE is responsible for providing the computation for a single
byte, exposing 16-way parallelism.

—Dense Matrix Multiply: We adapt the SUMMA algorithm [Geijin and Watts 1997] by
blocking problem size to the fabric. Input data is pipelined through loader PEs. Each
worker PE operates on an 8*8 resultant matrix.

—KMP String Search: We adapt the Knuth-Morris-Pratt (KMP) [Knuth et al. 1977]
string search algorithm by slicing the text string into small segments and distributing
it across a large number of PE workers. Another set of PEs are configured as pattern
state machine generators and servers. A spatial implementation is able to slide the
string window by simply rotating the logical order of the workers, discarding the
block of text from the oldest worker and shifting in a new block in its place.

—FFT: We adapt a fast Fourier transform (FFT) by blocking the complex-multiply
butterfly structure into a size specific to our number of PEs. A control FSM reuses
this block to compose an FFT of arbitrary size.

—Flow Classifier: Network packet masking is parallelized by allocating different seg-
ments of the packet to different PEs. The hash key calculation is pipelined through
a large number of PEs. The final comparison for matching flows is parallelized by
processing multiple segments of the flow in parallel on multiple PEs.

—Graph500-BFS: The graph500 benchmark is meant to span multiple nodes of a
supercomputer. We simulate what a single node would look like if enhanced with a
spatial accelerator. We are able to pipeline the loading, testing, and updating of the
nodes to expose a large number of in-flight memory requests.

—k-Means Clustering: Our implementation maps the Euclidean distance function for a
single cluster to a PE. Input data, along with the current nearest cluster, is streamed
through the PEs to compare against all clusters.

—Merge Sort: Described previously in Section 2.2.
—SHA-256: The tight inner loop is spatially mapped across PEs, with each function

being mapped to a separate PE. Key generation is parallelized.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:23

Fig. 14. Area-normalized performance ratio of a TIA-based spatial accelerator compared to a high-
performance out-of-order core.

Table IV. Percentage of Dynamic Instructions That Are Branches in Rate-Limiting Step Inner Loop

AES DMM FFT Flow Classifier Graph-500
PC+RegQ 58% 50% 36% 50% 50%
PC+Aug 6% 33% 11% 50% 40%

k-Means KMP Search Merge Sort SHA-256 Average
PC+RegQ 69% 8% 70% 63% 50%
PC+Aug 29% 14% 50% 22% 28%

6.3. Performance Results

Figure 14 demonstrates the magnitude of performance improvement that can be
achieved from using a spatially programmed accelerator. Across our workloads, we
observe area-normalized speedup ratios ranging from 3× (FFT) to around 22× (SHA-
256) compared to the performance of the traditional core, with a geometric mean of
8×.

Now let us analyze how much of this benefit is attributable to the use of triggered
instructions by comparing the rate-limiting inner loops of our workloads to implemen-
tations on spatial architectures using the PC+RegQueue and PC+Augmented control
schemes.

Table IV shows the average frequency of branches in the dynamic instruction stream
for the PC-based spatial architectures. The branch frequency ranges from 8% to 70%,
with an average of 50%. These inner loops are all very branchy and dynamic—far more
than traditional sequential code.

This dynamism manifests itself as additional control cycles for both PC-based archi-
tectures, as shown in Figure 15. This figure shows the dynamic execution cycles for all
architectures broken down into cycles spent on operations in each category defined in
in Section 5. The cycle counts are all normalized to the number of data computation
operations (D.ops) by PC+RegQueue. We augment this data with Figures 16 and 17,
which respectively show the static and dynamic (average) instruction/op counts in the
inner loops of rate-limiting steps for each workload.

The data in these figures demonstrates that the control idiom efficiencies presented
in Tables I and II are applicable to real-world kernels. Specifically:

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:24 M. Pellauer et al.

Fig. 15. Breakdown of dynamic execution cycles in rate-limiting inner loops normalized to D.ops executed
by PC+RegQueue.

Fig. 16. Static instruction counts for rate-limiting inner loops.

Fig. 17. Average dynamic instruction counts for rate-limiting inner loops.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:25

Fig. 18. Breakdown of workload latency-insensitive channels by type.

