
Enabling dedicated single-cycle connections

over a shared Network-on-Chip

by

Tushar Krishna

B.Tech., Indian Institute of Technology Delhi (2007)
M.S.E, Princeton University (2009)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Oct 25, 2013

Certified by. .
Li-Shiuan Peh

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Enabling dedicated single-cycle connections

over a shared Network-on-Chip

by

Tushar Krishna

Submitted to the Department of Electrical Engineering and Computer Science
on Oct 25, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Adding multiple processing cores on the same chip has become the de facto design
choice as we continue extracting more and more performance/watt from our chips in
every technology generation. In this context, the interconnect fabric connecting the
cores starts gaining paramount importance. A high latency network can create perfor-
mance bottlenecks and limit scalability. Thus conventional wisdom forces coherence
protocol and software designers to develop techniques to optimize for locality and
keep communication to the minimum. This dissertation challenges this conventional
wisdom. We show that on-chip networks can be designed to provide extremely low-
latencies while handling bursts of high-bandwidth traffic, thus reversing the trade-offs
one typically associates with Private vs. Shared caches, or Broadcast vs. Directory
protocols.

The dissertation progressively builds a network-on-chip fabric that dynamically
creates single-cycle network paths across multiple-hops, for both unicast and col-
lective (1-to-Many and Many-to-1) communication flows. We start with a prototype
chip demonstrating single-cycle per-hop traversals over a mesh network-on-chip. This
design is then enhanced to support 1-to-Many (multicast) and Many-to-1 (acknowl-
edgement) traffic flows by intelligent forking and aggregation respectively at network
routers. Finally, we leverage clock-less repeated wires on the data-path and propose a
dynamic cycle-by-cycle network reconfiguration methodology to provide single-cycle
traversals across 9-11 hops at GHz frequencies. The network architectures proposed
in this thesis provide performance that is within 12% of that provided by an ideal-
ized contention-free fully-connected single-cycle network. Going forward, we believe
that the ideas proposed in this thesis can pave the way for locality-oblivious shared-
memory design.

Thesis Supervisor: Li-Shiuan Peh
Title: Professor of Electrical Engineering and Computer Science

3

4

To my family

asato ma sad gamaya

tamaso ma jyotir gamaya

From delusion lead me to truth

From ignorance lead me to knowledge

–Brhadaranyaka Upanisad, I.iii.28

5

6

Acknowledgments

I can no other answer make, but, thanks, and thanks.
- William Shakespeare, Twelfth Night, Act III, Scene III

My PhD years have been, and am sure will remain, one of the best phases of

my life. I have been really lucky to have had the chance to work with and be men-

tored by Prof Li-Shiuan Peh, my research advisor. Thanks to her, I have had the

unique opportunity of spending quality time at Princeton University, MIT and Na-

tional University of Singapore. I have also had the privilege of presenting our work

at conferences around the globe - from USA to Europe to South America to Asia.

Li-Shiuan is one of the most fascinating people I have met in my life. Her enthu-

siasm, excellent insights, strong technical expertise, and systematic problem solving

approach will stay with me throughout my professional career. I think she struck a

wonderful balance between being a highly indulgent advisor, and yet ensuring that I

was making progress and not getting stuck in a lull. But more importantly, I also view

her as a role model for her immense energy, optimism and positive attitude towards

everything in life. Thank you Li-Shiuan! I look forward to future peer interactions

with you.

During the course of the last few years, I have had the honor of interacting and

working with some of the most distinguished researchers in our field. A special men-

tion for my thesis committee members Prof Srini Devadas and Prof Joel Emer who

have played a major role in shaping my final thesis, and I thank them for their in-

sightful feedback and comments. Interactions with Srini for my thesis, the Angstrom

Project, and my Research Qualifying Examination instilled in me the drive to work on

big impactful ideas; I thank him for that. I had the good fortune of interacting with

Joel, not just for my thesis, but also as a TA for the computer architecture course; I

admire Joel’s meticulous approach, and I learnt a lot during our discussions trying to

chalk out the in-depth design details of the pedagogical architectures for the course.

I also had the privilege of working with Prof Arvind for the same computer architec-

ture course, and was fascinated by his love for teaching and attention to detail, and

7

thoroughly enjoyed our conversations. I thank him for looking out for me when I was

going through a health issue during that time. I found the TA experience to be one

of the high-points of my PhD experience. I thank Prof Anantha Chandrakasan whose

circuits course I got an opportunity to take at MIT, and with whom I collaborated

for a chip tapeout.

The direction of my PhD thesis was shaped by my internships at AMD Research,

where my goal was to push the performance limits of current state-of-the-art networks

in order to simplify the design constraints on the coherence and application layer. I

thank Steve Reinhardt and Brad Beckmann for guiding me through the initial phases

of my research experience. A special thanks also to Prof Patrick Chiang from Oregon

State University and Prof Mattan Erez from University of Texas at Austin with whom

I collaborated on two projects when I started.

Thank you Maria Rebelo, administrative assistant to Li-Shiuan, for all the help

through the years. I would also like to acknowledge Prof Harry Lee - my graduate

counselor at MIT, and Janet Fischer - graduate administrator at the EECS office, for

helping me through the administrative requirements at MIT.

Six years is a long time, and I have had a chance to interact with and forge lasting

friendships with most of the students (alumni and current) in my group. Amit Kumar

was the senior-most student when I joined, and my thesis has been built upon his

top-notch research. It was a pleasure getting mentored by him, learning from him,

and drinking with him during his post-defense party. Niket Agarwal has probably

had the biggest influence on me during my PhD life. I thank him for convincing

Li-Shiuan to take me as her student in the first place, and being almost like a second

advisor - someone I could go to with any problem (technical or non-technical) and

come back with an answer. Kostas Aisopos was my closest buddy in the group, and I

miss the awesome times we had at Princeton, MIT, Singapore, Bangkok and Brazil.

Manos Koukoumidis, I remember working late into the night at Stata Center and

having hot pop-corn packets thrown at me from the floor above! Thanks for the

pop-corn and your (homemade attempts at) banana bread. Owen Chen has been my

best collaborator, critic, and friend through my PhD years. It would be a harder sell

8

getting an idea/design approved by Owen, than it would be by my advisor! I will

miss the endless technical discussions and gossip sessions during our prolonged coffee

breaks. I thank Sunghyun Park for laying the circuit foundations for the ideas in

many of my projects. It has been a pleasure working with you and I look forward to

another beer session at Bon Chon! Bhavya Daya, I admire your work ethic and will

remember the technical discussions and high-caffeine induced laughs we all had during

the SCORPIO chip tapeout. We still need to plan the post-tapeout celebration party!

Anirudh Sivaraman, you were a constant source of information (seriously you know

more about my field than me!) and entertainment. It has been great hanging out

with you at MIT and Singapore. Jason Gao, “you did build that”. It has been a great

pleasure to be part of your research experiments involving us walking and driving,

through sun and snow, in Boston and Singapore, carrying iPhones and Galaxy Notes.

Woo Cheol Kwon is one of the smartest people I have interacted with. I find it amazing

how he can simplify complex-looking ideas to their core and I have always valued his

opinion on what can work and what cannot in real systems. It has been a pleasure

interacting with you. Pablo Ortiz is probably more mature than me, even though he

is years younger than me, and I have enjoyed the witty conversations we have both

had as a result of this. Pablo loves to point at my hair turning gray and remind

me that graduate school is not the same as undergrad college life and I conveniently

choose to disagree. Last, but definitely not the least, Suvinay Subramanian. He

would like me to believe I have been a mentor to him, but on the contrary I would

like to acknowledge him for his clarity of thought and research vision which I really

admire. You are a great friend and a social nucleus within the group. Best wishes to

you all. To the students currently in the group: I look forward to your graduation.

My close friends in Cambridge have been like a family away from home; they have

been with me through the personal ups and downs I faced over the past few years.

Thank you to my current and former apartment mates - Siddharth Bhardwaj, Harshad

Kasture, Sourav Padhy, Murali Vijayaraghavan, Amit Soni, and Varun Ramanujam

- for the entertaining chats on nights and weekends about anything from US foreign

policy to Bollywood movies. Thanks Abhinav Agarwal and Murali Vijayaraghavan

9

for the awesome gym sessions. Thanks Hemant Bajpai, Anushree Kamath, Satyam

Agrawalla, and Pratibha Pandey for the great dinners and movie outings. Thanks

Varun Kumar and Jitendra Kanodia for the fun times both at Princeton and at

Cambridge. I have had a special rapport with each one of you personally and I

cherish that bond. A shout out to some of my close friends who have shared the

graduate school experience with me across various universities, and have been a source

of mutual support. Arnab Sinha, Prakash Prabhu, Divjyot Sethi, Kapil Anand and

Anjul Patney: great job all of us!

My family’s support has been enormous through my graduate school years. Thank

you Papa - I miss you. Thank you Amamma (granny) - you have been a constant

source of guidance throughout my life, and this thesis is a result of your blessings.

And the biggest thank you to Mom - since words cannot do any justice to how much

you have done for me, I will just say I am proud to have followed your footsteps and

here’s to another Dr. Krishna! Cheers.

10

Contents

1 Introduction 25

1.1 Network-on-Chip . 27

1.2 On-chip Latency . 27

1.3 Dissertation Contributions and Structure 30

2 Background 33

2.1 Network-on-Chip (NoC) basics . 33

2.1.1 Topology . 35

2.1.2 Routing Algorithm . 36

2.1.3 Flow Control . 37

2.1.4 Router Microarchitecture . 43

2.2 Traffic through the on-chip interconnect 46

2.2.1 Cache Coherence Protocols . 46

2.2.2 Synthetic Traffic Patterns . 53

2.3 Evaluation Methodology . 54

2.3.1 Baseline and Ideal Networks 55

2.3.2 Performance Metrics . 55

2.4 Chapter Summary . 57

3 Single-cycle Per-hop NoC for 1-to-1 Traffic 59

11

3.1 Introduction . 59

3.2 Baseline Non-Bypass Pipeline . 62

3.3 SWIFT Router Microarchitecture . 64

3.3.1 Routing with Tokens . 65

3.3.2 Flow Control with Lookaheads 66

3.3.3 Router Microarchitecture . 68

3.4 Low-Voltage Swing On-Chip Wires 70

3.4.1 Reduced-Swing Link . 72

3.4.2 Reduced-Swing Crossbar . 73

3.5 Design features for Testability . 74

3.5.1 Network Interfaces (NIC) . 74

3.5.2 Error Detection . 76

3.5.3 Scan Chains . 76

3.6 Evaluations . 77

3.6.1 SWIFT NoC . 77

3.6.2 Baseline NoC . 78

3.6.3 Timing . 78

3.6.4 Network Performance . 79

3.6.5 Full-system Performance . 81

3.6.6 Power . 82

3.6.7 Area . 84

3.7 Related Work . 85

3.8 Chapter Summary . 85

4 Single-cycle Per-hop NoC for 1-to-Many Traffic 87

4.1 Introduction . 87

4.2 Motivation . 89

4.2.1 Baseline NoCs for 1-to-M flows 89

4.2.2 Ideal Broadcast Mesh . 90

4.2.3 Gap from the Ideal . 91

12

4.3 Whirl : Load-balanced 1-to-M Routing 92

4.3.1 Background . 92

4.3.2 Whirl . 93

4.4 mXbar: Router Microarchitecture for Forking 98

4.4.1 Background . 98

4.4.2 mXbar: Multicast Crossbar 100

4.4.3 mSA: Multiport Switch Allocation 100

4.5 Single-cycle FANOUT Router . 101

4.5.1 Background . 101

4.5.2 Pipeline Stages . 101

4.6 Prototype Chip . 104

4.7 Evaluations . 105

4.7.1 Baseline and Ideal Network 106

4.7.2 Network-only Synthetic Traffic Simulation 106

4.7.3 Full-system Simulations . 111

4.8 Chapter Summary . 115

5 Single-cycle Per-hop NoC for Many-to-1 Traffic 117

5.1 Introduction . 117

5.2 Background and Related Work . 119

5.3 Walk-through Example . 119

5.4 rWhirl : Synchronized Routing . 121

5.5 FANIN Flow Control/Protocol . 122

5.5.1 master ACKs . 122

5.5.2 Comparison Logic for Aggregation 126

5.6 Single-cycle FANIN Router . 127

5.7 Evaluations . 128

5.7.1 Application Runtime . 129

5.7.2 Network Latency . 129

5.7.3 Impact of components of FANIN. 130

13

5.7.4 Network Energy. 131

5.8 Chapter Summary . 132

6 Single-cycle Multi-hop NoC

for 1-to-1, 1-to-Many and Many-to-1 Traffic 135

6.1 Introduction . 135

6.2 The SMART Interconnect . 138

6.3 SMART in a k-ary 1-Mesh . 140

6.3.1 SMART-hop Setup Request (SSR) 141

6.3.2 Switch Allocation Global: Priority 144

6.3.3 Ordering . 145

6.3.4 Guaranteeing free VC/buffers at stop routers 146

6.3.5 Additional Optimizations . 147

6.3.6 Summary . 148

6.4 SMART in a k-ary 2-Mesh . 148

6.4.1 Bypassing routers along dimension 149

6.4.2 Bypassing routers at turns . 149

6.4.3 Routing Choices . 151

6.5 SMART for 1-to-Many traffic . 151

6.5.1 SMART 1D + FANOUT . 151

6.5.2 SMART 2D + FANOUT . 153

6.5.3 Flow Control . 153

6.6 SMART for Many-to-1 traffic . 154

6.6.1 Aggregation with Prio=Local 154

6.6.2 Aggregation with Prio=Bypass 155

6.7 SMART Implementation . 156

6.8 Evaluation . 158

6.8.1 Synthetic 1-to-1 Traffic . 159

6.8.2 Full-system Directory Protocol Traffic 165

6.8.3 Synthetic 1-to-Many Traffic 168

14

6.8.4 Full-system Broadcast Protocol Traffic 169

6.9 Related Work . 173

6.10 Chapter Summary . 174

7 Conclusions 177

7.1 Dissertation Summary . 177

7.2 Future Directions . 181

7.2.1 Case Study 1: Private vs. Shared L2 181

7.2.2 Case Study 2: Directory vs. Broadcast Protocols 182

7.2.3 Locality-Oblivious Shared Memory Design 183

7.2.4 Scalability . 184

7.2.5 Conclusion . 184

A Single-cycle Multi-hop Repeated Wires 187

A.1 Modeling and Evaluation Methodology 187

A.2 Wire Delay . 188

A.3 Repeated Wires . 190

A.3.1 Impact of wire spacing . 190

A.3.2 Impact of repeater spacing . 191

A.3.3 Impact of repeater size . 192

A.3.4 Impact of crosstalk . 193

A.3.5 Impact of frequency . 194

A.3.6 Impact of technology . 195

15

16

List of Figures

1-1 Increasing Core Counts over the years. 26

1-2 Mesh Network-on-Chip. 28

1-3 Runtime of Applications with different NoC designs on a 64-core CMP. 29

2-1 Mesh Network-on-Chip Overview. 34

2-2 Common Network-on-Chip Topologies. 35

2-3 Routing Turn Model to avoid deadlocks. 36

2-4 Circuit-switching flow control timeline for a message going from Router

1 to Router 3, assuming no contention. Messages incur only wire delay,

but each transmission requires a setup and acknowledgement before

transmission can begin. (D: Data, T: Teardown). 38

2-5 Store-and-Forward flow control timeline for a packet going from Router

1 to Router 3, assuming no contention. Transmission occurs at packet

granularity. Packets incur serialization delay at each hop. (H: Head

flit, B: Body, T: Tail.) . 39

2-6 Virtual Cut-Through and Wormhole flow control timeline for a packet

going from Router 1 to Router 3, assuming no contention. The head flit

cuts through the router as soon as it arrives. Packets incur serialization

delay only at the last hop. (H: Head flit, B: Body, T: Tail.) 39

2-7 Wormhole vs. Virtual Channel flow control. 40

2-8 Buffer Turnaround Time [40]. 42

17

2-9 Microarchitecture of a 5-port Mesh Router. 43

2-10 Evolution of Router Pipelines. 45

2-11 Cache Coherence transactions with full-state directory.

1. The requester (#8) sends a write miss to the home node (#6).

2. The home node forwards it to the owner (#14) and the sharer (#0).

3. The owner invalidates its copy and sends the data to the requester.

The sharer invalidates its copy and sends an ACK to the requester.

4. The requester then unblocks the home node. 47

2-12 Cache Coherence transactions with HyperTransport (broadcast proto-

col with partial/no-state directory).

1. The requester (#8) sends a write miss to the home node (#6).

2. The home node broadcasts it to all nodes (1-to-all flow).

3. The owner (#14) invalidates its copy and sends the data to the re-

quester. The sharer (#0) invalidates its copy. All nodes (sharers and

non-sharers) send an ACK to the requester (all-to-1 flow).

4. Upon receiving all ACKs, the requester unblocks the home node. . 48

2-13 Cache Coherence transactions with Token Coherence (broadcast pro-

tocol with no directory).

1. The requester (#8) broadcasts a write miss over the chip.

2. The owner (#14) invalidates its copy and sends the data and all

tokens to the requester. The sharer (#0) invalidates its copy and sends

its token to the requester. 49

2-14 Message Flows in various cache coherence protocols. 51

3-1 Overview of the SWIFT NoC. 64

3-2 Lookahead and Flit Payloads. 67

3-3 SWIFT Router Microarchitecture and Pipelines. 68

3-4 Flow Chart of Lookahead Pipeline Actions. 69

18

3-5 Crossbar and link circuit implementation (a) Reduced Swing Driver

(RSD). (b) Bit-slice array crossbar layout. (c) Crossbar bit-slice schematic

with link drivers at slice output ports. (d) Clocked sense amplifier re-

ceiver (RX). 71

3-6 2x2 SWIFT NoC prototype overview and die photo, overlaid with node

1 layout. Specs: Technology=90nm, Freq=400MHz, Voltage=1.2V,

Area=4mm2, Transistors=688K . 74

3-7 Critical Paths of the SWIFT router and BASELINE (tr=3) router . . 79

3-8 Network Performance Measurements from 2×2 Chip 80

3-9 Network Performance of 8×8 SWIFT NoC. 80

3-10 Full-System Runtime of SWIFT compared to BASELINE (tr=3) and

IDEAL (tr=1) NoCs. 81

3-11 Measured Router Power at High and Low Injection. 82

4-1 Motivation: Gaps from the Ideal. 91

4-2 Possible broadcast trees. Whirl’s algorithm: Packets fork into all four

directions at the source router. By default, every packet continues

straight in its current direction. In addition, forks at intermediate

routers are encoded by LeftTurnBit, RightTurnBit, where left and right

are relative to the direction of traversal. These bits are reset to 0 once

a turn completes (hence, 0 is implicit on all unmarked arrows). . . . 93

4-3 Whirl pseudo-code . 95

4-4 Deadlock avoidance by VC partitioning: VC-b implements a deadlock-

free South-last turn model and acts as an escape VC. 96

4-5 Whirl for multicasts. 97

4-6 Crossbar switch circuits. 98

4-7 Single-cycle FANOUT Router. 101

19

4-8 FANOUT pipeline optimizations to realize single-cycle multicast router:

(a) 3-stage pipeline, (b) 2-stage pipeline, (c) 1-cycle pipeline (with by-

pass), (d) 2-stage pipeline (if bypass fails)

The flit pipeline at Router 2 is shaded in gray and that of preceding

Router 1 is outlined with dashed lines. The stages are BW: buffer write,

wRC: whirl route computation, mSA: multiport switch+VC allocation,

mST: mXbar switch traversal, LT: link traversal, LA: lookahead. . . 102

4-9 Traversal Example: Flit and Lookaheads. 102

4-10 Die Photo and overview of fabricated 4×4 FANOUT NoC 104

4-11 Uniform Random Broadcast Traffic 106

4-12 Performance with 80% unicasts + 20% DEST ALL multicasts. 108

4-13 Normalized Saturation Throughput and Energy-Delay-Products for

FANOUT’s components. 109

4-14 Full-system Application Runtime. 112

4-15 Average Network Latency. 112

4-16 Impact of routing and flow control components. 113

4-17 Network Energy. 114

5-1 ACK flit format. 120

5-2 ACK Aggregation Example. 120

5-3 rWhirl with sample pseudo-code. 123

5-4 Waiting heuristic for ACKs. 124

5-5 FANIN pipeline optimizations to realize single-cycle aggregation router.

The critical cycles (adding to overall traversal delay) of the pipelines

are shaded in gray. The stages are: BW: buffer write, rRC: rWhirl

route computation, AA: ACK aggregation, SA: switch allocation, ST:

switch traversal, LT: link traversal, LA: lookahead. 127

5-6 Full-system Application Runtime. 129

5-7 Average Network Latency. 130

5-8 Impact of routing and flow control components. 130

20

5-9 Network Energy. 132

6-1 BASELINE (tr=1) Router Microarchitecture and Pipeline. 136

6-2 SMART Router Microarchitecture. 139

6-3 Traversal over a SMART path. 139

6-4 k-ary 1-Mesh with dedicated SSR links. 140

6-5 SMART Pipeline. 141

6-6 SMART Example: No SSR Conflict. 143

6-7 SMART Example: SSR Conflict with Prio=Local. 143

6-8 SMART Example: SSR Conflict with Prio=Bypass. 143

6-9 k-ary 2-Mesh with SSR wires from shaded start router. 149

6-10 SA-G Priority for SMART 2D. 150

6-11 Full-chip broadcast with SMART. 152

6-12 ACK Aggregator in SMART Router. 155

6-13 M-to-1 Aggregation Example with Prio=Bypass. 155

6-14 Implementation of SA-G at Win and Eout (Figure 6-2) for SMART 1D. 156

6-15 Energy/Access (i.e., Activity = 1) for each bit sent. 157

6-16 SMART with synthetic unicast traffic. 160

6-17 Impact of HPCmax (Bit Complement). 161

6-18 Prio=Local vs. Prio=Bypass for Uniform Random Traffic. 162

6-19 Impact of 5-flit packets (Uniform Random). 163

6-20 SMART vs. Flattened Butterfly (Uniform Random). 164

6-21 SMART on a 256-core mesh (Uniform Random). 164

6-22 Full-system application runtime for full-state directory protocol, nor-

malized to BASELINE (tr=1). 165

6-23 Impact of HPCmax and Priority, averaged across all benchmarks. . . 166

6-24 Total Network Dynamic Energy. 167

6-25 SMART+FANOUT with synthetic uniform random 1-to-Many traffic. 168

6-26 Full-system application runtime for Token Coherence, normalized to

FANOUT. 170

21

6-27 Full-system application runtime for HyperTransport, normalized to

FANOUT+FANIN. 171

6-28 Average Broadcast Latency. 172

6-29 Impact of HPCmax and SA-G Priority on runtime, ratio of ACKs ag-

gregated, and false negatives for HyperTransport. All results are aver-

aged across the SPLASH-2 and PARSEC benchmarks, and normalized

to FANOUT+FANIN. 173

7-1 Thesis Contributions. 178

7-2 Private vs. Shared L2 Caches with BASELINE (tr=1) and SMART. . 181

7-3 Directory vs. Broadcast protocols with BASELINE (tr=1) and SMART.182

A-1 Experimental setup to measure delay of repeated wires. 188

A-2 Model of Wire + Driver/Repeater. 189

A-3 Delay of unrepeated wire. (s ∼ 3·DRCmin, p = 1ns) 189

A-4 Capacitive Coupling. 190

A-5 Impact of wire spacing (s). (l = 1mm, p = 1ns) 191

A-6 Impact of repeater spacing (l). (s ∼ 3·DRCmin, p = 1ns) 192

A-7 Impact of repeater size (W). (s ∼ 3·DRCmin, l = 0.5mm, p = 1ns) . 193

A-8 Impact of crosstalk. (s ∼ 3·DRCmin, l = 1mm, p = 1ns) 193

A-9 Impact of clock frequency. (s ∼ 3·DRCmin, l = 1mm) 194

A-10 Impact of technology scaling. (s ∼ 3·DRCmin, l = 1mm, p = 1ns) . . 195

22

List of Tables

2.1 Synthetic Traffic Patterns for k × k Mesh 54

3.1 Modes of operation . 76

3.2 Outputs from chip . 76

3.3 Comparison of NoC designs . 77

3.4 Area Comparison (Absolute and Percentage) 84

4.1 Theoretical Limits of a k×k mesh NoC for unicast and broadcast traffic. 90

4.2 Energy-Delay comparison for 5x5 128-bit crossbars, modeled using

Orion 2.0 [43], at 45nm . 100

4.3 Network Parameters. 105

4.4 Traffic Parameters. 105

5.1 CPU and Memory Parameters. 128

5.2 Network Parameters. 128

6.1 Terminology . 140

6.2 Target System and Configuration . 159

23

24

1
Introduction

Somewhere, something incredible is waiting to be known.
- Carl Sagan

“The complexity for minimum component costs has increased at a rate of roughly

a factor of two per year... Certainly over the short term this rate can be expected to

continue, if not to increase. Over the longer term, the rate of increase is a bit more

uncertain, although there is no reason to believe it will not remain nearly constant for

at least 10 years.”

- Gordon E. Moore, “Cramming more components onto integrated circuits”,

Electronics Magazine, 19 April 1965.

Gordon Moore’s observation on the economically viable number of components

per integrated circuit is popularly called Moore’s Law, and continues till today, well

beyond the 10 years he initially believed it would last. In the semiconductor industry,

this law has become the de facto driver for technological innovation, and has led to a

sustained doubling of the number of transistors on a die approximately every 2 years.

Moore’s Law, in combination with Dennard’s scaling [24] - MOSFET dimensions

and operating voltages should be scaled by the same factor to keep electric field con-

stant - allowed each technology generation to produce twice the number of transistors

in the same area, with each transistor 1.4× faster than the previous generation at

the same power density. This led to an exponential growth in the frequency (perfor-

25

Chapter 1. Introduction

4004	

8008	

8080	 8086	 80286	 80386	 80486	
P5	

Power2	 P6	 NetBurst	

NetBurst	
Power4	 Core	

Penryn	

Nehalem	

Power7	

Westmere	

Westmere	

Sandy	 Bridge	

Sandy	 Bridge	

Ivy	 Bridge	

Ivy	 Bridge	

Haswell	

K7	 K8	

K9	

K10	
K10	

SPARC	 T4	

SCC	

Teraflops	

Tile64	

Tile-‐Gx	

UltraSPARC	 T1	

UltraSPARC	 T2	 	 Nehalem	

SPARC	 T3	 SPARC	 T5	

Octeon	 III	

MT6592	

Power3	

Power4	

Cell	

1	

2	

4	

8	

16	

32	

64	

128	

1970	 1975	 1980	 1985	 1990	 1995	 2000	 2005	 2010	 2015	

N
um

be
r	 o

f	 C
or
es
	

Year	

Figure 1-1: Increasing Core Counts over the years.

mance) of chips up to the start of this millennium. But in early 2000s, voltage scaling

slowed down because chips were already operating close to the threshold voltage - the

physical limit at which transistors turn ON and OFF. The end of voltage scaling also

led to the end of frequency scaling to ensure that chips do not cross the power wall

(∼ 100W) and overheat, as power equals capacitance × frequency × voltage-squared.

Because of this, and due to ILP (Instruction Level Parallelism) limitations, it was no

longer possible to get similar performance gains per unit power as before. Instead,

computer architects decided to extract performance by multiplying the number of

processing cores on-chip (using the exponentially growing number of transistors from

Moore’s law) and running them in parallel. This has led to the current wave of Chip

Multiprocessors (CMPs) or Multicores.

Figure 1-1 highlights this trend; it plots the number of on-chip cores in several

commercial and research CPU architectures from industry leaders like Intel, AMD,

IBM, Sun/Oracle, startup Tilera, and others. Over the last decade, we can see that

the number of cores has continued to increase. Commercial chips from Intel, AMD

and IBM have reached 8-16 cores, while those from Tilera have touched 72 cores.

26

1.1. Network-on-Chip

1.1 Network-on-Chip

In an environment with increasing core counts, the interconnect fabric connecting

these cores starts gaining importance. Preferably, each core should have a dedicated

connection to any core it wishes to communicate with. We call this an ideal com-

munication fabric throughout the thesis. However, having dedicated point-to-point

wires between all cores would result in a fully-connected topology, blowing up the

area beyond a few cores. Instead, for scalability, the solution has been to connect

the cores by a network-on-chip (NoC) that they all share. This network has typically

been a simple bus or a ring or a crossbar for designs with up to 8-16 cores. However,

none of these topologies are very scalable - buses require a centralized arbiter and

offer limited bandwidth; rings do not need a centralized arbiter but the maximum

latency increases linearly with the number of cores; crossbars offer tremendous band-

width but are area and power limited. Going forward to tens and hundreds of cores,

meshes are making their way into prototype and mainstream designs because of their

simplicity, ease of layout, and scalability. Meshes are formed by laying out a grid

of wires and adding routers at the intersections which decide who gets to use each

wire segment and when, as shown in Figure 1-2. This is known as packet-switching.

Routers are necessary to enable the sharing of wires and avoiding collisions, but add

delay and power overheads at each hop. In large many-core designs, we run a real risk

of limiting our performance and scalability because of the network and its routers.

This dissertation aims at designing a scalable shared network that provides the

illusion of dedicated wires to most of the messages. In other words, the aim is to design

a NoC that mimics the delay/power characteristics of the ideal communication fabric.

1.2 On-chip Latency

An on-chip network traversal comprises a series of hops1 via routers from the source

core’s network interface (NIC) to the destination core’s NIC, as shown in Figure 1-2.

1A hop refers to the distance between two adjacent tiles.

27

Chapter 1. Introduction

M
em

o
ry

 C
o

n
tr

o
lle

r
2

X

Ctrl

r

w

Hop

M
em

o
ry

 C
o

n
tr

o
lle

r
0

Memory Controller 1

Memory Controller 3

Core

Router

Network
Interface

(NIC)

L3$/
Directory

L2$

L1I$L1D$

Figure 1-2: Mesh Network-on-Chip.

The latency for any message in the network can be defined as

TN = H · (tr + tw) +
H∑

h=1

tc(h) (1.1)

H is the number of hops; tr is the router’s intrinsic delay; tw is the wire (between

two routers) delay; tc(h) is the contention delay - number of cycles spent waiting to

get access to the switch and output link - at a router h-hops from the start;
H∑

h=1

tc(h)

is the accumulated contention delay of the network. The first component is fixed,

it is defined by the router’s microarchitecture. The second component is variable; it

depends on the congestion in the network at that moment at various routers, and

the efficiency of the routing and flow control mechanisms to handle this congestion.

Chapter 2 will discuss more details about these components.

The motivation for this entire thesis stems from Figure 1-3. This figure plots

the full-system runtime on a 64-core CMP for a suite of SPLASH-2 and PARSEC

applications across three cache coherence protocols: Full-state Directory, AMD Hy-

perTransport, and Token Coherence. The protocols and experimental setup will be

28

1.2. On-chip Latency

0	

20	

40	

60	

80	

100	

(
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
8a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
8o

ns
	

x2
64

	
(
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
8a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
8o

ns
	

x2
64

	
(
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
8a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
8o

ns
	

x2
64

	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

Full-‐state	 Directory	 Hyper	 Transport	 Token	 Coherence	

Fu
ll-‐
sy
st
em

	 R
un

-m
e	
(M

ill
io
ns
	 o
f	 c
yc
le
s)
	

Cache	 Coherence	 Protocols	

BASELINE	 (tr=3)	 IDEAL	 (tr=1)	 IDEAL	 (Tn=	 1)	 Nr r

Figure 1-3: Runtime of Applications with different NoC designs on a 64-core CMP.

described in detail in Chapter 2 Section 2.2.1. All simulations are run with three

network models:

• BASELINE (tr=3): This is a network with every router taking 3 cycles, and

the link segment between routers taking 1 cycle (i.e., tw = 1), leading to a

network delay TN = 4 · H +
H∑

h=1

tc(h). This is similar to Intel’s recent 48-core

SCC router [38].

• IDEAL (tr=1): This is an idealized network with 1-cycle routers at each hop,

and no contention along the route. The network delay for each message is always

TN = 2 ·H (i.e., tr = 1, tw = 1, and ∀h : tc(h) = 0).

• IDEAL (TN=1): This is an idealized network where the network delay is

always 1 cycle, i.e., every message has a dedicated 1 cycle link connecting it to

every destination, with no contention (i.e., H = 1, tr = 0, tw = 1, and ∀h : tc(h)

= 0). We will also refer to this as the ideal 1-cycle network.

29

Chapter 1. Introduction

We can see that the IDEAL (tr=1) NoC lowers runtime by 30-50% across the

protocols, and the IDEAL (TN=1) NoC lowers it by a further 30-50%. The goal of

this dissertation is to progressively design a real, practical 1-cycle network. Not only

does the ideal 1-cycle network lower runtime, Figure 1-3 shows that it completely

changes design trade-offs as well. The BASELINE (tr=3) NoC suggests that the full-

state directory protocol is the most obvious design choice, but with a IDEAL (TN=1)

NoC, it is no longer that clear since the network is no longer the bottleneck. In other

words, a NoC that is designed to be extremely low-latency, and efficiently handle

the bandwidth requirements of different traffic flows, can in turn ease the design of

the coherence protocol and software (OS/compiler) running atop it by relaxing the

traditional requirement for locality-aware optimizations. Thus, this dissertation lays

the foundation for locality-oblivious shared memory design.

1.3 Dissertation Contributions and Structure

The rest of the dissertation is organized as follows:

• Chapter 2 presents relevant background on NoCs and cache coherence protocols.

It also presents our evaluation methodology and performance metrics.

• Chapter 3 describes the detailed router microarchitecture of a 1-cycle router

prototype called the SWIFT NoC [53, 69]. This chapter addresses tr in Equa-

tion 1.1, reducing it to 1. This design serves as the baseline, BASELINE (tr=1),

for the rest of the thesis. SWIFT lowers runtime by 26% compared to BASE-

LINE (tr=3), and is less than 2% away from the IDEAL (tr = 1).

• Chapter 4 presents a collection of routing, flow control and microarchitectural

innovations called FANOUT [52, 66] to distribute 1-to-Many traffic flows at

single-cycle per-hop within the network. This chapter addresses both tr and

tc(h) in Equation 1.1 for multicast traffic. For a broadcast-intensive protocol,

FANOUT lowers runtime by 15% compared to BASELINE (tr=1), and is within

2.5% away from the IDEAL (tr = 1).

30

1.3. Dissertation Contributions and Structure

• Chapter 5 presents a collection of routing, flow control and microarchitectural

innovations called FANIN [52] to aggregate/reduce Many-to-1 traffic flows at

single-cycle per-hop within the network. This chapter addresses both tr and

tc(h) in Equation 1.1 for acknowledgement traffic. For an acknowledgement-

intensive protocol, FANIN lowers runtime by 9% compared to FANOUT, which

is within 1% of the IDEAL (tr = 1).

• Chapter 6 presents a NoC called SMART [50] that can support single-cycle

multi-hop traversals, potentially all the way from the source to the destination,

i.e., a practical realization of a 1-cycle network. This chapter addresses H in

Equation 1.1, breaking the dependence of latency on number of hops. Com-

pared to the BASELINE (tr=1) NoC, SMART lowers runtime by 27/52% for

Private/Shared L2 designs, which is only 9% off the runtime with an IDEAL

(TN = 1) NoC. For coherence protocols with 1-to-Many and Many-to-1 flows,

SMART reduces runtime by 15-19% on average, which is within 12% of the

IDEAL (TN = 1) design.

• Chapter 7 concludes and discusses future research directions.

• Appendix A performs a design space exploration of repeated wires. We observe

that repeated wires can go 13-19mm within 1ns and can be leveraged to send

signals multiple-hops within a single-cycle on a chip. This study drives the

SMART NoC design in Chapter 6.

31

Chapter 1. Introduction

32

2
Background

If I have seen further, it is by standing on the shoulders of giants.
- Isaac Newton

This chapter introduces readers to a Network-on-Chip, and discusses its compo-

nents in sufficient detail for understanding the thesis. Necessary background about

both synthetic traffic and cache coherence protocol traffic used to drive the NoC is also

presented. We also describe our evaluation methodology and performance metrics.

2.1 Network-on-Chip (NoC) basics

A collection of cores/IPs on the same die necessitates an interconnection between

them. We define a stream of communication between any two cores as a communica-

tion flow. If traffic between cores is deterministic, the interconnect can be tailored to

match the communication flow pattern. This is often the case in the SoC (embedded

systems) domain. However, with general purpose cores in a shared memory CMP

domain, any core could potentially talk to any other core. Having dedicated all-to-all

connections is not practical beyond a few cores, and thus the accepted solution has

been to use a shared communication medium, and perform multiplexing of different

flows over it in different cycles. This shared interconnect fabric has been referred to

by multiple names in literature: network-on-chip, on-chip network, on-die network,

33

Chapter 2. Background

M
em

o
ry

 C
o

n
tr

o
lle

r
2

X X

X X

X X

X X

X X

X X

X

X X

X

X

Ctrl

Core

Router

Network
Interface

(NIC)

L3$/
Directory

L2$

L1I$L1D$

Coherence Message

Network Packet

Resp (Ctrl + Data Cache Line)

Resp

head body1 body2 body3 tail
head_tail

Network Flits

Req
Header

Req

Header

M
em

o
ry

 C
o

n
tr

o
lle

r
0

Memory Controller 1

Memory Controller 3

type VCidroute payload

{head/body/
tail/head_tail}

{src, dest,
output port}

Figure 2-1: Mesh Network-on-Chip Overview.

interconnection network1 and so on. We use these terms interchangeably in this text.

We assume a tiled CMP design, with each tile comprising a core, a L1 I&D

cache, a L2 cache2, a Network Interface and a Router. This is shown in Figure 2-1.

The role of the Network Interface (NIC) is to encode L1/L2/Directory coherence

requests/responses at the injecting source node into network packets, and then break

the packet further into flits, or flow control units, as shown in Figure 2-1. Flits

representing single-flit packets are of the type head tail. Flits within multi-flit packets

can be of 3 types: head, body, tail. The role of single vs. multi-flit packets in cache

coherence will be discussed later in Section 2.2.1. Within the network, resources

(router buffers and links between routers etc) are allocated at the flit granularity. At

the destination NIC, flits of a packet are re-assembled back into a packet, and the

payload is sent to the appropriate cache controller.

The key features that characterize a NoC are: topology, routing algorithm, flow

control, and router microarchitecture. We describe each of these briefly. A more com-

prehensive description can be found in any book on interconnection networks [22, 25,

40]. A NoC is analogous to a conventional road network, with the roads representing

1The term interconnection network spans both off-chip and on-chip networks.
2The L2 cache also carries directory state for full-state directory protocols, which will be discussed

later in Section 2.2.1.

34

2.1. Network-on-Chip (NoC) basics

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

4
5

7
6

8
9

11
10

0
1

3
2

12
13

15
14

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

(a) Bus (b) Ring

(c) Mesh (2D) (d) Flattened Butterfly

(e) Torus (Folded) (f) Fully-connected

0

2 5

14

13

15

10

8

7

3 4

12 11

9

1 6

Figure 2-2: Common Network-on-Chip Topologies.

links, traffic signals representing routers, and vehicles representing network packets.

We shall use this analogy throughout this section for clarity.

2.1.1 Topology

The topology describes the connection of routers (i.e., tiles) via links/channels, and is

equivalent to the layout of the road network to connect various geographic locations.

Some common topologies such as Bus, Ring, Mesh, Flattened Butterfly, Torus and

Fully-connected are shown in Figure 2-2. We define hop to refer to the physical

connection between neighboring tiles/routers.

The topology defines the minimum number of hops between a source and desti-

nation pair. In a 1D topology, such as a ring, the number of hops increases linearly

with number of nodes; in 2D topologies, such as a Mesh and Torus, the number of

35

Chapter 2. Background

(a) XY dimension-ordered (b) West-first (c) South-last

Figure 2-3: Routing Turn Model to avoid deadlocks.

hops increases as a square root of the number of nodes. A Fully-connected topology,

while impractical due to layout issues, always offers a 1-hop traversal.

The topology also determines the path diversity available to the flits, i.e., the

number of alternate shortest paths to get from a source to a destination. For instance,

to get from Node-1 to Node-10, there is one path in the Ring (1→ 0→ 8→ 9→ 10),

three in the Mesh (1 → 2 → 6 → 10, 1 → 5 → 6 → 10, 1 → 5 → 9 → 10) and six

in the Torus (1 → 2 → 6 → 10, 1 → 5 → 6 → 10, 1 → 5 → 9 → 10, 1 → 2 → 14 →

10, 1→ 13→ 9→ 10, 1→ 13→ 14→ 10).

2.1.2 Routing Algorithm

The routing algorithm determines the series of links (roads) that the flit (vehicle)

should take to get from a source node S to a destination node D. Routing algorithms

can be minimal or non-minimal. Minimal routes refer to any of the shortest (i.e.,

minimum possible hop count) paths from S to D. At every hop on a minimal route,

the flit moves closer to D. Non-minimal routes on the other hand allow flits to get

misrouted and travel away from D before finally turning back and reaching D. Non-

minimal routes can help route around hot-spot routers, but will not be considered

in this thesis due to their additional traversal delay/energy, and complexity to avoid

deadlocks and livelocks.

A further classification of routing algorithms is into deterministic, oblivious and

adaptive. A deterministic route is one where the same set of links is always used to

get from a particular source S to a particular destination D. The most common deter-

ministic routing scheme in a Mesh, which we use extensively in this thesis, is called

XY dimension-ordered routing, where a flit always traverses the X direction (i.e.,

36

2.1. Network-on-Chip (NoC) basics

West or East) first, and then turns towards Y (i.e., North or South).Oblivious and

adaptive routing schemes allow different flits from S to D to traverse different routes.

The only difference between these schemes is that adaptive schemes monitor net-

work congestion and use that as a metric to choose different routes, while oblivious

schemes use other metrics (such as theoretical link utilization, or randomness). To

avoid deadlocks, all routing schemes can conform to a turn model [29] which disallows

certain turns in order to avoid creating a cyclic resource dependency. Figure 2-3 shows

the turn models for three deadlock-free routing algorithms (XY dimension-ordered,

West-first and South-last) with the disallowed turns highlighted.

2.1.3 Flow Control

The flow control determines when a flit can traverse the next link on its route, and

when it has to wait at some router. It is equivalent to the operation of traffic signals

at a junction. The role of an efficient flow control mechanism is to minimize the

latencies at low-loads, and maximize the throughput at high-loads. Both these goals

can be achieved by ensuring that network resources (buffers and links) are not idle

when there are flits waiting to use them. While the topology and routing algorithm fix

the theoretical latency and throughput characteristics for a particular traffic pattern,

it is the flow control that determines how close to this theoretical capacity can the

the network operate.

We define the latency TP , in cycles, of a packet in the network as follows:

TP = TN + Ts

= (H · (tr + tw) +
H∑

h=1

tc(h)) + (dL
b
e − 1) (2.1)

TN is the network delay of a single-flit, defined in Equation 1.1 in Chapter 13; Ts is

the serialization delay incurred by multi-flit packets in a pipelined traversal, and is

3H is the number of hops; tr is the router delay; tw is the wire (between two routers) delay; tc(h)
is the contention delay - number of cycles spent waiting to get access to the switch and output link
- at a router h-hops from the start.

37

Chapter 2. Background

Router A

Router B

Router C

tr

tw

tr

tw

tr

tw

tw tw

tw

Ts

Circuit Setup Phase Data Transfer + Teardown Phase

Probe Injected ACK ejected;
Circuit ready for

transmission Data Injected

Data Ejected

D

D

D D T

ACK Phase

Teardown

D D T

D D T

Figure 2-4: Circuit-switching flow control timeline for a message going from Router 1 to
Router 3, assuming no contention. Messages incur only wire delay, but each
transmission requires a setup and acknowledgement before transmission can
begin. (D: Data, T: Teardown).

set by the number of cycles it takes for a packet of length L to cross a channel with

bandwidth b (i.e., the number of flits in the packet).

Circuit-switching

Circuit-switching originates from the telephone world, where a dedicated connection

is setup between two phones, and lasts throughout the duration of the call. In a

circuit-switched NoC, a probe is first sent out from the source to the destination, to

setup the circuit, i.e., reserve all links along a route for a particular flow. Once the

probe reaches the destination, an acknowledgement is sent back to the source on the

reserved path. The source can now send data to the destination at the lowest possible

latency (i.e., wire delay) and incurs no buffering or contention at the routers. Once

data transfer is complete, a teardown message is sent to the destination to free the

reserved links and allow them to be reserved by other flows. Figure 2-4 shows all

these phases, along with the incurred latency, in a time-space diagram.

During the data transmission phase, circuit switching works like an ideal com-

munication fabric, as defined earlier in Chapter 1, with messages incurring only wire

delay. However, there should be significant data transmission to amortize the delay in

the setup, acknowledgement and teardown phases. Moreover, if data transfer on the

reserved circuit is bursty and not sustained, the links will be under-utilized, reducing

the realized network throughput.

38

2.1. Network-on-Chip (NoC) basics

Router A

Router B

Router C

tr

H B T

tr

H B T

tr

H B T

Ts

B

Packet Injected

Packet Ejected

tw

tw

Ts

Ts

B

B

Figure 2-5: Store-and-Forward flow control timeline for a packet going from Router
1 to Router 3, assuming no contention. Transmission occurs at packet
granularity. Packets incur serialization delay at each hop. (H: Head flit, B:
Body, T: Tail.)

Router A

Router B

Router C

tr

H B T

tr

H B T

tr

H B T

Ts

B

Packet Injected

Packet Ejected

tw

tw

Ts

Ts

B

B

Figure 2-6: Virtual Cut-Through and Wormhole flow control timeline for a packet going
from Router 1 to Router 3, assuming no contention. The head flit cuts
through the router as soon as it arrives. Packets incur serialization delay
only at the last hop. (H: Head flit, B: Body, T: Tail.)

Packet-switching

Packet-switching facilitates the time-multiplexing of packets from different flows on

the same links. This improves channel utilization and thus boosts throughput. In-

stead of sending out a setup probe, the source directly injects data packets into the

network. These packets allocate links in a hop-by-hop manner all the way till the

destination, and wait at intermediate routers in case of contention. Thus there is no

setup, acknowledgement or teardown phase. Most interconnection networks today

use packet-switched flow control techniques to efficiently allocate the limited buffers

and links among contenting flows.

Packet-switched flow control techniques can broadly be classified into the following

categories, based on the granularity at which buffers and links are allocated.

In store-and-forward flow control, each router waits until an entire packet has

been received, before forwarding it to the next router. Buffer space and link band-

39

Chapter 2. Background

W S

W E

B’s head flit is blocked
by A’s tail flit because of

head-of-line blocking

ATBH

AH

AB

Free

Full

(a) Head-of-Line blocking in worm-
hole flow control.

W S

W E

Free

Full

Packets A and B use
separate virtual
channels (VCs)

AT

BH

AH

AB

VC0

VC1

VC1VC0

VC1VC0

(b) Virtual Channel (VC) flow control.

Figure 2-7: Wormhole vs. Virtual Channel flow control.

width are thus allocated at a packet granularity. Figure 2-5 shows the latency incurred

by a packet in this scheme.

Virtual cut-through flow control removes the per-hop serialization delay from

store-and-forward by allowing the transmission of flits of a packet to begin before the

entire packet is received, as shown in Figure 2-6. Storage and bandwidth are still

allocated at the packet granularity.

Wormhole flow control reduces the storage overhead of packet-granularity schemes

by enabling buffer storage and channel bandwidth to be allocated at flit granularity.

While the traversal time-space diagram looks identical to that for Virtual cut-through,

routers can now have buffer storage that is smaller than the size of packets, thus re-

ducing router area and power. A key issue with wormhole flow control is that packets

go out serially from a router’s input port, in the order in which they came in, since

there is only one FIFO queue for the physical input channel. If the flit of a packet at

the head of the queue gets blocked due to insufficient buffer space due to congestion

at its next router, the packet behind it also gets blocked even though it might want to

use a separate non-congested route. This is known as head-of-line blocking. This

40

2.1. Network-on-Chip (NoC) basics

is shown in Figure 2-7(a), where the head flit of packet B that wants to go East gets

blocked by the tail flit of packet A that wants to go South. Thus the East links go

idle even though there is a flit that wants to use them, lowering network throughput.

Another potential issue with wormhole flow control is that a cyclic dependency

can be created between the queues at router input ports (if the routing protocol allows

all possible turns), leading to deadlocks.

Virtual Channel (VC) flow control removes the head-of-line blocking problem

by associating separate queues for different flows at a router, rather than queuing

them one behind the other like wormhole routers, even though there is only one phys-

ical input/output channel. Virtual Channels are analogous to separate turning and

straight lanes at traffic intersections, to prevent turning vehicles getting blocked by

vehicles going straight. Figure 2-7(b) highlights how VCs solve the problem incurred

by wormhole routers in the previous example. A head flit allocates a VC, and arbi-

trates for the output physical channel bandwidth before it can proceed to the next

router. The body and tail flits use the same VC, but still need to compete for the

channel bandwidth with flits in other VCs. A VC is freed once the tail flit leaves. We

do not allow more than one packet to occupy a VC. When a packet in some VC gets

blocked, packets behind it can still traverse the physical channel using other virtual

channels, thus solving the head-of-line blocking problem and enhancing throughput.

VCs can also serve a dual role by breaking deadlocks in the network. Even if the

routing protocol allows all turns, careful allocation of VCs when making turns can

ensure that there is no cyclic resource dependency.

Buffer Management

We assume that flits cannot be dropped in the NoC. This means that an upstream

router can send flits to its downstream (neighboring) router only if there is a guar-

anteed buffer. There are two common ways of communicating buffer availability -

credits and on-off.

In credit signaling, each upstream router maintains a count of the number of free

buffers at its adjacent downstream router. It decrements the count each time a flit is

41

Chapter 2. Background

Flit arrives at
Router 1 and
uses buffer

Flit leaves Router 1
and credit/on-off is

sent to Router 0

Router 0
receives

credit/on-off

Router 0 processes credit/
on-off; freed buffer

reallocated to new flit

New flit leaves
Router 0 for

Router 1

New flit arrives
at Router 1 and

reuses buffer

Actual buffer
usage

Credit/On-Off
propagation delay

Credit/On-Off
pipeline delay

Flit
pipeline delay

Flit
propagation delay

Figure 2-8: Buffer Turnaround Time [40].

sent out. When a flit leaves the downstream router, it sends a credit bit back to the

upstream router which increments its credit count. For VC flow control, the credit

count is maintained on a per-downstream-VC basis, and the credit signal carries the

credit bit, the VCid, and an additional bit to indicate if the VC is now free or not.

In on-off signaling, the downstream router sets a bit high (low) if the number of

free buffers is above (below) some threshold value. The upstream router sends a flit

only if the on-off bit is high. The threshold value is set by the buffer turnaround

time. This is the round-trip delay (in cycles) for the on-off signal to go to the

upstream router, be processed and be visible to the arbitrating flits. The threshold

value guarantees that all flits received in between the time that the bit is turned low

and the upstream router stops sending flits have a free buffer available. For VC flow

control, an on-off bit is required for every VC. On-off signaling can end up lowering

throughput compared to credit-based signaling since the on-off signal could be low

and yet there could be idle buffers at the next router.

The buffer turnaround time determines the minimum number of VCs and/or

buffers-per-VC to avoid self-throttling of the system. It depends on the wire propa-

gation delay and the router pipeline depth, as shown in Figure 2-8. The longer the

delay, the longer is the idle time for a free buffer, the lower is the buffer utilization

and poorer is the throughput.

42

2.1. Network-on-Chip (NoC) basics

VC Allocator

Routing

Switch Allocator

Crossbar Switch

Corein

Northin

Southin

Eastin

Westin

Coreout

Northout

Southout

Eastout

Westout

creditin

creditout

bypass path

Routing

bypass path

VC0

VC1

Input Buffers

Figure 2-9: Microarchitecture of a 5-port Mesh Router.

2.1.4 Router Microarchitecture

The microarchitecture of the router comprises the logic and state blocks that imple-

ment the components described so far. In the traffic signal analogy, the microarchi-

tecture is similar to the design of the traffic intersection, such as the different lanes

(left-only, right-only etc), the algorithm running inside the signal to decide when to

switch from Red to Green, and so on.

Figure 2-9 shows the microarchitecture of a state-of-the-art NoC router. We show

a 5-ported router (for a mesh).

Each input port has buffers that are organized into separate VCs. Buffers are

FIFO queues that can be implemented using Flip Flops or register files or SRAM.

Each input port connects to a crossbar switch which provides cycle by cycle non-

blocking connectivity from any input port to any output port. A crossbar is funda-

mentally a mux at every output port. Mux-based crossbars are actually implemented

by synthesizing muxes at every output port, while matrix crossbars layout the cross-

bar as a grid with switching elements at cross-points.

Each input port also houses a route compute unit, an arbiter for the crossbar’s

43

Chapter 2. Background

input port, and a table tracking the state of each VC. Each output port has an

arbiter for the crossbar’s output port, and also tracks the free VCs and credits at the

neighboring router’s input port. A n : 1 arbiter allows up to n requests for a resource,

and grants it to one of them. Matrix arbiters [22] maintain fairness across cycles and

are used in this thesis.

Each flit that goes through a router needs to perform the following actions on its

control-path:

• Route Compute (RC). All head and head tail flits need to compute their

output ports, before they can arbitrate for the crossbar. RC can be performed

either by a table lookup, or simply by combinational logic. The former is used

for complex routing algorithms, while the latter is used for simpler routing

schemes like XY which we assume in most of this thesis. To remove RC from

the critical path, we use lookahead routing [27] where each flit computes the

output port at the next router, instead of the current one so that its output

port request is ready as soon as it arrives.

• Switch Allocation (SA). All flits arbitrate for access to the crossbar’s input

and output ports. For a n×n router with v VCs per input port, Switch Alloca-

tion is fundamentally a matching problem between n resources (output links)

and n×v contenders (total VCs in the router). To simplify the allocator design

in order for it to be realizable at a reasonable clock frequency, we often use a

separable allocator [67]. The idea is to first arbitrate among the input VCs at

each input port using a v : 1 arbiter at every input port, and then arbitrate

among the input ports using a n : 1 arbiter at every output port4. We call these

stages SA-i and SA-o respectively in this thesis.

• VC Allocation (VA). All flits need a guaranteed VC at the next router before

proceeding. VC Allocation is only performed by head tail and head flits, while

body and tail flits use the same VC as their head. VC Allocation can also be

4Since we disallow u-turns in minimal routing schemes, the arbiter at the output ports can be
n− 1 : 1.

44

2.1. Network-on-Chip (NoC) basics

BW RC VA SA ST

BW Bubble Bubble SA ST

BW
RC

VA SA ST

BW Bubble SA ST

BW
RC

SA
VA

ST

BW SA ST

ST LT

ST LT

LT

LT

LT

LT

LT

LT

Head
flit

Body/
Tail

(a) tr=5 Pipeline (b) tr=4 Pipeline (c) tr=3 Pipeline (d) tr=1 Pipeline

Figure 2-10: Evolution of Router Pipelines.

performed in a separable manner [67] like SA. In this thesis, we use a simpler VA

scheme proposed by Kumar et al. [55] which we refer to as VC Select (VS).

Each output port maintains a queue of VC ids corresponding to the free VCs at

the neighbor’s input port. The SA winner for that output port gets assigned the

VCid at the head of the queue, and the VCid is dequeued. When a VC becomes

free at the next router and it sends back a credit, the VCid is enqueued into

the queue. If the free VC queue is empty, then flits are not allowed to perform

SA.

Once a flit completes RC, SA and VA, it can proceed to its data-path:

• Switch Traversal (ST). Winners of SA traverse the crossbar in this stage.

The select lines of the crossbar are set by the grant signals of SA.

• Link Traversal (LT). Flits coming out of the crossbar traverse the link to

the next router.

• Buffer Write (BW). Incoming flits are buffered in their VC. While the flit

remains buffered, its control-path (RC, SA and VA) is active.

• Buffer Read (BR). Winners of SA are read out of their buffers and sent to

the crossbar.

Router Pipeline

Early on-chip router prototypes [22, 37] were modeled similar to off-chip routers.

Their pipeline is shown in Figure 2-10(a). This design has a 5-stage router, i.e.,

tr = 5. Lookahead routing [27], which computes the route one hop in advance,

shortens the router pipeline by one stage, as shown in Figure 2-10(b), allowing VA

45

Chapter 2. Background

and SA to commence as soon as the route is read out in the first stage. Speculative

VC allocation [67] or VC Select allow VA to occur in parallel to SA, reducing the

pipeline even further to 3-cycles, as shown in Figure 2-10(c). To this 3-stage baseline

router, which is similar to Intel’s recent 48-core SCC router [38], recent research has

proposed speculative pre-arbitration of the crossbar to reduce the pipeline to 1-cycle

within the router, as shown in Figure 2-10(d). If the pre-arbitration (i.e., VA and SA)

succeeds, the crossbar is setup for the incoming flit to directly traverse it, bypassing

the conventional BW stage. If the pre-arbitration fails, the incoming flit is buffered as

before and continues to arbitrate for the switch and VC. This design was fabricated

as part of this thesis work, and will be described in detail in Chapter 3. It will be

referred to as BASELINE (tr=1) throughout the thesis.

2.2 Traffic through the on-chip interconnect

In shared memory systems, the on-chip network interconnects the memory subsystem

(L1, L2, directory, memory controller etc). The traffic through the network is thus

cache coherence traffic. In addition we stress test our network with myriad synthetic

traffic patterns to characterize the latency/throughput characteristics. Both these

kinds of traffic domains are described in this section.

2.2.1 Cache Coherence Protocols

The role of the cache coherence protocol is to maintain the semantics of one writer or

many readers in parallel programs. We assume a CMP design, with a private L1 per

tile, and a shared L2 distributed across all tiles, as was shown earlier in Figure 2-1.

Each L2 acts as a home node for part of the address space, and holds the directory

state for each cache line.

We classify cache coherence protocols into 4 categories.

• Full-state Directory. In this design, the directory has a bit-vector to track

all sharers and the owner (if any) for any line. The storage requirement for this

46

2.2. Traffic through the on-chip interconnect

1 2

2

3'

3

4

State(A)
I M

Owner(A)
14 8

State(A)
M I

State(A)
S I

Home
Node

M
em

o
ry C

o
n

tro
ller

WRITE A ACK A

UNBLOCK A

1

2

3

4FWD A

3' DATA A

Figure 2-11: Cache Coherence transactions with full-state directory.
1. The requester (#8) sends a write miss to the home node (#6).
2. The home node forwards it to the owner (#14) and the sharer (#0).
3. The owner invalidates its copy and sends the data to the requester.
The sharer invalidates its copy and sends an ACK to the requester.
4. The requester then unblocks the home node.

design goes up as O(N) where N is the number of cores.

Figure 2-11 shows a transaction in a full-state directory protocol, and the cor-

responding messages in the network. L2 #8 sends a write miss (WRITE A) to

its home node L2 #6 which houses a part of the distributed directory. L2 #6

forwards (FWD A) this request to the sharer (S) of this data L2#0 and the

owner (O) of this data5 L2# 14. L2 #14 responds with data (DATA A) to L2

#8, while L2#0 sends an invalidation acknowledgement (ACK) to L2 #8. On

receiving all ACKs and data, L2 #8 then unblocks its home node (UNBLOCK

A). At the end of the transaction, L2 #8 holds line A in modified (M) state,

while L2# 14 and L2# 0 hold the line in invalid (I) state.

• Partial-state Directory. In these designs, the directory only tracks the

owner [21] or a subset of sharers [58] or tracks lines at a coarser granularity [34],

to reduce the storage requirement. To provide coverage over the complete chip,

5If there is no owner on-chip, L2 #6 also forwards this request to the memory controller since
DRAM is the owner of the line.

47

Chapter 2. Background

1

3

4

State(A)
I M

State(A)
M I

State(A)
S I

Home
Node

M
em

o
ry C

o
n

tro
ller

2 2

2

2

3 33

33 3

3

3

3
3 3' 3

3

WRITE A ACK A

UNBLOCK A

1

2

3

4FWD A

3' DATA A

2 2

Figure 2-12: Cache Coherence transactions with HyperTransport (broadcast protocol
with partial/no-state directory).
1. The requester (#8) sends a write miss to the home node (#6).
2. The home node broadcasts it to all nodes (1-to-all flow).
3. The owner (#14) invalidates its copy and sends the data to the re-
quester. The sharer (#0) invalidates its copy. All nodes (sharers and
non-sharers) send an ACK to the requester (all-to-1 flow).
4. Upon receiving all ACKs, the requester unblocks the home node.

it resorts to occasional broadcasts.

For the same coherence transaction as before, Figure 2-12 shows the messages

sent by a partial-state directory. Upon receiving the write miss from L2#8, the

home node (L2 #6) performs a full-chip broadcast to invalidate the sharers. L2

#14 responds with data (DATA A) to L2 #8. All other nodes (both sharers

and non-sharers) send an invalidation ACK to L2 #8. Upon receiving ACKs

(and data) from all nodes on-chip, L2#8 unblocks the home node. If there is no

owner on-chip, then the memory controller, which also received the broadcast,

responds with data.

A read miss, on the other hand, is served by a unicast being sent from the home

node to the tracked owner L2# 14.

• No-state Directory. In this design, the directory does not have any state.

The home node in Figure 2-12 needs to perform a full-chip broadcast for both

48

2.2. Traffic through the on-chip interconnect

2'

2

State(A)
I M

State(A)
M I

State(A)
S I

M
em

o
ry C

o
n

tro
ller

WRITE A TOKEN A1 2 2' DATA A

1

1

1

Figure 2-13: Cache Coherence transactions with Token Coherence (broadcast protocol
with no directory).
1. The requester (#8) broadcasts a write miss over the chip.
2. The owner (#14) invalidates its copy and sends the data and all tokens
to the requester. The sharer (#0) invalidates its copy and sends its token
to the requester.

a read and write miss, and all L2’s need to respond to the requester with an

ACK (or data if an L2 is the Owner), before it can unblock the home node.

The role of the “directory” in this design is simply to provide an ordering point

among different requests to the same line, to help maintain memory consistency

semantics [6]. AMD’s HyperTransportTM [9], used in its early Opteron chips, is

an example of a no-state directory.

The actions in HyperTransport (HT), which we run for this thesis, are sim-

ilar to Figure 2-12. All cores send requests as unicasts to a stateless directory

home node (ordering point) which forwards it to all other cores via a broad-

cast. The requester collects all acknowledgements, and then unblocks the home

node via a unicast. We enhance the protocol with an optimization that merges

multiple read requests to the same cache line at the home node when those re-

quests are competing for the same unblock message. This optimization reduces

the additive queuing delay incurred by these waiting requests, and also avoids

broadcasting each of them, lowering the application runtime of the baseline 3-

49

Chapter 2. Background

stage router network by 39.6% on average. Though HT commercially operates

across multiple sockets (chips), we model and simulate a HT-based protocol

running on a single multicore chip.

• No Directory. In these designs, there is no home node for data. The requester

broadcasts all its requests, all other nodes snoop, and the owner (cache or

memory) responds. A key requirement for these snoopy protocols is global

ordering. On a bus-based design, where these protocols are highly prevalent,

the central bus arbiter serves as the ordering point. On a distributed mesh,

on the other hand, other techniques are required to guarantee race-free correct

functionality in case of competing requests. Token Coherence [61] and INSO [8]

are two techniques to run snoopy protocols on a mesh.

We run Token Coherence (TC) for this thesis. Here each cache line is asso-

ciated with a finite number of tokens. Readers hold at least one token, while

writers need to hold all tokens. In Figure 2-13, we plot the coherence trans-

actions and network messages for Token Coherence. L2 #8 broadcasts a write

miss, and the owner L2# 14 responds with data and all its tokens, and invali-

dates its own copy. Sharer L2#0 snoops this request, invalidates its copy, and

sends its token to L2 #8. Once L2 #8 receives both the data and all tokens for

the line, it assumes ownership. Unlike HyperTransport, all nodes do not need

to send ACKs/tokens, only the actual sharers do. In case of a race condition

where two write requests for the same line originate at almost the same time

and end up in tokens getting distributed between each, a timeout occurs. At

this point one of the core statically assumes higher priority and sends out a

persistent request demanding all tokens and gets the ownership.

Communication Patterns

For an N-core chip, we classify the communication patterns of protocols as 1-to-1, 1-

to-M, and M-to-1 where M refers to multiple sources or destinations (1 < M <= N).

1-to-1 communication occurs in unicast requests/responses exchanged between cores.

50

2.2. Traffic through the on-chip interconnect

0%	

20%	

40%	

60%	

80%	

100%	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

Full-‐state	 Directory	 Token	 Coherence	 HyperTransport	

%
	 o
f	 M

es
sa
ge
	 F
lo
w
s	

Cache	 Coherence	 Protocols	

`	 1-‐to-‐1	 1-‐to-‐Many	 Many-‐to-‐1	

Figure 2-14: Message Flows in various cache coherence protocols.

1-to-M communication occurs in broadcasts and multicast requests [9, 1, 8, 75, 61].

M-to-1 communication occurs in acknowledgements [9, 1] or token collection [61, 71]

in protocols to maintain ordering.

In this thesis, we run our network designs with a Full-state Directory, Hyper-

Transport and Token Coherence, to study the interesting trade-off between storage

requirements and number of network messages, and identify and correct network bot-

tlenecks. Figure 2-14 shows a breakdown of the percentage of 1-to-1, 1-to-M and

M-to-1 flows6 in the network across SPLASH-2 [82] and PARSEC [14] benchmarks

for these three protocols in a 64-core CMP. The evaluation setup will be discussed

later in Section 2.3. For a Full-state Directory, 99% of messages are 1-to-1, with less

than 1% 1-to-M corresponding to precise multicasts to invalidate sharers, with M

= 19 on average. For HyperTransport, 1-to-M requests and M-to-1 responses form

14.3% and 14.1% of injected messages on average, respectively, with M = 64 in both

cases. Token Coherence reduces M-to-1 traffic to 2%, with M = 12 on average, at the

cost of a higher percentage (52.4%) of 1-to-M traffic (M = 64). These observations

point to the criticality of the network fabric connecting the cores to efficiently handle

all three kinds of communication, and not become a bottleneck.

6Every 1-to-M and M-to-1 flow translates to M messages in the network.

51

Chapter 2. Background

Virtual Networks (Vnets)

The series of messages sent by a coherence protocol as part of a coherence transaction

fall within different message classes. For instance all directory protocols (full-state,

partial-state and no-state) used in this thesis use 4 message classes: request, forward,

response and unblock. Token Coherence, a snoopy protocol, uses 3 message classes:

request, response, persistent request.

A potential deadlock can occur in the protocol if a request for a line from a L2 is

unable to enter the network because the L2 it is waiting for a response for a previous

request, while the response is unable to reach the L2 since all queues in the network

are full of such waiting requests. To avoid such deadlocks, protocols require messages

from different message classes to use different set of queues within the network. This

is implemented by using virtual networks (vnets) within the physical network.

Virtual Networks are identical to VCs in terms of their implementation: all vnets

have separate buffers but multiplex over the same physical links. In fact many works

on coherence protocols use the term virtual channels to refer to virtual networks.

However, in this thesis we will strictly adhere to using the term virtual networks or

vnets to refer to protocol level message classes. The number of vnets is thus fixed by

the protocol. Each vnet, on the other hand, can have one or more VCs within each

router, to avoid head-of-line blocking or avoid routing deadlocks, as discussed earlier

in Section 2.1.3. In all NoC designs considered in this thesis, we will use the same

number of VCs within each vnet.

Message sizes

We size our network parameters such that control messages (requests/forwards/unblocks)

fit within one single flit, while data responses span multiple flits. For 128-bit flits

which we assume in most of this thesis, unless specified, 64B cache line responses fit

in 5 flits. Thus VCs within the request, forward or unblock vnets are 1-flit deep, while

VCs within the response vnet are often more than 1-flit deep.

52

2.2. Traffic through the on-chip interconnect

Point-to-Point Ordering

Certain message classes (and thus their vnets) require point-to-point ordering in

the network for functional correctness. This means that two messages injected from

the same source, for the same destination, should be delivered in the order of their

issue. We implement point-to-point ordering for flits within ordered vnets by (i) using

deterministic routing, and (ii) using FIFO/queuing arbiters for SA-i at each router.

The first condition guarantees that two messages from the same source do not use

alternate paths to the same destination as that could result in the older message

getting delivered after the newer one if the former’s path has more congestion. The

second condition guarantees that flits at a router’s input port leave in the order in

which they came in.

In the protocols used in this thesis, only the persistent request vnet in Token

Coherence requires point-to-point ordering. None of the other vnets in other protocols

have this requirement as there are extra states and logic in the protocols to handle

out-of-order messages.

2.2.2 Synthetic Traffic Patterns

In all our experiments, we assume all sources inject with a uniform random injection

rate (without bursts), while the destination coordinates depend on the traffic pattern.

Table 2.1 lists some common synthetic traffic patterns used for studying a mesh

network, along with their average hop-counts and theoretical throughput with XY

routing. The theoretical throughput or capacity is the injection rate at which some

link(s) in the mesh is (are) sending 1-flit every cycle.7 This is the best a topology can

do, with perfect routing, flow control and microarchitecture.

7Table 2.1 shows that uniform random traffic offers the highest throughput, since it saturates
when the bisection links of the mesh are fully occupied. For traffic patterns that saturate other
links, throughput is lower.

53

Chapter 2. Background

Table 2.1: Synthetic Traffic Patterns for k × k Mesh

Source (binary coordinates): (yk−1, yk−2, . . . , y1, y0, xk−1, xk−2, . . . , x1, x0)
Traffic Pattern Destination Avg Hops Throughput

(binary coordinates) (for k = 8) (for k = 8)
(flits/nodes/cycle)

Bit-Complement (ȳk−1, ȳk−2, . . . , ȳ1, ȳ0, 8 0.25
x̄k−1, x̄k−2, . . . , x̄1, x̄0)

Bit-Reverse (x0, x1, . . . , xk−2, xk−1, 5.25 0.14
y0, y1, . . . , yk−2, yk−1)

Shuffle (yk−2, yk−3, . . . , y0, xk−1, 4 0.25
xk−2, xk−3, . . . , x0, yk−1)

Tornado (yk−1, yk−2, . . . , y1, y0, 3.75 0.33
xk−1+d k2 e−1

, . . . , xd k2 e−1
)

Transpose (xk−1, xk−2, . . . , x1, x0, 5.25 0.14
yk−1, yk−2, . . . , y1, y0)

Uniform Random random() 5.25 0.5

2.3 Evaluation Methodology

We use the GEMS [62] + Garnet [7] infrastructure for all our evaluations, which

provides a cycle-accurate timing model. Full-system simulations use Wind River

Simics [4]. Network energy for each component is calculated using Orion 2.0 [43] and

DSENT [76].

We model 64 in-order SPARC cores8 in a tiled CMP with private 32 kB I&D L1

per tile and private/shared 1MB L2 per tile. We use the existing full-state directory,

HyperTransport [9]9 and Token Coherence [61] implementations in GEMS. We use a

8×8 mesh network with 128-bit flits, and 1mm links. In all our NoC designs, unless

specified, the number of buffers/VCs in each vnet is set by the buffer turnaround

time.

We evaluate the parallel sections of the SPLASH-2 [82] and PARSEC [14] bench-

marks for all configurations. Each run consists of 64 threads of the application run-

ning on our CMP. We run multiple times with small random perturbations to capture

variability in parallel workloads [10], and average the results.

8Our CMP is homogeneous. However all the NoC architectures presented in this thesis can work
for both homogeneous and heterogeneous cores since the core only acts as a traffic injector and
receiver.

9HyperTransport was ported to GEMS from gem5 [16] for this thesis. Thanks to Brad Beckmann
from AMD Research for implementing and optimizing the protocol’s gem5 version.

54

2.3. Evaluation Methodology

2.3.1 Baseline and Ideal Networks

We will use the state-of-the-art BASELINE (tr=1) NoC presented in Section 2.1.4

as the baseline design throughout this thesis. Chapter 3 will present the detailed

pipeline and microarchitecture of this design. Chapters 4 and 5 will use alternate

baselines with multicast support within routers.

We also use two ideal networks as yardsticks representing the best possible NoC

design for the given Mesh topology.

• IDEAL (tr=1) NoC is an idealized implementation of the BASELINE (tr=1),

with 1-cycle routers at every hop, and no contention along the route. This

ideal is implemented by sending the flit with a fixed delay (calculated using the

Manhattan distance between the source and destination nodes) from the source

NIC to the destination NIC via an imaginary dedicated wire, instead of via the

actual NoC.

• IDEAL (TN=1) NoC models a NoC with 1-cycle delay for each message, irre-

spective of the hops traversed. This design is similarly modeled via imaginary

dedicated wires that enable contention-less traversal.

The goal of the thesis is to design a real NoC with performance and power metrics

close to those of the ideal NoCs.

2.3.2 Performance Metrics

We characterize the performance of NoC designs on three metrics.

• Network Latency. The target metric that this thesis is aimed at is network

latency. As shown earlier in Equation 2.1, the network latency has a fixed com-

ponent (router + link delay), a variable component (contention delay) and a

serialization component. The thesis presents microarchitectural optimizations

to reduce the fixed component from 1-cycle at every hop to 1-cycle through-

out the network. The thesis also presents flow control optimizations to reduce

congestion, which is usually dominant in collective communication (1-to-Many

55

Chapter 2. Background

and Many-to-1) flows. Through synthetic traffic and full-system simulations,

the thesis will demonstrate a low-load network latency of ∼1-cycle for flits, and

a graceful degradation till saturation.

• Network Throughput. We define the saturation throughput of the

network as the injection rate at which the network latency becomes 3× the low-

load latency. Throughput is a function of link utilization. Inefficient arbitration,

buffer management and routing can lead to links going idle while there is waiting

traffic and/or some links getting over-provisioned, leading to throughput loss.

While the primary goal of this thesis is latency, most flow control techniques

presented also try to push the saturation throughput closer to the theoretical

capacity defined in Table 2.1 for synthetic traffic. For full-system traffic across

all protocols and designs, we observe pretty low injection rates so the NoC is

not throughput constrained as much as it is latency constrained. This is in part

because our cores are in-order and non-speculative, and in part because most

applications in SPLASH-2 and PARSEC have well behaved working sets that

do not stress the cache subsystem a lot.

• Full-system Runtime. The full-system runtime is the runtime of the parallel

section of our benchmarks, and our most important performance metric. A

faster network by itself may not provide any returns if the messages whose

delivery was speeded up are not on the critical path of the computation. In

fact in some cases we observe faster NoCs result in higher cache miss rates since

remote lines get invalidated faster before they can be used by their local cores.

But by the same argument, in some cases a minor speedup in the network can

provide enormous speedups at the full-system level if certain threads were able

to get access to locks faster, or certain requests hit in remote caches before that

line was evicted off-chip, and so on. The thesis thus uses full-system simulations

instead of trace-driven ones. However, limitations in the GEMS [62] simulator

restrict us from running simulations for greater than 64-cores.

56

2.4. Chapter Summary

2.4 Chapter Summary

This chapter provided necessary background on Networks-on-Chip for the reader to

understand the various techniques presented in this thesis. The chapter also presented

the different cache coherence protocols (in full-system runs) and synthetic traffic pat-

terns we run atop our NoC. Evaluation methodology and target performance metrics

were also discussed.

In the next chapter, we present the design of a state-of-the-art 1-cycle router which

was silicon-proven in 90nm CMOS. This design will serve as the baseline for the rest

of the thesis.

57

Chapter 2. Background

58

3
Single-cycle Per-hop NoC for 1-to-1 Traffic

Nobody gets to live life backward. Look ahead, that is where your future lies.
- Ann Landers

This chapter describes the detailed microarchitecture of a 1-cycle router (i.e.,

techniques to achieve tr=1 in Equation 1.1). The design has been silicon proven in

90nm1.

3.1 Introduction

Fabricated NoC prototypes in the past, such as UT Austin’s 40-core TRIPS [31] and

Intel’s 80-core TeraFLOPS [37] have typically used relatively simple VC router ar-

chitectures that do not optimize buffer utilization. Incoming data is always buffered

without regard to route availability. This dissipates unnecessary energy, and intro-

duces additional latency within a router pipeline. Even if the data-path is available,

all packets go through multiple pipeline stages within each router, including buffering,

routing, switch allocation, and switch (crossbar) traversal; this is then followed by the

link (interconnect) traversal. We saw the opportunity to optimize the router control-

path to utilize the available link bandwidth more efficiently by exploiting adaptive

routing and intelligent flow control, thus enhancing throughput. This architectural

enhancement allows many flits to bypass buffering, even at high traffic rates. By ob-

1A more optimized design in 45nm will be presented later in Chapter 4 in Section 4.6.

59

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

viating the need for buffer reads/writes, fewer buffers are required to sustain a target

bandwidth. The result is a reduction in both the router latency and buffer read/write

power. This approach has been explored in academic literature [65, 63, 57, 56], but

has not made it to mainstream design.

In Chapter 2 Section 2.1.4 we described the microarchitecture of a NoC router,

and the actions on the control and data-path. The control-path prepares the flit to

traverse to the next router one-hop away. The actions performed are Route Compute

(RC)2, VC Allocation (VA) and Switch Allocation (SA). The data-path sends the

actual flit (header and payload) through the crossbar switch to the next router’s

input buffers. The actions performed are Buffer Write (BW), Buffer Read (BR),

Switch Traversal (ST) and Link Traversal (LT).

A decade of research in NoC pipelines has enabled all actions within the control-

path to occur in parallel within one cycle3. However, the control-path and data-path

for a particular flit are serialized, leading to 3-cycle routers (BW, SA//VA//RC,

BR//ST) per-hop, followed by a 1-cycle LT. In this work, we design a router mi-

croarchitecture that parallelizes the control and data-paths. The basic idea is to send

the route information of a flit in advance to the next router in control signals called

lookaheads, one-cycle before the actual flit. Lookaheads setup the control-path for

the incoming flit, allowing it to bypass BW and BR and proceed directly to ST and

LT. Both the lookaheads and the flit spend a single-cycle within the router, and a

single-cycle in the link between routers.

This work also addresses the increasing problem of NoC power consumption. In

Intel’s recent 80-core TeraFLOPS router, 39% of the 2.3W power budget of a tile was

found to be consumed by the network. The primary contributers to NoC power are the

buffers (31% in MIT RAW [77], 35% in UT TRIPS [31], 22% in Intel TeraFLOPS [37]),

which are typically built out of SRAM or register files; the crossbar switches (30%

in MIT RAW [77], 33% in UT TRIPS [31], 15% in Intel TeraFLOPS [37]); and

the core-core links (39% in MIT RAW [77], 31% in UT TRIPS [31], 17% in Intel

2RC is performed one-hop in advance [27]
3In case of contention, SA and VA can fail leading to multiple cycles in the control-path.