—TIA demonstrates a significant reduction in dynamic instructions executed com-
pared to both PC+RegQueue (64%) and PC+Augmented (28%) on average, and an
average performance improvement of 2.0× versus PC+RegQueue and 1.3× ver-
sus PC+Augmented in the critical loops. A large part of the performance gained
by PC+Augmented over PC+RegQueue is from the reduction of Queue Manage-
ment ops. TIA benefits from this as well but gets a further performance boost over
PC+Augmented from a reduction in Control ops and Predicated-False ops.

—An additional benefit of TIA over PC+Augmented comes from a reduction in Wait
cycles. This is most evident in the k-Means (50%), Graph500 (100%), and SHA-
256 (40%) workloads. This is due to the ability of triggered instructions to avoid
unnecessary serialization. Note that because these are critical rate-limiting loops
in the spatial pipeline, there are fewer opportunities for multiplexing unrelated
work onto shared PEs. Despite this, the workloads show benefits from avoiding
overserialization.

—The workload that sees the largest benefit from triggered instructions is Merge
Sort. Merge Sort has the highest dynamic branch rate (70%) of all workloads
on the PC+RegQueue architecture. It also spends a number of cycles polling
queues. PC+Augmented eliminates all queue-polling cycles, resulting in 1.6× per-
formance improvement in the rate-limiting step. TIA further cuts down a large
number of control cycles, leading to a further 2.3× performance improvement versus
PC+Augmented and a cumulative 3.7× performance benefit over PC+RegQueue.

—On average, PC+Augmented does not see a significant benefit from predicated exe-
cution for these spatially programmed workloads.

—Triggered instructions use a substantially smaller static instruction footprint. The
reduction in footprint compared to PC+RegQueue is particularly significant—62%
on average. PC+Augmented’s enhancements help reduce the footprint, but TIA still
has 30% fewer static instructions on average.

The static code footprint of these rate-limiting inner loops is in general fairly small
across all architectures. This observation, along with the real-world performance ben-
efits that we observed versus traditional high-performance architectures, provides
strong evidence of the viability and effectiveness of the spatial programming model
with small, tight loops arranged in a pipelined graph.

Regarding latency-insensitive channels, Figure 18 and Table V show the static break-
down of the number and type of each channel. These demonstrate that all workloads
contain a large number of inter-PE channels, and that direct communication without
going through shared memory is a feasible communication paradigm for these pipelined
graphs. Furthermore, the low hop count indicates that much of this communication is
neighbor-to-neighbor and thus makes the most effective use of distributed network

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:26 M. Pellauer et al.

Table V. Average Static Hop Count and Contention Potential for Workload Channels

AES DMM FFT Flow Classifier Graph-500
Total channels 60 468 414 339 50
Average hops per channel 1.3 1.12 1.28 1.64 2.06
Average channels per link 2.00 2.10 2.68 1.75 1.58

k-Means KMP Search Merge Sort SHA-256 Average
Total channels 37 23 1155 40 287
Average hops per channel 1.24 1.70 1.36 1.35 1.45
Average channels per link 1.53 2.71 2.61 2.16 2.06

Fig. 19. Breakdown of dynamic traffic by channel type. The number is the change versus static percentage
of channels (see Figure 18). This demonstrates which channel classes see the heaviest dynamic use.

Table VI. Average Dynamic Contentions per Link per Cycle, Organized by Channel Type

AES DMM Merge Sort SHA-256
Average delays from contention: Memory-PE 1.08 0 0.6 0
Average delays from contention: Inter-PE 0 0 0 0.03
Effective LI-channel bandwidth: Memory-PE 47.96% 100% 61.93% 100%
Effective LI-channel bandwidth: Inter-PE 99.99% 100% 100% 97.23%

bandwidth. The channels-per-link tracks the number of virtual circuits multiplexed on
the same physical links to show the potential for contention and bandwidth reduction
in the network. For example, if a single link is shared between two channels, then
the network will operate at full bandwidth as long as each channel is not injecting a
message more frequently than every two cycles. Only the links with at least one virtual
circuit using them are counted.