60

3.1. Introduction

TeraFLOPS [37]). Buffers are necessary to facilitate sharing of links, the crossbar

is necessary to allow incoming flows to make arbitrary turns cycle-by-cycle, and the

tile-to-tile links are necessary to deliver the payload to its destination. In this work,

we leverage Token Flow Control (TFC) [56]-based adaptive routing and bypass flow

control to allow flits to bypass buffer writes/reads even at high loads, reducing the

buffer power. We also embed custom low-swing circuits within the crossbar and links

to reduce data transmission power.

We fabricate a prototype NoC called the SWing-reduced Interconnect For a Token-

based Network-on-Chip (SWIFT NoC) [53, 69]. The router microarchitecture of

SWIFT is designed in RTL and implemented using a conventional 90nm, 1.2V CMOS

standard cell library provided by the foundry. The synthesized router is manually

integrated with the custom crossbar and links. The targeted NoC is an 8×8 2-D

mesh, while the fabricated test chip is comprised of a 2×2 mesh subsection of four

routers that verifies the design practicality and validates the simulated results.

This work makes the following contributions to the field of NoC design:

• This is the first fabricated NoC that incorporates unconventional microarchi-

tectural optimizations, such as buffer-less bypassing and adaptive routing, and

realizes them in a single-cycle router pipeline. This implementation results

in 39% lower latency and 49% lower buffer power while sustaining the same

throughput as a baseline4 with uniform random traffic.

• This is the first fabricated NoC that uses reduced-swing interconnects in both

the crossbar and the links. Data path transmission power is lowered by 62%,

when compared with a baseline4 design.

• Our detailed discussions on the design choices we made and corresponding im-

pact on critical path delay, area, power and overall network performance may

present a useful case study for NoC researchers and designers.

The total power savings of the entire network was measured to be 38%.

4The baseline router used for all comparisons was modeled similar to [37, 31] and is described in
Section 3.2.

61

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

The rest of the chapter is organized as follows. Section 3.2 describes the baseline

non-bypass pipeline, and Section 3.3 describes the SWIFT router microarchitecture.

Section 3.4 details the reduced-swing crossbar and link designs. Section 3.5 highlights

the features added to the chip that facilitate testing and measurements. Section 3.6

presents and analyzes our measured results. Section 3.7 discussed related work, and

Section 3.8 concludes.

3.2 Baseline Non-Bypass Pipeline

The baseline router pipeline is 3 stages long (i.e., tr = 3), followed by 1 cycle in the

link (i.e., tw = 1). The various stages are described next, along with the blocks that

are active during that stage.

Stage 1-Buffer Write (BW). The incoming flit is written into buffers at each

input port, which were implemented with register files generated from the foundry

memory generators. These input buffers are organized as a shared pool among multi-

ple VCs. The addresses of the buffers are connected as a linked list. An incoming flit

that requires a free buffer obtains the address from the head of the linked list, and

every buffer that is freed up appends its address to the tail of the linked list. One

buffer is reserved per VC in order to avoid deadlock. Compared to private buffers

per VC which can be implemented as a FIFO, our shared buffer design incurs an

overhead of storing the read addresses of all flits in the VC state table, but has the

advantage of reducing the numbers of buffers required at each port to satisfy buffer

turnaround time5.

Stage 1-Switch Allocation-Inport (SA-I). An input VC is selected from each

input port to place a request for the switch. This is implemented using V:1 round

robin arbiters at each input port, where V is the number of VCs per port. Round

robin arbiters are simple to implement [22] and ensure that every VC gets a chance

to send a flit.

5Minimum number of cycles before which same buffer can be reused, as described earlier in
Section 2.1.3

62

3.2. Baseline Non-Bypass Pipeline

Stage 2-Switch Allocation-Outport (SA-O). The winners of SA-I at each

input port place requests for their corresponding output ports. As no u-turns are

allowed, there can be a maximum of 4 input ports requesting the same output port.

These conflicts are resolved using 4:1 matrix arbiters, one for each output port. Matrix

arbiters are used for fair allocation of the crossbar output port to all input ports [22].

Separating switch allocation into two phases of simpler arbitration, SA-I and SA-O,

is a common approach to satisfy minimum cycle time constraints [67]. Note that a

flit may spend multiple cycles in switch allocation due to contention.

Stage 2-VC Allocation (VA). At the end of SA-O, winning head flits are

assigned an input VC for their next hop. (Body and Tail flits follow on the same

VC). VC allocation in our design is a simple VC selection scheme [55]. Each output

port maintains a queue of free VCs at the input port of the next router. A switch

request is allowed to be placed for an output port only if the router connected to that

output port has at least one free input VC. The winning head flit of a switch output

port, at the end of SA-O, picks up the free VC at the head of the queue and leaves.

Thus there is no arbitration required, simplifying the VC allocation process. If the

router receives a signal indicating a free VC from the next router, the corresponding

VC id is enqueued at the tail of the queue. VA does not add any extra delay to the

critical path since the updating of the queue and the computation of the next free

VC id take place in parallel to SA-O.

Stage 2-Buffer Read (BR). Flits that won SA-I start a pre-emptive read of

the buffers, in parallel to SA-O. This is because the register files require all input

signals to be ready before the clock edge. If we wait until SA-O declares the winner

of the switch output port, BR would have to be pushed to the next cycle, adding

latency. The drawback of this is that there are wasted reads from the buffer which

would consume power. We solve this by biasing SA-I to declare the same input VC as

the winner until it succeeds to use the crossbar. This ensures that the same address

is read out of BR to avoid additional switching power.

Stage 3-Switch Traversal (ST). The flits that won the switch ports traverse

the crossbar switch.

63

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

Route
Compute

East

(a) Routing using Tokens.
(b) Token Distribution.

buffers
xbar

lookahead
flit

lookahead

flit

(c) Bypass flow control using lookaheads.
(d) Traversal Example.

Figure 3-1: Overview of the SWIFT NoC.

Stage 4-Link Traversal (LT). The flits coming out of the crossbar traverse the

links to the next routers.

3.3 SWIFT Router Microarchitecture

Here we describe the architectural design of SWIFT NoC in detail, which is based

on token flow control (TFC) [56], providing relevant background where necessary.

The SWIFT router separates the control-path managed by lookaheads from the flit’s

data-path. The router implements 2 pipelines, a non-bypass pipeline which is 3-stages

64

3.3. SWIFT Router Microarchitecture

long and the same as the state-of-the-art 3-cycle baseline described in Section 3.2, as

well as a bypass pipeline, which is one-cycle within the router and consists of just the

crossbar traversal for flits (data) and switch allocation for lookaheads (control). This

is followed by the link traversal.

We start by describing two primary control logic components that facilitate this

bypass action, namely tokens and lookaheads.

3.3.1 Routing with Tokens

In the SWIFT NoC, every input port sends a one-bit token to its neighbor, which is

a hint about buffer availability at that port. If the number of free buffers is greater

than a threshold (which is three in order to account for flits already in flight), the

token is turned ON (by making the wire high), else it is turned OFF. The neighbor

broadcasts this token further to its neighbors, along with its own tokens. Flits use

these tokens to determine their routes. They try to adapt their routes based on token

availability. Figure 3-1(a) shows an example of this. The shaded router receives

tokens from its N, E, and NE neighbors. The incoming flit chooses the East output

port over the North output port based on token availability. We implement minimal

routing, with a west-first turn rule, which was described in Chapter 2 Section 2.1.2,

to avoid deadlocks. Any other adaptive routing algorithm can be used as well.

Each token is forwarded up to three-hops, via registers at each intermediate router.

Tokens are also forwarded up to the network interfaces (NIC) at each router. The

number three was fixed empirically based on simulations which can be found in the

TFC paper [56]. Intuitively, deeper token neighborhoods do not help much since the

information becomes stale with each hop. Moreover, the route is updated at every

hop based on the tokens at that router, and the flit only needs to choose between a

maximum of two output ports (for minimal routing). Adding more tokens would add

more wires and registers without returning much benefit.

For illustration purposes, Figure 3-1(b) shows the token distribution relative to

the shaded router in a two-hop neighborhood. 16 tokens enter the shaded router

from a two-hop neighborhood, plus one from the local port. However, West-first

65

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

routing algorithm allows us to remove tokens from the west neighborhood (except the

immediate neighbor) since a packet has to go west irrespective of token availability,

reducing the total tokens from (16 + 1) to (11 + 1). Similarly, there are a total of

(36 + 1) tokens in a three-hop neighborhood. Removing the west tokens allows us to

reduce this number to (22 + 1) bits of tokens per router and these act as inputs to

the combinational block that performs route computation.

3.3.2 Flow Control with Lookaheads

Conventional flow control mechanisms involve arbitration for the crossbar switch

among the buffered flits. Some prior works [65, 63, 57, 56] propose techniques to

allow flits that have not yet arrived to try and pre-allocate the crossbar. This enables

them to bypass the buffering stage and proceed directly to the switch upon arrival.

This not only lowers traversal latency, but also reduces buffer read/write power. The

SWIFT NoC implements such an approach, based on TFC [56], as shown in Figure 3-

1(c). TFC has been shown to be better than other approaches like express virtual

channels (EVC) [57] as it allows flits to chain together tokens to form arbitrarily long

bypass paths with turns, while EVC only allowed bypassing within a dimension up to

a maximum of three-hops. Other approaches to tackle buffer power include adding

physical links to bypass intermediate routers [48], or using link repeaters as tempo-

rary buffers [64] to reduce buffers within the router. These techniques can enhance

energy-delay further at the cost of more involved circuit design.

In the SWIFT NoC, the crossbar is pre-allocated with the help of lookahead

signals, which are 14-bit signals sent for each flit, one-cycle before it reaches a router.

The implementation of the lookahead generation and traversal to enable a one-cycle

advanced arrival will be explained later in Section 3.3.3.

A lookahead is prioritized over locally-buffered flits, such that a local switch alloca-

tion is killed if it conflicts with a lookahead. If two or more lookaheads from different

input ports arrive and demand the same output port, a switch priority pointer at

the output port (which statically prioritizes each input port for an epoch of 20 cycles

for fairness) is used to decide the winner and the other lookaheads are killed. The

66

3.3. SWIFT Router Microarchitecture

flits corresponding to the killed lookaheads get buffered similar to the conventional

case. Since the bypass is not guaranteed, a flit can proceed only if the token from the

neighbor is ON (indicating an available buffer).

Outport VCid Y_hops Y_direction X_hops X_direction
03-147-5813-9

Data Flit_type
2-063-3

Figure 3-2: Lookahead and Flit Payloads.

The lookahead and flit payloads are shown in Figure 3-2. Lookaheads carry infor-

mation that would normally be carried by the header fields of each flit: destination

coordinates, input VC id, and the output port the corresponding flit wants to go

out from. They are thus not strictly an overhead. Lookaheads perform both switch

allocation, and route computation.

The SWIFT flow control has three major advantages over previous prototypes

with simple flow control.

• Lower Latency: Bypassing obviates the buffer write, read, and arbitration

cycles.

• Fewer buffers: The ability of flits to bypass at all loads keeps the links better

utilized while minimizing buffer usage, and reducing buffer turnaround times.

Thus, the same throughput can be realized with fewer buffers.

• Lower power: Requiring fewer buffers leads to savings in buffer power (dy-

namic and leakage) and area, while bypassing further saves dynamic switching

energy due to a reduction in the number of buffer writes and reads.

The SWIFT NoC guarantees that flits within a packet do not get re-ordered. This

is ensured by killing an incoming lookahead for a flit at an input port if another flit

from the same packet is already buffered. Point-to-Point ordering is however not guar-

anteed by SWIFT. This is because lookaheads are prioritized over locally buffered flits,

which could result in two flits from the same source to the same destination getting

re-ordered if the first one happened to get buffered at some router while the second

67

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

Shared
Buffers

0

1

0

1

LookAhead
Route

Compute

LookAhead
Conflict
Check

Switch
Arbiter -
Outport

Switch
Arbiter -
Inport

VC State

VC Allocator
Lookahead
Generator

Crossbar
Switch

bypass_
disable

xbar_select
xbar_clk_gating

flit_in

tokens_in

lookahead_in

credit_in

flit_out

token_out

lookahead_out

credit_out

tokens_fwd

64

1

14

3

Stage 1 Stage 2 Stage 3 Stage 4

BYPASS PATH

(a) SWIFT Router.

BW
SA-I

BR
SA-O
VA

LTLA-LT

LA-RC
LA-CC ST

LA-LT LT
Time

Router n

Router n+1

SA-I, SA-O: Switch Alloc-Inport/Outport
BW, BR: Buffer Write/Read
VA: Virtual Channel Allocation
ST: Switch (Crossbar) Traversal
LT: Link Traversal

LA: Lookahead
LA-RC: LA Route Compute
LA-CC: LA Conflict Check
LA-LT: LA Link Traversal

BYPASS PIPELINE

NON-BYPASS PIPELINE

ST
Flit Pipeline

Lookahead
Pipeline

(b) SWIFT pipelines.

Figure 3-3: SWIFT Router Microarchitecture and Pipelines.

one succeeded in bypassing that router. Most NoC designs use multiple virtual net-

works to avoid protocol level deadlocks. While request virtual networks often require

point-to-point ordering for consistency reasons, response virtual networks often do

not place this constraint, and TFC can be used within these virtual networks. A

potential network traversal in the SWIFT NoC using tokens and lookaheads is shown

in Figure 3-1(d).

3.3.3 Router Microarchitecture

SWIFT tries to present a one-cycle router to the data by performing critical con-

trol computations off the critical path. The modifications over a baseline router are

highlighted in black in Figure 3-3(a). In particular, each SWIFT router consists of

two pipelines: a non-bypass pipeline which is three-stages long (and the same as a

state-of-the-art baseline described in Section 3.2), and a bypass pipeline, which is

only one-stage and consists of the crossbar traversal along the data (flit) path, and

switch allocation along the control (lookahead) path. The router pipeline is followed

by a one-cycle link traversal.

Figure 3-3(b) shows the pipeline followed by the lookaheads to enable them to

arrive a cycle before the flit, and participate in the switch allocation at the next

router. All flits try to use the bypass pipeline at all routers. The fall-back is the

baseline three-stage non-bypass pipeline.

68

3.3. SWIFT Router Microarchitecture

Lookahead
received

Is lookahead for
head flit?

Use route from VC
state table

Determine next
router from current

output port

Compute output
port at next router
such that the route

has maximum
tokens ON

Update route in VC
state table

YES NO

(a) LA-RC.

More than one
lookahead requesting

same output port?

Lookahead
received

Grant output port to
lookahead

Grant output port to
lookahead using

switch priority vector

Same output port
granted by SA-O?

Is lookahead for
head flit?

Does next
router have free

VCs?
Is token from next router

ON? (=> free buffer)

Is any flit for this packet
buffered at current router?

YES NO

YES

NO
NO

NO

YES

YES

YES

YES

NO

Kill SA-O
grant

Disable
bypass

Disable
bypassDisable

bypass

Enable
bypass

LookAhead Conflict Check

(b) LA-CC.

Figure 3-4: Flow Chart of Lookahead Pipeline Actions.

Lookahead Route Compute (LA-RC.) The lookahead of each head flit per-

forms a route compute (LA-RC) to determine the output port at the next router [27].

This is an important component of bypassing because it ensures that all incoming flits

at a router already know which output port to request, and whether to potentially

proceed straight to ST. We used West-first routing, an adaptive-routing algorithm

that is deadlock free [22]. The adaptive-routing unit is a combinational logic block

that computes the output port based on the availability of the tokens from 3-hop

neighboring routers, which is explained later, rather than use local congestion met-

rics as indication of traffic. An overview of LA-RC is shown in Figure 3-4(a).

Lookahead Conflict Check (LA-CC). The lookahead places a request for the

output port in the LA-CC stage, which grants it the output port unless there is a

conflict or the output port does not have free VCs/buffers. An overview of LA-CC

is shown in Figure 3-4(b). LA-CC occurs in parallel to the SA-O stage of the non-

bypass pipeline, as shown in Figure 3-3(a). A lookahead is given preference over

69

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

the winners of SA-O, and conflicts between multiple lookaheads are resolved using

the switch priority vector described earlier in Section 3.3.2. Muxes connect the input

ports of the winning lookaheads directly to the crossbar ports. The corresponding flits

that arrive in the next cycle bypass the buffers, as shown in Figure 3-3(a). Any flits

corresponding to killed lookaheads, meanwhile, get buffered and use the non-bypass

pipeline.

Lookahead Link Traversal (LA-LT). While the flit performs its crossbar

traversal, its lookahead is generated and sent to the next router. All the fields required

by the lookahead, shown in Figure 3-2, are ready by the end of the previous stage of

LA-RC and LA-CC. Figure 3-3(b) shows how the lookahead control pipeline stages

interact with the flit pipeline stages in order to realize a one-cycle critical data-path

within the router.

3.4 Low-Voltage Swing On-Chip Wires

The custom reduced-swing interconnect circuits for the SWIFT NoC were designed by

Prof Patrick Chiang and his PhD student Jacob Postman at Oregon State University.

This section is included in this thesis for completeness.

SWIFT’s bypass pipeline has two stages, switch and link traversal, corresponding

to the data-paths through the crossbar switch and the core-to-core interconnect re-

spectively. Both are critical NoC components and major contributors to power and

area budgets, amounting to 32% of the network power and nearly 10% of total chip

area [37].

Unlike locally connected logic cells that communicate through short, locally-routed

wires, crossbar and link interconnect exhibit long distances and close inter-wire cou-

pling, such that dynamic power consumption is dominated by large wire capacitances

rather than gate input capacitances. To reduce the power required to drive these

large capacitive wire loads, reduced-voltage swing signaling was implemented using

dual voltage supply differential reduced-swing drivers (RSD) (Figure 3-5(a)), followed

by a simple sense-amplifier receiver (Figure 3-5(d)). The lower supply voltage is gen-

70

3.4. Low-Voltage Swing On-Chip Wires

	

RSD RSDRX

RXBIT 0

BIT 1

BIT •••

BIT 63

1mm

Bit 0

Bit 0

IN
+

-

Crossbar Input from Router

Core-to-core Links
Port 4

Port 0

(a) (b)

Bit 0 1 2 3 4 5 6 7

Bit 63

(c)
PORT 4
OUTPUT

PORT 1
OUTPUT

PORT 0
OUTPUT

PORT 3
OUTPUT

PORT 2
OUTPUT

PO
R

T
4

IN
PU

T
PO

R
T

0
IN

PU
T

PO
R

T 2
IN

PU
T

PO
R

T 3
IN

PU
T

PO
R

T 1
IN

PU
T

RSD

RX

(d)

VDDLOW

VDDHI

VDDHI

VDDLOW

IN

+
-

CLK

CLK

SAOUT

SAOUT

VDD

VSS

SR
Latch

CLK

OUT

Figure 3-5: Crossbar and link circuit implementation (a) Reduced Swing Driver (RSD).
(b) Bit-slice array crossbar layout. (c) Crossbar bit-slice schematic with link
drivers at slice output ports. (d) Clocked sense amplifier receiver (RX).

erated off-chip, allowing for signal swings to be adjusted easily during testing as the

difference between the two supplies. In practice, voltage supplies 0.2V to 0.4V be-

low the core logic supply are often already available on-chip for SRAM caches or

other components that operate at a reduced supply voltage. Occupying 7.8um2 and

15.2um2 respectively, the same driver and receiver are used in both the crossbar and

link designs.

While differential signaling approximately doubles the wire capacitance of each

bit by introducing a second wire, it removes the necessity of multiple buffer stages

and enables the use of reduced voltage swings, resulting in quadratic power savings

in the data-path. For example, if the power required to drive a wire is given by

Equation (3.1), then the power required to drive the differential wires at 200mV is

approximately given by Equation (3.2).

P(swing=1.2V) =
1

2
CwireV

2f (3.1)

P(swing=200mV) =
1

2
(2Cwire)

1

36
V 2f =

1

18
P(swing=1.2V) (3.2)

Hence, reducing the voltage swing from 1.2V to 200mV results in greater than 94%

71

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

reduction in the power required to drive the interconnect wire. At 200mV swing, more

than 98% of the crossbar and link power is consumed by the clock distribution, switch

selection signals, driver input capacitance, and the sense amplifiers used to resolve the

low-voltage swing signals. Further reductions in voltage swing require either larger

transistors or offset correction in the receiver to overcome input offset, diminishing the

return on additional voltage swing reduction in the data-path. The area-efficient sense

amplifiers, shown in Figure 3-5(d), are designed with near-minimum sized transistors

and with approximately 100mV simulated 3σ offset are used rather than larger or

more complex devices that achieve better input sensitivity.

3.4.1 Reduced-Swing Link

A significant body of work exists exploring high-speed, energy-efficient, on-chip inter-

connects that attempt to achieve the lowest mW/Gbps on narrow interconnect wires

across distances up to 10mm. However a typical 2D-mesh NoC is likely to require

wide, parallel links spanning a distance of just 1-2mm [37], limiting the practicality

of previously proposed on-chip interconnects. For instance, while Bae et al. [11] and

Kim et al. [46] achieve 3Gbps and 4Gbps on a 10mm link, the transceivers occupy

887um2 and 1760um2 respectively. By contrast, in this design, the combined driver

and receiver area is only 23um2, allowing the many transceivers required for a wide

data bus to be realized in an acceptable area footprint.

A major concern for the proposed interconnect is susceptibility to crosstalk inter-

ference from digital logic signals on lower metal layers, as reduced-swing signals are

particularly sensitive to coupled noise from nearby full-swing wires. To address this,

shielding wires were routed on M6 between and in parallel to the differential pairs

on M7. This differential-mode shielding approach adds less capacitance to the sig-

nal wires than routing ground shielding under the entire link, while still minimizing

crosstalk from signals that would couple asymmetrically on to one of the differen-

tial wires. Worst case simulated differential mode crosstalk from a 1mm full swing

aggressor signal is reduced from 128mV without shielding to 29mV with shielding,

providing sufficient voltage margin to preserve signal integrity at 200mV signal swing

72

3.4. Low-Voltage Swing On-Chip Wires

and 100mV receiver input offset.

3.4.2 Reduced-Swing Crossbar

The simplest and most obvious crossbar layout is to route a grid of vertical and

horizontal wires with pass-gates or tri-state buffers at their intersection points, as

shown in Figure 3-5(c). While simple, this approach suffers from a number of major

disadvantages including poor transistor density, low bandwidth and a n2 bit-to-area

relationship. Higher crossbar speeds and improved density can be achieved using

mux-based switches that place buffered muxes throughout the area of the crossbar

or by implementing crossbar pipelining to improve speed by allowing sections of the

wire load to be driven in separate clock cycles. While simple to implement in digital

design flows, both approaches introduce additional loading in the form of increased

fanout buffering and clock distribution that results in increased power consumption.

Based on these observations, the crossbar implemented in this design improves

both performance and energy efficiency by replacing crossbar wires with low-swing

interconnect. This approach seeks to drive as much of the large wire capacitances of

the crossbar as possible with a reduced voltage swing, without introducing additional

clocked elements or buffers. Implemented as a bit-sliced crossbar, each of the 64-bits

in each of the five input buses is connected to a one-bit wide, 5-input to 5-output

crossbar, along with the corresponding bits from each of the other four ports. An

8×8 grid is then patterned out of 64 of these bit-cell crossbars in order to construct

a 64-bit wide, 5x5 crossbar as shown in Figure 3-5(b).

Each crossbar bit-slice consists of 5 sense amplifiers, 20 pass-gates and 5 RSDs as

shown in Figure 3-5(c). Each of the five reduced-swing differential inputs is driven

at the periphery of the crossbar by an RSD connected to the output of the router

logic. At the positive clock edge, each of the five low-swing differential inputs is

converted to full-swing logic by the sense amplifier and drives a short 6um wire

through a pass-gate transistor, and then into the interconnect RSD at one of the four

possible output ports (U-turns are not allowed). The receiver, which consists of a near-

minimum sized, 9-transistor sense-amplifier followed by a minimum-sized NAND-SR

73

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

Figure 3-6: 2x2 SWIFT NoC prototype overview and die photo, overlaid with node
1 layout. Specs: Technology=90nm, Freq=400MHz, Voltage=1.2V,
Area=4mm2, Transistors=688K

latch, acts as a DFF with low-swing differential inputs, replacing the flip-flop that

would otherwise reside at the output of the crossbar-traversal pipeline stage. Like

mux-based crossbars, this crossbar topology results in irregular data-paths across the

64b parallel interconnect, requiring that the maximum crossbar speed be bounded

by the longest data-path delay through the crossbar. Full-swing select signals are

routed on M1 and M2, differential data signals are routed on minimum width wires

on M3-M5, and a separate clock wire is routed on M7 for each port. The clock is

custom-routed to closely match the worst case RC delay of the data-path in order to

minimize clock skew.

3.5 Design features for Testability

In this section, we describe the various features added to the design to facilitate

testing and measurement.

3.5.1 Network Interfaces (NIC)

Each router is connected to a Local Network Interface (L-NIC) which houses a traffic

injector and a traffic receiver.

74

3.5. Design features for Testability

The traffic injectors generate uniform random traffic (traffic to destinations that

are randomly generated using a PRBS generator), at an injection rate specified via

a scan chain. They also generate lookaheads based on tokens. To avoid the need for

buffering, the traffic injectors generate packets one at a time6. Each traffic injector

uses a 32-bit counter that signifies the current time stamp, synchronized via the

global reset signal. Data flits carry their generation time in the data field to aid in

the calculation of flit latency.

The traffic receivers at the L-NICs receive flits and send back the free VC and

On/Off token signals. In addition, they compute the total received packets and total

packet latency.

For the 2×2 mesh test chip, in addition to the L-NICs, each router includes

Congestion Network Interfaces (C-NICs) connected to its two unconnected ports at

the edges of the mesh. These are added to enable simulations of the router with

varying activity at all ports. The C-NICs also incorporate a traffic injector and a

traffic receiver. They also send out tokens to emulate a larger mesh. Overall we have

12 traffic injectors on the chip, as shown in Figure 3-6.

In our test chip, the traffic injectors work in two modes: non-congestion and

congestion. In the non-congestion mode, only the 4 traffic injectors in the L-NICs

inject packets to be sent to the other three L-NICs in the 2×2 network. In the

congestion mode, we try to mimic the traffic within the 2×2 network as if it were at

the center of an 8×8 mesh. The 4 L-NICs and the 8 C-NICs inject traffic meant for

the other 63 nodes in the hypothetical 8×8 network. Injection rate at the C-NICs

is set at double the L-NIC injection rate to correctly model the channel load of one

slice of an 8×8 mesh [22].

6The traffic generator does not have extra buffers to store packets that are generated but cannot
go into the network due to congestion. Thus it only supports one packet at a time, which means that
packet generation cannot take place if there is another packet waiting to be injected. The artifact of
this is that queuing delay at the network interface is not modeled and thus at high input injection
rates, packet latencies saturate instead of rising to very high values.

75

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

Table 3.1: Modes of operation

Parameter Description
Test Network Send only one test packet to specified destination

Bypass Enable Enable/Disable bypassing in the routers
Congestion Traffic Send congestion traffic from L-NICs and C-NICs
Clk Gating Enable Allow clock gating in crossbar

Stats Enable Enable statistics collection at the NICs

Table 3.2: Outputs from chip

Register Bits Description
Simulation Time 32 Total cycles for which the simulation was run

Total latency 32 Total received packet latency
Total packets 32 Total received packets

ni destination error 1 Flit received at wrong destination L-NIC
ni ooo error 1 Flits of packet received out of order at L-NIC

rtr route error 5 Flits of same packet requesting different output ports
at router inport

rtr ooo error 5 Flits of same packet arrived out of order at router inport

3.5.2 Error Detection

Specific error bits are set at each of the four routers and the four L-NICs if flits are

received out-of-order or at incorrect destinations. All of these error bits are scanned

out at the end of the simulation to determine the frequency at which the chip fails.

3.5.3 Scan Chains

A 1640-bit scan chain connects through the 12 NICs in the 2×2 chip to set the

various parameters (PRBS seeds, the injection rates, and the modes of operation) at

the beginning of a simulation. Bypassing, clock-gating and congestion modes can each

be enabled or disabled. The various modes of operation of the network are specified in

Table 3.1. At the end of the simulation, the scan chain reads out the packet statistics

(total packets received, total latency, simulation cycles) and the error bits, as shown

in Table 3.2.

76

3.6. Evaluations

Table 3.3: Comparison of NoC designs

Parameter TilePro64 [81] TeraFLOPS [37] TRIPS [31] Baseline? SWIFT

Process parameters
Technology 90nm 65nm 130nm 90nm 90nm
Frequency 700-866 MHz 5GHz 366 MHz NA 400 MHz

Router Area Not available 0.34mm2 1.10mm2 0.48†mm2 0.48mm2

Network parameters
Topology 8×8 mesh 8×10 mesh 4×10 mesh 8×8 mesh 8×8 mesh‡

Flit size 32b 39b 138b 64b 64b
Msg Length 1-128 flits 2+ flits 1-5 flits 5 flits 5 flits

Routing XY Source YX XY West-first
Flow Ctrl Wormhole VC VC VC TFC [56]
Buff Mgmt Credit On/Off Credit On/Off TFC [56]

Router parameters
Ports 5 5 6 5 5

VCs/port 0 (5 nets) 2 4 2 and 4 2
Buffers/port 12 (3/dyn net) 32 8 8 and 16 8

Crossbar 5x5 5x5 6x6 5x5 5x5
? Not fabricated, only laid out for comparison purposes.

† BASELINE (tr = 3) tile was given same area as SWIFT for place-and-route.
‡ 2×2 mesh for test chip.

3.6 Evaluations

In this section, we report both the simulated and measured results of the SWIFT

NoC prototype, and compare it to a BASELINE (tr=3) NoC.

3.6.1 SWIFT NoC

SWIFT NoC parameters are shown in Table 3.3. We chose eight buffers per port,

shared by 2 VCs. This is the minimum number of buffers required per port, with one

buffer reserved per VC for deadlock avoidance and six being the buffer turnaround

time with onoff signaling between neighboring routers. We used standard-cell libraries

provided by ARM Corporation for synthesis. The place and route of the router RTL

met timing closure at 600 MHz. The process technology used and use of standard

cells instead of custom layouts, limits our router design from running at GHz speeds,

such as in Intel’s TeraFLOPS Router [37]. Note that based on extracted layout

simulations, the custom reduced-swing transceivers are designed to operate at 2 GHz

across 1-mm distances with 250-mV voltage swing. In an actual Chip-Multi Processor,

77

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

a tile consists of both the processing core, and a router, with the router accounting

for less than a quarter of the tile area [37]. Since we do not integrate processing cores

in this design, we place the routers next to each other for area reasons. This results

in asymmetric link lengths in our chip, but we size each driver and sense amplifier for

1mm links. A photo of our prototype test chip overlaid with the layout of node 1 is

shown in Figure 3-6.

Due to the 4mm2 network size, we use a synchronous clock with tunable delays

to each core rather than a globally-asynchronous, locally-synchronous approach as in

the TeraFLOPS chip [37], which was outside the scope of this work. The test chip

operates at 400MHz at low load, however is limited to 225MHz at high-injection due

to voltage supply droop caused by excessive resistance in the power distribution.

3.6.2 Baseline NoC

To characterize the impact of the various features of the SWIFT NoC, we imple-

mented a 3-stage baseline VC router similar to the one in UT TRIPS [31] and Intel

TeraFLOPS [37] in the same 90-nm technology. It was described in Section 3.2. The

non-bypass pipeline in SWIFT is the same as the baseline pipeline, thus allowing us

to compare the performance, power, and area of the SWIFT and the baseline designs

and the impact of our additions (bypass-logic and the reduced-swing crossbar).

Once we finalized the baseline router pipeline, we swept the number of VCs and

buffers in the baseline such that the peak operating throughput of both the baseline

and the SWIFT NoC was the same. This is described in Section 3.6.4. We use

two configurations, BASELINE 2vc-8buf (tr=3) and BASELINE 4vc-16buf (tr=3),

for network performance and power measurements.

3.6.3 Timing

Figure 3-7 shows the the critical paths of the SWIFT and baseline routers, and it

occurs during the SA-O stage in both cases7. The baseline is 400ps faster. Disecting

7Our choice of the VC select scheme made the delay of the VC allocation stage trivial; if a
separable VC allocator was used, like in TeraFLOPS [37], that would have been the critical path.

78

3.6. Evaluations

Kill SA-O
winners

SA-O resp
ready

Update VC and
buffer next states

Next state
ready

kill_lookahead
ready

SA-O req
ready

LA-CC

SWIFT critical path (Stage 2) : 1560 ps
119ps 682ps 1021ps

Lookahead
ready

Next state
ready

SA-O req
ready

Baseline critical path (Stage 2) : 1160 ps

SA-I winner
ready

290 ps

SA-O resp
ready

690ps

Update VC and
buffer next statesSA-O

Figure 3-7: Critical Paths of the SWIFT router and BASELINE (tr=3) router

the various components of the critical path gives interesting insights. The generation

of the SA-O request signals, and the updating of the VC and buffer states is faster in

SWIFT due to fewer number of VCs and buffers. The primary bottleneck in SWIFT

turns out to be the 339ps incurred in killing the SA-O winners. The SWIFT router

performs SA-O and LA-CC independently, in parallel, and then kills all the SA-

O assignments which conflict with the lookahead assignments for the same input or

output ports of the crossbar, to maintain higher priority for lookaheads. In hindsight,

we could have done this faster by combining LA-CC and SA-O: muxing out requests

from SA-I winners (buffered flits) if lookaheads arrived at those input ports, and then

arbitrating for output ports using SA-O, biasing it to give preference to lookaheads.

We adopt this optimization in a follow-on tapeout of a similar 1-cycle router in 45nm,

and achieve a 1GHz frequency. This design will be presented later in Chapter 4 in

Section 4.6.

3.6.4 Network Performance

Figure 3-8 demonstrates that the measured and simulated latency curves match,

confirming the accuracy and functionality of the chip. The 2×2 network delivers a

peak throughput of 113 bits/cycle.

79

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

Figure 3-8: Network Performance Measurements from 2×2 Chip

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	 0.01	 0.02	 0.03	 0.04	 0.05	 0.06	 0.07	

Av
g	
Pa

ck
et
	 L
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (packets/node/cycle)	

BASELINE	 _2vc-‐8buf	 (tr=3)	
BASELINE_4vc-‐16buf	 (tr=3)	
SWIFT_2vc-‐8buf	 (tr=1)	

r

r
r

(a) Latency in cycles.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	

Av
g	
Pa

ck
et
	 L
at
en

cy
	 (n

s)
	

Injec3on	 Rate	 (Gbps/node)	

BASELINE_2vc-‐8buf	 (tr=3)	
BASELINE_4vc-‐16buf	 (tr=3)	
SWIFT_2vc-‐8buf	 (tr=1)	

r

r

r

(b) Latency in ns.

Figure 3-9: Network Performance of 8×8 SWIFT NoC.

Average Packet Latency (cycles). We first compare the average packet

latencies of the 8×8 SWIFT NoC and the baseline NoC in cycles via RTL simula-

tions. Figure 3-9(a) plots the average packet latency as a function of injection rate

for SWIFT, and two interesting design points of the baseline: BASELINE 2vc-8buf

(tr=3) and BASELINE 4vc-16buf (tr=3). At low loads, SWIFT provides a 39% la-

tency reduction as compared to the baseline networks. This is due to the almost

100% successful bypasses at low traffic. At higher injection rates, BASELINE 2vc-

8buf (tr=3) saturates at 21% lower throughput. SWIFT leverages adaptive routing

via tokens, and faster VC and buffer turnarounds due to bypassing, in order to im-

prove link utilization which translates to higher throughput. BASELINE 4vc-16buf

(tr=3) matches SWIFT in peak saturation throughput (the point at which the average

network latency is three times the no-load latency) in bits/cycle.

80

3.6. Evaluations

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

)
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
9a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	

Full-‐state	 Directory	

N
or
m
al
iz
ed

	 R
un

/m
e	 BASELINE	 (tr=3)	 SWIFT	 (tr=1)	 IDEAL	 (tr=1)	 r r r

Figure 3-10: Full-System Runtime of SWIFT compared to BASELINE (tr=3) and
IDEAL (tr=1) NoCs.

Average Packet Latency (ns). If we take the critical paths of SWIFT and the

baseline in account, the latter network can run at a frequency 1.34 times faster than

the former. Under this operating condition, Figure 3-9(b) shows the performance

results of the 8×8 NoCs in nanoseconds, instead of cycles. The SWIFT NoC shows a

20% latency reduction at low-load as compared to the baselines, and similar saturation

throughput as BASELINE 2vc-8buf (tr=3).

3.6.5 Full-system Performance

Figure 3-10 compares the full-system runtime of a CMP running a full-state directory

protocol and implementing the SWIFT NoC against those implementing the BASE-

LINE (tr=3) and IDEAL (tr=1) NoCs8 across a suite of SPLASH-2 and PARSEC

benchmarks. The configuration parameters of the simulation were described earlier in

Section 2.3. The protocol uses 4 vnets (request, forward, response, unblock) and we

give 4 VCs to each in all designs. SWIFT reduces runtime by 26% on average com-

pared to the baseline, and is less than 2% away from the IDEAL (tr = 1) NoC. The

benchmarks do not stress the NoC much, and hence we did not observe any significant

impact of fewer/more VCs, or of adaptive routing via tokens vs. XY routing.

8Section 2.3.1 describes the implementation of the contention-less ideal NoC.

81

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

19.92	

14.57	
10.42	 10.08	

7.44	

7.44	

3.97	
2.82	

0	

10	

20	

30	

40	

50	

Baseline_4-‐16	
(sim)	

Baseline_2-‐8	
(sim)	

SWIFT	 	 	 	 	 	
(sim)	

SWIFT	 	 	 	 	 	
(sim)	

SWIFT	 	 	 	 	 	
(meas)	

(4	 VC,	 16	 buf)	 (2	 VC,	 8	 buf)	 ClkGate	 =	 0	 ClkGate	 =	 1	 ClkGate	 =	 1	

Po
w
er
	 (m

W
)	

Xbar+Links	 (sim)	
Clocking-‐Xbar+Links	 (sim)	
Clocking-‐Router	 (sim)	
Buffers	 (sim)	
Allocators	 (sim)	
Control	 (sim)	
L-‐NIC	 (sim)	
Xbar+Links	 (meas:	 dynamic)	
Xbar+Links	 (meas:	 leakage)	
Router	 (meas	 :dynamic)	
Router	 (meas:	 leakage)	

(a) High Traffic (1 packet/NIC/cycle).

6.90	

5.72	
3.02	 2.88	

4.17	

4.17	

2.99	
1.78	

0	

10	

20	

30	

Baseline_4-‐16	
(sim)	

Baseline_2-‐8	
(sim)	

SWIFT	 	 	 	 	 	
(sim)	

SWIFT	 	 	 	 	 	
(sim)	

SWIFT	 	 	 	 	 	
(meas)	

(4	 VC,	 16	 buf)	 (2	 VC,	 8	 buf)	 ClkGate	 =	 0	 ClkGate	 =	 1	 ClkGate	 =	 1	

Po
w
er
	 (m

W
)	

Xbar+Links	 (sim)	
Clocking-‐Xbar+Links	 (sim)	
Clocking-‐Router	 (sim)	
Buffers	 (sim)	
Allocators	 (sim)	
Control	 (sim)	
L-‐NIC	 (sim)	
Xbar+Links	 (meas:	 dynamic)	
Xbar+Links	 (meas:	 leakage)	
Router	 (meas	 :dynamic)	
Router	 (meas:	 leakage)	

(b) Low Traffic (0.03 packets/NIC/cycle).

Figure 3-11: Measured Router Power at High and Low Injection.

3.6.6 Power

We compare the SWIFT and baseline routers at the same performance (throughput)

points for fairness. In Section 3.6.4, we observed that BASELINE 4vc-16buf (tr=3)

matches SWIFT in saturation throughput if both networks operate at the same fre-

quency. BASELINE 2vc-8buf (tr=3) matches SWIFT in saturation throughput if it

operates at a higher frequency, or if the networks are operating at low loads. We re-

port power numbers for both BASELINE 2vc-8buf (tr=3) and BASELINE 4vc-16buf

(tr=3) for completeness.

We perform power simulations and measurements at a frequency of 225 MHz and

VDD of 1.2 V, and the results are shown in Figure 3-11(a) and 3-11(b) at high and low

loads, respectively. In both graphs, all 12 traffic generator NICs are injecting traffic.

The low-swing drivers were set to 300-mV signal swing. Because the L-NIC shares

a supply with the router while the crossbar shares a supply with the reduced-swing

links, it was not possible to measure each of the blocks separately. Instead, post-layout

extracted simulations were performed to obtain an accurate relative breakdown of

the power consumption of the different components, which were then compared and

validated with chip measurements of the combined blocks.

At high loads, operating at the same frequency, BASELINE 4vc-16buf (tr=3)

matches SWIFT in performance, but has 49.4% higher buffer and 62.1% higher cross-

bar and link power. SWIFT (last two bars in Figure 3-11(a)) achieves a total power

reduction of 38.7% at high injection, with the chip consuming a peak power of 116.5

82

3.6. Evaluations

mW. At low loads, operating at the same frequency, BASELINE 2vc8buf (tr=3) can

match SWIFT in performance, but consumes 24.6% higher power than SWIFT (last

two bars in Figure 3-11(b)).

BASELINE 2vc-8buf (tr=3) and SWIFT have the same VC and buffer resources.

SWIFT adds buffer bypassing logic (using tokens and lookaheads), and the low-swing

crossbar. Thus comparing BASELINE 2vc-8buf (tr=3) and the first bar of SWIFT

shows us that buffer bypassing reduces power by 28.5% at high loads, and 47.2% at

low loads, while the low-swing data-path reduces power by 46.6% at high loads and

28.3% at low loads. These results are intuitive, as buffer write/read bypasses have a

much higher impact at lower loads when their success rate is higher, while data-path

traversals are higher when there is more traffic.

Lookahead signals allow the crossbar allocation to be determined a cycle prior

to traversal, making per-port, cycle-to-cycle clock gating possible. Therefore, clock

gating was implemented at each crossbars input port, using the crossbars forwarded

clock, reducing the crossbar clock distribution power by 77% and 47%, and sense

amplifier power by 73% and 43% at low and high injection, respectively.

The combined average energy-efficiency of the crossbar and link at the network

saturation point is measured to be 128 fJ/bit, based on chip measurements of the

crossbar and link currents, and the count of the received packets.

Overheads. The west-first adaptive routing logic used for tokens, the lookahead

arbitration logic, and the bypass muxes account for less than 1% of the total power

consumed in the router, and are therefore not a serious overhead. This is expected, as

the allocators account for only 3% of the total power, consistent with previous NoC

prototypes. The control power of the SWIFT NoC is observed to be 37.4% lower than

BASELINE 4vc16buf (tr=3), due to fewer buffers and VCs (hence smaller decoders

and muxes) required to maintain the same throughput. The overall control power of

SWIFT is approximately 26% of the entire router power, as seen in Figure 3-11. This

high proportion is primarily due to a large number of flip-flops in the router, many

of which were added conservatively to enable the design to meet timing constraints,

and could have been avoided by using latches. In addition, the shared buffers require

83

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

Table 3.4: Area Comparison (Absolute and Percentage)

Component SWIFT Area, % of total BASELINE (tr=3) Area, % of total
Tokens 1,235 um2, 0.82% 0
Bypass 10,682 um2, 7.10% 0
Buffers 72,118 um2, 47.94% 81,231 um2, 40.08%

Crossbar 15,800 um2, 10.50% 21,584 um2, 10.64%
Control 50,596 um2, 33.63% 99,856 um2, 49.27%
Total 150,431 um2, 100% 202,671 um2, 100%

significant state information in order to track the free buffer slots and addresses

needed for each flit, adding more flip-flops to the design.

3.6.7 Area

The baseline and SWIFT routers primarily differ in the following hardware compo-

nents: tokens, lookahead signals with corresponding bypassing logic, buffers, VCs,

and crossbar implementation. We estimate the standard-cell area contributions of

each of these components, and compare these in Table 3.4. For the custom crossbar,

we use the combined area of the RSD, switching devices and sense amplifier circuits

as the metric to compare against the matrix crossbar’s cell area. The total area of

the SWIFT router is 25.7% smaller than the baseline router. This is the essential

take-away of the SWIFT design: the 8% extra circuitry for tokens and bypassing, in

turn results in a 11.2% reduction in buffer area and 49.3% reduction in control area

(due to fewer VCs and corresponding smaller decoders and allocators) required to

maintain the same peak band width, thereby reducing both area and power!

The SWIFT NoC also has some wiring overheads. The 23-bit token signals from

the 3-hop neighborhood at each router add 7% extra wires per port compared to

the 64-bit data path. The 14 lookahead bits at each port carry information that is

normally included in data flits and so are not strictly an overhead9. Additionally,

while Table 3.4 highlights that the active device area of the reduced swing custom

crossbar is less than that of a synthesized design, differential signaling requires routing

twice as many wires as well as potentially requiring an additional metal layer if

9The flit width can either be shrunk or packets can be sent using fewer flits, both not incorporated
in our results, which will further enhance SWIFT’s area or performance benefits over the baseline.

84

3.7. Related Work

shielding is required for the application.

3.7 Related Work

The TILEPro64 [81] from Tilera (inspired by MITs RAW processor [77]) is a 64-core

chip that uses five separate 8×8 mesh networks. One of these networks is used for

transferring pre-defined static traffic, while the remaining four carry variable-length

dynamic traffic, such as memory, I/O, and userlevel messages. The TRIPS [31] chip

from UT Austin uses two networks, a 5×5 operand network to replace operand bypass

and L1 Cache buses, and a 4×4 on-chip network (OCN) to replace traditional memory

buses. The Intel TeraFLOPS [37] 80-core research chip uses an 8×10 network for

memory traffic. Table I compares the design components for these three prototypes

for their multiflit memory networks. The table also summarizes the design of our

state-of-the-art BASELINE (tr=3) NoC (designed for comparison purposes similar to

UT TRIPS and Intel TeraFLOPS), which was described earlier in Section 3.2. The

three prototypes used text book routers [22] with simple flow control algorithms, as

their primary focus was on demonstrating a multicore chip with a packet-switched

network beyond conventional buses and rings. In the SWIFT NoC project, we take a

step further, and explore a more optimized network design, TFC [56], with reduced-

swing circuits in the data-path. We simultaneously address network latency (buffer

bypassing, one-cycle router), throughput (adaptive routing, buffer bypassing at all

traffic levels using tokens and lookaheads), and power (buffer bypassing, low-swing

interconnect circuits, clock gating). The SWIFT NoC optimizations can potentially

enhance the simple networks of all these multicore prototypes.

3.8 Chapter Summary

In this chapter, we presented the microarchitecture of a 1-cycle router, and detailed

our efforts in prototyping an instance of this design called SWIFT. We fabricated a

2×2 slice of a target 8×8 mesh NoC in 90nm. A lookahead-based router pipeline

85

Chapter 3. Single-cycle Per-hop NoC for 1-to-1 Traffic

bypassing scheme, coupled with reduced-swing links in the crossbar and between

routers, contribute to a 39% reduction in average network latency and 38% reduction

in router power with uniform random traffic, compared to a state-of-the-art NoC with

3-cycle routers. Full-system simulations demonstrate a 26% reduction in runtime,

which is within 2% of what an ideal NoC with 1-cycle routers and no contention can

provide. The microarchitectural novelties of SWIFT can potentially be applied to

any NoC router design.

In the rest of the chapters, we assume a SWIFT router-like 1-cycle router as our

baseline. Since token-based adaptive routing does not gain us a lot in full-system

performance, we henceforth use simple XY routing in our baseline, unless specified.

We also assume full-swing circuits in the crossbar and links, both in our baseline as

well as all proposed NoCs, to be able to use architectural power simulators Orion

2.0 [43] and DSENT [76] which do not model low-swing circuits. We will refer to

this baseline design as the BASELINE (tr=1) NoC in the rest of the thesis. In

the next two chapters, we enhance this NoC to support 1-to-Many and Many-to-1

communication flows.

86

4
Single-cycle Per-hop NoC for 1-to-Many Traffic

Friends, Romans, countrymen, lend me your ears.
- William Shakespeare, Julius Caesar, Act III, Scene II

This chapter presents a NoC architecture with forking support at routers to effi-

ciently deliver 1-to-Many (broadcast/multicast) traffic that is present in many shared

memory cache coherence protocols. The techniques presented aim to reduce both

per-hop contention tc(h) (via in-network forking and load-balanced distribution) and

router delay tr (to 1-cycle) in Equation 1.1 for 1-to-Many flows, unlike prior works

which optimize one term at the cost of others.

4.1 Introduction

There are several different types of cache coherence protocols, each of which places

different demands on the network connecting the cores. At one end of the cache co-

herence protocol design spectrum are broadcast-based protocols [61, 8, 75, 9]. These

designs have the advantage of not requiring any directory storage, but have the lim-

itation of increased network bandwidth demands because all requests and invali-

dates are broadcast. At the other end, full-state directory protocols [59, 60] track

all sharers, reducing network demand by replacing broadcasts with precise unicasts

and multicasts. However, the required storage increases area and energy costs as core

counts scale. More scalable directory protocols [34, 15, 21, 1, 71, 58], including com-

87

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

mercial designs like Intel’s Quick Path Interconnect (QPI) protocols [1] and AMD’s

HyperTransportTMAssist [21] incorporate partial directories to consume less storage

than a full-state directory, and rely on a combination of broadcasts, multicasts, and

direct requests to maintain coherence.

Section 2.2.1 in Chapter 2 we classified the communication patterns of proto-

cols as 1-to-1, 1-to-M, and M-to-1 where M refers to multiple sources or destina-

tions (1 < M <= N). 1-to-1 communication occurs in unicast requests/responses

exchanged between cores. 1-to-M communication occurs in broadcasts and multicast

requests [9, 1, 8, 75, 61]. M-to-1 communication occurs in acknowledgements [9, 1]

or token collection [61, 71] in protocols to maintain ordering. In the on-chip domain,

conventional wisdom dictates that 1-to-M and M-to-1 traffic should be avoided, as-

suming the on-chip network will not be able to handle such high bandwidth. Instead,

the coherence mechanism involves serialized lookups through multiple caches and

directories, adding latency to misses.

In this chapter and the next, we challenge this conventional wisdom and show that

a network specifically designed to handle 1-to-M and M-to-1 traffic can approach the

performance of an ideal network with 1-cycle routers, eliminating the need to avoid

these patterns in the coherence protocol. In this chapter, we present Flow Across

Network Over Uncongested Trees (FANOUT) [52], a set of optimizations that address

inefficiencies in current state-of-the-art 1-to-M network designs. We propose a load-

balanced routing algorithm called Whirl, a crossbar circuit called mXbar that forks

flits at the similar energy/delay as unicasts, and a flow control technique for bypassing

buffers; to realize single-cycle routers for 1-to-M flows. We also present a fabricated

prototype of a 4x4 NoC with FANOUT routers at every hop, running at 1GHz [66].

Simulations with synthetic broadcast traffic show 61% lower latency, and 63%

higher throughput than a state-of-the-art baseline NoC with multicasting support.

Full-system simulations with the broadcast-intensive Token Coherence protocol show

10% reduction in application runtime, and 20% reduction in network energy, which

are just 2.5% and 12% higher than the runtime and energy of a network with ideal

1-cycle multicast routers.

88

4.2. Motivation

Section 4.2 of this chapter motivates our work by presenting relevant related work

that form our baselines, and presents the characteristics of an ideal multicast net-

work. Section 4.3 to Section 4.5 present the various features of FANOUT. Section 4.6

presents our fabricated chip. Section 4.7 presents our evaluations with synthetic and

full-system traffic. Section 4.8 concludes.

4.2 Motivation

In Chapter 2 Section 2.2.1 we presented the breakdown of 1-to-1, 1-to-M and M-to-1

message flows for several multi-threaded workloads across HyperTransport [9] and

Token Coherence [61]. For HyperTransport, 1-to-M requests form 14.3% of injected

messages on average, while for Token Coherence, they form 52.4% of all injected

messages, with M = 64 (i.e., full-chip broadcast) in both cases. There is clearly a

need for NoCs that optimize for such traffic.

4.2.1 Baseline NoCs for 1-to-M flows

Most research in on-chip networks has concentrated only on optimizing 1-to-1 flows.

1-to-M flows are realized by sending M unicast packets from the source NIC. This

approach causes heavy congestion at the link from the source NIC, creating hot spots.

It also floods the network due to the bursty nature of these messages, loading some

links M times over their capacity of 1 flit per cycle, leading to high contention and a

dramatic rise in packet latency and corresponding penalties in throughput and energy.

We will use the term fork@nic to refer to this baseline.

VCTM [41] identified the congestion problem for 1-to-M traffic with fork@nic

designs, and there have been recent works [41, 26, 72, 79, 73] with solutions to mitigate

it. While these differ in terms of routing algorithms, target systems, and the scale of

M , in essence they propose routers with the ability to fork flits (i.e., a single multicast

packet enters the network, and multiple flits are replicated and sent out of each output

port towards their destinations at intermediate routers). We collectively term these

works as fork@rtr.

89

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

4.2.2 Ideal Broadcast Mesh

Table 4.1: Theoretical Limits of a k×k mesh NoC for unicast and broadcast traffic.

Metric Unicasts Broadcasts

Average Hop Count 2(k + 1)/3 (3k − 1)/2, for k even
(Haverage) (k − 1)(3k + 1)/2k, for k odd
Channel Load on each bisection link k×R/4 k2×R/4
(Lbisection)
Channel Load on each ejection link R k2×R
(Lejection)

Theoretical Latency Limit 2×2(k + 1)/3 2×(3k − 1)/2, for k even
given by Haverage 2×(k − 1)(3k + 1)/2k, for k odd
Theoretical Throughput Limit R, for k <= 4 k2 ×R
given by max{Lbisection, Lejection} k×R/4, for k > 4

A mesh topology by itself imposes theoretical limits on minimum possible latency,

and maximum possible throughput for different kinds of traffic. Here we derive and

report the limits for uniform random unicast and broadcast traffic.

We assume a k×k mesh NoC injecting two kinds of traffic, unicast and broadcast.

Specifically, each NIC injects flits into the network according to a Bernoulli process

of rate R, to a random, uniformly distributed destination for unicasts, and from a

random, uniformly distributed source to all nodes for broadcasts. All derived bounds

are for a complete action: from initiation at the source NIC, till the flit is received

at all destination NIC(s). For unicasts, these theoretical limits can be found in

any textbook on NoCs [22]. For broadcast traffic, to the best of our knowledge, no

prior theoretical analysis exists, and we describe our derivation next. Our results are

reported in Table 4.1.

We derive the theoretical latency limit for received packets by averaging the hop

delay from each source NIC to its furthest destination NIC. We assume a 1-cycle

router + 1-cycle link at every hop.

We derive the theoretical throughput limit by analyzing the channel load across

the ejection links1 and bisection links2, and observed that the maximum throughput

for broadcast traffic is limited by the ejection links. This is unlike unicast traffic,

where the bisection links limit throughput [22].

1The links from the router to the NIC.
2The links at the center of the mesh that partition the network into two halves.

90

4.2. Motivation

0	

40	

80	

120	

160	

200	

240	

280	

320	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	 1.1	

Av
g	
Br
oa

dc
as
t	 L
at
en

cy
	 (c
yc
le
s)
	

Injec6on	 Rate	 (frac6on	 of	 capacity)	

BASE_fork@nic	 (tr=3)	 BASE_fork@nic	 (tr=1)	
BASE_fork@rtr	 IDEAL	 (tr=1)	

Latency	 Gap	

Throughput	 Gap	

r r

r

(a) Synthetic broadcast-only traffic.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	
1.2	

ba
rn
es
	

3
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
>a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
>o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	

Token	 Coherence	

N
or
m
al
iz
ed

	 A
pp

lic
at
on

	 R
un

3m
e	

BASE_fork@nic	 (tr=1)	 BASE_fork@rtr	 IDEAL	 (tr=1)	

BeYer	

BASE_fork@nic	 (tr=3)	 	
r r

(b) Full-system Runtime.

Figure 4-1: Motivation: Gaps from the Ideal.

4.2.3 Gap from the Ideal

We compare fork@nic networks, with both 3-cycle and 1-cycle (similar to the one

presented in Chapter 3) routers, and the fork@rtr network against a network with

ideal 1-cycle multicast routers. We refer to these as BASE fork@nic (tr=3),

BASE fork@nic (tr=1), BASE fork@rtr, and IDEAL (tr=1) respectively.

Figure 4-1(a) shows the latency and throughput gap between the baseline networks

and the ideal (from Table 4.1) for uniform random synthetic broadcast-only traffic.

We study the average latency for a broadcast to reach all destinations. We can

see that fork@nic networks get saturated very early due to heavy contention, while

fork@rtr networks are still far from the ideal in latency and throughput.

Figure 4-1(b) plots the full-system application runtime of systems running with

these different networks. We study Token Coherence since that has 52% broad-

casts. Compared to BASE fork@nic (tr=3), BASE fork@nic (tr=1) is 21% faster,

and BASE fork@rtr is a further 5% faster. However, BASE fork@rtr is still 13%

away from the IDEAL (tr=1) NoC.

The goal of FANOUT is to bridge these gaps. To understand the reason for these

gaps, we go back to the fundamental network latency Equation 1.1. The latency

has a fixed (router) latency and a variable (contention) latency. In BASE fork@nic

(tr=1), the former is reduced to 1, but the latter increases tremendously because of

91

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

multiple unicasts being sent from the source to mimic a broadcast, and competing

for the same set of resources along most of the route. In BASE fork@rtr, contention

delay is reduced, but it comes at the cost of an increase in router delay to 2+f cycles,

where f is the number of ports the flit wishes to fork out from. The reasons for this

increase in delay will be discussed, and addressed throughout this chapter.

Since Figure 4-1 shows that BASE fork@rtr is better than BASE fork@nic (tr=1),

we use BASE fork@rtr as the baseline design throughout the rest of the chapter.

4.3 Whirl : Load-balanced 1-to-M Routing

4.3.1 Background

Multicast packets are typically routed in a path-based or tree-based manner. In path-

based routing, a multicast packet is forwarded sequentially from one destination to

the next; there is no forking/branching into other directions to reduce per-cycle band-

width consumption, and packets are only forked out to the NIC at each destination

router. For multicasts with many destinations, and for broadcasts, this leads to the

packet snaking through the entire network. While this places the minimum load of 1

flit per cycle on each link, it results in extremely high latency for the destinations at

the end of the snake, and is thus not a scalable solution.

Tree-based routing creates virtual multicast trees in the network, and are used in

most prior works [41, 79, 72, 73, 26]. However, a major limitation of all these schemes

is that their various multicast trees reduce to one tree in the presence of broadcasts or

multicasts with many destinations (i.e., any node that broadcasts ends up using the

same tree structure for distributing the broadcast). This is because as the broadcast

moves through the network, it forks at intermediate routers based on fixed output

port priorities to avoid duplicate reception of the same packet via alternate routes3.

3For instance, in RPM [79], for destinations in the NE quadrant, the routers to the North of
the source fork the broadcast flit to their East while those on the East of the source do not fork
the flit. This ensures that only one copy of the flit is delivered to all nodes in the NE quadrants.
Similar rules are enforced for other quadrants. But this always results in the YX-tree structure in
Figure 4-2(b) for broadcasts.

92

4.3. Whirl: Load-balanced 1-to-M Routing

Source

00

00

00

00

00

11 1111 11 11

(a)
WhirlW11−N00−E11−S00

00

11

00 0000 00

11

11

11

11

...

(b)
WhirlW00−N11−E00−S11

...

01 01 010101

01

01

01

01

01

(c)
WhirlW01−N01−E01−S01

Destination Set

1111

01

01

10

10

1000

00

00

00

00

00

00

00 00

00 00

00 00

00

(d)
WhirlW11−N01−E00−S10

Figure 4-2: Possible broadcast trees. Whirl’s algorithm: Packets fork into all four di-
rections at the source router. By default, every packet continues straight in
its current direction. In addition, forks at intermediate routers are encoded by
LeftTurnBit, RightTurnBit, where left and right are relative to the direction of
traversal. These bits are reset to 0 once a turn completes (hence, 0 is implicit
on all unmarked arrows).

The fixed broadcast trees created by VCTM [41], RPM [79] and bLBDR [72] are

shown in Figures 4-2(a), 4-2(b) and 4-2(c) respectively, based on the output port

priorities specified in the respective papers. The result is links are utilized in an

unbalanced manner, lowering throughput. For broadcasts from uniformly distributed

sources in an 8×8 mesh, we observed that VCTM [41] uses X-links 11% and Y-links

89% of the time, while RPM [79] uses X-links 89% and Y-links 11% of the time.

Imbalanced loads on the different links increases contention, which adds delay and

worsens throughput.

To the best of our knowledge, there has been no routing scheme that targets

broadcasts/dense multicasts, and achieves ideal load balance.

4.3.2 Whirl

We propose Whirl : a tree-based routing scheme that (1) balances link loads for

broadcasts and dense multicasts, (2) ensures non-duplicate packet reception, (3) is

non-table-based, and (4) is deadlock-free.

Whirl parameterizes the entire space of possible broadcast trees, some of which

are shown in Figure 4-2, and randomly selects one tree on each broadcast/multicast to

balance the link loads. This is opposite to previous approaches, which build multicast

trees from unicast paths and end up with one broadcast tree. For multicasts with

93

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

few destinations, our approach and previous approaches yield similar results, but as

the destinations increase, our approach outperforms previous approaches due to more

path diversity, and thus lower contention.

At a high-level, Whirl randomly picks either an XY or a YX routing tree in

every quadrant. The key challenge is to make sure that a flit does not reach the

same router via two different trees. Whirl encodes the routing information for every

broadcast/multicast packet in two bits: the LeftTurnBit (LTB) and the RightTurnBit

(RTB). These tell the router whether the flit should turn4 left or turn right relative

to its current direction of motion. For instance, for a flit going West, left is South and

right is North. The (LTB, RTB) pairs for each direction together create the global

Whirl broadcast tree.

Choosing the Whirl broadcast tree

The global Whirl route for a packet is decided by the source NIC (sNIC, i.e., source

routing). This is done not only to balance the load, but also to ensure non-duplicate

and guaranteed reception of packets at all destinations’ NICs; which is hard to support

if the routers dynamically decide which route to take. The sNIC randomly chooses

four bits: LTBW , LTBN , LTBE, and LTBS, which are the LeftTurnBits for each

direction W, N, E, and S. The sNIC sends these four bits to the source router in the

multicast packet.

Implementing forking using LTB and RTB

At the source router, theRTBs for each direction are computed from the four LTBs as

follows: RTBS = ∼LTBW , RTBW = ∼LTBN , RTBN = ∼LTBE, RTBE = ∼LTBS.

This rule enforces that duplicate copies of the same packet do not reach a router via

different directions. For instance, in Figure 4-2(c), RTBN = 1 and LTBE = 0 to

ensure non-duplicate delivery in the NE quadrant. The flit is then forked out of all

four output ports, with each copy carrying the corresponding (LTB, RTB). At all

further routers, the routing algorithm that is followed is shown in Figure 4-3. After

4A turn here implicitly implies a fork in a broadcast scenario as the flit also continues straight.

94

4.3. Whirl: Load-balanced 1-to-M Routing

At every router:
fork
continue

fork
fork

clear (LTB,RTB)

Figure 4-3: Whirl pseudo-code

the flit turns once, no further turns are allowed, hence the (LTB, RTB) are reset to

0. This is done for simplicity, and to implement deadlock freedom, which we discuss

later in this section.

Throughput characterization

Packets traversing a combination of Whirl ’s 16 broadcast trees use all possible links

that lie along the minimal routing path. For broadcast-only traffic from uniformly

distributed sources, simulations showed 50% utilization on both the X and Y links,

demonstrating ideal load balance.

Deadlock avoidance

Whirl allows all turns except U-turns, and thus requires a deadlock avoidance mech-

anism. We do not wish to restrict any turns and take away the ideal load balancing

benefits of Whirl ’s throughput discussed earlier. We thus apply conventional Virtual

Channel5 (VC) management to avoid deadlock, as shown in Figure 4-4. We partition

the VCs into two sets, VC-a and VC-b. Packets are enforced to allocate only VC-a

in the South direction, before they turn. They can allocate both VC-a and VC-b

along the other directions, and after turning. Since all packets can only make one

turn in Whirl, this restricts S-to-E and S-to-W turns within VC-b, implementing a

5Input buffers at routers are typically divided into multiple virtual channels to avoid packets
going out of one port getting blocked by packets going out of another port.

95

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

a/b
a/b

a/b

a/b

a/b

a/b

a

a

a/b

a/ba/b

a/b

a a/b

a/b

a/b

a/b

a/b

a/b

a/b

Deadlock Free
Path

VC-a

VC-b

Source

b

a b

b

bb

b

b

b

a

a

a

a

aaa

Figure 4-4: Deadlock avoidance by VC partitioning: VC-b implements a deadlock-free
South-last turn model and acts as an escape VC.

deadlock-free South-last turn model (Section 2.1.2). Because the multicast tree can

be decomposed into unicast paths, VC-b acts like an escape VC [22]6. Figure 4-4

shows an example scenario with all flits in VC-a in a circular dependency. However,

VC-b will always have an escape path, and the flits in VC-a will eventually drain out

via VC-b.

Another cause of deadlock in multicast networks is when two copies of the same

flit take two alternate paths to reach the same destination. This can never occur in

Whirl because of the LTB/RTB rules.

Point-to-Point Ordering

Multiple Whirl routes from the same sNIC can violate point-to-point ordering from

source to destination. For coherence and other on-chip communication protocols that

rely on this ordering, such as persistent requests in Token Coherence [61], sNICs

statically assign only one of the Whirl trees, based on cache-block address, to all

messages within an ordered virtual network/message class. Routers follow FIFO

ordering for flits within an ordered virtual network, by using queueing arbiters for

switch allocation, thereby guaranteeing point-to-point ordering.

6The escape VC [22] concept proves that as long as packets are allowed to allocate any VC, the
sufficient condition to break deadlocks is to have one VC enforce a deadlock-free route while all other
VCs can permit all turns.

96

4.3. Whirl: Load-balanced 1-to-M Routing

x

DSR
(Dest Set Regions)

Neighbor

Current router

Destination

DSR-Straight

DSR-RightTurn

DSR-LeftDiag

DSR-RightDiag

DSR-LeftTurn
[11]
X

(a) Dest Set Regions (DSR) for multi-
cast using Whirl. In this example, the
north neighbor’s DSR-LeftTurn and DSR-
Straight are empty, while DSR-LeftDiag,
DSR-RightDiag and DSR-RightTurn are non-
empty. DSR-LeftTurn and DSR-RightTurn
occupancy overrides the LTB and RTB val-
ues respectively, when deciding to turn, and
thus the packet does not turn left. How-
ever, the packet continues straight even though
DSR-Straight is empty, because DSR-LeftDiag
and DSR-RightDiag are non-empty, and both
LTB/RTB are high. The destination x is
not in any of these DSRs, as it would be
reached via some other router based on the
global Whirl tree.

fork

continue

fork

fork
clear

(b) Whirl pseudo-code for multicasts.

Figure 4-5: Whirl for multicasts.

Pruning the tree for multicasts

For multicasts (in which not all NICs are in the destination set), flits need to carry

their destination set with them, and Whirl ’s algorithm described in Figure 4-3 can

be modified such that flits do not continue/fork if no destination exists among the

nodes reachable by that direction. As an example, Figure 4-2(d) sketches a Whirl

broadcast tree trimmed for a multicast to 11 destinations.

We assume that multicast flits carry a destination set bit-string, similar to that

in RPM [79]. In our design, the destination bit-string gets divided into five Desti-

nation Set Regions (DSR) bit-strings, during the route computation, based on the

position of the neighbor router for which the routing is being performed, as shown in

Figure 4-5(a). These regions are called DSR-LeftTurn, DSR-LeftDiag, DSR-Straight,

DSR-RightDiag and DSR-RightTurn. Unlike broadcasts, the decision to continue

straight, turn left, and turn right depends not just on the LTB/RTB, but also on

97

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

IN0 <0>

IN1 <0>

IN2 <0>

IN3 <0>

OUT0 <0>

IN4 <0>

(a) Mux-crossbar
(XBAR-A)

IN0 <0>

IN0 <1>

IN1 <0>

IN1 <1>

IN2 <0>

IN2 <1>

IN3 <0>

IN3 <1>

O
U

T
0 <

0>

O
U

T
0 <

1>

O
U

T
1 <

0>

O
U

T
1 <

1>

O
U

T
2 <

0>

O
U

T
2 <

1>

O
U

T
3 <

0>

O
U

T
3 <

1>

IN4 <0>

IN4 <1>

O
U

T
4 <

0>

O
U

T
4 <

1>

(b) Matrix-crossbar with pass-
gate crosspoint (XBAR-B)

IN0 <0>

IN0 <1>

IN1 <0>

IN1 <1>

IN2 <0>

IN2 <1>

IN3 <0>

IN3 <1>

O
U

T
0 <

1>

O
U

T
1 <

0>

O
U

T
1 <

1>

O
U

T
2 <

0>

O
U

T
2 <

1>

O
U

T
3 <

0>

O
U

T
3 <

1>

O
U

T
4 <

0>

O
U

T
4

 <
1

>

IN4 <0>

IN4 <1>

O
U

T
0 <

0>

(c) Matrix-crossbar with tri-state
crosspoint (XBAR-C) = mXbar

Figure 4-6: Crossbar switch circuits.

the occupancy of each DSR, as highlighted in Figure 4-5(b). Note that the same

destination node will lie in different DSRs for different neighbors of the same current

router. This is not a problem, because the LTB/RTB rules described earlier will

ensure that the destination is reachable from only one of the neighbors. For the same

reason, bits in the destination-set bit-string do not have to be reset as the flit moves

through the network, like in RPM [79], thereby simplifying the circuitry further.

4.4 mXbar: Router Microarchitecture for Forking

4.4.1 Background

Multicast routers fork flits out of multiple ports. This can be done either by (1) read-

ing the same flit out of the buffer every cycle and sending it out of each output port

one by one upon successful allocation, or by (2) reading the flit out of the buffer once

and forking it within the crossbar.

The first approach adds serialization delay to multicast flits, increases buffer oc-

cupancy (thereby lowering throughput), and consumes high buffer read energy. How-

ever, it can use a simpler crossbar circuit that need not fork flits. VCTM [41] and

98

4.4. mXbar: Router Microarchitecture for Forking

MRR [26] use this technique7.

The second approach removes serialization delay, but requires a crossbar that

performs forking. Samman et al. [73] and RPM [79] use mux-based crossbars to

realize this. Mux-based PxP crossbars consist of a P :1 mux at each output port, as

shown in Figure 4-6(a), and are the default designs generated from RTL synthesis. We

call this XBAR-A. Because each input fans out to each of these muxes, this design can

inherently fork flits out of multiple output ports. In contrast, a conventional matrix-

crossbar is laid out as a regular matrix, and uses pass-gates at crosspoints [78] to

implement the switching action, as shown in Figure 4-6(b). It relies on an input driver

to drive (charge/discharge) both the horizontal and vertical wires of the crossbar. We

call this XBAR-B. This design cannot efficiently fork flits because the driver cannot

drive one horizontal and P vertical wires within a cycle8. The caveat, however, is

energy. Crossbars are known to be one of the most power-consuming components

of a router [37]. Each P :1 mux in XBAR-A is typically realized using a cascade of

smaller 2:1 muxes, as shown in Figure 4-6(a), which increases energy consumption

tremendously because many more transistors are used than in XBAR-B, as shown in

Table 4.2. In addition, matrix-crossbar XBAR-B can segment wires [78] to drive only

the required portion of the wires, saving more power.

We modeled these crossbars with five inputs/outputs in Orion 2.0 [43] at 45nm,

targeting a 2GHz clock. Table 4.2 compares the delay/energy to perform a 1-to-M

fork within a router. XBAR-A consumes 4.6X more energy than XBAR-B, and the

corresponding router consumes 2.1X more energy even for a unicast (using M = 1 in

the last column of Table 4.2), making it an impractical design to use. RTL-synthesized

crossbars are not the only option in real designs; Intel’s 80-core NoC [37] uses custom

layouts for the crossbars to exploit regularity and reduce power.

7In fact, MRR does not use a crossbar. It rotates flits across buffers at different output ports.
8To fork flits, the input driver would have to be made about P times bigger, which would

proportionally increase power consumption and become overkill for unicasts.

99

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

Table 4.2: Energy-Delay comparison for 5x5 128-bit crossbars, modeled using Orion
2.0 [43], at 45nm

Xbar A B C

Type Mux-based Mat. + PassGate Mat. + TriState
Transistors 240/bit 25/bit 150/bit

1-to-M 1 M 1
Xbar Delay

1-to-M 221×M fJ 48×M fJ 65×M fJ
Xbar Energy

1-to-M Ewr + Erd +M×Exb Ewr +M×Erd +M×Exb Ewr + Erd +M×Exb

Router Energy = 117 + 221×M fJ = 63 + 102×M fJ = 117 + 65×M fJ

Ewr/rd = Energy for buffer write/read
Exb = Energy for xbar 1-to-1 traversal

4.4.2 mXbar: Multicast Crossbar

We propose a crossbar circuit, XBAR-C, that uses a matrix-crossbar layout but has

tri-state drivers at crosspoints instead of pass-gates, as shown in Figure 4-6(c). The

advantage of this design is that each output wire gets an independent driver, like

XBAR-A, and can thus support forking of flits within a cycle. We thus trade the area

advantage from XBAR-B by adding more transistors for higher drive-ability. The

matrix-crossbar design still gives us the layout regularity and wire segmentation [78]

advantages relative to the mux-based design. Table 4.2 shows that XBAR-C achieves

a single-cycle delay like XBAR-A, while the router energy for forking flits with XBAR-

C is 1.1X-0.8X the router energy of XBAR-B for 1-cast to 4-casts. XBAR-C is thus

a practical design for forking flits, and we use it in the FANOUT router, referring to

it as mXbar in the rest of the paper.

4.4.3 mSA: Multiport Switch Allocation

We show the design of our multiport switch allocator in Figure 4-7(a), which enables

an input port to gain access to multiple output ports of the mXbar in the same cycle.

In this example, inport Inj requests outports N, S, and W, and is granted N and S.

At the end of mSA, the winner of an output port is granted a free VC for the next

router from a queue of free VCs [55].

100

4.5. Single-cycle FANOUT Router

Inj

N

S

E

W

0
0
0

0
0

1
0
0

1
0

1
0
0

0
0

0
0
0

0
0

1
1
1

1
1

Outport
Requests
from Inports

Outport
Responses
to Inports

Switch
Outport
Allocator

0
0
0

0
0

1
0
0

0
0

1
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1
1

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
0

0
0
0

0
0

0
1
1

1
0

0
0
0

1
0

0
0
0

1
0

0
0
0

1
0

0
1
0

1
0

.

.

.

.

.

.

.

.
.
.

.

.
.
.

Inport Inj
vc0

vc1

vc2

vc3

Inport N
vc0

vc1

vc2

vc3

Inport S
vc0

vc1

vc2

vc3

Inport E
vc0

vc1

vc2

vc3

Inport W
vc0

vc1

vc2

vc3

vc0
vc1
vc2
vc3

(a) Multiport Switch Allocator.

Multiport
Switch Allocator

VC Select

5x5 Multicast
Crossbar

Input 1

Output 1

Output 5

VC 1

Input buffers

VC 2

VC n

Input 5
VC 1

Input buffers

VC 2

VC n

Lookahead
Generator

Lookahead
Bypass Path

next_outport,
next_LTB,RTBWhirl Route

computation

Lookahead
{outport, LTB, RTB,

DestSet, VCid}

Credits

(b) FANOUT Router Microarchitecture.
Changes from baseline are shaded in grey.

Figure 4-7: Single-cycle FANOUT Router.

4.5 Single-cycle FANOUT Router

4.5.1 Background

Single-cycle router pipelines have been proposed in the past [63, 57, 56] for unicast

flows. In these designs, the router pipeline on the critical path reduces to just Switch

Traversal (ST). The basic idea is to pre-allocate the crossbar switch before the actual

flit arrives, to give it a direct access to the crossbar, thereby bypassing the buffering

stage. We attempt to design such a pipeline for multicast flits. To the best of our

knowledge, no prior research has attempted to extend buffer bypassing for multicasts,

which is essential for meeting the delay/energy limits of an ideal broadcast network.

4.5.2 Pipeline Stages

We start by enumerating the various pipeline stages in the FANOUT router, and

then start folding stages over each other to ultimately result in a single pipeline stage

for multicast flits, as highlighted by Figure 4-8. This FANOUT pipeline is for the

101

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

mSA mST LTmST LT
wRC

BW

220ps 430ps 300ps@45nm:

(a)

mST LTmST LT wRC

mSA

BW

(b)

LTmST

LT

wRC

mSA

LA LA

mST

(c)

LTmST

LT

wRC

mSA

LA LA LA

mSTBW

mST

mSA

(d)

Figure 4-8: FANOUT pipeline optimizations to realize single-cycle multicast router: (a)
3-stage pipeline, (b) 2-stage pipeline, (c) 1-cycle pipeline (with bypass), (d)
2-stage pipeline (if bypass fails)
The flit pipeline at Router 2 is shaded in gray and that of preceding Router
1 is outlined with dashed lines. The stages are BW: buffer write, wRC: whirl
route computation, mSA: multiport switch+VC allocation, mST: mXbar switch
traversal, LT: link traversal, LA: lookahead.

Router 1 Router 2

Lookahead

Flit

Router 1 Router 2

Lookahead (t-1)

Flit (t)

t+1

t+1 t+2

t+1

t+2

t+2

Figure 4-9: Traversal Example: Flit and Lookaheads.

message class9. Figure 4-7(b) shows the microarchitecture of the FANOUT router.

Step 1: Original pipeline (Figure 4-8(a)). The unoptimized FANOUT

router pipeline is the same as a baseline fork@rtr design, though the actual com-

ponents (routing algorithm, switch allocation algorithm, and crossbar circuit) differ.

At Router 1, the flit goes through the switch (mST) and link (LT) to arrive at Router

2. It gets buffered (BW), performs routing (wRC) in parallel, then places a request

for multiple ports of the switch (mSA), forks through the switch (mST), and tra-

verses the link (LT) to the next router. The critical path delays for each are shown in

Figure 4-8(a), obtained from RTL implementation of the FANOUT router in 45nm

and synthesizing for a 2GHz clock.

Step 2: Lookahead routing (folding mSA and wRC) (Figure 4-8(b)). The

multiport switch allocation (mSA) cannot be performed until the output port requests

for the flits are known, which are only available after Whirl route computation (wRC).

We leverage lookahead routing [27] and perform wRC one hop in advance (i.e., the

9The router buffers are partitioned into separate virtual message classes such as requests, re-
sponses, etc. to avoid protocol-level deadlocks, as explained in Section 2.2.1.