Figure 19 and Table VI supplement this information with dynamic traffic break-
downs for four workloads with differing static ratios of memory channels. The “effec-
tive” channel bandwidth refers to the percentage of time that channel traffic achieves
full network bandwidth, without being slowed by contention—if this reaches 100%,
then the result is the same as if the hardware had provisioned dedicated wires for all
channels in the system. These demonstrate that contention is rare in practice and is
almost always related to memory interfacing—“hotspots” around limited cache port
resources. Overall, these results confirm that static virtual circuits are an efficient
implementation of the latency-insensitive channel paradigm. Just as spatially pro-
grammed loops have different branch and control ratios to traditional codes, spatially
programmed networks have static properties that allow architects to extract efficiency
without overprovisioning hardware for unpredictable dynamic cases.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:27

6.4. Implementation Feasibility Analysis

We collaborated with circuit-design experts to lay out a TIA PE in a state-of-the-art
industry technology process. The resulting two-stage pipelined PE has a comparable
number of gate levels in the critical path to a high-performance commercial micropro-
cessor. The large degree of replication in a spatial fabric would, however, justify even
further design effort to optimize the PEs.

The hardware scheduler is the centerpiece of a TIA PE. Scheduler implementation
cost is one of the primary factors that bounds the scalability of PE size in a triggered
control model. Fortunately, the nature of spatial programming is such that small,
efficient PEs are effective.

Our implementation analysis shows that the area cost of the TIA hardware scheduler
is less than 2% of a PE’s overall area, much of which is occupied by its architectural state
(registers, input/output channel buffers, predicates, and instruction storage), datap-
ath logic (operand multiplexers, functional units, etc.), and microarchitectural control
overheads—none of which are unique to triggered control. This is not surprising—the
core of the TIA scheduler is essentially a few 1-bit-wide trees of AND gates feeding into
a priority encoder. For our chosen parameterization, this logic is dwarfed by everything
else in the PE.

Similarly, scheduler power consumption is small compared to the rest of the PE. The
scheduler logic does not consume dynamic power unless there is a change in predicate
states. When this happens, the only wires that swing are the ones that are recomputing
the changed control signals. This manner of computing control is more power efficient
than executing datapath instructions to compute the same results. In a degenerate
scenario where the PE is walking down a sequence of stages in a gray-coded FSM, one
to two (at most) predicate bits swing each cycle. The power consumed in this scenario
is negligible.

7. RELATED WORK

We classify prior work on architectures for programmable accelerators according to the
taxonomy shown in Figure 20 (although some have been proposed as stand-alone pro-
cessors instead of accelerators complementing a general-purpose CPU). Temporal ar-
chitectures (class 0 in the taxonomy) are best suited for data-parallel workloads and are
outside of the scope of this work. Within the spatial domain (classes 1x), the trade-offs
between logic-grained architectures (class 10) such as FPGAs and instruction-grained
architectures (classes 11x) are well understood ([Mirsky and DeHon 1996; Hauser and
Wawrzynek 1997; Mei et al. 2003]). In this section, we focus our attention on prior work
on instruction-grained spatial architectures with centralized and distributed control
paradigms.

7.1. Centralized PE Control Schemes

In the centralized approach (class 110), a fabric of spatial PEs is paired with a central-
ized control unit. This unit maintains overall program execution order, managing PE
configuration. The results of PE execution may influence the overall flow of control, but
generally the PEs are not making autonomous decisions.

Transport triggered architectures [Hoogerbrugge and Corporaal 1994] is a scheme
where the functional units in the system are exposed to the compiler, which then uses
MOV operations to explicitly route data through the transport network. Overall control
flow is maintained by a global PC. Operation execution is triggered by the arrival of
data from the network, but no other localized control exists.

TRIPs is an explicit dataflow graph execution (EDGE) processor that utilizes
many small PEs to execute general-purpose applications [Burger et al. 2004]. TRIPs

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:28 M. Pellauer et al.