102

4.5. Single-cycle FANOUT Router

wRC at the current router determines the output ports at the next router, allowing

an incoming flit to place a request for the switch as soon as it arrives). Thus BW,

wRC, and mSA can all be done in parallel. However, performing wRC for the next

router is not as trivial as in a unicast case because multicast flits could have multiple

next routers if they are forking at the current router. To perform routing one hop in

advance, the current router needs to perform wRC for all output ports out of which

the flit will fork. Thus in a 5x5 router, every input port needs to maintain four wRC

blocks, one for each output port assuming no u-turns. The power and area overhead

for these 20 Whirl blocks was found to be less than 1% of that of the total router

because it is very simple combinational logic (Figure 4-3). The output port request

generated by the Whirl block for output port A is embedded in the corresponding

flit going out of port A.

Step 3: Bypassing (wRC and mSA before flit arrival) (Figure 4-8(c)).

We can shrink the flit pipeline at the router to one cycle if we perform wRC and mSA

before the flit arrives. To do so, we must examine what information is required by

wRC and mSA. wRC needs to know the output ports out of which the flit will fork

(5-bit vector) to activate the corresponding Whirl blocks at the input port. It also

needs to know the 2-bit ‘LTB,RTB’ to determine the route. mSA needs to know

only the output ports request. To realize this pipeline, the flit at Router 1 sends

these 7 bits as a lookahead (LA) to Router 2, while it traverses the mXbar (mST) at

Router 1. This enables Router 2 to perform wRC and mSA while the flit performs

link traversal. If mSA at Router 2 is successful in granting all output ports to the flit,

it does not get buffered and uses the single-cycle pipeline in Figure 4-8(c). This allows

FANOUT to eliminate the buffer write and read energy, shown earlier in Table 4.2,

from the router traversal. The mXbar is critical for achieving this one-cycle pipeline;

otherwise a multicast flit will be forced to get buffered and spend multiple cycles to

go out one by one. If mSA grants only a subset (or none) of the the ports, the flit

gets buffered and starts mSA for the remaining ports, as shown in Figure 4-8(d).

A flit that performs mST (either via bypassing or from the buffers) needs to send

lookaheads out of all output ports that it will fork out from, as shown in Figure 4-9.

103

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

Flit Size 64 bits

Request
Packet Size

1 flit (coherence requests
and acknowledges)

Response
Packet Size

5 flits (cache data)

Router
Microarchitecture

10 64b latches per port
(6VCs over 2MCs)

Bypass Router-
and-link Latency

1 cycle

Operating
Frequency

1GHz

Power Supply
Voltage

1.1V and 0.8V

Technology 45nm SOI CMOS

Figure 4-10: Die Photo and overview of fabricated 4×4 FANOUT NoC

These lookahead bits are ready at the end of wRC and mSA.

Ideal 1-to-M Traversal. In summary, Whirl sets up load-balanced paths for

multicast flits to lower congestion, and the mXbar and lookaheads together allow flits

to perform single-cycle forking at routers without getting buffered, thereby incurring

only switch and wire (mST, LT) delay/energy from the source to all destinations.

4.6 Prototype Chip

In this section, we present our prototype chip demonstrating a single-cycle FANOUT

router, embedded in a 4×4 NoC in 45nm SOI, running at 1GHz [66]. We do not

implement Whirl in the chip since its throughput is similar to that of an XY-tree in

a small 4×4 mesh.

The FANOUT chip tapeout was joint work with other students Sunghyun Park,

Chia-Hsin Owen Chen, and Bhavya Daya from MIT. I designed the architecture and

RTL, Sunghyun created the custom layout of the mXbar with low-swing drivers and

receivers, Owen handled full-chip integration, and Bhavya performed spice simulations

to validate the extracted netlists.

Figure 4-10 presents the die photo, and overview of our chip. The router has a

measured critical path of 961 ps. We incorporate on-chip traffic generators capable

104

4.7. Evaluations

Table 4.3: Network Parameters.

Topology 8×8 mesh
Router Ports 5

Ctrl VCs/port 12, 1-flit deep
Data VCs/port 3, 3-flit deep

Flit size 128 bits
Link length 1mm

Table 4.4: Traffic Parameters.

Synthetic Traffic
Unicast Uniform Random

Bit-Complement
Tornado, Hotspot

Multicast % 5%, 20%,
total traffic 60%, 100%
Multicast DEST ALL: 2-64 random,

destination DEST FEW: 2-16 random
set DEST MANY: 48-64 random

Full-System Traffic
Processors 64 in-order SPARC
L1 Caches Private 32 kB I&D
L2 Caches Private 1MB per core

Coherence Protocol (1) HyperTransport [9] (HT)
(2) Token Coherence [61] (TC)

DRAM Latency 70ns

of generating both broadcast-only and mixed (33% broadcast request, 33% unicast

request, and 33% unicast response) traffic. The chip meets the theoretical latency

limits presented in Table 4.1. For broadcast-only and mixed traffic, the chip delivers

a throughput of 932 Gbps and 892 Gbps respectively, which is 91% and 87% of the

theoretical limit.

4.7 Evaluations

In this section, we evaluate FANOUT with both synthetic traffic, as well as full-

system traffic. Table 4.3 lists our network parameters. The number of VCs in all

configurations is set by the buffer turnaround time (Section 2.1.3) within the request

and response message classes in the baseline to improve its performance. FANOUT

achieves close to its peak performance with 2/3rd the number of VCs. Table 4.4

describes our synthetic and full-system traffic scenario. We target a 45nm technology

105

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

0	
30	
60	
90	

120	
150	
180	
210	
240	
270	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	 1.1	

Av
g	
Br
oa

dc
as
t	 L
at
en

cy
	 (c
yc
le
s)
	

Injec6on	 Rate	 (frac6on	 of	 capacity)	

BASE_fork@rtr	 FANOUT	 IDEAL	 (tr=1)	 r

Figure 4-11: Uniform Random Broadcast Traffic

node with a VDD of 1.0V and a frequency of 2GHz.

4.7.1 Baseline and Ideal Network

We model the BASE fork@rtr design, similar to VCTM [41], bLBDR [72], MRR [26],

and RPM [79], with routers forking flits as they move towards their destination. The

baseline broadcast follows an XY-tree routing algorithm, as explained in Section 4.3.

The pass-gate matrix-crossbar from Figure 4-6(b) is used in the baseline for its low

power and area.

The IDEAL (tr=1) design models an ideal contention-less network with 1-cycle

routers at each hop, as described in Section 2.3.1.

4.7.2 Network-only Synthetic Traffic Simulation

Limit Study with Broadcast Traffic

We start by studying FANOUT in the presence of only broadcasts, and characterize

it against the ideal broadcast mesh metrics derived in Section 4.2.2. We inject a

synthetic broadcast traffic pattern where uniformly-random sources inject single-flit

broadcast packets into the network, at a specified injection rate. The metric we use

for evaluation of latency is broadcast latency which we define to be the latency between

generation of a broadcast packet at a network interface, to the receipt of the tail flit

of the last copy at the destination network interfaces. Saturation throughput is the

injection rate at which the average latency reaches 3-times the low-load latency.

106

4.7. Evaluations

Latency and Throughput. Figure 4-11 shows the average broadcast latency as

a function of injection rate for FANOUT whirl-mxbar-bypass - FANOUT with Whirl

routing, multicast crossbar and multicast bypassing - compared to the baseline. The

IDEAL (tr=1) line is calculated from Table 4.1 by setting k=8. We observe that

FANOUT whirl-mxbar-bypass has 60.6% lower low-load latency, and 62.7% higher

throughput than BASE fork@rtr. Whirl by itself results in 22.2% improvement in

throughput, multicast bypassing by itself10 results in 37.0% reduction in low-load

latency, and 22.2% improvement in throughput, and the mXbar by itself results in a

24.2% lower low-load latency, and 62.7% higher throughput. These are not shown in

Figure 4-11 for clarity, but will be explored in detail later.

Energy. Near saturation, the energy savings of FANOUT over BASE fork@rtr

is 80.1% in buffer read/write energy (for 8 buffers per port in both networks), and

11.6% overall.

In summary, with worst case traffic (100% broadcasts), FANOUT’s latency is 5%

off ideal on average prior to network saturation, attains 96% throughput of the ideal,

with energy consumption just 9% above ideal.

FANOUT with mix of unicast and multicast traffic

We evaluate the impact of FANOUT with multicast traffic in the presence of various

kinds of unicast traffic (uniform random, tornado, bit-complement and hot-spot). We

discuss the results for a network with 20% multicast traffic with number of destina-

tions varying randomly from 2-64 at each injection (DEST ALL from Table 4.4). For

uniform-random (Figure 4-12(a)), Whirl helps improve throughput by 17.5%, mXbar

reduces low-load latency by 18% and improves throughput by 26.3%, while multicast

bypassing reduces low-load latency by 31.4%. Combining all three techniques re-

sults in a low-load latency reduction of 49% and throughput improvement of 43.7%.

A similar trend is observed in bit-complement (Figure 4-12(b)). In tornado (Fig-

10Multicast bypassing by itself, without the mXbar, means that multicast flits send out lookaheads
to try and preset the next crossbar, but only one output port can be requested at a time; so a copy
of the flit is also retained to arbitrate for the remaining output ports in subsequent cycles. A 1-cycle
FANOUT router can only be realized when both mXbar and multicast bypassing are enabled.

107

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 0.02	 0.04	 0.06	 0.08	 0.1	 0.12	 0.14	 Av
g	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec3on	 Rate	 (flits/cycle/node)	

BASE_fork@rtr	 FOUT_Whirl	
FOUT_bypass	 FOUT_mXbar	
FOUT_Whirl-‐mXbar-‐bypass	

(a) Uniform Random Unicast

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 0.02	 0.04	 0.06	 0.08	 0.1	 0.12	 0.14	 Av
g	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec3on	 Rate	 (flits/cycle/node)	

BASE_fork@rtr	 FOUT_Whirl	
FOUT_bypass	 FOUT_mXbar	
FOUT_Whirl-‐mXbar-‐bypass	

(b) Bit-Complement Unicast

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 0.02	 0.04	 0.06	 0.08	 0.1	 0.12	 0.14	 Av
g	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec3on	 Rate	 (flits/cycle/node)	

BASE_fork@rtr	 FOUT_Whirl	
FOUT_bypass	 FOUT_mXbar	
FOUT_Whirl-‐mXbar-‐bypass	

(c) Tornado Unicast

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 0.02	 0.04	 0.06	 Av
g	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec3on	 Rate	 (flits/cycle/node)	

BASE_fork@rtr	 FOUT_Whirl	
FOUT_bypass	 FOUT_mXbar	
FOUT_Whirl-‐mXbar-‐bypass	

(d) Hot-Spot Unicast

Figure 4-12: Performance with 80% unicasts + 20% DEST ALL multicasts.

ure 4-12(c)), however, mXbar improves throughput by 30.7%, but adding Whirl and

multicast bypassing to it do not improve throughput further like in uniform-random

and bit-complement. This is because tornado traffic has unicast flits traveling con-

tinuously only on the X links. Thus load-balancing by Whirl ultimately gets limited

by the highly imbalanced unicast traffic. An extreme case of this phenomenon is ob-

served in Hot-Spot traffic11 (Figure 4-12(d)). FANOUT enables 49% lower low-load

latency, but is not able to push throughput by greater than 15% since the highly

contended and imbalanced Y-links near the hot-spot nodes limit network saturation

(since unicast traffic uses XY routing).

In summary, Whirl and mXbar help improve throughput, while mXbar and mul-

ticast bypassing help lower the latency, as highlighted in Figure 4-12. Since FANOUT

enables each technique to gel with the other, combining them results in up to 49%

reduction in latency, and 44% higher throughput, due to efficient and faster use of

11We selected four hot-spot nodes in the network, and all unicast traffic is directed to one of them
randomly.

108

4.7. Evaluations

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

Multicast = 5% Multicast = 20% Multicast = 60% Multicast = 100%

Saturation Throughput Energy x Delay

(a) DEST FEW (2-16) Multicasts +
Uniform Random Unicast

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

BA
SE

_F
OR

K@
RT

R
FO

UT
_W

hir
l

FO
UT

_M
XB

AR

FO
UT

_B
YP

AS
S

FO
UT

_M
XB

AR
+B

YP
AS

S
FO

UT
_W

hir
l+M

XB
AR

FO

UT
_W

hir
l+B

YP
AS

S
FO

UT
_A

LL

Multicast = 5% Multicast = 20% Multicast = 60% Multicast = 100%

Saturation Throughput Energy x Delay

(b) DEST MANY (48-64) Multicasts +
Uniform Random Unicast

Figure 4-13: Normalized Saturation Throughput and Energy-Delay-Products for
FANOUT’s components.

links, unless adversarial unicast traffic limits the overall network.

Breakdown of impact of Whirl, mXbar and multicast bypass

Next we evaluate the impact of each component of FANOUT on performance and

power as a function of the amount of multicast traffic in the network, and the size

of the destination sets. Figure 4-13 plots the network saturation-throughput, and

the Energy-Delay Product (EDP) at low-loads, for two kinds of destination sets:

DEST MANY (48-64 destinations randomly chosen) and DEST FEW (2-16 desti-

nations randomly chosen), and sweeps through the percentage of multicasts in the

network. The unicast traffic is uniform-random in all cases. We demonstrate the

impact of each component of FANOUT based on these results. FANOUT Whirl

refers to the BASE fork@rtr network with Whirl routing. FANOUT mXbar refers to

the BASE fork@rtr network with a multicast crossbar, but using the baseline mul-

ticast tree, and so on. FANOUT ALL has all three techniques. We can see that in

both traffic conditions, there is a consistent reduction in EDP due to FANOUT. For

DEST MANY, for which FANOUT is primarily intended, FANOUT’s components

lead to 40-60% higher network throughput, and upto 56% lower EDP.

Whirl. For DEST FEW, with 5% multicasts, Whirl ’s performance is very com-

parable to BASE fork@rtr. This is expected because for such a configuration, both

109

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

Whirl and BASE fork@rtr create routes that match the destination locations. Whirl

wins slightly because conflicts are broken by random LTB/RTB choices in Whirl

while BASE fork@rtr uses fixed priorities. Whirl starts improving throughput as

the percentage of multicasts increase. The real benefits of Whirl can be seen in

the DEST MANY where it gives 18-25% improvement by itself, and upto 60% in

conjunction with FANOUT’s other optimizations.

Whirl ’s EDP is similar to the fork@rtr, because at low-loads, at which the EDP

was calculated, both Whirl and fork@rtr traverse similar routes, incurring similar

number of buffer writes/reads and crossbar/link traversals.

mXbar. For DEST FEW, the mXbar does not show a huge benefit, and offers

throughput improvements similar to Whirl. The reason is that the percentage of

unicast dominate over multicasts, so the mXbar does not have much work to do in

terms of forking flits. As the percentage of multicasts increase, Whirl+mXbar push

the throughput by 20-30%, and lower EDP by 35-50%. For DEST MANY, however,

mXbar steals the show completely. In almost all cases, it single-handedly pushes the

throughput to within 10% of the maximum achieved by all three techniques together.

However, as discussed earlier in Section 4.4, the mXbar has higher energy/bit/1-

to-1 traversal, and was found to consume higher power than the baseline. But the

reduction in latency due to mXbar offsets that and leads to 17-22% lower EDP than

the baseline.

Multicast Buffer Bypassing. Multicast bypassing does not offer any signifi-

cant throughput improvement by itself, in both DEST FEW and DEST MANY. This

might seem contradictory to all previous works on unicast buffer bypassing [57, 56].

The reason for this is that bypassing helps increase throughput by enabling faster

turnaround of buffer usage. For multicasts however, the buffer cannot be freed until

all copies of the flit leave! Buffers can only be bypassed at routers which are not fork-

ing flits along the multicast route. But multicast bypassing by itself does have delay

benefits, because it enables flits to proceed to the crossbar as soon as they enters,

while a copy is also retained at the buffers. This enables a 20-40% reduction in EDP

even in the DEST FEW case. When multicast bypassing is combined with Whirl, or

110

4.7. Evaluations

mXbar, more of its benefits come to light. With Whirl enabling more load balanced

routing, the chances of bypassing routers outside of the destination set increases due

to lower contention. With mXbar, the biggest benefit of bypassing is in terms of

energy. mXbar coupled with bypassing enables huge savings in buffer read/write en-

ergy. It also allows faster recycling of buffers, and better link utilization, all of which

push throughput by up to 60% in some cases.

In summary, for networks with few multicasts, and small destination sets, Whirl

and mXbar provide similar performance improvements. Since Whirl adds minimum

overhead to the router, it would be a better solution than re-designing the crossbar to

support multicasts. For dense multicasts/broadcasts, however, the mXbar is critical

for good performance. In this case, latency and power can be saved further by adding

multicast bypassing.

4.7.3 Full-system Simulations

Application Runtime

We start by comparing the performance benefits of FANOUT with all its rout-

ing, flow control, and microarchitecture optimizations included, against the IDEAL

(tr=1) NoC. Figure 4-14 shows the normalized full-system application runtime with

FANOUT for both protocols. With FANOUT, HT shows 10% improvement, while

TC shows 9.7% improvement, on average. Compared to IDEAL (tr=1), FANOUT is

off by about 2.5% compared to the IDEAL for TC. For HT, however, FANOUT is off

by 9.5%.

We also plot a second ideal, called IDEAL 1-to-M (tr=1), which models ideal

1-cycle per-hop contentionless traversals for the broadcasts, while the rest of the

messages go through the baseline network. We can see that FANOUT is less than 3%

off this ideal for HT. This means that FANOUT by itself is successful in achieving

near single-cycle per-hop traversals for the 1-to-M flows. The remaining gap from

the IDEAL (tr=1) network is because of the M-to-1 flows which will be addressed in

Chapter 5.

111

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	
1.2	

ba
rn
es
	

3
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
>a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
>o

ns
	

x2
64

	
AV

ER
AG

E	

ba
rn
es
	

3
	

fm
m
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
>a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
>o

ns
	

x2
64

	
AV

ER
AG

E	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

HyperTransport	 Token	 Coherence	

N
or
m
al
iz
ed

	 A
pp

lic
a/

on
	 R
un

/m
e	

FANOUT	 IDEAL_1-‐to-‐M	 (tr=1)	 IDEAL	 (tr=1)	
BASE_fork@rtr

Better r r

Figure 4-14: Full-system Application Runtime.

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

ba
rn
es
	

.
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
9a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	
AV

ER
AG

E	

ba
rn
es
	

.
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
9a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	
AV

ER
AG

E	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

HyperTransport	 Token	 Coherence	

Av
g	
N
et
w
or
k	
La
te
nc
y	
(c
yc
le
s)
	

BASE_fork@rtr	 FANOUT	 IDEAL	 (tr=1)	 Better r

Figure 4-15: Average Network Latency.

Network Latency

The full-system runtime behavior seen earlier can be understood by looking at the

network latency impact in Figure 4-15. We plot the average flit latency, which includes

both broadcast flits (that FANOUT targets), and other unicast flits that are part of

the protocol. The FANOUT design reduces average network latency by about 14% for

112

4.7. Evaluations

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	
1.2	
1.3	

ba
rn
es
	

3
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
>a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
>o

ns
	

x2
64

	

ba
rn
es
	

3
	

fm
m
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
>a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
>o

ns
	

x2
64

	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

HyperTransport	 Token	 Coherence	

N
or
m
al
iz
ed

	 R
un

/m
e	

FANOUT_Whirl	 FANOUT_mXbar	 FANOUT_bypass	 FANOUT_all	

BASE_fork@rtr

Figure 4-16: Impact of routing and flow control components.

HT and 50% for TC. This difference can be understood by looking at the breakdown

of 1-to-M messages in the protocols. Broadcasts form 45-55% messages in TC, as

opposed to 11-17% in HT. The average latency of broadcast packets was observed to

go down by 40% on average in both HT and TC with FANOUT, consistent with the

results observed earlier in Section 4.7.2. However, the dominance of bursty ACKs in

HT increases its average latency across all packets, leading to an average of 2.3 cycles

more per-hop compared to the IDEAL (tr=1). For TC, FANOUT reduces the average

network latency to about 20 cycles, which is just 0.3-cycles per-hop on average more

than the IDEAL (tr=1).

Impact of components of FANOUT

In Figure 4-16, we show the effect on full-system runtime of stand-alone components

of FANOUT (Whirl, mXbar, bypass). Whirl shows 4% runtime savings for nlu and

fluidanimate in HT and 6% for lu in TC. These are applications that have 1.3-2X

higher injection rates than the others, and thus benefit from a load-balanced network.

For the other applications, the XY-tree of the baseline does as well as Whirl. mXbar

shows about 5-10% runtime reduction in TC for most benchmarks. In HT, nlu,

113

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	

BA
SE
_f
or
k@

rt
r	

FA
N
O
U
T	

ID
EA

L	
(t
r=
1)
	

SPLASH-‐2	 PARSEC	 AVERAGE	

N
et
w
or
k	
En

er
gy
	 N
or
m
al
iz
ed

	 to
	 B
AS

E_
fo
rk
@
rt
r	 BASE_fork@rtr	

r	

(a) HyperTransport.

ba
rn
es
	

(
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
3a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
3o

ns
	

x2
64

	

BA
SE
_f
or
k@

rt
r	

FA
N
O
U
T	

ID
EA

L	
(t
r=
1)
	

SPLASH-‐2	 PARSEC	 AVERAGE	

FANOUT	

link	

allocators	

crossbar	

buffer_rd	

buffer_wr	

BASE_fork@rtr

r	

(b) Token Coherence.

Figure 4-17: Network Energy.

canneal and swaptions benefit from mXbar but other benchmarks do not because the

performance starts getting limited by the ACKs. Buffer bypassing by itself shows

3-4% runtime improvement in average in both HT and TC. Without the mXbar, flits

need to get buffered to fork out of the router, and buffers are bypassed only at those

routers where no forks need to occur.

When all three components of FANOUT come together, flits follow load-balanced

paths, fork through the mXbar, and avoid getting buffered, resulting in a 10% runtime

improvement on average, which is higher than what any one technique provides.

Network Energy

Figure 4-17 shows the breakdown of network energy with FANOUT for HT and TC,

normalized to BASE fork@rtr.

For HT, the overall network energy actually goes up by 4.3% with FANOUT. The

reason for this increase can be seen from the relative breakdown of buffer and crossbar

energy. Buffer reads do go down with FANOUT (due to the single-cycle pipeline

enabled by the mXbar), but only by 3.9% because the buffer accesses are dominated

by the ACKs in HT. The crossbar energy, meanwhile, goes up by 10.1% because the

mXbar consumes more energy than the baseline crossbar for unicasts, as explained

114

4.8. Chapter Summary

earlier in Table 4.2. Compared to the IDEAL in energy12, both BASE fork@rtr and

FANOUT are off by about 70%.

For TC, the story is more optimistic. The dominance of broadcasts allows FANOUT

to provide a 19.7% reduction in energy, primarily due to a reduction in buffer reads

(due to the mXbar) and buffer writes (due to multicast bypassing). Compared to the

IDEAL, while BASE fork@rtr is off by 32%, FANOUT reduces the gap to 12%.

4.8 Chapter Summary

In this chapter, we presented FANOUT, a collection of optimizations for efficient

multicast support within NoC routers to allow 1-to-M flows to approach their ideal

energy-delay-throughput characteristics. FANOUT includes a load-balanced routing

algorithm for multicasts called Whirl, a crossbar circuit called mXbar that forks

flits at the similar delay/energy as unicasts, and a single-cycle multicast router. A

prototype chip in 45nm SOI validates the microarchitecture and flow control.

Evaluations with synthetic stress-tests highlight that FANOUT is able to achieve

near-ideal single-cycle per-hop performance for 1-to-M flows. With full-system simu-

lations, this is reiterated for Token Coherence. But for HyperTransport there is still

a 9.5% gap with the runtime and a 70% gap with the energy of the IDEAL 1-cycle

per-hop NoC, exposing the criticality of addressing the M-to-1 flow of acknowledge-

ments in this protocol. The next chapter proposes in-network aggregation support for

these ACKs. Together, the current chapter and the next form a solution to efficiently

manage collective communication flows on-chip.

12The energy consumed in the ideal networks is just wire/data-path energy, i.e., ST and LT.

115

Chapter 4. Single-cycle Per-hop NoC for 1-to-Many Traffic

116

5
Single-cycle Per-hop NoC for Many-to-1 Traffic

Coming together is the beginning.
Keeping together is progress.
Working together is success.

- Henry Ford

This chapter presents a NoC architecture with aggregation (reduction) support at

routers to efficiently deliver Many-to-1 (ACKs) traffic that is present in many shared

memory cache coherence protocols. The techniques presented aim to reduce per-hop

contention tc(h) (by aggregating flits at routers) and router delay tr (to 1-cycle) in

Equation 1.1 for Many-to-1 flows.

5.1 Introduction

We continue with the goal set in Chapter 4 to design a NoC to efficiently handle bursts

of 1-to-M and M-to-1 traffic to allow coherence protocols to scale. Figure 2-14 plotted

the breakdown of 1-to-1, 1-to-M and M-to-1 message flows for several multi-threaded

workloads across HyperTransport [9] and Token Coherence [61]. For HyperTransport,

1-to-M requests and M-to-1 responses form 14.3% and 14.1% of injected messages on

average, respectively, Token Coherence reduces M-to-1 traffic to 2%, with M = 12 on

average, at the cost of a higher percentage (52.4%) of 1-to-M traffic (M = 64).

There has been no prior work, to the best of our knowledge, to deal with M-to-

1 flows in a NoC. M-to-1 flows result in M unicast packets being received by the

117

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

destination NIC. This creates heavy congestion at the link to the destination NIC,

creating hot-spots. Moreover, the bursty nature of these flows (since all caches are

likely to ACK a broadcast request at around the same time) floods the network loading

some links M times over their capacity of 1 flit per cycle, leading to a dramatic rise

in latency and corresponding penalties in throughput and energy.

In addition to coherence, M-to-1 flows occur in barrier synchronization [28], the

reduce phase of MapReduce [23], and so on. Previous work has focused on specialized

solutions for accelerating barrier messages [28, 5, 54, 80, 18] by relying on an ordered

FAT-tree topology in the off-chip domain [28] and adding additional wires and reg-

isters to track barriers in the on-chip domain [5, 54, 80, 18]. Unfortunately, none of

these solutions are generic enough to be applied for other M-to-1 traffic across an

unordered, distributed on-chip network topology such as a mesh that is commonly

used in multicore chips [37, 81].

Most M-to-1 flows described so far comprise single-flit responses acknowledging

the receipt of some request or signaling the end of some transaction. This provides

opportunity to perform a commutative aggregation of these responses within the

network into one flit carrying a count of the number of responses it represents. In

this work, we propose Flow AggregatioN In-Network (FANIN) [52] to perform such a

reduction of M-to-1 traffic in a distributed manner. We add additional optimizations

for synchronized routing (rWhirl) and a smart flow control for waiting at routers, to

realize single-cycle routers (tr = 1) for M-to-1 flows.

The motivation for FANIN stems from Figure 4-14 in Chapter 4 where we plot

the runtime of the FANOUT NoC, and compare it with the runtime of a NoC with

ideal 1-cycle routers at every hop. For HyperTransport, FANOUT is 9.5% away from

the ideal, despite using 1-cycle routers for both unicast and multicast traffic, because

of heavy contention at every hop (tc(h)) due to M-to-1 ACKs. Token Coherence uses

only 2% of M-to-1 flows and is thus close to the ideal with FANOUT itself.

The rest of the chapter is organized as follows. Section 5.2 discusses the back-

ground and related work. Section 5.3 presents a walk-through example of FANIN.

Section 5.4 presents a load-balanced routing algorithm for M-to-1 flows. Section 5.5

118

5.2. Background and Related Work

describes FANIN’s aggregation methodology within each router. Section 5.6 presents

the pipeline of a FANIN router, and optimizations to realize a single-cycle aggregation

router. Section 5.7 shows our evaluation results, and Section 5.8 concludes.

5.2 Background and Related Work

M-to-1 communication flow occurs in shared memory coherence protocols, in the form

of acknowledgements [9, 1] or tokens [61, 71], and in message passing domains, such as

barrier synchronization [28, 18, 5, 80]. There has been no on-chip solution to tackle

the former, to the best of our knowledge. In the past, MIMD machines like IBM

RP3 [68] and NYU Ultracomputer [30] used network switches to combine memory

requests (loads/stores/fetch-and-add) to the same memory location and added extra

buffers to track the responses. More recently, aggregation via the network fabric has

been researched for implementing barrier synchronization [28, 5, 54, 80, 18]. These

proposals essentially implement a wired OR, either by relying on an ordered FAT-

tree topology in the off-chip domain, such as in IBM Blue Gene/L [28], or 1-to-

M connectivity via on-chip global broadcast wires [5, 54], or all-to-all connectivity

between special-purpose registers among a cluster of nodes [80, 18]. These works also

add tables to track barriers, thus placing a limit on the number of active barriers

at any point in time and adding area/power overheads. Our FANIN is much more

general purpose because we target an unordered, distributed on-chip network with

any kind of M-to-1 control flow (acknowledgements, tokens, barriers), without adding

dedicated 1-to-M wires or extra storage structures.

5.3 Walk-through Example

We will use the term “M:1” to refer to the communication flow in which M cores gen-

erate one response message each for the same destination core and memory address,

acknowledging the preceding multicast. For convenience, we will use the term “ACK”

for each individual flit in the M:1 flow, though in principle it is not restricted to just

119

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

ack_count validis_ack
ack_id

dest_id m_id
coherence

(type, addr, etc.)
network

(type, route, VCid)
<1><1><6><9><40> <6> <5>

Figure 5-1: ACK flit format.

0 1 2 3

[A,1]

4 5 6 7

8 9 10 11

12 13 14 15

[I,2]

[O, 1]

[J,2]

[P,1]

[K,4]

[Q,2]

[F,1][E,1]

[I,1]

[O,1]* [P,1]

[J,1] [K,1]

[Q,1] [R,1]

[C,1][B,1] [D,1]

[L,1]

[H,1][H,15]

[E,3] [F,6] [H,2]

[L,1]

[R,1]

[A,1] [B,2]

[C,3] [D,1]

*[ACK Identifier, ack_count]

Figure 5-2: ACK Aggregation Example.

acknowledgements and can work for tokens, barriers, etc. The message format we

use for ACKs (assuming a 64-core system) is shown in Figure 5-1. A single-bit is ack

is set to identify an ACK. We assume that each ACK flit carries a counter called

ack count holding the number of ACKs it represents. This field is log2(N)-bits wide,

where N is the maximum number of ACKs that could be received1. All ACKs within

the same M:1 flow carry the same ack id which will be explained later in Section 5.5.2.

ACKs for an M:1 flow are aggregated/reduced at network routers as they move

towards their common destination. To aggregate two ACKs that are part of the same

M:1 flow, one of the ACK flits is dropped, and its ack count added to the ack count

of the other flit.

Figure 5-2 presents a walk-through example for 16 cores. All NICs (except NIC

6) are sending an ACK to NIC 6. We arbitrarily label these ACKs from A to O

for illustration purposes; the individual identity of ACKs is not important, only the

ack count they carry is. ACK O is injected from NIC 12 with an ack count of 1. It is

1Response flits in certain protocols like Token Coherence [61] already carry such a counter,
because cores can respond with multiple tokens at a time.

120

5.4. rWhirl: Synchronized Routing

aggregated into ACK I at Router 8 and dropped; ACK I is aggregated into E, and

E is aggregated into F . At Router 6, ACKs F , K, H and C - from West, North,

East and South input ports respectively - are aggregated into ACK H. H is sent up

to the NIC with an ack count of 15, instead of the NIC having to wait for individual

ACKs from all the 15 senders.

Realizing a perfect aggregation of 15 flits into 1 is non-trivial. The reason is that

ACKs are generated by the different cores at different times and take a different

number of cycles to reach the next routers, during which time other ACKs for the

same M:1 flow might have already left that router. It is also important to note that

perfect aggregation is not necessary for correctness.

The rest of the chapter describes how FANIN enables in-network aggregation, and

tries to approach the performance of a perfect M-to-1 aggregation network.

5.4 rWhirl : Synchronized Routing

We first ensure that all ACKs for a particular M:1 flow follow a synchronized route.

This enables ACKs at intermediate routers to know (1) which ports they need to

poll for other ACKs, and (2) when all possible aggregations at that router complete.

For instance, in Figure 5-2, the ACK at the injection port of Router 5 only needs to

poll input ports West and North; once it merges ACKs from both directions, it can

move ahead. It does not need to wait for an ACK from the South port because ACK

B from Router 1 will reach the destination via Router 2, and not Router 5, in this

particular routing policy.

While a fixed route (like XY) by all ACKs serves this purpose, it would result in

heavy congestion across the Y links leading to the destination because the destination

would become a hot-spot node. Instead, we make all ACKs for an M:1 flow follow the

reverse path of the 1-to-M Whirl route they were on, as shown in Figure 5-3. We term

this as reverse Whirl or rWhirl. This is realized by embedding the received Whirl route

(4-bit LTBW , LTBN , LTBE, LTBS) from the broadcast into the response flit. Each

router on the response path can now decode these bits to compute the ‘LTB,RTB’

121

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

for each direction for the original broadcast and estimate the output port for the

ACK, as shown in Figure 5-32.

Deadlock avoidance. rWhirl allows all possible turns, and thus requires a dead-

lock avoidance mechanism. We avoid deadlocks by using the same VC partitioning

technique as we did for Whirl (see Figure 4-4). All ACKs that start going South are

forced to use VC-a, and not VC-b, until they turn, after which they can use any VC.

ACKs going in other directions can use any VC. This implements a deadlock-free

South-last turn model within VC-b, and guarantees deadlock freedom.

5.5 FANIN Flow Control/Protocol

5.5.1 master ACKs

Who does the aggregation? The first ACK that arrives at a router is responsible

for aggregating ACKs for that M:1 flow at that router, and we call it the master

ACK. In most cases, the first ACK to arrive at a router will be at the injection port.

This is because any multicast that went through this router would have delivered

the multicast flit to the local NIC earlier than delivering it to the neighbor’s NIC,

and consequently the response ACKs would follow that order. Exceptions to this

could occur due to congestion at cache controllers and cores. This master ACK gets

buffered on arrival. In parallel, it determines which input ports it needs to poll based

on the rWhirl route and the router’s location relative to the destination. Figure 5-3

shows an example of the polling logic.

How is the aggregation done? The master ACK flit checks the incoming links at

its polling ports every cycle. It does not poll flits already buffered in the router, which

will be explained later. Whenever a new ACK arrives at the router (indicated by the

is ack-bit) at an input port, its ack id (see Section 5.5.2 for details) is compared

against all master ACKs (from different M:1 flows) polling this input port. On a

2In certain protocols such as HyperTransport [9], the 1:M source and the M:1 receiver are not the
same. This is not a problem because rWhirl essentially determines a load-balanced and synchronized
route for the ACKs. They do not have to follow the exact reverse route of the broadcast.

122

5.5. FANIN Flow Control/Protocol

rWhirlWhirl_W01-N01-E01-S01

add_polling_port(Inj);
if (LTBW)
 outport = N;
 add_polling_port(S);
else // RTBS

 outport = E;
 add_polling_port(W);

(LTBN, RTBN)

(LTBS, RTBS)

(LTBE, RTBE)(LTBW, RTBW)

Figure 5-3: rWhirl with sample pseudo-code.

match, the master ACK updates its ack count, and the flit that arrived is simply

dropped. Dropping the flit entails sending a credit back to the upstream router for

the VC it was going to be buffered in.

What happens to polling ports after aggregation? Once the ACK flit aggre-

gates a flit from an input port, it does not remove that port from its polling list to

account for inefficient aggregation at upstream routers. For instance, in Figure 5-2,

if Router 8 failed to aggregate ACK O, both ACKs O and I would arrive at Router

4 from the North port, so Router 4 should continue polling this port.

Can there be multiple masters for the same M:1 flow at a router? If an

ACK became a master, it means there is no other ACK for the same M:1 flow at this

router, else there would have been an earlier master that would have aggregated and

dropped it on arrival. Thus, master ACKs do not need to poll buffered flits within

the router. There is, however, the corner case of two ACKs arriving in the same cycle

from different input ports, in which case they would both become master ACKs if

no other master ACK was looking out for them. To handle this special case, we (a)

make each input port store the VCid of the ACK flit that arrived in the previous

123

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

12

8 9

4

0 1 2

7

3

6

furthest router : 12
hops from furthest router : 3

waiting time for ACK from 12
= to-and-fro delay of bcast and ack
= hops x [bcast delay per hop +

ack delay per hop]
= hops x 4 = 12 cycles

10 11

13 14 15

Figure 5-4: Waiting heuristic for ACKs.

cycle, and (b) give ports an arbitrary static priority: Inj > W > N > E > S. In the

first cycle after getting buffered, the master ACKs check the last arrival VCs at their

polling ports (in addition to polling the links). If they find a match, the master ACK

with higher priority aggregates the ACKs with lower priorities, and the latter VCs at

the respective ports are made free.

Can we achieve perfect aggregation? Perfect aggregation, i.e., aggregating all

ACKs part of a M:1 flow into one ACK, is not necessary for correctness; moreover, it

cannot be achieved if ACK flits keep winning switch allocation at intermediate routers

and proceed to their destination. In principle, a master ACK from the NIC could wait

indefinitely at a router till it aggregates all the possible ACKs for that flow which will

pass through that router, to realize the aggregation presented earlier in Figure 5-2.

However, this can cause deadlocks. For instance, a master ACK F1 at Router 5 might

be waiting for ACK E1 from Router 4, while a master ACK E2 at Router 4 might

be waiting for ACK F2 from Router 5, both blocking the injection port buffers at

their respective routers, preventing the injection of E1 and F2 respectively. This can

occur because controllers could inject ACKs for two different M:1 flows in any order

as they could have received the broadcast requests in different orders depending on

their distance from the source. To avoid deadlocks, we propose a heuristic for a fixed

waiting time, during which the master ACK should not arbitrate for the switch and

instead only aggregate ACKs; after the waiting time is over, it can start arbitration

for the switch while continuing to poll input ports for more potential aggregations.

How long should master ACKs wait at a router? Here, we describe a solution

124

5.5. FANIN Flow Control/Protocol

for scenarios in which every node (except the requester) responds with an ACK [9, 1].

For cases when this is not true, such as multicasts with few destinations or certain

coherence protocols [61, 58], an opportunistic aggregation by master ACKs, with no

explicit waiting is a better alternative (i.e., master ACKs aggregate ACKs in parallel

to arbitration for the switch).

The time of arrival of a particular ACK at an intermediate router depends on the

location of this router on the mesh, relative to the source of the ACK. The master

ACK at a router should wait to aggregate the ACK from the router furthest from

it, before it proceeds. Figure 5-4 shows the heuristic we use to compute this waiting

time: the time for the ACK from Router 12 to arrive at Router 5 will be greater than

or equal to the zero-load, to-and-fro delay of the preceding broadcast, and the current

ACK (i.e., hops× (2 + 2)), assuming two cycles at every hop3 for the broadcast and

ACK flits.

The ACK from the local NIC should be the master ACK for the waiting time

heuristic to hold. If an ACK arrives from some other port and becomes the master

ACK, this means the NIC ACK has not yet arrived or has already left after waiting.

This breaks the heuristic’s assumptions, so there is no point for this new ACK to

wait. The master ACK at the injection port, on arrival, computes furthest hops, the

number of hops between the current router and the furthest router reachable via its

polling ports via minimal hops (which is Router 12 in Figure 5-4). The furthest router

would be at the corner, and is thus easy to compute using the current coordinates and

polling ports. It then waits for furthest hops × 4 before starting switch allocation.

The master ACKs at all other ports do not wait, and instead perform opportunistic

aggregation by polling input links every cycle until they get to use the switch.

The policy of making ACKs wait at routers, while increasing the chances of ag-

gregating other ACKs (thereby reducing traffic), offers a trade-off because waiting

ACKs occupy router buffers, throttling new flits from entering the router. Moreover,

inefficient waiting could lead to a delayed completion of the preceding request. We

evaluate our heuristic in Section 5.7.3.

3See Section 4.5.2 and Section 5.6.

125

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

5.5.2 Comparison Logic for Aggregation

Two ACKs belonging to the same M:1 flow are identified by identical destinations

(6 bits in 8×8 mesh) and memory addresses (32-40 bits). Comparing 38-46 bits

at each router at multiple ports is an overkill in terms of area and power, and not

very scalable. Hashing the address to fewer bits adds the risk of conflicts during

aggregation.

We solve this by leveraging the fact that at any point in time, the number of

unique M:1 flows is limited by the number of outstanding multicasts, which in turn

is limited by the size of the MSHR at each multicasting cache/directory controller.

In our design, each multicasting controller4 maintains a pool of multicast ids called

m ids. Every time a new multicast is sent, it is assigned a unique m id and the

controller marks this m id as busy. The number of busy m ids at the controller

represents the number of multicast requests for which responses have not yet been

received.

On receiving the multicast, the responding controllers embed the same m id in

the ACKs. This ensures that all ACKs belonging to an M:1 communication will have

the same ack id = [dest id,m id] and thus this field can be compared for aggregation

instead of addresses.

When the multicasting controller receives all expected ACKs, or an unblock5, it

frees the corresponding m id, and can re-issue it to future multicasts. Thus at any

point in time the ack id is unique to a particular M-to-1 communication flow.

The maximum number of unique m ids required at each multicasting controller is

equal to the number of MSHR entries at the controller. In a 64-core CMP, the dest id

is 6 bits, while the typical number of MSHR entries is less than 32 [9, 1], giving an

m id of 5 bits. This results in an ack id of 11 bits. We can also choose to have fewer

m ids than the number of MSHR entries (to reduce the ack id bits further). In this

case, if all m ids are busy, and the multicasting controller needs to send out a new

4This could be the requester [61, 1] or the home node [9, 58].
5In protocols like HyperTransport [9], all ACKs go to the requester, which then sends an unblock

message to its home node, which is the multicasting controller.

126

5.6. Single-cycle FANIN Router

rRC

BW AA

SA
ST

wait

AA
LT

AA

wait

AA

BW

BW...

...

LT

master ACK at Router 1

BW

SA
ST

master ACK at
Router 2

rRC

rRC

rRC
dropped flit

End of waiting time

...

ACK Traversal (2-stage router, 1-stage link)

250ps 370ps@45nm:

(a) Regular FANIN pipeline.

BW AA

SA

ST

wait

AA
LT

AA STAA

BW

BW

...

...

LA

LA

BW

wait SA

rRC

rRC

rRC

rRC
LT

master ACK at Router 1

master ACK at
Router 2

End of waiting time

...

ACK Traversal (1-stage router, 1-stage link)

(b) Optimized FANIN pipeline.

Figure 5-5: FANIN pipeline optimizations to realize single-cycle aggregation router. The
critical cycles (adding to overall traversal delay) of the pipelines are shaded
in gray. The stages are: BW: buffer write, rRC: rWhirl route computation,
AA: ACK aggregation, SA: switch allocation, ST: switch traversal, LT: link
traversal, LA: lookahead.

multicast, it assigns it an m id of -1. ACKs with m id of -1 are not aggregated in the

network, thus maintaining correctness6.

5.6 Single-cycle FANIN Router

FANIN’s regular pipeline is shown in Figure 5-5(a), along with the synthesized critical

path delays for the rWhirl (rRC) and ACK aggregation (AA) steps. We discuss

Router 2 without any loss of generality. We define critical stages as the pipeline stages

that add to the number of cycles per hop for the aggregated ACKs. The master ACK

at Router 2 always needs to get buffered because it performs the aggregation and

needs to wait for incoming ACKs. However, this part of the pipeline is overlapped

by the flit arrival from Router 1 for which this master ACK is waiting, and is thus

non-critical. Once the flit from Router 1 arrives, it gets aggregated and dropped, and

the master ACK at Router 2 starts switch allocation (SA). It then performs switch

traversal (ST). These two router pipeline stages are critical. We leverage bypassing,

sending an lookahead (LA) one-cycle ahead of the regular flit to shrink the number

of critical stages in the router to one, as shown in Figure 5-5(b). The lookahead in

this scenario needs to carry the 11-bit ack id, 1-bit ack bit, and 6-bit ack count. This

6GETS requests in Token Coherence [61] are also assigned an m id of -1 since MSHR entries can
become free before all tokens are received in some cases.

127

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

lookahead can perform the aggregation, while the actual flit traverses the link (and is

then dropped the next cycle on aggregation). This optimized ACK traversal is shown

in Figure 5-5(b) and presents two critical stages at every hop for ACKs (one cycle in

router, one in link). This FANIN pipeline is used for the response message class of

the network. The request message class will follow the FANOUT pipeline described

earlier in Section 4.5.2.

Ideal M-to-1 Traversal. In summary, FANIN enables ACKs from the four

quadrants of the chip to reach the destination router in a synchronized manner (using

rWhirl) as four aggregated ACKs that incurred 1-cycle router and 1-cycle link critical

delays at all intermediate hops (using intelligent waiting and lookaheads). At the

destination, these ACKs get opportunistically aggregated into one ACK and proceed

to the NIC, thus reducing network load from M to a single ACK and pushing energy-

delay-throughput to the ideal.

5.7 Evaluations

We present full-system evaluations of FANIN with HyperTransport and Token Co-

herence. Table 5.1 and Table 5.2 present our CPU/Memory and NoC parameters.

We use the FANOUT NoC presented in Chapter 4 as our baseline design. As before,

our IDEAL (tr=1) is a NoC with 1-cycle routers and no contention7.

Table 5.1: CPU and Memory Parameters.

Processors 64 in-order SPARC
L1 Caches Private 32 kB I&D
L2 Caches Private 1MB per core
Coherence (1) HyperTransport [9] (HT)
Protocol (2) Token Coherence [61] (TC)

DRAM Latency 70ns

Table 5.2: Network Parameters.

Topology 8×8 mesh
Router Ports 5

Ctrl VCs/port 12, 1-flit deep
Data VCs/port 3, 3-flit deep

Flit size 128 bits
Link length 1mm

7Section 2.3.1 describes the implementation of the contention-less ideal NoC.

128

5.7. Evaluations

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	

ba
rn
es
	

3
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
>a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
>o

ns
	

x2
64

	
AV

ER
AG

E	

ba
rn
es
	

3
	

fm
m
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
>a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
>o

ns
	

x2
64

	
AV

ER
AG

E	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

HyperTransport	 Token	 Coherence	

N
or
m
al
iz
ed

	 A
pp

lic
a/

on
	 R
un

/m
e	

FANOUT	 FANOUT+FANIN	 IDEAL	 (tr=1)	 Better r

Figure 5-6: Full-system Application Runtime.

5.7.1 Application Runtime

Figure 5-6 shows the normalized full-system application runtime with FANOUT+FANIN

for both protocols. With FANOUT, we saw a runtime improvement of 10% for HT

in Figure 4-14, which was 9.5% off the ideal. FANIN bridges this gap. FANIN re-

duces runtime by a further 9.2% over FANOUT. For TC, FANIN lowers runtime by

a 2% over FANOUT. These results reiterate that the progress of applications is lim-

ited more by ACKs in HT, and by broadcasts in TC. Compared to IDEAL (tr=1),

FANOUT+FANIN is off by less than 1% for both HT and TC.

5.7.2 Network Latency

The full-system runtime behavior seen earlier can be understood by looking at the

network latency impact in Figure 5-7. FANOUT+FANIN allows HT to achieve an

average on-chip network latency of 22.6 cycles, which is just 0.5-cycle more latency

per hop on average than the ideal 1-cycle-router data-path. There is no significant

latency reduction for TC than that already provided by FANOUT since FANIN only

affects 2% of the flows in this protocol.

129

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

ba
rn
es
	

.
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
9a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	
AV

ER
AG

E	

ba
rn
es
	

.
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
9a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	
AV

ER
AG

E	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

HyperTransport	 Token	 Coherence	

Av
g	
N
et
w
or
k	
La
te
nc
y	
(c
yc
le
s)
	 FANOUT	 FANOUT+FANIN	 IDEAL	 (tr=1)	

Better r	

Figure 5-7: Average Network Latency.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	
1.1	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	

ba
rn
es
	

3
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
p	

b'
sc
ho

le
s	

ca
nn

ea
l	

f	 '
an
im

at
e	

sw
ap
Do

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	 	 	 	

HyperTransport	

Re
ce
iv
ed

	 A
CK

s	 /
	 In

je
ct
ed

	 A
CK

s	

N
or
m
al
iz
ed

	 R
un

9m
e	

FANOUT	 +	 FANIN_rWhirl_wait	 =	 0	 FANOUT	 +	 FANIN_rWhirl_wait	 =	 hops	 x	 4	
FANOUT	 +	 FANIN_XY_wait	 =	 hops	 x	 4	 Received	 Acks	 /	 Injected	 Acks	

FANOUT + No-Aggregation

Figure 5-8: Impact of routing and flow control components.

5.7.3 Impact of components of FANIN.

We discuss the impact of FANIN on HT in Figure 5-8 which plots full-system run-

time. We first evaluate the performance of FANIN with opportunistic aggregation8.

This results in a 6.9% runtime improvement. The ratio of received-to-injected ACKs

8The master ACKs do not explicitly wait; instead they poll input ports for aggregation opportu-
nities in parallel to switch arbitration.

130

5.7. Evaluations

goes down to 0.31 on average. The intuition for two-thirds of the ACKs for M:1

flows getting aggregated, even with opportunistic aggregation, is that during the M:1

burst there is heavy congestion at routers leading up to the hot-spot destination.

Though this increases the arbitration cycles, it ends up increasing the opportunity

for aggregation as well, leading to an an overall reduction in traffic and runtime.

Next, we add our heuristic of waiting for furthest hops×4 cycles. The ideal ratio

of received-to injected ACKs should be 1/63 (all cores except the requester send an

ACK) = 0.015. However, because we do not perform any waiting at the destination

router, the destination NIC should receive four ACKs, instead of 63, making the

best achievable ratio = 4/64 = 0.0625. We observe that the received-to-injected

ACKs goes down from 0.31 to 0.065 with our heuristic, which is only 4% higher

than the best FANIN can achieve. The runtime goes down by another 3%. While

the waiting heuristic is needed to approach the ideal network’s runtime, higher wait

times degraded runtime because waiting ACKs reduce available router buffers, and

inefficient waiting could delay request completion.

We also study the impact of rWhirl versus XY routing. Interestingly, XY performs

comparably to, and sometimes slightly better than, rWhirl for most benchmarks,

except nlu and swaptions. The reason is that XY forces all ACKs to travel X first,

which results in all routers in the North/South of the destination receiving ACKs from

three directions (while routers in East/West of the destination receive ACKs from only

one direction). If the wait-time is perfect, this should not matter. However, because

it is only a heuristic, the waiting master ACK at the North/South routers in XY ends

up performing 3% more aggregations than in the rWhirl case. This result highlights

that, for ACKs, the waiting and aggregation ratio has a higher impact on runtime

than the load-balancing across network paths.

5.7.4 Network Energy.

Figure 5-9 plots the breakdown of network energy for FANOUT+FANIN for HT and

TC, normalized to FANOUT. The energy consumed by the AA logic (comparators

and adders) is also accounted for. For HT, the network energy does down by 62% on

131

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	
FA

N
O
U
T	

FA
N
O
U
T	
+	
FA

N
IN
	

ID
EA

L	
(t
r=
1)
	

SPLASH-‐2	 PARSEC	 AVERAGE	

N
et
w
or
k	
En

er
gy
	 N
or
m
al
iz
ed

	 to
	 F
AN

O
U
T	 FANOUT	

r	

(a) HyperTransport.

ba
rn
es
	

(
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
3a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
3o

ns
	

x2
64

	
FA

N
O
U
T	

FA
N
O
U
T	
+	
FA

N
IN
	

ID
EA

L	
(t
r=
1)
	

SPLASH-‐2	 PARSEC	 AVERAGE	

FANOUT
+FANIN	
aggr-‐logic	

link	

allocators	

crossbar	

buffer_rd	

buffer_wr	

FANOUT	

r	

(b) Token Coherence.

Figure 5-9: Network Energy.

average. This is in part because 93.5% aggregation of ACKs are aggregated, leading

to reduction of traffic and hence fewer buffer, crossbar and link traversals. In addition,

lower NoC contention due to FANIN allows more buffer bypasses for other kinds of

traffic as well. For TC, energy goes down by 2.4%. Compared to the IDEAL (tr=1)

in energy9, FANOUT+FANIN is off by 9.6% on average for both HT and TC, as

opposed to 32.1% in the BASE fork@rtr design described in Chapter 4. If we reduce

the number of VCs from 12 for req vnet and 3 for resp vnet (Table 5.2) - determined

from turnaround time of BASE fork@rtr - to 8 and 2 respectively, FANOUT+FANIN

is still less than 1% off IDEAL (tr=1) runtime but consumes 17.7% lower energy,

which is 7.9% off IDEAL (tr=1) energy.

5.8 Chapter Summary

In this chapter, we presented FANIN, an in-network aggregation methodology for

M-to-1 flows, which occur in a class of shared memory coherence protocols. We

also added optimizations for synchronized routing, intelligent waiting to maximize

aggregation, and single-cycle router pipelines. FANIN, together with FANOUT which

was presented in the previous chapter, can provide scalability to shared memory

9The energy consumed in the ideal networks is just data-path energy, i.e., ST and LT.

132

5.8. Chapter Summary

coherence protocols that frequently use broadcasts and wide multicasts. The ideas in

FANIN can also be ported to enhance user-level messaging systems that use M-to-1

communication.

So far in this thesis, we have successfully demonstrated single-cycle per-hop NoC

traversals for 1-to-1, 1-to-Many and Many-to-1 traffic flows. In the next chapter, we

push further towards our goal of realizing dedicated wire connections in a shared NoC

by enabling multi-hop traversals to occur within a single-cycle.

133

Chapter 5. Single-cycle Per-hop NoC for Many-to-1 Traffic

134

6
Single-cycle Multi-hop NoC

for 1-to-1, 1-to-Many and Many-to-1 Traffic

“Begin at the beginning,” the King said very gravely,
“and go on till you come to the end: then stop.”

- Lewis Carrol, Alice in Wonderland

This chapter presents a NoC architecture that allows flits to dynamically create

and traverse multi-hop routes, potentially all the way from the source to the destina-

tion, within a single-cycle. This design aims to remove the fundamental dependence

of the network latency on the number of hops H in Equation 1.1. The key enabler for

this NoC architecture is single-cycle multi-hop repeated wires, which are presented in

Appendix A.

6.1 Introduction

In Chapter 2, we presented the following fundamental equation for the latency of a

packet in the NoC:

TP = H · (tr + tw) + Ts +
H∑

h=1

tc(h) (6.1)

It has a fixed component for router (tr) + link (tw) delay, which gets multiplied by

the number of hops H; a constant serialization delay Ts for multi-flit packets equal to

number of flits minus one, i.e., (dL/be − 1), where L is the packet length and b is the

135

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

Routern

Routern+1

Routern+i

*only required for
Head flits

Flit Pipeline
Time

VC Select

Route

Switch Alloc

Crossbar

Cin

Nin

Sin

Ein

Win

Cout

Nout

Sout

Eout

Wout

creditin

creditout

bypass path

Route

bypass path

ST+LT
BW
SA
VS*

ST+LT
RC*
SA
VS*

ST+LT
RC*
SA
VS*

RC*
SA

Figure 6-1: BASELINE (tr=1) Router Microarchitecture and Pipeline.

link bandwidth; and a variable delay depending on contention at every hop (tc(h)).

So far in this thesis, we have managed to reduce the fixed component to its

minimum possible value: a single-cycle in the router and a single-cycle in the link

connecting adjacent routers. The microarchitecture and pipeline of such a BASELINE

(tr=1) router is shown in Figure 6-11. However, the latency still goes up linearly with

H. As core counts increase, H inevitably increases (linearly with k in a k× k mesh).

As we design 1024 core chips [3, 58, 33, 42] for the exascale era, high hop counts will

lead to horrendous on-chip network traversal latency and energy creating a stumbling

block to core count scaling.

One proposed approach for reducing network latency is to modify the mesh topol-

ogy and add extra dedicated links between certain physically distant routers [32, 44,

13, 48, 74]. This reduces H and thus reduces the number of routers on the route,

lowering latency. These long point-to-point links can be engineered to incur a delay of

only a single-cycle by using repeated wires2 or equalized low-swing wires [45]. How-

ever, these solutions are far from perfect. (1) High-radix routers have a high number

of input and output ports, leading to increased complexity of the routing, allocation

and crossbar blocks, increasing router delay tr and router power. (2) If each extra link

is the same width as the ones in the underlying mesh, the buffer + crossbar area and

1For simplicity, we merge the lookahead and flit pipelines which were shown separately in Chap-
ter 3. The actions within the router include allocations and routing (performed by lookaheads) and
flit buffering (if allocation fails). This is followed by the switch+link traversal of the lookaheads/flits.

2In Appendix A we show that repeated wires can transmit signals across 13+ mm within a GHz.

136

6.1. Introduction

power increase dramatically. Instead, thinner channels (i.e., smaller b) are often used

to remove the area or power penalty, but this has a performance penalty in terms of

higher serialization delay Ts. (3) The explicit links can help reduce latency only for

traffic that maps well to this new topology.

We propose an alternate approach to realize a single-cycle network traversal. We

embed repeated links within the conventional data-path of mesh routers, and present

a flow control technique that allows flits to create virtual multi-hop paths which can

be traversed within a single-cycle. We optimize network latency as follows:

TP = d(H/HPC)e · (tr + tw) + Ts +
H∑

h=1

tc(h) (6.2)

where HPC stands for number of Hops Per Cycle. We reduce the effective number of

hops to d(H/HPC)e, without adding any additional physical wires in the data-path

or reducing b like the high-radix router solutions do.

Our proposed NoC is named SMART, for Single-cycle Multi-hop Asynchronous

Repeated Traversal [50]. On a 64-core mesh, synthetic unicast traffic shows 5-8X

reduction in average network latency; full-system SPLASH-2 and PARSEC traffic

shows 27/52% reduction in average runtime for Private/Shared L2 in a full-state di-

rectory protocol, compared to a BASELINE (tr=1)3 design. SMART, enhanced with

multicast support, speeds up broadcast delivery by 84% and provides 19% runtime

reduction in the broadcast-intensive Token Coherence protocol. With HyperTrans-

port, which has a mix of unicast, broadcast and reduction/acknowledgement traffic,

SMART offers a 15% runtime improvement.

The rest of the chapter is organized as follows. Section 6.2 introduces the SMART

interconnect, and how it is embedded into a router. Section 6.3 demonstrates the

design for a k-ary 1-Mesh, and Section 6.4 extends it to a k-ary 2-Mesh. Section 6.5

and 6.6 enhances the SMART NoC to support 1-to-Many and Many-to-1 traffic flows

respectively. Section 6.7 presents implementation details. Section 6.8 presents our

evaluations. Section 6.9 contrasts against prior art and Section 6.10 concludes.

3A single-cycle router at every hop.

137

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

6.2 The SMART Interconnect

Router logic delay limits the network frequency to 1-2GHz at 45nm [38, 66]. Link

drivers are accordingly sized to drive a signal up to 1-hop (1mm in this work) in

0.5-1ns, before it is latched at the next router. But wires can transmit signals much

further within this target frequency. Appendix A performs a detailed design-space

exploration of repeated wire4 delay as a function of different design parameters. We

observe that repeated wires can go 13-19mm within a ns at 3×DRCmin wire spacing,

and 1mm repeater spacing. SMART exploits the positive slack in the link traversal

stage by replacing clocked link drivers by asynchronous repeaters at every hop, and

removing the constraint of latching signals at every router. This allows signals to

be transmitted up to multiple hops within a cycle before they are latched at the

destination router. The maximum number of hops that can be traversed within

a cycle, or HPCmax , is an architectural parameter that can be inferred from the

maximum length that can be traversed by a signal on a repeated wire at a given

technology; this is shown in Equation 6.3.

HPCmax =
(max mm per ns)× (clock period in ns)

(tile width in mm)
(6.3)

For a 1mm tile width and a 1ns clock period that we assume for our experiments,

we get a HPCmax of 13-19 for a repeated wire at 45nm. If we choose a 2mm tile

width, or a 2GHz frequency, HPCmax will go down by half. Clock-less/asynchronous

repeaters also consume 14.3% lower energy/bit/mm than conventional clocked drivers,

giving us a win-win.

SMART is a better solution for exploiting the slack than deeper pipelining of the

router with a higher clock frequency (e.g. Intel’s 80-core 5GHz 5-stage router [37])

which, even if it were possible to do, does not reduce traversal latency (only improves

throughput), and adds huge power overheads due to pipeline registers.

Figure 6-2 shows a 5-ported SMART router for a mesh network. For simplicity, we

4Adding asynchronous repeaters, i.e., an inverter or a pair of inverters, is a standard way of
reducing wire delay [45, 70].

138

6.2. The SMART Interconnect

Win

Cin

Eout

BMsel

BWena

XBsel

0
bypass

local Win_xb

Cin_xb

Eout_xb

Asynchronous
Repeater

Xbar free_vc

Figure 6-2: SMART Router Microarchitecture.

R0 R1 R2 R3

BWena

BMsel

XBsel

0
0

Cin->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

Cin

Win

Figure 6-3: Traversal over a SMART path.

only show Corein(Cin)5, Westin(Win) and Eastout(Eout) ports. All other input ports

are identical to Win, and all other output ports are identical to Eout. The delay at

each hop includes not just the repeater and link segment delay (as in a pure repeated

wire), but also the delay through the muxes (2:1 bypass and 4:1 Xbar). This reduces

HPCmax to 11 at 1GHz, as explained later in Section 6.7.

Figure 6-2 shows the three primary components of the design: (a) Buffer Write

enable (BWena) at the input flip flop which determines if the input signal is latched

or not, (2) Bypass Mux select (BMsel) at the input of the crossbar to choose between

the local buffered flit, and the bypassing flit on the link, and (3) Crossbar select

(XBsel). Figure 6-3 shows an example of a multi-hop traversal: a flit from Router

R0 traverses 3-hops within a cycle, till it is latched at R3. The crossbars at R1 and

R2 are preset to connect Win to Eout, with their BMsel preset to choose bypass over

local. A SMART path can thus be created by appropriately setting BWena , BMsel ,

and XBsel at intermediate routers. In the next section, we describe the flow control

to preset these signals.

5Cin does not have a bypass path like the other ports because all flits from the NIC have to get
buffered at the first router, before they can create SMART paths, as explained later in Section 6.3.

139

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

Table 6.1: Terminology

Term Meaning

HPC Hops Per Cycle. The number of hops traversed in a cycle by any flit.
HPCmax Maximum number of hops that can be traversed in a cycle by a flit.

This is fixed at design time.
SMART-hop Multi-hop path traversed in a Single-cycle via a SMART link.

It could be straight, or have turns.
The length of a SMART-hop can vary anywhere from 1-hop to HPCmax .

injection router First router on the route. The source NIC injects a flit
into the Cin port of this router.

ejection router Last router on the route. This router ejects a flit
out of the Cout port to the destination NIC.

start router Router from which any SMART-hop starts. This could be the
injection router, or any router along the route.

inter router Any intermediate router on a SMART-hop.
stop router Router at which any SMART-hop ends. This could be the

ejection router or any router along the route.
turn router Router at a turn (Win/Ein to Nout/Sout, or Nin/Sin to Wout/Eout)

along the route.
local flits Flits buffered at any start router.
bypass flits Flits which are bypassing inter routers.
SMART-hop Length (in hops) for a requested SMART-hop. For example, SSR=H
Setup indicates a request to stop H-hops away.
Request (SSR) Optimization: Extra ejection-bit if requested stop router is ejection router.
premature stop A flit is forced to stop before its requested SSR length.
Prio=Local Local flits have higher priority over bypass flits,

i.e., Priority α 1/(hops from start router).
Prio=Bypass Bypass flits have higher priority over local flits,

i.e., Priority α (hops from start router).
SMART 1D Design where routers along the dimension (both X and Y)

can be bypassed. Flits need to stop at the turn router.
SMART 2D Design where routers along the dimension and one turn can be bypassed.

R0 R1 R2 R3 R4

SSR
1h2h3h 0h

BWen

BMsel
XBsel

SSRs for Wout

SSRs for Eout h = hop

Cin

Win

SA-G

Eout

log2(1+ HPCmax)

SA-L

Figure 6-4: k-ary 1-Mesh with dedicated SSR links.

6.3 SMART in a k-ary 1-Mesh

Table 6.1 defines terminology that will be used throughout the chapter. We start

by demonstrating how SMART works in a k-ary 1-Mesh, shown in Figure 6-4. Each

140

6.3. SMART in a k-ary 1-Mesh

Routern+1

*only required for
Head flits

Flit Pipeline

SSR PipelineRoutern

Routern+2

Routern+HPCmax

Time

Routern+i

SSR+SA-G ST+LT
VS* + BW

RC*
SA-L

VS* + BW
RC*

ST+LT
SSR+SA-G

SSR+SA-G ST+LT

SSR+SA-G ST+LT

SSR+SA-G ST+LT
VS* + BW

RC*
SA-L

Figure 6-5: SMART Pipeline.

router has 3 ports: West, East and Core6. As shown earlier in Figure 6-2, Eout xb

can be connected either to Cin xb or Win xb. Win xb can be driven either by bypass,

local or 0, depending on BMsel .

The design is called SMART 1D (since routers can be bypassed only along one

dimension). The design will be extended to a k-ary 2-Mesh to incorporate turns, in

Section 6.4. For purposes of illustration, we will assume HPCmax to be 3.

6.3.1 SMART-hop Setup Request (SSR)

In the NoCs described so far, buffered flits at every router arbitrate among themselves

to gain access to the output ports. We call this Switch Allocation Local (SA-L)7.

The winner of SA-L (flit or lookahead, depending on implementation) traverses the

crossbar and output link to the next router, stops, arbitrates for the next link, and

so on. The key challenge in SMART is that flits need to arbitrate for multiple links

and the buffer at the end point, all within the same cycle.

The SMART router pipeline is shown in Figure 6-5. A SMART-hop starts from

a start router, where flits are buffered. Unlike the baseline router, Switch Alloca-

tion in SMART occurs over two cycles: Switch Allocation Local (SA-L) and Switch

Allocation Global (SA-G).

6For illustration purposes, we only show Cin, Win and Eout in the figures.
7SA-L is identical to the SA stage in the baseline pipeline, described earlier in Section 2.1.4.

141

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

In a SMART NoC, each output port winner from SA-L first broadcasts a SMART-

hop setup request (SSR) up to HPCmax-hops from that output port. These SSRs

- dedicated repeated wires (which are inherently multi-drop8) on the control-path

that connect every router to a neighborhood of up to the HPCmax help preset the

intermediate routers for a multi-hop bypass path. They are shown in Figure 6-4.

SSRs are log2(1+ HPCmax)-bits wide, and carry the length (in hops) up to which the

winning flit wishes to go. For instance, SSR = 2 indicates a 2-hop path request. Each

flit tries to go as close as possible to its ejection router, hence SSR = min(HPCmax ,

Hremaining).

During SA-G, all inter routers arbitrate among the SSRs they receive, to set

the BWena , BMsel and XBsel signals. The arbiters guarantee that only one flit will

be allowed access to any particular input/output port of the crossbar. In the next

cycle (ST+LT), SA-L winners that also won SA-G at their start routers traverse the

crossbar and links upto multiple hops till they are stopped by BWena at some router.

Thus flits spend at least 2 cycles (SA-L and SA-G) at a start router before they can

use the switch. SSR traversal and SA-G occur serially within the same cycle (see

Section 6.7 for timing implications).

We illustrate the traversal mechanism with an example. In Figure 6-6, Router

R2 has FlitA and FlitB buffered at Cin, and FlitC and FlitD buffered at Win, all

requesting Eout. Suppose FlitD wins SA-L during Cycle-0. In Cycle-1, it sends out

SSRD = 2 (i.e., request to stop at R4) out of Eout to Routers R3, R4 and R5. SA-

G is performed at each router. At R2, which is 0-hops away (< SSRD), BMsel =

local, XBsel = Win xb→Eout xb. At R3, which is 1-hop away (< SSRD), BMsel =

bypass, XBsel = Win xb→Eout xb. At R4, which is 2-hops away (= SSRD), BWena =

high. At R5, which is 3-hops away (> SSRD), SSRD is ignored9. In Cycle-2, FlitD

traverses the crossbars and links at R2 and R3, and is stopped and buffered at R4.

8Wire cap is an order of magnitude higher than gate cap, adding no overhead if all nodes connected
to the wire receive.

9SSRs could be made one-hot to remove the decoder at the receivers. However, this would
increase the number of SSR wires linearly with HPCmax instead of as a log2. Moreover, even if
the receiver’s one-hot bit is low, it still needs additional logic to identify its location relative to the
high-bit to decide whether to setup a bypass path or ignore the request.

142

6.3. SMART in a k-ary 1-Mesh

R0 R1 R2 R3 R4 R5

=

SSRD = 2FlitD

FlitC

FlitB

FlitA

BWena

BMsel

XBsel

0
local

Win->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
0
X

Cycle 1
Cycle 2

Cin

Win

Figure 6-6: SMART Example: No SSR Conflict.

R0 R1 R2 R3 R4 R5

BWena

BMsel

XBsel

1
local

Win->Eout

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

0
0

Cin->Eout

Cycle 1
Cycle 2

Cin

Win

FlitE

SSRE = 3
=

SSRD = 2FlitD

FlitC

FlitB

FlitA

Figure 6-7: SMART Example: SSR Conflict with Prio=Local.

R0 R1 R2 R3 R4 R5

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

1
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BMsel

XBsel

0
bypass
Win->Eout

BWena

BMsel

XBsel

0
0

Cin->Eout

Cycle 1
Cycle 2

Cin

Win

FlitE

SSRE = 3
=

SSRD = 2FlitD

FlitC

FlitB

FlitA

Figure 6-8: SMART Example: SSR Conflict with Prio=Bypass.

What happens if there are competing SSRs? Flits can end up getting

prematurely stopped (i.e, before their SSR length) depending on contention between

SSRs during SA-G results at the participating routers. In the same example, suppose

R0 also wants to send FlitE 3-hops away to R3, as shown in Figure 6-7. In Cycle-1,

R2 sends out SSRD as before, and in addition R0 sends SSRE = 3 out of Eout to

R1, R2 and R3. Now at R2 there is a conflict between SSRD and SSRE for the

Win xb and Eout xb ports of the crossbar. SA-G priority decides which SSR wins

the crossbar. More details about priority will be discussed later in Section 6.3.2. For

now, let us assume Prio=Local (which is defined in Table 6.1) so FlitE loses to FlitD.

The values of BWena , BMsel and XBsel at each router for this priority are shown in

143

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

Figure 6-7. In Cycle-2, FlitE traverses the crossbar and link at R0 and R1, but is

stopped and buffered at R2. FlitD traverses the crossbars and links at R2 and R3

and is stopped and buffered at R4. FlitE now goes through BW and SA-L at R2

before it can send a new SSR and continue its network traversal. A free VC/buffer

is guaranteed to exist whenever a flit is made to stop (see Section 6.3.4).

6.3.2 Switch Allocation Global: Priority

Figure 6-8 shows the previous example with Prio=Bypass instead of Prio=Local. This

time, in Cycle-2, FlitE traverses all the way from R0 to R3, while FlitD is stalled.

Do all routers need to enforce the same priority? Yes. All routers need to

collectively agree, in a distributed manner and during the same cycle, on which flit

is performing a particular multi-hop traversal. The only information each router has

is the SSR from the source; there is no other communication between the routers.

Enforcing the same SA-G priority (either Prio=Local or Prio=Bypass) guarantees

that the same relative priority is maintained between SSRs at each router, ensuring

a distributed consensus on which flits get to go and which have to stop. This is

required for correctness. In the example discussed earlier in Figures 6-7 and 6-8,

BWena at R3 was low with Prio=Local, and high with Prio=Bypass. Suppose R2

performs Prio=Bypass, but R3 performs Prio=Local, FlitE will end up going from R0

to R4, instead of stopping at R3. This is not just a misrouting issue, but also a signal

integrity issue because HPCmax is 3, but the flit was forced to go up to 4 hops in a

cycle, and will not be able to reach the clock edge in time. Note that enforcing the

same priority is only necessary for SA-G, which corresponds to the global arbitration

among SA-L winners at every router. During SA-L, however, different routers/ports

can still choose to use different arbiters (round robin, queueing, priority) depending

on the desired QoS/ordering mechanism.

Can a flit arrive at a router, even though the router is not expecting

it (i.e., false positive10)? No. All flits that arrive at a router are expected, and

10The result of SA-G (BWena , BMsel and XBsel) at a router is a prediction for the null hypothesis:
a flit will arrive the next cycle, and stop/bypass.

144

6.3. SMART in a k-ary 1-Mesh

will stop/bypass based on the success of their SSR in the previous cycle. This is

guaranteed since all routers enforce the same SA-G priority.

Can a flit not arrive at a router, even though the router is expecting it

(i.e., false negative)? Yes. It is possible for the router to be setup for stop/bypass

for some flit, but no flit arrives. This can happen if that flit is forced to prematurely

stop earlier due to some SSR interaction at prior inter routers that the current router

is not aware of. For example, suppose a local flit at Win at R1 wants to eject out of

Cout. A flit from R0 will prematurely stop at R1’s Win port if Prio=Local is imple-

mented. However, R2 will still be expecting the flit from R0 to arrive11. Unlike false

positives, this is not a correctness issue but just a performance (throughput) issue,

as we show later in the evaluation Section 6.8.1, since some links go idle which could

have potentially been used by other flits if more global information were available.

6.3.3 Ordering

In SMART, any flit can be prematurely stopped based on the interaction of SSRs

that cycle. We need to ensure that this does not result in re-ordering between (a)

flits of the same packet, or (b) flits from the same source (if point-to-point ordering

is required in the coherence protocol).

The first constraint is in routing (relevant to 2D topologies). Multi-flit packets,

and point-to-point ordered virtual networks should only use deterministic routes, to

ensure that prematurely buffered flits do not end up choosing alternate routes, while

bypassing flits continue on the old route.

The second constraint is in SA-G priority. We need to make sure that flits part

of a multi-flit packet or flits in a point-to-point ordered vnet do not bypass routers

with prematurely buffered flits from that packet or vnet respectively. We add a bit

at every input port to track if there is a prematurely stopped flit among its buffered

flits. When a SSR is received at an input port, and there is either (a) a prematurely

buffered Head/Body flit, or (b) a prematurely buffered flit within a point-to-point

11The valid-bit from the flit is thus used in addition to BWena when deciding whether to buffer.

145

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

ordered vnet, the incoming flit is stopped12.

6.3.4 Guaranteeing free VC/buffers at stop routers

In a conventional network, a router’s output port tracks the IDs of all free VCs at

the neighbor’s input port. A buffered Head flit chooses a free VCid for its next router

(neighbor), before it leaves the router. The neighbor signals back when that VCid

becomes free. In a SMART network, the challenge is that the next router could be any

router that can be reached within a cycle. A flit at a start router choosing the VCid

before it leaves will not work because (a) it is not guaranteed to reach its presumed

next router, and (b) multiple flits at different start routers might end up choosing the

same VCid. Instead, we let the VC selection occur at the stop router. Every SMART

router receives 1-bit from each neighbor to signal if at least one VC is free13. During

SA-G, if an SSR requests an output port where there is no free VC, BWena is made

high and the corresponding flit is buffered. This solution does not add any extra

multi-hop wires for VC signaling. The signaling is still between neighbors. Moreover,

it ensures that a Head flit comes into a router’s input port only if that input port has

free VCs, else the flit is stopped at the previous router.

However, this solution is conservative because a flit will be stopped prematurely

if the neighbor’s input port does not have free VCs, even if there was no competing

SSR at the neighbor and the flit would have bypassed it without having to stop.

How do Body/Tail flits identify which VC to go to at the stop router?

Using their injection router id. Every input port maintains a table to map a VCid

to an injection router id14. Whenever the Head flit is allocated a VC, this table is

12While this check is required for Prio=Bypass, at first glance it seems redundant for Prio=Local.
This is because Prio=Local inherently guarantees that the buffered flit, say FlitA1, will get higher
priority than the bypassing flit FlitA2, forcing the latter to stop. However, there could be a corner
case if we use a separable switch allocator (described earlier in Section 2.1.4) for SA-L. Suppose
FlitA1 is buffered at Win and requesting for Eout. FlitA1 loses SA-L’s Win arbitration to FlitB1.
FlitB1 loses arbitration for its output port Nout to some other FlitC1 from some other input port.
At the end of SA-L, Win and Eout are both open, potentially allowing SA-G to grant Win → Eout

to FlitA2. Thus a separate check is required even for Prio=Local.
13If the router has multiple virtual networks (vnets) for the coherence protocol, we need a 1-bit

free VC signal from the neighbors for each vnet. The SSR also needs to carry the vnet number, so
that the inter routers can know which vnet’s free VC signal to look at.

14The table size equals the number of multi-flit VCs at that input port.

146

6.3. SMART in a k-ary 1-Mesh

updated. The injection router id entry is cleared when the Tail arrives. The VC is

freed when the Tail leaves. We implement private buffers per VC, with depth equal

to the maximum number of flits in the packet (i.e., virtual cut-through), to ensure

that the Body/Tail will always have a free buffer in its VC15.

What if two Body/Tail flits with same injection router id arrive at a

router? We guarantee that this will never occur by forcing all flits of a packet to

leave from an output port of a router, before flits from another packet can leave from

that output port (i.e virtual cut-through). This guarantees a unique mapping from

injection router id to VCid in the table at every router’s input port.

What if a Head bypasses, but Body/Tail is prematurely stopped? The

Body/Tail still needs to identify a VCid to get buffered in. To ensure that it does

have a VC, we make the Head flit reserve a VC not just at its stop router, but also at

all its inter routers, even though it does not stop there. This is done from the valid ,

type and injection router fields of the bypassing flit. The Tail flit frees the VCs at

all the inter routers. Thus, for multi-flit packets, VCs are reserved at all routers, just

like the baseline. But the advantage of SMART is that VCs are reserved and freed

at multiple routers within the same cycle, thus reducing the buffer turnaround time.

6.3.5 Additional Optimizations

We add additional optimizations to SMART to push it towards an IDEAL (TN=1)16

described in Chapter 1.

Bypassing the ejection router. So far we have assumed that a flit starting

at an injection router traverses one (or more) SMART-hops till the ejection router,

where it gets buffered and requests for the Cout port. We add an extra ejection-bit

in the SSR to indicate if the requested stop router corresponds to the ejection router

for the packet, and not any intermediate router on the route. If a router receives a

SSR from H-hops away with value H (i.e., request to stop there), H < HPCmax , and

15Extending this design to fewer buffers than the number of flits in a packet would involve more
signaling, and is left for future work.

16Network with 1-cycle latency for all flits.

147

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

the ejection-bit is high, it arbitrates for Cout port during SA-G. If it loses, BWena is

made high.