Fig. 20. A taxonomy of programmable accelerators.

dynamically fetches and schedules large VLIW instruction blocks across the small PEs
using centralized PC-based control tiles. Whereas large reservation stations within
each PE enable “when-ready” execution of instructions, only single-bit predication is
used within PEs to manage small amounts of control flow.

WaveScalar is a dataflow processor for general-purpose applications that does not
utilize a PC [Swanson et al. 2007]. A PE consists of an ALU, input and output network
connections, and a small window of eight instructions. Blocks of instructions known as
waves are mapped down onto the PEs, and additional “WaveAdvance” instructions are
allocated at the edges to help manage coarse-grained or loop-level control. Conditionals
are handled by converting control flow instructions to dataflow, resulting in filtering
instructions that conditionally pass values to the next part of the dataflow graph. In
WaveScalar, there is no local PE register state; when an instruction issues, the result
must be communicated to another PE across the network.

DySER integrates a circuit-switched network of ALUs inside the datapath of contem-
porary processor pipeline [Govindaraju et al. 2011]. DySER maps a single instruction
to each ALU and does not allow memory or complex control flow operations within the
ALUs. TIA enables efficient control flow and spatial program mapping across PEs, en-
abling high utilization of ALUs with PEs without the need for an explicit control core.
Other recent work such as Garp [Hauser and Wawrzynek 1997], Chimaera [Ye et al.
2000], and ADRES [Mei et al. 2003] similarly integrate LUT-based or coarse-grained
reconfigurable logic controlled by a host processor, either as a coprocessor or within the
processor’s datapath.

MATRIX [Mirsky and DeHon 1996] is an array of 8-bit function units with a con-
figurable network. With different configurations, MATRIX can support VLIW, SIMD,
or multiple-SIMD computations. The key feature of the MATRIX architecture was

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:29

claimed to be its ability to deploy resources for control based on application regularity,
throughput requirements, and available space.

PipeRench [Schmit et al. 2002] is a coarse-grained RL system designed for virtual-
ization of hardware to support high-performance custom computations through self-
managed dynamic reconfiguration. It is constructed from 8-bit PEs. The functional unit
in each PE contains eight three-input LUTs that are identically configured.

Note that in the dataflow computing paradigm, instructions are dispatched for execu-
tion when tokens associated with input sources are ready. Each instruction’s execution
results in the broadcast of new tokens to dependent instructions. Classical dataflow ar-
chitectures such as those of Dennis and Misunas [1975] and Arvind and Nikhil [1990]
used this as a centralized control mechanism for spatial fabrics. However, other projects
such as those of Burger et al. [2004] and Swanson et al. [2007] use token triggering to
issue operations in the PEs, whereas the centralized control unit uses a more serialized
approach.

In a dataflow-triggered PE, the token-ready bits associated with input sources are
managed by the microarchitecture. The TI approach, in contrast, replaces these bits
with a vector of architecturally visible predicate registers. By specifying triggers that
span multiple predicates, the programmer can choose to use these bits to indicate data
readiness but can also use them for other purposes, such as control flow decisions. In
classic dataflow, multiple pipeline stages are devoted to marshaling tokens, distributing
tokens, and scoreboarding which instructions are ready. A “Wait-Match” pipeline stage
must dynamically pair incoming tokens of dual-input instructions. In contrast, the set
of predicates to be updated by an instruction in the TI is encoded in the instruction
itself. This both reduces scheduler implementation cost and removes the token-related
pipeline stages.

Smith et al. [2006] extend the classic static dataflow model by allowing each instruc-
tion to be gated on the arrival of a predicate of a desired polarity. This approach adds
some control flow efficiency to dataflow, providing for implicit disjunction of predicates
by allowing multiple predicate-generating instructions to target a single destination
instruction, and implicit conjunction by daisy chaining predicate operations. Although
this makes conjunctions efficient, it can lead to an overserialization of the possible exe-
cution orders inherent in the original nonpredicated dataflow graph. In contrast, com-
pound conjunctions are explicitly supported in triggered instructions, allowing for effi-
cient mapping of state transitions that would require multiple instructions in dataflow
predication.

7.2. Distributed PE Control Schemes

In the distributed approach (classes 111x), a fabric of spatial PEs is used without a
central control unit. Instead, each PE makes localized control decisions, and overall
program-level coordination is established using distributed software synchronization.
Within this domain, the PC-based control model (long established for controlling dis-
tributed temporal architectures—class 0) is a tempting choice, as demonstrated by this
rich body of prior work. By removing the PC, the TI approach (class 1111) offers many
opportunities to improve efficiency (see Section 6.3).

The RAW project is a coarse-grained computation fabric, consisting of 16 large cores
with instruction and data caches that are directly connected through a register-mapped
and circuit-switched network [Taylor et al. 2002]. Whereas applications written for
RAW are spatially mapped, PC management and serial execution of instructions re-
duces efficiency and makes the cores on RAW sensitive to variable latencies, which TIA
overcomes using instruction triggers.

The asynchronous array of simple processors (AsAP) is a 36-PE processor for DSP
applications, with each PE executing independently using instructions in a small

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

10:30 M. Pellauer et al.

instruction buffer and communicating using register-mapped network ports [Yu et al.
2006]. Whereas early research on AsAP avoided the need to poll for ready data, later
work extended the original architecture to support 167-PEs and zero-overhead looping
to reduce control instructions [Truong et al. 2009]. Triggered instructions not only re-
duce the amount of control instructions but also enable data-driven instruction issue,
overcoming the serialization of AsAP’s PC-based PE.

PicoChip is a commercially available 308-PE accelerator for DSP applications
[Panesar et al. 2006]. Each PE has a small instruction and data buffer, and com-
munication is performed with explicit put and get commands. A strength of PicoChip
is compute density, but the architecture is limited to serial three-way LIW instruction
issue using a PC. Triggered instructions enable control flow at low cost and dynamic
instruction issue dependent on data arrival, resulting in less instruction overhead.

8. CONCLUSION

We believe that spatial parallelism is a promising computing paradigm with the poten-
tial to achieve significant performance improvement over traditional high-performance
architectures for a number of important workloads, many of which do not exhibit uni-
form data parallelism. Our simulated performance estimates on a triggered instruction
based spatial architecture confirm the potential of this style of computing, showing an
average area-normalized performance that is 8× better than a high-end sequential
processor across a range of workloads.

Triggered instructions provide a uniform solution to the control problem for a PE
in a spatially programmed architecture, allowing the PE to execute autonomous con-
trol loops efficiently and react quickly to messages on communication channels. The
latency-insensitive channel paradigm allows the mapping, routing, and buffering of
this communication to be separated and cleanly abstracted from the PE programming.
Together, these mechanisms also avoid overserialization, providing the benefits of dy-
namic instruction reordering and multithreading without any additional hardware.
Our evaluation demonstrates the cumulative benefits of all of these effects, with our
triggered instruction PE achieving 2.0× better performance than a baseline PE with
PC-based control, and 1.3× better performance than an optimized version.

The triggered control model is feasible within a spatially programmed environment
because the amount of static instruction state that must be maintained in each PE
is small, allowing for inexpensive implementation of a triggered instruction hardware
scheduler. Our implementation analysis confirms this, showing that the scheduler
occupies less than 2% of the area of the PE.

These results provide a solid foundation of evidence for the merit of a triggered
instruction based spatial architecture. The ultimate success of this paradigm will be
premised on overcoming several challenges, including providing a tractable memory
model, dealing with the finite size of the spatial array, and providing a high-level
programming and debugging environment. Our ongoing work makes us optimistic
that these challenges are surmountable.

REFERENCES

Arvind and Rishiyur S. Nikhil. 1990. Executing a program on the MIT tagged-token dataflow architecture.
IEEE Transactions on Computers 39, 3, 300–318.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt
Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and Katherine
A. Yelick. 2006. The Landscape of Parallel Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183. EECS Department, University of California, Berkeley.