Bypassing SA-L at low load. We add no-load bypassing [22] to the SMART

router. If a flit comes into a router with an empty input port and no SA-L winner for

its output port for that cycle, it sends SSRs directly, in parallel to getting buffered,

without having to go through SA-L. This reduces tr at lightly-loaded start routers to

1, instead of 2, as shown in Figure 6-5 for Routern+i. Multi-hop traversals within a

single-cycle meanwhile happen at all loads.

6.3.6 Summary

In summary, a SMART NoC works as follows:

• Buffered flits at injection/start routers arbitrate locally to choose input/output

port winners during SA-L.

• SA-L winners broadcast SSRs along their chosen routes, and each router arbi-

trates among these SSRs during SA-G.

• SA-G winners traverse multiple crossbars and links asynchronously within a

cycle, till they are explicitly stopped and buffered at some router along their

route.

In a SMART 1D design with both ejection and no-load bypass enabled, if HPCmax

is larger than the maximum hops in any route, a flit will only spend 2 cycles in the

entire network in the best case (1-cycle for SSR and 1-cycle for ST+LT all the way

to the destination NIC).

6.4 SMART in a k-ary 2-Mesh

We demonstrate how SMART works in a k-ary 2-Mesh. Each router has 5 ports:

West, East, North, South and Core.

148

6.4. SMART in a k-ary 2-Mesh

out

SSR

Figure 6-9: k-ary 2-Mesh with SSR wires from shaded start router.

6.4.1 Bypassing routers along dimension

We start with a design where we do not allow bypass at turns, i.e., all flits have to stop

at their turn routers. We re-use SMART 1D described for a k-ary 1-Mesh in a k-ary

2-Mesh. The extra router ports only increase the complexity of the SA-L stage, since

there are multiple local contenders for each output port. Once each router chooses

SA-L winners, SA-G remains identical to the description in Section 6.3.1. The Eout,

Wout, Nout and Sout ports have dedicated SSR wires going out till HPCmax along that

dimension. Each input port of the router can receive only one SSR from a router

that is H-hops away. The SSR requests a stop, or a bypass along that dimension.

Flits with turning routes perform their traversal one-dimension at a time, trying to

bypass as many routers as possible, and stopping at the turn routers.

6.4.2 Bypassing routers at turns

In a k-ary 2-Mesh topology, all routers within aHPCmax neighborhood can be reached

within a cycle, as shown in Figure 6-9 by the shaded diamond. We now describe

SMART 2D which allows flits to bypass both the routers along a dimension and

149

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

(a) Two SSRs for
Nout port.

3 1 0 2 4

1 0 2

5 3 1 0 2 4 6

0

Nout

direction (0 > 1 > 2 …)

(b) Fixed Priority at Nout port of
inter router.

3 1 0 2 4

1 0 2

0

0

in

direction (0 > 1 > 2 …)

(c) Fixed Priority at Sin port of
inter router.

Figure 6-10: SA-G Priority for SMART 2D.

the turn router(s). We add dedicated SSR links for each possible XY/YX path from

every router to its HPCmax neighbors. Figure 6-9 shows that the Eout port has 5

SSR links, in comparison to only one in the SMART 1D design. During the routing

stage, the flit chooses one of these possible paths. During the SA-G stage, the router

broadcasts one SSR out of each output port, on one of these possible paths. We

allow only one turn within each HPCmax quadrant to simplify the SSR signaling.

SA-G Priority. In the SMART 2D design, there can be more than one SSR

from H-hops away, as shown in the example in Figure 6-10(a) for router Rj which

receives SSRs from routers Rm and Rn that are both 1-hop away. Router Rk receives

the same SSRs. Rj and Rk both need to prioritize the same SSRs to not create

false positives17. To arbitrate between SSRs from routers that are the same distance

away, we add a second level of priority based on direction. We arbitrarily choose

straight-hops > left-hops > right-hops, where straight, left and right are relative to

the input/outport port. Figures 6-10(b) and 6-10(c) plot contours through routers

that are the same number of hops away, and highlight each router’s relative priority.

For the inter router Rj in Figure 6-10(a), the SSR from Rm will have higher priority

(10) over the one from Rn (11) for the Nout port, as it is going straight, based on

Figure 6-10(b). Similarly at Rk, the SSR from Rm will have higher priority (20) over

the one from Rn (21) for the Sin port, based on Figure 6-10(c). Thus both routers

Rj and Rk will unambiguously prioritize the flit from Rm to use the links, while the

17Section 6.3.2 discussed that false positives can result in misrouted flits or flits trying to bypass
beyond HPCmax, thus breaking the system. For instance, here if Rj prioritizes the SSR from Rn

and Rk prioritizes the SSR from Rm, the flit from Rn will get misrouted.

150

6.5. SMART for 1-to-Many traffic

flit from Rn will stop at Router Rj. We can also infer from Figures 6-10(b) and

6-10(c) that every router sees the same relative priority for SSRs based on distance

and direction, thus guaranteeing no false positives.

6.4.3 Routing Choices

Routing choices are orthogonal to the SMART flow control. Flits can choose any

deadlock-free route (either dimension-ordered, or enforcing some turn-model [22]),

based on any local/global congestion/ordering metric. The only restriction is that

only one turn router can be bypassed within HPCmax hops, since that is how the

dedicated SSR links are laid out. Based on the chosen route, the flit sends an SSR

on one of the possible SSR links out of the router’s output port.

6.5 SMART for 1-to-Many traffic

In this section, we extend SMART to support 1-to-Many traffic flows, i.e., enable

single-cycle chip-wide broadcasts/multicasts. The idea is to enhance the FANOUT

router, presented earlier in Section 4, with SMART. We can view a broadcast/multicast

as multiple unicasts which wish to use SMART paths.

6.5.1 SMART 1D + FANOUT

We first walk through an example of performing broadcast in a SMART 1D network,

also describing the microarchitectural changes as compared to the design presented

so far. At any start router, buffered flits first perform multiport SA-L, i.e., mSA

described earlier in Section 4.4.3. Multicast flits can place requests for more than

one output port - we can use either XY-tree routing or Whirl routing (Section 4.3)

since SMART is orthogonal to the actual routing path used. A winner is selected

independently for each output port (this could be the same flit in case of multicasts).

The winner at each output port sends out a SSR along that direction. Each SSR

wire has an additional broadcast bit to indicate that the flit wishes to perform a broad-

151

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

Cycle 1: SSR Cycle 2
Cycle 4 (SMART_1D)

Cycle 2 (SMART_2D)

Whirl_W01-N01-E01-S01

Figure 6-11: Full-chip broadcast with SMART.

cast18. At the intermediate routers, SSRs are prioritized as before (i.e., Prio=Local

or Prio=Bypass) during SA-G, based on their distance from the router. If the win-

ning SSR has a high broadcast bit, then in addition to the appropriate setup of the

BMsel and XBsel signals, BWena is also made high to retain a copy of the incoming

flit at this router. In the next cycle, the flit performs a multi-hop switch and link

traversal along the dimension, with a copy being buffered at all intermediate routers.

The buffered copies arbitrate for the Cout port and traverse the link to the NIC.

In addition, they also create and traverse SMART paths along the other dimension

depending on their Whirl LTB and RTB bits. If the buffered flit at a router belongs

to a SSR that lost SA-G - which can be inferred from the output of the previous

cycle’s SA-G - it also needs to continue its traversal along the same dimension to the

remaining routers. Multicasts are handled by dropping the copy of the buffered flit

if it has been forwarded to the neighbor(s) and the current NIC is not part of the

destination set.

18We do not need an extra bit if the SSR has unused codes.

152

6.5. SMART for 1-to-Many traffic

6.5.2 SMART 2D + FANOUT

For SMART 2D, the injection router can activate multiple SSR wires in each di-

rection (shown in Figure 6-9), to allow arbitration for multiple output ports at the

intermediate routers. During SA-G at the intermediate routers, each output port is

allocated independently based on the SSR’s 2-level priority (distance and direction),

as discussed earlier in Section 6.4.2. At the input port, multiple SSRs from the same

source (requesting different output ports) are OR’ed to create one SSR that com-

petes with SSRs from other routers, again based on the fixed 2-level priority. For

the input port winner, if more than one output port has been granted, the XBsel is

appropriately setup to allow the incoming flit to enter the crossbar and get forked to

more than one direction. Since the crossbars in SMART routers have repeaters at

every crosspoint (i.e., separate drivers for every output port), forking does not add

any extra complexity. A copy of the incoming flit is also retained at every router,

similar to the SMART 1D case, for sending to the NIC. This flit also arbitrates for

those output ports that the corresponding SSRs lost in the previous cycle.

To reduce overall network latency even further, we add an optimization such that

SSRs for broadcasts also arbitrate for the Cout port. This allows the incoming flits to

potentially fork across multiple directions and fork into the NIC, all within the same

cycle, at all routers on the chip; this reduces the minimum possible network delay for

broadcasts to be 2-cycles for SMART 2D, and 4-cycles for SMART 1D, as shown in

Figure 6-11.

6.5.3 Flow Control

Guaranteeing free VCs at all routers. If a router receives an SSR for a

multicast/broadcast flit, but the neighboring router does not have free VCs, the

incoming flit is not forwarded along that direction; this is just like the SMART design

for unicast traffic. This allows us to avoid the problem of having the flit getting

buffered at some nodes, but not all due to VC inavailability. The buffered flit needs

to perform a fresh SA-L, followed by SSR and SA-G to continue along that direction.

153

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

SA-G Priority. We can implement either of Prio=Local and Prio=Bypass. Since

the performance of systems with broadcast traffic is contingent on the time that all

nodes receive the flit, Prio=Bypass makes more sense to allow a flow that has started

to reach all its destinations within the same cycle. However, Section 6.8.4 shows that

Prio=Bypass can lead to more false negatives, wasting bandwidth (since Prio=Bypass

forces routers to wait for incoming bypassing flits at the cost of local flits), making a

case for Prio=Local.

6.6 SMART for Many-to-1 traffic

In this section, we add aggregation support to SMART, to enable single-cycle chip-

wide aggregation of Many-to-1 flows. We present two alternate designs tied to the

two SSR priority schemes.

6.6.1 Aggregation with Prio=Local

We add the FANIN aggregation mechanism, presented earlier in Chapter 5, within

each router. As before, the first ACK for a flow to get buffered at a router becomes

the master ACK for that flow. It polls the latch at every input port, and aggregates

any ACK corresponding to the same flow. Bypassing ACKs do not get aggregated.

However, since Prio=Local prioritizes local flits over bypassing flits, a bypassing ACK

will in fact stop if there is any local flit competing for the output link. Upon getting

latched, this ACK will get aggregated if there is a master ACK for the same flow.

Suppose two ACKs A and B destined for Router R3 arrive at Routers R0 and R1

respectively in exactly the same cycle, and then send SSRs. Prio=Local will stop the

ACK A at R1 and send ACK B from R1 to R3 - both in the same cycle. Subsequently

ACK A will reach R3. This is a missed aggregation opportunity due to the priority

scheme. To address this, we propose an alternate design next.

154

6.6. SMART for Many-to-1 traffic

Win

Cin

Eout

BMsel

BWena

XBsel

0
bypass

local Win_xb

Cin_xb

Eout_xb

Asynchronous
Repeater

Xbar free_vc

+
Aggregator +

==

ack_countack_count
<6-bit>

ack_id <6-bit dest_id, 4-bit m_id>

aggregate_enable

0

1

ACK (bypass)

ACK (local)
SA-L winner for this output port

ACK

(a) ACK Aggregator on bypass path.

Win

Cin

Eout

BMsel

BWena

XBsel

0
bypass

local Win_xb

Cin_xb

Eout_xb

Asynchronous
Repeater

Xbar free_vc

+
Aggregator +

==

ack_countack_count
<6-bit>

ack_id <6-bit dest_id, 4-bit m_id>

aggregate_enable

0

1

ACK (bypass)

ACK (local)
SA-L winner for this output port

ACK

(b) ACK Aggregator Circuit.

Figure 6-12: ACK Aggregator in SMART Router.

R0 R1 R2 R3 R4 R5

BWena

BMsel

XBsel

0
0

Cin->Eout

Cycle 1
Cycle 2

Cin

Win

ACKA

SSRA = 3
=

SSRC = 1

ACKC
ACKB

SSRB = 2

+ + + + +

Aggr X

BWena

BMsel

XBsel

0
bypass
Win->Eout

Aggr 1

BWena

BMsel

XBsel

0
bypass
Win->Eout

Aggr 1

BWena

BMsel

XBsel

1
0
X

Aggr X

BWena

BMsel

XBsel

0
0
X

Aggr X

BWena

BMsel

XBsel

0
0
X

Aggr X

+

ACK_count = 1 ACK_count = 2 ACK_count = 3

Figure 6-13: M-to-1 Aggregation Example with Prio=Bypass.

6.6.2 Aggregation with Prio=Bypass

To avoid the missed aggregation opportunity just described, we propose a method-

ology to aggregate ACKs while an ACK is performing a multi-hop traversal. This

design only works with Prio=Bypass. We add an aggregator module on the bypass

path as shown in Figure 6-12(a). This aggregator module houses a comparator and

an adder, as shown in Figure 6-12(b). During the ST+LT stage of a bypassing ACK,

the comparator at every router compares the ack id of the bypassing ACK with that

of the SA-L winner for that output port (which is forced to wait because of the by-

passing flit). As explained earlier in Section 5.5.2, the ack id = [dest id,m id], where

m id is assigned by the controller that sent the preceding broadcast. In case of a

match, the ack count of the SA-L winner is aggregated into the ack count of the

bypassing ACK, and the SA-L winner is dropped. Figure 6-13 shows an example of

a bypassing ACK from R0 to R3 aggregating the buffered ACKs at R1 and R2.

The main trade-off of this design is that aggregation is now on the critical path

155

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

if SSR1 ≥ 1 then
bypass_req (SSR1 > 1) & (free_vc)

else if SSR2 ≥ 2 then
bypass_req (SSR2 > 2) & (free_vc)

if SSR3 ≥ 3 then
bypass_req (SSR3 > 3) & (free_vc)

else
bypass_req 0

if SAL_grantC->E || SAL_grantN->E ||
SAL_grantS->E then

XBsel_W->E 0
else if SAL_grantW->E || bypass_req
then

XBsel_W->E 1
else

XBsel_W->E 0

if XBsel_W->E & ~SAL_grantW->E then
BMsel 0 // 0 => bypass

else
BMsel 1 // 1 => local

BWena BMsel

free_vc
SSR3

SSR2

SSR1

SA-GSSR-priority-arbiter SA-Goutport_port SA-Ginport_port

BWena

BMsel

XBsel_W->E

1mm

bypass_req XBsel_W->E

Prio = Local
HPCmax = 3

Figure 6-14: Implementation of SA-G at Win and Eout (Figure 6-2) for SMART 1D.

of the multi-hop traversal, affecting HPCmax. For a 64-core system - 6-bit dest id

- and 4-bit m id, we observe that the HPCmax of the design reduces from 11 to 6.

Alternately, we can use a bit-vector for ACKs within each flit (potentially increasing

the flit size), with each bit representing the core that sent the ACK. The 6-bit adder

can now be replaced by a 64-bit OR gate which is much faster. However, we still need

the 10-bit comparator that limits the critical path.

6.7 SMART Implementation

In this section, we describe the implementation details of the design, and discuss

overheads. All numbers are for a k-ary 2-Mesh, i.e., the crossbar has 5-ports (with

u-turns disallowed).

The SMART data-path, shown earlier in Figure 6-3, is modeled as a series of

128-bit 2:1 mux (for bypass) followed by a 4:1 mux (crossbar), followed by a 128-bit

1mm link.

The SMART control-path consists of HPCmax-hops repeated wire delay (SSR

traversal), followed by logic gate delay (SA-G). In SMART 1D, each input port re-

ceives one SSR from every router up to HPCmax-hops away in that dimension. The

logic for SA-G for Prio=Local in a SMART 1D design at the Win and Eout ports of

the router is shown in Figure 6-1419. The input and output signals correspond to the

19The implementation of Prio=Bypass is not discussed but is similar.

156

6.7. SMART Implementation

0	
20	
40	
60	
80	

100	
120	
140	
160	
180	
200	
220	

2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 2	 3	 4	 5	 6	 7	 8	 9	

Baseline	 SMART_1D	 SMART_2D	

Ac
ce
ss
	 E
ne

rg
y	
(fJ
/b
it/

m
m
)	

HPCmax	

SSR	
Link	
Xbar	
SA-‐G	
SA-‐L	
Buffer	 Rd	
Buffer	 Wr	
Clock	

Figure 6-15: Energy/Access (i.e., Activity = 1) for each bit sent.

ones shown in the router in Figure 6-220.

In SMART 2D, all routers that are H-hops away, H ∈[1, HPCmax], together send

a total of (2 × HPCmax − 1) SSRs to every input port. SA-GSSR priority arbiter is

similar to Figure 6-14 in this case and chooses a set of winners based on hops, while

SA-Goutput port disambiguates between them based on direction, as discussed earlier

in Section 6.4.2.

We choose a clock frequency of 1GHz based on SA-L critical path in the base-

line 1-cycle router at 45nm [66]. We design each of the SMART components in

RTL, run it through synthesis and layout for increasing HPCmax values, till tim-

ing fails at 1GHz21. This gives us energy and area numbers for every HPCmax de-

sign point. We incorporate these into energy and area numbers for the rest of the

router components from DSENT [76]. Figure 6-15 plots the energy/bit/hop for ac-

cessing each component. For instance, if a flit wins SA-L and SA-G and traverses

a SMART-hop of length 4 in an HPCmax=8 design, the energy consumed will be

ESA−L + 8 · ESSR + 4 · ESA−G + Ebuf rd + 4 · EXbar + 4 · ELink + Ebuf wr.

The SMART data-path is able to achieve a HPCmax of 11. The extra energy

20To reduce the critical path, BWena is relaxed such that it is 0 only when there are bypassing
flits (since the flit’s valid-bit is also used to decide when to buffer), and BMsel is relaxed to always
pick local if there is no bypass. XBsel is strict and does not connect an input to an output port
unless there is a local or SSR request for it.

21The layout tool Cadence Encounter keeps the crosstalk optimization option, described in Ap-
pendix A.3.4, enabled in all these runs.

157

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

consumed by the repeaters for driving the bypass and crossbar muxes is part of the

Xbar component in Figure 6-15, and increases comparatively insignificantly till about

HPCmax=8, beyond which it shows a steep rise, consuming 3X of the baseline Xbar

energy at HPCmax=11. The total data-path (Xbar+Link) energy for HPCmax=11

goes up by 35fJ/bit/hop, compared to the baseline. However, compared to the buffer

energy (110fJ/bit/hop) that will be saved with the additional bypassing brought

about by longer HPCmax, and coupled with additional network latency savings along

with further reduction of data-path energy per bit as technology scales, we believe it

will be worthwhile to go with higher HPCmax as we scale to hundreds or a thousand

cores. The repeaters add negligible area overhead since they are embedded within

the wire dominated crossbar.

SMART 1D’s control-path is able to achieve a HPCmax of 13 (890ps SSR, 90ps

SA-G). But the overall HPCmax gets limited to 11 by the data-path. SA-G adds less

than 1% of energy or area overhead.

SMART 2D’s control-path is able to achieve a HPCmax of 9 (620ps SSR, 360ps

SA-G), at which point the energy and area overheads go up to 8% and 5% respectively,

due to the quadratic scaling of input SSRs with HPCmax. However, not all the input

SSRs are likely to be active every cycle.

The total number of SSR-bits entering an input port are ofO(HPCmax ·log2(HPCmax))

and O(HPCmax
2 · log2(HPCmax)) in SMART 1D and SMART 2D respectively. But

these do not affect tile area. However, the SSRs add energy overheads due to

HPCmax -mm signaling whenever a SSR is sent.

Based on the energy results, we choose HPCmax=8 for both SMART 1D and

SMART 2D for our evaluations. For SMART 1D, HPCmax=8 allows bypass of all

routers along the dimension and the ejection, in our target 8-ary 2-Mesh.

6.8 Evaluation

In this section, we evaluate SMART with both synthetic traffic, as well as full-system

traffic. Our target system is shown in Table 6.2. The baseline design in all our runs,

158

6.8. Evaluation

Table 6.2: Target System and Configuration

Process On-chip Network
Technology 45nm Topology 8-ary 2-Mesh
Vdd 1.0 V Router Ports 5
Frequency 1.0 GHz Routing XY
Link Length 1mm Flit Width 128-bit

Synthetic Traffic
Virtual Channels 12 [1-flit/VC]

Full-system Traffic
Processors 64 in-order SPARC
L1 Caches Private 32kB I&D
L2 Caches Private/Shared 1MB per core
Cache Coherence MOESI distributed directory
Virtual Networks 3 (req, fwd, resp)
Virtual Channels 4 (req) [1-flit/VC], 4 (fwd) [1-flit/VC], 4 (resp) [5-flit/VC]

BASELINE (tr=1), is a state-of-the-art NoC with 1-cycle routers. For experiments

with multicast and reduction traffic, we use FANOUT and FANOUT+FANIN as

the baseline designs. All SMART designs are named as SMART-HPCmax 1D/2D.

Prio=Local is assumed22, unless explicitly mentioned. We first evaluate SMART with

1-to-1 unicast traffic (synthetic and full-system) and then move on to evaluations with

1-to-Many and Many-to-1 traffic.

6.8.1 Synthetic 1-to-1 Traffic

SMART across different traffic patterns.

We start by running SMART with different synthetic traffic patterns, as shown in

Figure 6-16. We compare 3 SMART designs: SMART-8 1D and SMART-8 2D (which

are both achievable designs as discussed in Section 6.7), and SMART-15 2D which

reflects the best that SMART can do in an 8×8 Mesh (with maximum possible hops

= 15). We inject 1-flit packets to first understand the benefits of SMART without

secondary effects due to flit serialization, and VC allocation across multiple routers

etc. For the same reason, we also give enough VCs (12, derived empirically) to allow

both the baseline and SMART to be limited by links, rather than VCs for throughput.

The striking feature about SMART from Figure 6-16 is that it pushes low-load

22The reason will become clear in Section 6.8.1 where we compare Prio=Local and Prio=Bypass.

159

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

0	
4	
8	

12	
16	
20	
24	
28	
32	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 Av
er
ag
e	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
SMART-‐8_1D	
SMART-‐8_2D	
SMART-‐15_2D	
IDEAL	 (Tn=1)	 N

r

(a) Uniform Random (Avg Hops = 5.33).

0	
4	
8	

12	
16	
20	
24	
28	
32	

0	 0.05	 0.1	 0.15	 0.2	 0.25	 Av
er
ag
e	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
SMART-‐8_1D	
SMART-‐8_2D	
SMART-‐15_2D	
IDEAL	 (Tn=1)	 N

r

(b) Bit Complement (Avg Hops = 8).

0	
4	
8	

12	
16	
20	
24	
28	
32	

0	 0.05	 0.1	 0.15	 0.2	 Av
er
ag
e	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
SMART-‐8_1D	
SMART-‐8_2D	
SMART-‐15_2D	
IDEAL	 (Tn=1)	 N

r

(c) Bit Reverse (Avg Hops = 6).

0	
4	
8	

12	
16	
20	
24	
28	
32	

0	 0.05	 0.1	 0.15	 0.2	 Av
er
ag
e	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
SMART-‐8_1D	
SMART-‐8_2D	
SMART-‐15_2D	
IDEAL	 (Tn=1)	 N

r

(d) Transpose (Avg Hops = 6).

0	
4	
8	

12	
16	
20	
24	
28	
32	

0	 0.05	 0.1	 0.15	 0.2	 0.25	

Av
er
ag
e	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
SMART-‐8_1D	
SMART-‐8_2D	
SMART-‐15_2D	
IDEAL	 (Tn=1)	 N

r

(e) Shuffle (Avg Hops = 4).

0	
4	
8	

12	
16	
20	
24	
28	
32	

0	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 Av
er
ag
e	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
SMART-‐8_1D	
SMART-‐8_2D	
SMART-‐15_2D	
IDEAL	 (Tn=1)	 N

r

(f) Hot Spot 5%* (Avg Hops = 5.25).

*Uniform Random traffic, where router at center of edge receives 5% more traffic than others.

Figure 6-16: SMART with synthetic unicast traffic.

latency to 4 and 2 cycles, for SMART 1D and SMART 2D respectively, across all

traffic patterns, unlike the baseline where low-load latency is a function of the average

hops, thus truly breaking the locality barrier. SMART-8 2D achieves most of the

benefit of SMART-15 2D for all patterns, except Bit Complement, since average hop

counts are ≤ 8 for an 8×8 Mesh. SMART also increases network throughput by

7-13% in Uniform Random, Bit Complement and Hot Spot traffic scenarios.

Impact of HPCmax.

Next we study the impact of HPCmax on performance. We plot the average flit

latency for Bit Complement traffic (which has high across-chip communication) for

160

6.8. Evaluation

0	
4	
8	

12	
16	
20	
24	
28	
32	

0	 0.05	 0.1	 0.15	 0.2	 0.25	 Av
g	
Fl
it	
La
te
nc
y	
(c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

SMART-‐1_1D	
SMART-‐2_1D	
SMART-‐4_1D	
SMART-‐8_1D	
SMART-‐4_2D	
SMART-‐8_2D	
SMART-‐12_2D	

Figure 6-17: Impact of HPCmax (Bit Complement).

HPCmax from 1 to 12, across 1D and 2D in Figure 6-17. SMART-1 1D is identical

to Baseline (tr=1) as it does not need SA-G. HPCmax of 2 itself gives a 1.8X low-

load latency reduction, while 4 gives a 3X reduction. These numbers indicate that

even with a faster clock, say 2.25GHz, which will drop HPCmax to 4, a SMART-like

design is a better choice than a 1-cycle router. It should also be noted that as we scale

to smaller feature sizes, cores shrink while die sizes remain unchanged, so the same

SMART interconnect length will translate to larger HPCmax. Adding SMART 2D,

and increasing HPCmax to 12 pushes low-load latency close to a 2-cycles: an 8.4X

reduction over the baseline. This result highlights that a heavily-pipelined higher

frequency baseline can only match a 1GHz SMART NoC if it runs at 8.4GHz.

Impact of SA-G priority.

We study the effects of priority in Figure 6-18(a) for the best possible 1D and 2D

SMART designs. While both priority schemes perform identically at very low-loads,

Prio=Bypass has a sudden throughput degradation at an injection rate of about 44-

48% of network capacity. Intuitively, we would expect Prio=Bypass to be better than

Prio=Local as it allows for longer bypass paths, and avoids unnecessary stopping and

buffering of flits already in flight. Moreover, it is often the priority scheme used in

non-speculative 1-cycle router designs [51, 56] when choosing between a lookahead and

a local buffered flit. However, for SMART, where multiple allocations are occurring

in the same cycle, it suffers from a unique problem, highlighted in Figure 6-18(b). In

this example, Router’s R0, R1 and R3 send SSRs up to R2, R4 and R5 respectively,

in Cycle-1. In a Prio=Local scheme, R0’s SSR would lose at R1, and R1’s SSR

161

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

0	
4	
8	

12	
16	
20	
24	
28	

0	 20	 40	 60	 80	 100	

Av
er
ag
e	
fli
t	 l
at
en

cy
	 (c
yc
le
s)
	

Flit	 Injec5on	 Rate	 (%	 of	 capacity)	

SMART-‐8_1D_Prio=Byp	
SMART-‐8_2D_Prio=Byp	
SMART-‐8_1D_Prio=Loc	
SMART-‐8_2D_Prio=Loc	

(a) Average Network Latency.

R0 R1 R2 R3 R4 R5

Cycle 1: SSR

Cycle 2: Prio=Local
Cycle 2: Prio=Bypass

(b) Throughput Loss in Prio=Bypass.

0	

8	

16	

24	

32	

40	

0	 20	 40	 60	 80	 100	

Fa
ls
e	
N
eg
a)

ve
s	 (
%
)	

Flit	 Injec)on	 Rate	 (%	 of	 capacity)	

SMART-‐8_1D_Prio=Byp	
SMART-‐8_2D_Prio=Byp	
SMART-‐8_1D_Prio=Loc	
SMART-‐8_2D_Prio=Loc	

(c) Percentage of False Negatives.

0	
1	
2	
3	
4	
5	
6	

0	 20	 40	 60	 80	 100	

Av
er
ag
e	
HP

C	
(h
op

s)
	

Flit	 Injec9on	 Rate	 (%	 of	 capacity)	

Average	 Hops	
SMART-‐8_1D_Prio=Byp	
SMART-‐8_2D_Prio=Byp	
SMART-‐8_1D_Prio=Loc	
SMART-‐8_2D_Prio=Loc	

(d) Average achievable HPC.

Figure 6-18: Prio=Local vs. Prio=Bypass for Uniform Random Traffic.

would lose at R3, leading to the traversals shown in Cycle-2. For Prio=Bypass, R0’s

SSR will win at R1, and the corresponding flit will be able to go all the way to its

stop router R2. However, even though R1’s SSR lost SA-G at its start router, it wins

over R3’s SSR at R3, preventing R3 from sending its own flit. This cascading effect

can continue, leading to forced starvation of flits (i.e., flits are not allowed to use the

output link even though it is idle) and poor link utilization, causing heavy throughput

loss. This effect is reflected in the percentage of false negatives (cases where a router

was expecting a flit but no flit came) going up to 25-40% in Prio=Bypass, killing its

throughput, as opposed to less than 10% in Prio=Local23 as shown in Figure 6-18(c).

On the plus side, Prio=Bypass always creates SMART-hops with high HPCs, since

a flit that starts only stops at its requested stop router, or at the turn router in this

priority scheme. This can be seen in Figure 6-18(d) where SMART-8 1D Prio=Bypass

achieves an averageHPC of 3, while SMART-15 2D Prio=Bypass maintains anHPC

of 4-5. Prio=Local, on the other hand, drops the achievable HPC to 1 at high loads.

23False negatives in Prio=Local do not cause any throughput loss. They occur if downstream
routers receive an SSR and set up a bypass path but no flit arrives as it was prematurely stopped
at an upstream router to make way for a local flit that is turning or getting ejected into the NIC.
Prio=Local always ensures that a local flit gets to use the output link without any starvation. On
the other hand, false negatives in Prio=Bypass cause harm because routers block their local flits
from using the output link if they are expecting a bypass flit.

162

6.8. Evaluation

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	
50	

0	 0.02	 0.04	 0.06	 0.08	 0.1	 Av
g	
Pk
t	 L
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (packets/node/cycle)	

1	 pkt	 =	 	
640-‐bit	

BASELINE_VC=2	
BASELINE_VC=4	
BASELINE_VC=8	
BASELINE_VC=12	
SMART-‐8_2D_VC=2	
SMART-‐8_2D_VC=4	
SMART-‐8_2D_VC=8	
SMART-‐8_2D_VC=12	

Figure 6-19: Impact of 5-flit packets (Uniform Random).

Impact of multi-flit packets.

SMART locks an input and output port till all flits of a packet leave, to implement

virtual cut-through (Section 6.3.4). Thus, it artificially suffers from the head-of-line

blocking problem. In other words, congestion at the output port can block other

packets at the input port as well, throttling throughput. In the baseline VC router,

on the other hand, flits from other packets can use the input bandwidth for other

output ports. A second problem with multi-flit packets comes because of ordering.

Flits might need to be pre-maturely buffered to avoid the Body/Tail overtaking the

Head/Body (Section 6.3.3). This lowers output link utilization, lowering throughput.

A third problem is that multi-flit packets reserve VCs at all routers along a multi-hop

path to handle premature stopping (Section 6.3.4). These effects are visible in Fig-

ure 6-19 which evaluates SMART with Uniform Random traffic where all packets have

5-flits - a worse case adversarial traffic scenario. SMART has 11% lower throughput

than the baseline, even with 12 VCs.

Comparison with High-Radix Topology.

We compare SMART with a Flattened Butterfly [48] topology. Each FBfly router

has dedicated single-cycle links to every other node in that dimension (i.e., radix-15).

We assume that the router delay is 1-cycle. This is a very aggressive assumption,

especially because the SA stage needs to perform 22:1 arbitrations. All high-radix

routers assume > 4-cycle pipelines [48, 49, 74]. We use 8 VCs per port with virtual

cut-through in both SMART and FBfly (thus giving more buffer resources to FBfly).

In Figure 6-20, we plot three configurations where the total number of wires, i.e.,

163

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

0	
4	
8	
12	
16	
20	
24	
28	
32	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	 Av
g	
Pk
t	 L
at
en

cy
	 (c
yc
le
s)
	

Injec4on	 Rate	 (packets/node/cycle)	

1	 pkt	 =	 	
128-‐bit	

SMART-‐8_1D	
SMART-‐8_2D	
FBfly_BB=1x	
FBfly_BB=3.5x	
FBfly_BB=7x	

Figure 6-20: SMART vs. Flattened Butterfly (Uniform Random).

Bisection Bandwidth (BB), of the FBfly is 1x, 3.5x and 7x that of SMART (leading to

7-flits, 2-flits and 1-flit per packet respectively for 128-bit packets). At BB=1x, FBfly

loses both in latency and throughput due to heavy serialization delay. At BB=3.5x,

FBfly can match SMART in throughput. Despite an aggressive 1-cycle router, at

BB=7x the best case latency for FBfly is 6 cycles (2 at injection, 2 at turning,

and 2 at ejection router) as compared to 4 and 2 for SMART-1D and SMART-2D

respectively. The radix-15 FBfly BB=3.5x router, modeled in DSENT [76], incurs an

area, dynamic power (at saturation) and leakage power overhead of 3.9x, 1.5x and

10x respectively over SMART. If we are willing to use N times more wires, a better

solution would be to just have N meshes, each with SMART, so that fast latency is

achieved in addition to reconfigurable bandwidth.

0	
4	
8	

12	
16	
20	
24	
28	
32	
36	
40	

0	 0.05	 0.1	 0.15	 0.2	 0.25	 Av
g	
Fl
it	
La
te
nc
y	
(c
yc
le
s)
	

Injec4on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
SMART-‐4_1D	
SMART-‐4_2D	
SMART-‐11_1D	
SMART-‐9_2D	

r

Figure 6-21: SMART on a 256-core mesh (Uniform Random).

SMART on a 16×16 mesh.

Figure 6-21 plots the performance of SMART on a 256-core mesh with Uniform

Random traffic. SMART scales well, with HPCmax=4 lowering network latency from

23 to 6-7 cycles at low loads. SMART-11 1D and SMART-9 2D lower it even further

164

6.8. Evaluation

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

)
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
9a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	

Full-‐state	 Directory	

N
or
m
al
iz
ed

	 A
pp

lic
a/

on
	 R
un

/m
e	

BASELINE	 (tr=1)	 IDEAL	 (tr=1)	 SMART-‐8_1D	
SMART-‐8_2D	 SMART-‐15_2D	 IDEAL	 (Tn=1)	

r
N

r

(a) Private L2.

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

)
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
9a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
9o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	

Full-‐state	 Directory	

N
or
m
al
iz
ed

	 A
pp

lic
a/

on
	 R
un

/m
e	

BASELINE	 (tr=1)	 IDEAL	 (tr=1)	 SMART-‐8_1D	
SMART-‐8_2D	 SMART-‐15_2D	 IDEAL	 (Tn=1)	

r
N

r

(b) Shared L2.

Figure 6-22: Full-system application runtime for full-state directory protocol, normalized
to BASELINE (tr=1).

to 3-4 cycles. SMART also gives a 12% throughput improvement.

6.8.2 Full-system Directory Protocol Traffic

We evaluate the parallel sections of SPLASH-2 [82] and PARSEC [14] running a full-

state directory protocol for both Private L2 and Shared L2 implementations. Table 6.2

describes the configuration of our system. In Private L2 designs, a copy of the data

is retained in the local L2 within the tile for fast access upon future L1 misses. All

165

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

0	

1	

2	

3	

4	

5	

6	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

SM
AR

T-‐
1_
1D

	
1D

_P
rio

=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

SM
AR

T-‐
1_
1D

	
1D

_P
rio

=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

1D
_P

rio
=L
oc
	

1D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

2D
_P

rio
=L
oc
	

2D
_P

rio
=B

yp
	

SMART-‐2	 SMART-‐4	 SMART-‐8	 S-‐15	 SMART-‐2	 SMART-‐4	 SMART-‐8	 S-‐15	

Private	 L2	 Shared	 L2	

Full-‐state	 Directory	

Av
er
ag
e	
HP

C	

N
or
m
al
iz
ed

	 R
un

5m
e	

RunHme	 HPC	 Average	 Hops	

RunHme:	 IDEAL	 (Tn=1)	

Run9me:	 IDEAL	 (Tn=1)	

Figure 6-23: Impact of HPCmax and Priority, averaged across all benchmarks.

L1 misses first lookup the local L2, before forwarding the request to the directory.

However, replication of data across tiles lowers the effective on-chip L2 cache capacity.

In Shared L2 designs, there is only one L2 copy of the data on-chip, increasing L2

cache capacity. However, L1 misses always involve a network traversal to access data

at the remote L2, making on-chip latency critical to performance.

Performance Impact.

Figure 6-22 shows that SMART-8 1D and SMART-8 2D lower application runtime by

26% and 27% respectively on average, for a Private L2, which is only 8% away from

the IDEAL (TN=1). The runtime reduction goes up to 49% and 52% respectively

with a Shared L2 design, which is 9% off from the IDEAL (TN=1). SMART-15 2D

does not give any significant runtime benefit over SMART-8 2D.

Impact of HPCmax and SA-G priority.

Figure 6-23 sweeps through HPCmax and SA-G priority, and plots the normalized

runtime and achieved HPC, on average across all the benchmarks. Since these full-

system traffic fall in the lower end of the injection rates in the synthetic traffic graphs,

Prio=Bypass performs almost as well as Prio=Local, except at low HPCmax in a

Shared L2. HPCmax of 4 suffices to achieve most of the runtime savings.

166

6.8. Evaluation

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

BA
SE
LI
N
E	
(t
r=
1)
	

SM
AR

T-‐
8_
1D

_P
rio

=L
oc
	

SM
AR

T-‐
8_
2D

_P
rio

=L
oc
	

SM
AR

T-‐
8_
1D

_P
rio

=B
yp
	

SM
AR

T-‐
8_
2D

_P
rio

=B
yp
	

BA
SE
LI
N
E	
(t
r=
1)
	

SM
AR

T-‐
8_
1D

_P
rio

=L
oc
	

SM
AR

T-‐
8_
2D

_P
rio

=L
oc
	

SM
AR

T-‐
8_
1D

_P
rio

=B
yp
	

SM
AR

T-‐
8_
2D

_P
rio

=B
yp
	

Private	 L2	 Shared	 L2	

Full-‐state	 Directory	

N
or
m
al
iz
ed

	 T
ot
al
	 E
ne

rg
y	 SSR	

Link	
Xbar	
SA-‐G	
SA-‐L	
Buffer	
Clock	
EDP	

r	 r	

Figure 6-24: Total Network Dynamic Energy.

Total Network Energy.

Figure 6-24 explores the energy trade-off of SMART by plotting the total dynamic

energy of the network consumed for running the benchmarks to completion, on av-

erage across all the benchmarks. For Private L2, the dynamic energy for SMART

goes up by 10-12% across designs primarily due to the data-path, though the overall

EDP goes down by 20%. For Shared L2, the dynamic energy goes down by 6-21%

across the designs, because of a lower runtime. The EDP goes down by up to 59%.

SMART with Prio=Local consumes 18-46% higher energy in the buffers than both

SMART with Prio=Bypass and the baseline (which also prioritizes incoming flits over

already buffered local flits in SA to reduce buffering), since Prio=Bypass, by defini-

tion, reduces the number of times flits need to stop and get buffered. SA-G energy

contributes less than 1% of network energy for SMART 1D, and goes up to about

10% for SMART 2D. All these ups and downs are however negligible when we also

consider leakage. We observed leakage to contribute more than 90% of the total en-

ergy, since the network activity is very low in full-system scenarios24. However, even

24Leakage could be reduced by aggressive power gating solutions, which itself is a research chal-
lenge.