Bluespec, Inc. 2007. Bluespec System Verilog Reference Guide. Bluespec.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures 10:31

Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John, Calvin Lin, Charles R.
Moore, James Burrill, Robert G. McDonald, and William Yoder. 2004. Scaling to the end of silicon with
edge architectures. Computer 37, 7, 44–55. DOI:http://dx.doi.org/10.1109/MC.2004.65

Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli. 2001. Theory of latency-
insensitive design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
20, 9, 1059–1076. DOI:http://dx.doi.org/10.1109/43.945302

K. Mani Chandy and Jayadev Misra. 1988. Parallel Program Design: A Foundation. Addison-Wesley.
Katherine Compton and Scott Hauck. 2002. Reconfigurable computing: A survey of systems and software.

ACM Computer Surveys 34, 2, 171–210. DOI:http://dx.doi.org/10.1145/508352.508353
William Dally and Brian Towles. 2003. Principles and Practices of Interconnection Networks. Morgan

Kaufmann, San Francisco, CA.
Jack B. Dennis and David P. Misunas. 1975. A preliminary architecture for a basic data-flow processor. In

Proceedings of the 2nd Annual Symposium on Computer Architecture. 126–132.
Edsger W. Dijkstra. 1975. Guarded commands, nondeterminacy and formal derivation of programs. Commu-

nications of the ACM 18, 8, 453–457. DOI:http://dx.doi.org/10.1145/360933.360975
Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shubhendu S.

Mukherjee, Harish Patil, Steven Wallace, Nathan Binkert, Roger Espasa, and Toni Juan. 2002. Asim: A
performance model framework. Computer 35, 2, 68–76.

Joel S. Emer and Douglas W. Clark. 1984. A characterization of processor performance in the VAX-11/780. In
Proceedings of the 11th Annual International Symposium on Computer Architecture (ISCA’84). 301–310.
DOI:http://dx.doi.org/10.1145/800015.808199

Kermin Elliott Fleming, Michael Adler, Michael Pellauer, Angshuman Parashar, Arvind Mithal, and Joel
Emer. 2012. Leveraging latency-insensitivity to ease multiple FPGA design. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA’12). ACM, New
York, NY, 175–184. DOI:http://dx.doi.org/10.1145/2145694.2145725

Robert A. Van De Geijin and Jarell Watts. 1997. SUMMA: Scalable Universal Matrix Multiplication Algo-
rithm. Technical Report.

Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011. Dynamically specialized
datapaths for energy efficient computing. In Proceedings of the 17th International Conference on High
Performance Computer Architecture (HPCA’11). 503–514.

John R. Hauser and John Wawrzynek. 1997. Garp: A MIPS processor with a reconfigurable coprocessor. In
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM’97). 12–21.

Jan Hoogerbrugge and Henk Corporaal. 1994. Transport-triggering vs. operation-triggering. In Compiler
Construction. Lecture Notes in Computer Science, Vol. 786. Springer, 435–449.

Myron King, Nirav Dave, and Arvind. 2012. Automatic generation of hardware/software interfaces. In Pro-
ceedings of the 17th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XVII). ACM, New York, NY, 325–336.

Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. 1977. Fast pattern matching in strings. SIAM
Journal of Computing 6, 2, 323–350.

Hsiang-Tsung Kung. 1986. The CMU warp processor. In Supercomputers: Algorithms, Architectures, and
Scientific Computation, F. A. Matsen and T. Tajima (Eds.). University of Texas Press, Austin, TX, 235–
247.

Alexander Marquardt, Vaughn Betz, and Jonathan Rose. 2000. Speed and area tradeoffs in cluster-based
FPGA architectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8, 1, 84–93.
DOI:http://dx.doi.org/10.1109/92.820764

Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwereins. 2003. ADRES:
An architecture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix. In
Proceedings of 13th International Conference on Field-Programmable Logic and Applications. 61–70.

Duane G. Merrill and Andrew S. Grimshaw. 2010. Revisiting sorting for GPGPU stream architectures. In
Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques
(PACT’10). 545–546. DOI:http://dx.doi.org/10.1145/1854273.1854344

Ethan Mirsky and Andre DeHon. 1996. MATRIX: A reconfigurable computing architecture with configurable
instruction distribution and deployable resources. In Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines. 157–166.

Gajinder Panesar, Daniel Towner, Andrew Duller, Alan Gray, and Will Robbins. 2006. Deterministic parallel
processing. International Journal of Parallel Programming 34, 4, 323–341. DOI:http://dx.doi.org/10.1007/
s10766-006-0019-9

Li-Shiuan Peh and Natalie Enright Jerger. 2009. On-Chip Networks. Morgan and Claypool.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

http://dx.doi.org/10.1109/MC.2004.65
http://dx.doi.org/10.1109/43.945302
http://dx.doi.org/10.1145/508352.508353
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1145/800015.808199
http://dx.doi.org/10.1145/2145694.2145725
http://dx.doi.org/10.1109/92.820764
http://dx.doi.org/10.1145/1854273.1854344
http://dx.doi.org/10.1007/ ignorespaces s10766-006-0019-9
http://dx.doi.org/10.1007/ ignorespaces s10766-006-0019-9

10:32 M. Pellauer et al.

Michael Pellauer, Michael Adler, Derek Chiou, and Joel Emer. 2009. Soft connections: Addressing the
hardware-design modularity problem. In Proceedings of the 46th ACM/IEEE Design Automation Con-
ference (DAC’09). 276–281.

Herman Schmit, David Whelihan, Andrew Tsai, Matthew Moe, Benjamin Levine, and R. Reed Taylor. 2002.
PipeRench: A virtualized programmable datapath in 0.18 micron technology. In Proceedings of the 2002
IEEE Custom Integrated Circuits Conference. 63–66.

Aaron Smith, Ramadass Nagarajan, Karthikeyan Sankaralingam, Robert McDonald, Doug Burger, Stephen
W. Keckler, and Kathryn S. McKinley. 2006. Dataflow predication. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-39). 89–102.

Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew Putnam, Ken Michelson,
Mark Oskin, and Susan J. Eggers. 2007. The wavescalar architecture. ACM Transactions on Computer
Systems 25, 2, Article No. 4. DOI:http://dx.doi.org/10.1145/1233307.1233308

Michael B. Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Greenwald, Henry Hoffman,
Paul Johnson, Jae-Wook. Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman,
Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal. 2002. The raw microprocessor:
A computational fabric for software circuits and general-purpose programs. IEEE Micro 22, 2, 25–35.

Dean N. Truong, Wayne H. Cheng, Tinoosh Mohsenin, Zhiyi Yu, Anthony T. Jacobson, Gouri Landge, Michael
J. Meeuwsen, Christine Watnik, Ahn T. Tran, Zhibin Xiao, Eric W. Work, Jeremy W. Webb, Paul V. Mejia,
and Bevan M. Baas. 2009. A 167-processor computational platform in 65 nm CMOS. IEEE Journal of
Solid-State Circuits 44, 4, 1130–1144. DOI:http://dx.doi.org/10.1109/JSSC.2009.2013772

Muralidaran Vijayaraghavan and Arvind. 2009. Bounded dataflow networks and latency-insensitive cir-
cuits. In Proceedings of the 7th IEEE/ACM International Conference on Formal Methods and Mod-
els for Codesign (MEMOCODE’09). IEEE, Los Alamitos, CA, 171–180. http://dl.acm.org/citation.cfm?
id=1715759.1715781

Zhi A. Ye, Andreas Moshovos, Scott Hauck, and Prithviraj Banerjee. 2000. CHIMAERA: A high-performance
architecture with a tightly-coupled reconfigurable functional unit. In Proceedings of the 27th Interna-
tional Symposium on Computer Architecture (ISCA’00). 225–235.

Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy Webb, Eric Work, Tinoosh
Mohsenin, Mandeep Singh, and Bevan Baas. 2006. An asynchronous array of simple processors for DSP
applications. In Proceedings of the Solid-State Circuits Conference (ISSCC’06). 1696–1705.

Received December 2014; accepted March 2015

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 10, Publication date: September 2015.

http://dx.doi.org/10.1145/1233307.1233308
http://dx.doi.org/10.1109/JSSC.2009.2013772
http://dl.acm.org/citation.cfm? ignorespaces id$=$1715759.1715781
http://dl.acm.org/citation.cfm? ignorespaces id$=$1715759.1715781