167

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

0	
20	
40	
60	
80	

100	

0	 0.003	 0.006	 0.009	 0.012	 0.015	 Av
g	
Br
oa

dc
as
t	 L
at
en

cy
	 	

(c
yc
le
s)
	

Injec6on	 Rate	 (flits/node/cycle)	

BASELINE	 (tr=1)	
FANOUT	
SMART	
SMART+FANOUT	
IDEAL	 (Tn=1)	

r

N

(a) Uniform Random Broadcast
(1-to-Many, Many: 64).

0	
20	
40	
60	
80	

100	

0	 0.005	 0.01	 0.015	 0.02	 0.025	 0.03	 0.035	 Av
g	
M
ul
(c
as
t	 L
at
en

cy
	 	

(c
yc
le
s)
	

Injec(on	 Rate	 (flits/node/cycle)	

FANOUT	
SMART+FANOUT	
IDEAL	 (Tn=1)	 N

(b) Uniform Random Multicast
(1-to-Many, Many: 2-64).

Figure 6-25: SMART+FANOUT with synthetic uniform random 1-to-Many traffic.

with high leakage, the total network power was observed to be about 3W for both

baseline and SMART, while chip power budgets are usually about 100W. Thus the

energy overheads of SMART are negligible.

6.8.3 Synthetic 1-to-Many Traffic

We evalauate the SMART+FANOUT design with synthetic broadcast and multicast

traffic. All SMART networks in this subsection implement SMART-8 2D to represent

the SMART design with the lowest unicast latency.

Broadcast-only Traffic.

Figure 6-25(a) plots the performance of the baseline (tr=1), FANOUT, and SMART

networks with broadcast-only traffic. All sources inject broadcasts at the specified

injection rate in a uniform random manner. The metric of comparison is the average

broadcast latency, i.e., the average of the number of cycles it takes for all NICs on the

chip to receive the broadcast. The baseline (tr=1) and SMART networks are fork@nic

networks, i.e., the broadcast is implemented as 64 unicasts being sent out from the

source. This adds heavy serialization increasing the low-load latency and saturating

these networks at only 25% of the IDEAL (TN=1) capacity. With FANOUT, which

was presented in Chapter 4, the network adds support for forking flits at routers, with

tr=1, allowing the broadcast to be received by all nodes in 23 cycles at low loads. This

network pushes throughput to almost the same as the IDEAL (TN=1). Enhancing

SMART with FANOUT, i.e., support for forking flits at routers, pushes the low-load

168

6.8. Evaluation

broadcast latency to 3.6 cycles, a reduction of 84% compared to FANOUT. The low-

load latency of SMART+FANOUT with broadcast traffic is only 1.6 cycles higher

than the 2-cycle low-load latency for SMART with unicast traffic, which means that

sending a broadcast is no longer an expensive high-latency operation.

Multicast Traffic.

Figure 6-25(b) plots the performance of FANOUT, SMART+FANOUT and the IDEAL

(TN=1) networks with multicast traffic, where the source randomly picks a destina-

tion set comprising anywhere from 2 to 64 (all) nodes. FANOUT saturates at a

throughput of 76% of the ideal and SMART+FANOUT pushes it to 80%. At low

loads, SMART+FANOUT distributes the multicast to all its destinations in 3.4 cycles

on average, as compared to 21 cycles with just FANOUT.

6.8.4 Full-system Broadcast Protocol Traffic

We run SPLASH-2 and PARSEC on systems implementing Token Coherence (no

directory) and HyperTransport (no-state directory). Both designs use a Private L2

implementation. In Chapter 2 we saw that 52.4% of all injected messages in Token

Coherence are broadcasts, while 14.3% and 14.1% of all injected messages are broad-

casts and acknowledgements respectively in HyperTransport. FANOUT described in

Chapter 4 was shown to address the latency and throughput requirements of 1-to-

Many (multicast) flows, while FANIN in Chapter 5 was shown to address the latency

and throughput requirements of Many-to-1 (acknowledgement) flows. Here we eval-

uate the impact of FANOUT and FANIN enhanced with SMART. Unless specified

otherwise, SMART-8 2D is implemented to represent the best performing and imple-

mentable (at 45nm) SMART NoC.

Performance Impact.

Figure 6-26 plots the full-system application runtime for Token Coherence with a

variety of network implementations. Compared to FANOUT - routers with tr=1

169

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	
2	

2.2	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	

Token	 Coherence	

N
or
m
al
iz
ed

	 A
pp

lic
a/

on
	 R
un

/m
e	 BASELINE	 (tr=1)	

SMART	

FANOUT	

IDEAL	 (tr=1)	

SMART+FANOUT	

SMART+FANOUT
+FANIN	
IDEAL	 (Tn=1)	

r	

r	

N

Figure 6-26: Full-system application runtime for Token Coherence, normalized to
FANOUT.

and multicast support -, BASELINE (tr=1) and SMART - both without any multi-

cast support - are 54% and 22% slower on average, respectively. SMART+FANOUT

improves performance by 18% compared to FANOUT. Adding FANIN improves per-

formance by a further 1%. The design is 12% away from the IDEAL (TN=1) NoC.

Figure 6-27 plots the full-system application runtime for HyperTransport. Here,

as observed earlier in Chapter 4, FANOUT alone does not provide much benefit

since the M-to-1 ACKs saturate the network and determine the runtime. Compared

to FANOUT+FANIN - routers with tr=1 and multicast + aggregation support -,

SMART - without any multicast or aggregation support - is 19% slower on average.

SMART+FANOUT - FANOUT with single-cycle multihop paths for both unicasts

and broadcasts - lowers runtime of FANOUT by 14%, but is still 5% away from

FANOUT+FANIN. This is because ACKs cannot leverage the advantage of SMART

because the traffic is hot-spot to one destination in a M-to-1 flow. SMART is targeted

to lower latency, but cannot help the bandwidth limited ACKs which contend for the

same set of links. SMART+FANOUT+FANIN which adds aggregation support25

25Here we plot SMART+FANOUT+FANIN with Prio=Local. The impact of Prio=Local vs.
Prio=Bypass for SMART+FANOUT+FANIN will be discussed later in this section.

170

6.8. Evaluation

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	

HyperTransport	

N
or
m
al
iz
ed

	 A
pp

lic
a/

on
	 R
un

/m
e	 BASELINE	 (tr=1)	

SMART	

FANOUT	

FANOUT+FANIN	

IDEAL	 (tr=1)	

SMART+FANOUT	

SMART+FANOUT
+FANIN	
IDEAL	 (Tn=1)	

r	

r	

N

Figure 6-27: Full-system application runtime for HyperTransport, normalized to
FANOUT+FANIN.

to SMART+FANOUT helps lower runtime by 15% compared to FANOUT+FANIN.

The design is 11% away from the IDEAL (TN=1) NoC.

It needs to be noted that the IDEAL (TN=1) assumes unlimited bandwidth, while

the realistic SMART+FANOUT+FANIN needs to serialize flows over the limited

shared links of a mesh. The SMART NoC is able to reduce runtime by 15-27%

compared to the respective baseline single-cycle per-hop networks with multicast and

aggregation support, across the three coherence protocols, and is 8-12% away from

an ideal network which always offers a single-cycle network delay.

Average Broadcast Latency.

Figure 6-28 shows the average broadcast latency across the benchmarks. For Token

Coherence, average broadcast latency with SMART+FANOUT is 9.3 cycles, and

goes down to 8.7 cycles with the addition of FANIN. Though this is a 64% reduction

compared to FANOUT+FANIN, contention with other broadcast and unicast flows

in the network, and no special priority for broadcast flits in the arbiters, means that

broadcasts do not get delivered to all nodes in 3.6 cycles like we saw in Figure 6-25(a).

171

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

0	
5	
10	
15	
20	
25	
30	
35	

ba
rn
es
	

-
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
8a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
8o

ns
	

x2
64

	
AV

ER
AG

E	

ba
rn
es
	

-
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
8a

l	
bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
8o

ns
	

x2
64

	
AV

ER
AG

E	

SPLASH-‐2	 PARSEC	 SPLASH-‐2	 PARSEC	

Token	 Coherence	 HyperTransport	

Av
g	
Br
oa

dc
as
t	 L
at
en

cy
	 (c
yc
le
s)
	 FANOUT	 FANOUT+FANIN	 SMART+FANOUT	 SMART+FANOUT+FANIN	

Figure 6-28: Average Broadcast Latency.

For HyperTransport, SMART+FANOUT lowers the average broadcast latency from

22 to 15, while SMART+FANOUT+FANIN lowers it to 7 cycles.

Impact of HPCmax and SA-G Priority.

Figure 6-29 shows the impact of HPCmax and SA-G Priority on the runtime, ratio of

ACKs aggregated, and percentage of false negatives; averaged across the SPLASH-

2 and PARSEC benchmarks with HyperTransport. SMART-15 is also plotted to

present the best that SMART can do in a 8×8 mesh, even though HPCmax=15 is

not realizable at 45nm.

The first observation we make is that beyond HPCmax=4 we do not see a sig-

nificant change in performance. This means that the reducion of HPCmax to 6 for

SMART+FANIN with Prio=Bypass does not have any adverse effect on performance.

SMART+FANIN aggregates 81.5% of ACKs with Prio=Local, and a further 8.5%

with Prio=Bypass. With Prio=Bypass, 32% of the ACKs get aggregated in the

buffers, and 58% of the ACKs are aggregated by the bypassing flits. However, this

does not translate to any significant runtime improvement for Prio=Bypass compared

to Prio=Local. Both priority schemes have similar runtime.

At HPCmax=4, the percentage of false negatives in Prio=Bypass jumps to 7.5%,

and goes up to and stays at 8.8% beyond HPCmax=8. For Prio=Local, this number

172

6.9. Related Work

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

FA
NO
UT
+F
AN
IN
	 (F
F)	

SM
AR
T-‐2
_F
F_
Pri
o=
Lo
ca
l	

SM
AR
T-‐2
_F
F_
Pri
o=
By
pa
ss	

SM
AR
T-‐4
_F
F_
Pri
o=
Lo
ca
l	

SM
AR
T-‐4
_F
F_
Pri
o=
By
pa
ss	

SM
AR
T-‐6
_F
F_
Pri
o=
Lo
ca
l	

SM
AR
T-‐6
_F
F_
Pri
o=
By
pa
ss	

SM
AR
T-‐8
_F
F_
Pri
o=
Lo
ca
l	

SM
AR
T-‐8
_F
F_
Pri
o=
By
pa
ss	

SM
AR
T-‐1
5_
FF
_P
rio
=L
oc
al	

SM
AR
T-‐1
5_
FF
_P
rio
=B
yp
ass
	

Fa
ls
e	
N
eg
a)

ve
s	 (
%
)	

N
or
m
al
iz
ed

	 R
un

)m
e,
	 	

Ra
)o

	 o
f	 A

CK
s	 a

gg
re
ga
te
d	

aggregaKons	 in	 bypass	 aggregaKons	 in	 buffer	
Normalized	 RunKme	 False	 NegaKves	 (%)	

Figure 6-29: Impact of HPCmax and SA-G Priority on runtime, ratio of ACKs ag-
gregated, and false negatives for HyperTransport. All results are aver-
aged across the SPLASH-2 and PARSEC benchmarks, and normalized to
FANOUT+FANIN.

stays below 1.4%. The false negatives, which translate to lost throughput, explain

why Prio=Bypass does not perform better than Prio=Local despite being better

suited intuitively for both broadcasts and aggregations.

6.9 Related Work

High-radix routers. High-radix router designs such as CMesh [13], Fat Tree [22],

Flattened Butterfly [48], BlackWidow [74], MECS [32], Clos [44] are topology solu-

tions to reduce average hop counts, and advocate adding physical express links be-

tween distant routers. These express point-to-point links can be further engineered for

lower delay with advanced signaling techniques like equalization [45] and capacitively-

driven links [51]. Each router has > 5 ports, and link bandwidth (b) is often reduced

proportionally to have similar buffer and crossbar area/power as a mesh (radix-5)

router. More resources however imply a complicated routing and Switch+VC allo-

cation mechanism, with a hierarchical SA and crossbar [49], increasing router delay

tr to 4-5 at the routers where flits do need to stop. These designs also complicate

173

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

layout since multiple point-to-point global wires need to span across the chip. More-

over, a topology solution only works for certain traffic, and incurs higher latencies for

adversarial traffic (such as near neighbor) because of higher serialization delay.

In contrast, SMART provides the illusion of dedicated physical express channels,

embedded within a regular mesh network, without having to lower the link bandwidth,

or increase the number of router ports.

Asynchronous NoCs. Asynchronous NoCs [17, 12] have been proposed for the

SoC domain for deterministic traffic. Such a network is programmed statically to

preset contention-free routes for QoS, with messages then transmitted across a fully

asynchronous NoC (routers and links). Instead, SMART couples clocked routers with

asynchronous links, so the routers can perform fast cycle-by-cycle reconfiguration of

the links, and thus handle general-purpose CMPs with non-deterministic traffic and

variable contention scenarios. Asynchronous Bypass Channels [39] target chips with

multiple clock domains across a die, where each hop can incur significant synchro-

nization delay. They aim to remove this synchronization delay. This leads them to

propose sending a clock signal with the data so that the data can be latched correctly

at the destination router. Besides this difference in link architecture, the different

goals also lead to distinct NoC architectures. Due to the multiple clock domains,

ABC needs to buffer/latch flits at every hop speculatively, discarding them thereafter

if flits successfully bypassed. Also, the switching between bypass and buffer modes

cannot be done cycle-by-cycle, which increases latency. In contrast, SMART targets

a single clock domain across the entire die, so SSRs can be sent in advance to avoid

latching flits at all along a multi-hop path and allow routers to switch between bypass

and buffer modes each cycle.

6.10 Chapter Summary

In this chapter, we presented SMART, a NoC architecture that allows flits to dy-

namically setup and traverse multi-hop paths in a single-cycle, without adding any

physical channels on the data-path. We replace clocked drivers at every router with

174

6.10. Chapter Summary

repeaters, thus creating a repeated link, which has been shown to go up to 13-19mm

at 1GHz in Appendix A. We also presented a flow control technique to opportunisti-

cally reserve multiple link segments within a cycle, and then allow a flit to virtually

bypass multiple routers within a cycle and only get latched at the destination, or

upon a conflict with another flow. SMART breaks the fundamental dependence of

latency on H, the number of hops, thereby breaking the on-chip latency barrier. We

also enhanced SMART to support forking and aggregation, thus enabling single-cycle

chip-wide 1-to-Many and Many-to-1 traversals.

As technology scales, repeated global wire delay is expected to remain fairly con-

stant. Since clock frequencies have plateaued due to the power wall, this means that

repeated wire delay in clock cycles will remain the same. Meanwhile, at smaller fea-

ture sizes, cores (i.e., tiles) shrink but our chip dimensions remain similar due to

yield limitations. All these trends point to an increasing HPCmax at future tech-

nologies, making SMART even more attractive. This work opens up a plethora of

research opportunities in circuits, NoC architectures, many-core architectures and

software to optimize and leverage SMART NoCs. We see SMART paving the way

for locality-oblivious CMPs, easing the burden on coherence protocol and/or software

from actively optimizing for locality.

175

Chapter 6. Single-cycle Multi-hop NoCfor 1-to-1, 1-to-Many and Many-to-1 Traffic

176

7
Conclusions

What we call the beginning is often the end.
And to make an end is to make a beginning.

The end is where we start from.
- T. S. Elliot, Four Quartets

As we continue to scale multicore designs, the on-chip communication latency

becomes critical for performance. Traditionally, the latency of multi-hop network

traversals has been proportional to the number of hops times the router delay. Re-

search in low-latency on-chip networks over the past decade has resulted in the router

delay dropping to one cycle, enabling single-cycle per-hop networks. However, the

delay in these networks grows proportional to the number of hops, which in turn

increase as core counts scale.

The contribution of this thesis is a network-on-chip architecture that presents

single-cycle traversal paths to messages over an underlying shared network fabric, for

both one-to-one and collective (one-to-many and many-to-one) communication flows.

In this chapter, we walk through a summary of the main contributions of this thesis

in Section 7.1. We conclude by examining future research directions in Section 7.2.

7.1 Dissertation Summary

This thesis proposed techniques to progressively design a network that facilitates

single-cycle traversals across the chip, for a variety of traffic flows (1-to-1 or unicast,

177

Chapter 7. Conclusions

0	

5	

10	

15	

20	

25	

30	

35	

40	

Full-‐state	 Directory	 HyperTransport	 Token	 Coherence	

Ap
pl
ic
a'

on
	 R
un

'm
e	
(M

ill
io
ns
	 o
f	 c
yc
le
s)
	

(A
vg
.	 a
cr
os
s	 S

PL
AS

H-‐
2	
+	
PA

RS
EC

)	

Cache	 Coherence	 Protocols	

BASELINE	 (tr=3)	
IDEAL	 (tr=1)	
SWIFT	
FANOUT	
FANOUT+FANIN	
SMART	
IDEAL	 (Tn=1)	

r

N

r

Figure 7-1: Thesis Contributions.

1-to-Many or multicast, and Many-to-1 or reduction), starting with a single-cycle

per-hop network for unicast flows as the baseline.

A visual summary of the contributions is shown in Figure 7-1 which plots the

average runtime across a suite of SPLASH-2 and PARSEC benchmarks running on a

8×8 Mesh CMP with the different NoC architectures proposed in this dissertation.

We started with the microarchitecture of a single-cycle router, and prototyped

the same within a 2x2 NoC in 90nm. This design was called the SWIFT NoC.

Each flit is preceded by a lookahead traveling one-cycle in advance and setting up

the crossbar switch, allowing the incoming flit to bypass the conventional multi-stage

router pipeline (buffering, followed by arbitrations for the switch and the next router’s

virtual channels) and proceed directly to the outgoing link via the crossbar. We also

added tokens to this design which are hints about buffer availability in each router’s

neighborhood, allowing it to traverse adaptive congestion-free paths. The SWIFT

NoC provides a 39% reduction in low-load latency for uniform random traffic and a

26% reduction in runtime across SPLASH-2 and PARSEC benchmarks running on a

shared memory CMP with a full-state directory protocol.

For protocols with 1-to-Many (multicast) traffic flows, a single-cycle per-hop NoC

like SWIFT does not provide much benefit because of heavy serialization at the

source NIC (BASELINE fork@nic) due to M flits being sent out for every 1-to-M

178

7.1. Dissertation Summary

request. Prior attempts to add support within routers to fork multicast flits (BASE-

LINE fork@rtr) reduces the serialization problem at the source NIC (since only one

flit enters the network), but at the cost of higher delays at each router. We proposed

FANOUT: a series of optimizations comprising a load-balanced routing algorithm for

multicasts, a crossbar circuit for efficient forking of multicast flits within a cycle at

low energy overhead, and a single-cycle router microarchitecture. FANOUT speeds

up broadcast delivery by 61%, and improves throughput by 63% compared to the

fork@rtr design. It reduces full-system runtime by 10% on average across SPLASH-2

and PARSEC benchmarks running on a shared memory CMP with the broadcast-

intensive Token Coherence protocol.

For protocols with Many-to-1 (reduction) traffic flows (such as acknowledgements),

heavy serialization at the destination NIC (due to M flits being delivered for every

M -to-1 response) and congestion at links leading up to the destination hot spot router

lead to early network saturation and system slowdown. We proposed FANIN: a series

of optimizations comprising a load-balanced routing algorithm for reduction traffic,

a flow control technique to identify and aggregate ACKs with routers, and a single-

cycle router microarchitecture. FANIN and FANOUT together reduce full-system

runtime for HyperTransport, a broadcast and ACK-intensive coherence protocol, by

19%, with up to 93.5% of the ACKs getting aggregated.

Together, SWIFT+FANOUT+FANIN is a highly optimized single-cycle per-hop

NoC that can handle 1-to-1, 1-to-Many and Many-to-1 flows. However, the network

latency in this design is always proportional to the number of hops that the flit wishes

to traverse. As we continue to scale core counts, the average number of hops con-

tinues to increase as well leading to a corresponding increase in network latency. To

counter this, we decoupled routers from links. We replaced clocked tri-state drivers

within every crossbar by asynchronous/clock-less repeaters (i.e., inverters or a pair

of inverters). This allows flits to bypass latches at every router and perform multi-

hop traversals within a single-cycle before they are latched at their destination. We

propose SMART: a router microarchitecture and flow control technique that lets flits

dynamically setup and traverse multi-hop paths; the setup and traversal both take

179

Chapter 7. Conclusions

one-cycle each. In Appendix A we perform a design space exploration of repeated

wires - varying wire spacing, repeater spacing, and repeater sizes. We observe that

repeated wires can go 13-19 mm within 1ns (i.e., 1GHz clock frequency). For tile

sizes of 1mm, this translates to 13-19 hops per cycle (HPCmax). For a network data-

path with crossbars and repeaters at every hop, HPCmax drops to 11. It drops to 13

(9) along the network control-path through which the multi-hop straight (turning)

path setup takes place. In the best case, if there is no contention, SMART allows

flits to traverse multi-hop paths, all the way from the source up to HPCmax hops,

within a cycle. If there is contention for a link, however, flits need to stop at the

router connected to this link and arbitrate for it, just like in the baseline, making the

achieved HPC lower than HPCmax. SMART with turns and a HPCmax of 8 reduces

low-load network latency to 2 cycles across a variety of synthetic traffic patterns,

breaking the dependence on number of hops. With a full-state directory protocol,

SMART reduces full-system runtime by 27% and 52% respectively, across multiple

benchmarks, for Private and Shared L2 implementations respectively. SMART, en-

hanced with FANOUT, speeds up broadcast delivery by 84% compared to FANOUT

alone. SMART+FANOUT+FANIN reduces runtime by 15% and 19%, on average,

across benchmarks running on HyperTransport and Token Coherence respectively.

The techniques presented in this thesis update the network latency (TN) equa-

tion 1.1 for flits presented earlier in Chapter 1 to

TN = d(H/HPC)e · 2 +
H∑

h=1

tc(h) (7.1)

where H is the number of hops, HPC is the realized hops per cycle via SMART

(equal to HPCmax in case of no contention), and
H∑

h=1

tc(h) is the overall contention

delay along the route. The realized HPC depends on the number of routers at which

there is contention. In the worst case of tc(h) > 0 at every hop h ∈ [1, H], the realized

HPC will be 1, which is the same as the baseline. But if there is no contention for

all the links that the flit wishes to traverse (i.e., ∀h, tc(h) = 0), and H is less than

HPCmax, the network latency is just 2 cycles.

180

7.2. Future Directions

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

ba
rn
es
	

/
	

lu
	

nl
u	

ra
di
x	

w
at
er
-‐n
sq
	

w
at
er
-‐s
pa
:a

l	

bl
ac
ks
ch
ol
es
	

ca
nn

ea
l	

flu
id
an
im

at
e	

sw
ap
:o

ns
	

x2
64

	

AV
ER

AG
E	

SPLASH-‐2	 PARSEC	

Full-‐state	 Directory	

N
or
m
al
iz
ed

	 R
un

/m
e	

L2=Shared	 Net=BASELINE	 (tr=1)	 L2=Shared	 Net=SMART-‐8_2D	
L2=Private	 Net=BASELINE	 (tr=1)	 L2=Private	 Net=SMART-‐8_2D	

r
r

Figure 7-2: Private vs. Shared L2 Caches with BASELINE (tr=1) and SMART.

7.2 Future Directions

The design of the memory subsystem within a multicore chip is a rich topic of research.

Network latency plays a key role in the design process, since the on-chip traversal is

often on the critical path of a memory request. We have shown that on-chip networks

can be designed to be extremely low-latency (breaking the barrier between local

and remote caches) and efficiently handle bursts of high-bandwidth traffic (such as

multicasts and acknowledgements) at unicast latencies. These observations challenge

the conventional wisdom that argues to keep data local and minimize communication.

With the help of 2 case studies, we hope this thesis initiates a debate on the design

of scalable cache hierarchies and protocols.

7.2.1 Case Study 1: Private vs. Shared L2

Coherence protocol designers often prefer Private L2s over Shared L2s to lower average

cache access latencies, even though Shared L2 designs provide larger cache capacity.

This is reflected in Figure 7-2 where a Private L2 is 57.4% faster on average than

a Shared L2 with a baseline (tr=1) network. However, a SMART network can turn

this argument around its head. Shared L2s no longer need tens of cycles of access

181

Chapter 7. Conclusions

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	
1.8	
2	

BA
SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	
BA

SE
LI
N
E	
(t
r=
1)
	

FA
N
O
U
T+
FA

N
IN
	

SM
AR

T	

<	 lu	 nlu	 radix	 water-‐n	 water-‐s	 b'scholes	 canneal	 f'animate	 s'Oons	 x264	 AVG	

N
or
m
al
ze
d	
Ap

pl
ic
a/

on
	 R
un

/m
e	

Full-‐state	 Directory	 HyperTransport	 Token	 Coherence	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

(t
r=
1)
	

Figure 7-3: Directory vs. Broadcast protocols with BASELINE (tr=1) and SMART.

latency. For some benchmarks, a Shared L2 with SMART performs as good (fft,

water-nsq, swaptions, x264), and even better (barnes, lu, nlu) than a Private L2 with

a baseline network. When both designs use SMART, Private is 40% faster on average.

We believe that a coherence protocol and cache hierarchy that is aware that every

HPCmax neighborhood is local can greatly benefit from SMART. The design of such

a system would be a highly interesting and important research direction to pursue.

7.2.2 Case Study 2: Directory vs. Broadcast Protocols

The cache coherence protocol design space is fundamentally a trade-off between com-

munication and storage. Broadcast protocols do not track the state of all on-chip

lines, minimizing storage, at the cost of frequent 1-to-Many or 1-to-All messages.

Directory protocols that track the state of all on-chip lines can send precise unicasts,

minimizing communication, at the cost of directory storage structures which add

indirection latency and area overheads.

In Figure 7-3 we plot the runtime of SPLASH-2 and PARSEC benchmarks with

182

7.2. Future Directions

all 3 protocols used in this thesis (Full-state directory, HyperTransport and Token

Coherence) with the BASELINE (tr=1), FANOUT+FANIN, and SMART NoCs. For

each benchmark, we normalize all runtimes to the runtime of the Full-state directory

with the BASELINE (tr=1) network. This allows us to compare the runtimes across

both dimensions: network and protocol.

The runtime reductions of each individual protocol with the different network

designs has been thoroughly explored in this thesis; so we focus on the other dimen-

sion1. With the BASELINE (tr=1) network, which represents the best possible NoC

design today, the full-state directory, which has the least network traffic, offers the

lowest runtime - 48-51% lower on average - across all three protocols. This is in line

with the conventional wisdom of network delay and throughput of broadcast proto-

cols limiting performance. With the FANOUT+FANIN NoC, Token Coherence has

comparable performance to the directory. HyperTransport is about 23% slower. The

SMART NoC is able to lower the runtime of HyperTransport to be comparable to

the runtime of a full-state directory running on the baseline NoC. These results point

to a co-design of the coherence protocol and on-chip network as a potential research

direction that stems directly from this thesis. An optimal design should sweep the

communication vs. storage requirements of the protocol and weigh the latency, area,

and power overheads at each point. The coherence protocol + network that meets

the performance specifications within the power budget can then be picked.

7.2.3 Locality-Oblivious Shared Memory Design

Going forward, exposing a SMART-like network to the software layer can potentially

open up multiple avenues for optimization. Applications with deterministic commu-

nication patterns, such as those in the SoC or GPU domain, could be mapped on

the SMART NoC and paths preset for the entire duration of the application to pro-

1A direct comparison between the protocols using the runtime numbers from Figure 7-3 is not
completely fair. This is because the full-state directory has higher storage requirements than both
HyperTransport and Token Coherence; so the latter two should be compensated with larger caches.
However, a design-space exploration of cache sizes is beyond the scope of this thesis and does not
dilute the overall point that this case study is trying to make.

183

Chapter 7. Conclusions

vide guaranteed single-cycle traversals unlike the current opportunistic design. This

might be especially useful in a heterogeneous multicore, where certain tasks are tied

to certain cores and cannot be moved to nearby cores to reduce the number of hops.

Even in homogeneous multicores, data placement and movement is not a trivial task

for the OS and compiler; and leveraging a SMART NoC could ease the burden on

software developers from always optimizing for locality.

7.2.4 Scalability

As we move to thousands of cores on a chip in the exascale era, we need a scalable

on-chip fabric to continue supporting shared memory systems. This thesis lays the

ground work for such a fabric. As technologies scale, global wire delay is not expected

to go down, as discussed in Appendix A. This is actually contrary to the trend for

transistors, which become faster at smaller technology nodes. However, this is not

really a problem, because our chip dimensions are expected to remain the same due

to limitations of yields, and our clock frequencies are expected to remain the same

because of the power wall. These three observations indicate that it will continue to

be feasible to go from one end of the chip to the other in 1-2 cycles at 1GHz, even

at future technology nodes. From an architectural perspective, smaller transistors

will mean smaller tiles, and more hops. If we continue to design single-cycle per-hop

designs, on-chip latency will be horrendous. But in a SMART design, smaller tiles

will translate to a larger HPCmax, magnifying the benefits of SMART. We believe

that a SMART-like design will not just be feasible, but also be required in multicore

chips at future technology nodes.

7.2.5 Conclusion

As computing systems continue to pervade human society, computer architects need

to ensure that our chips meet the performance and power requirements of all domains:

embedded, graphics, high-performance, cloud, etc. Distributed computing (both on-

chip and off-chip) relies on the network fabric for both efficiency and scalability. This

184

7.2. Future Directions

thesis presented techniques for reducing on-chip latency to scale shared memory on-

chip systems; but the ideas and insights presented are more general and can be applied

to network fabrics in a variety of domains. We hope that the readers of this thesis

shared the enthusiasm that went into the development of this text.

185

Chapter 7. Conclusions

186

A
Single-cycle Multi-hop Repeated Wires

Until you spread your wings, you’ll have no idea how far you can fly.
- Anonymous

In this appendix, we perform a technology exploration of the wire delay of on-chip

electrical wires. The goal of this study is to understand what design parameters can

enable wires to send signals multiple hops within a target clock cycle. These single-

cycle multi-hop wires act as motivation to design Single-cycle Multi-hop NoCs which

were presented in Chapter 6.

A.1 Modeling and Evaluation Methodology

For all results in this appendix, we use the following modeling and evaluation method-

ology. We use the 45nm IBM SOI technology. We feed the parameters of the desired

wire model (wire width (w), wire spacing (s), and repeater spacing (l)) to our auto-

mated wire layout tool [19]1 to create a place-and-routed 128-bit wire layout, as shown

in Figure A-1. Next, we perform Design Rule Check (DRC), Layout vs. Schematic

(LVS) and Parasitic Extraction (PEX) of the design using Cadence Encounter. We

feed the extracted spice netlist generated by PEX through Cadence Ultrasim and per-

form circuit simulations in mixed-signal mode to get delay and energy numbers. The

testbench connects the extracted wire between two flip flops, feeds random traffic,

1The automated layout tool was created by Owen Chen.

187

Appendix A. Single-cycle Multi-hop Repeated Wires

INV BUF

repeater spacing (l)
repeater size (W)

1 2 3 4 N+1

Bit 0

Bit 1

Bit 2

Bit 127

wire spacing (s)

clock period (p)

Wire Length = N× l

Figure A-1: Experimental setup to measure delay of repeated wires.

and compares the input and output values. The experiment involves increasing the

length of the wire till it fails timing (i.e., the output and input no longer match) at

the desired clock period (p) (1ns unless specified). We sweep through 8 repeater sizes

(W) - 1X, 3X, 5X, 7.5X, 9X, 11X, 13X and 16X - and 2 repeater models - inverter

and buffer. For each data point (i.e., wire length), we plot the minimum energy point

across all the 16 repeater circuits which meet timing. All graphs plot the energy in

fJ/bit/mm and the length in mm. We use close to the minimum wire width on metal

layer M6 in all experiments.

A.2 Wire Delay

A wire can be modeled as a distributed RC network driven by a driver (single/multi-

stage inverter), as shown in Figure A-2. A simple equation for the delay through this

wire is [36]2:

2This model ignores both non-linear drive resistance as well as the effect of slew rate on delay.

188

A.2. Wire Delay

...

Rw = rw l
Cw = cw× l

Cd = cd×W Cg = cg×WRd = rd / W

Rw / n Rw / n
Cw / n Cw / n

n

l

Figure A-2: Model of Wire + Driver/Repeater.

0	

5	

10	

15	

20	

25	

0	 1	 2	 3	 4	

En
er
gy
	 (f
J/
bi
t/
m
m
)	

Length	 (mm/ns)	

Unrepeated	 Wire	

Figure A-3: Delay of unrepeated wire. (s ∼ 3·DRCmin, p = 1ns)

Delay = 0.69[Ddriver +Dwire]

= 0.69[RdCd + (Rd(Cw + Cg) +Rw(
1

2
Cw + Cg))]

(A.1)

In Figure A-3 we plot the energy vs. length for an unrepeated wire. We can see

that the unrepeated wire can transmit signals up to 3mm before it fails timing.

189

Appendix A. Single-cycle Multi-hop Repeated Wires

Cw-c

Cw-g Cw-g

A B

A B Cw

Cw-g

Cw-g + Cw-c

Cw-g + 2Cw-c

Figure A-4: Capacitive Coupling.

A.3 Repeated Wires

Adding repeaters, i.e., inverters or buffers (pair of inverters), at regular intervals along

a long wire is a standard technique for reducing wire delay [70, 45]. The intuition is

that the RC delay goes up as square of the wire’s length (since both R and C go up

linearly with the wire’s length). Breaking the long wire into multiple stages makes

the delay go up linearly with the number of stages instead. The equation for the

delay through a repeated wire is [36]:

Delay = N ·Dstage

= N · 0.69[Drepeater +Dwire]

= N · 0.69[RdCd + (Rd(Cw + Cg) +Rw(
1

2
Cw + Cg))]

= N · 0.69[
rd
W
cdW + (

rd
W

(cwl + cgW) + rwl(
1

2
cwl + cgW))]

(A.2)

A.3.1 Impact of wire spacing

Wire spacing s affects the coupling capacitance (Cw−c) between adjacent wires. Cou-

pling capacitance can increase the effective capacitance of the wire (Cw) depending on

the value being transmitted on the wires. Figure A-4 shows this effect for two wires.

If both wires transmit the same value (0 or 1), the effective capacitance is Cw−g (i.e.,

capacitance to ground). If one wire does not switch while the other switches, the

190

A.3. Repeated Wires

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	

En
er
gy
	 (f
J/
bi
t/
m
m
)	

Length	 (mm/ns)	

wire	 spacing	 =	 1x	
wire	 spacing	 =	 2x	
wire	 spacing	 =	 3x	
wire	 spacing	 =	 5x	

Figure A-5: Impact of wire spacing (s). (l = 1mm, p = 1ns)

effective capacitance is Cw−g + Cw−c. If both wires switch in opposite directions,

the effective capacitance is Cw−g + 2Cw−c. For a parallel set of three or more wires

this effect gets magnified. If a wire switches in the opposite direction to both its

neighbors, its effective capacitance can go up to Cw−g + 4Cw−c.

Increased wire spacing lowers the coupling capacitance Cw−c between wires, thereby

increasing its speed. Figure A-5 plots the measured energy vs. length graph for a

repeated wire with varying wire spacing (in multiples of a value close to DRCmin
3).

We can see that with 1X wire spacing, the wire transmits up to 7mm and consumes

47 fJ/bit/mm which is 2.26X higher than the energy consumed by the 5X spacing

design at 7mm. With 2X spacing, the lowered capacitance allows the transmission

distance to go up to 9mm, at 35 fJ/bit/mm. With 3X spacing, the maximum distance

goes up to 13mm at 35 fJ/bit/mm. Increasing spacing beyond 3X does not help in

delay and lowers energy very slightly. Thus we use 3X spacing in all the following

experiments.

A.3.2 Impact of repeater spacing

Repeater spacing l affects the number of stages and therefore the delay, as shown

in Equation A.2. Theoretically, solving the equation to minimize delay gives l =

3We cannot report specific values of our wire width and spacing due to process design kit confi-
dentiality issues.

191

Appendix A. Single-cycle Multi-hop Repeated Wires

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	

En
er
gy
	 (f
J/
bi
t/
m
m
)	

Length	 (mm/ns)	

repeater	 spacing	 =	 0.25mm	
repeater	 spacing	 =	 0.5mm	
repeater	 spacing	 =	 1mm	
repeater	 spacing	 =	 2mm	

Figure A-6: Impact of repeater spacing (l). (s ∼ 3·DRCmin, p = 1ns)

0.4mm. Figure A-6 plots the measured energy vs. length graph for a repeated wire

with varying repeater spacing. We can see that repeaters at 0.5 mm and 0.25mm

allow the wire to transmit up to 16mm and 17mm respectively. Repeaters at 1mm

spacing decrease the maximum transmission length to 13mm. At a spacing of 2mm,

the repeated wire can only transmit up to 6mm.

It is not always possible to layout repeaters at the spacing that minimizes delay

due to constraints related to layout of other components of the design. For instance,

in multicore chips the tile size (assumed to be 1mm in this thesis) determines the

repeater spacing since we can place the repeaters (logic) at the crosspoints of the

router’s crossbar. The wires themselves can be routed on higher metal layers over the

core and router logic.

A.3.3 Impact of repeater size

Figure A-7 plots the energy vs. length graph for a repeated wires with varying driver

(repeater) sizes. At every data point, we pick the minimum energy point between

the inverter and the buffer. The minimum sized driver can drive the wire up to

4mm, at the lowest energy among all other drivers. The 3X and 5X drivers push

the maximum length to 9mm and 13mm respectively, at the cost of 5% and 17%

higher energy/bit/mm than the minimum sized driver. Drivers of sizes of 7.5X -

192

A.3. Repeated Wires

0	

10	

20	

30	

40	

50	

60	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	

En
er
gy
	 (f
J/
bi
t/
m
m
)	

Length	 (mm/ns)	

Driver	 =	 1x	
Driver	 =	 3x	
Driver	 =	 5x	
Driver	 =	 7.5x	
Driver	 =	 9x	
Driver	 =	 11x	
Driver	 =	 13x	
Driver	 =	 16x	

Figure A-7: Impact of repeater size (W). (s ∼ 3·DRCmin, l = 0.5mm, p = 1ns)

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

En
er
gy
	 (f
J/
bi
t/
m
m
)	

Length	 (mm/ns)	

No	 Op0miza0on	

Crosstalk	 Op0miza0on	

Figure A-8: Impact of crosstalk. (s ∼ 3·DRCmin, l = 1mm, p = 1ns)

16X are required to push the design further to 15-16mm at the cost of 15% to 73%

higher energy/bit/mm compared to the 5X driver. The theoretical driver size W for

minimum delay4 is 20X but could not be modeled because the largest standard cell

in the technology library was for the 16X driver.

A.3.4 Impact of crosstalk

The coupling capacitance between adjacent wires results in crosstalk, which affects

the maximum length that can be traversed by the wire without bit errors, as discussed

4Obtained by partially differentiating Equation A.2 with respect to W .

193

Appendix A. Single-cycle Multi-hop Repeated Wires

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	

En
er
gy
	 (f
J/
bi
t/
m
m
)	

Length	 (mm/ns)	

frequency	 =	 1GHz	
frequency	 =	 2GHz	
frequency	 =	 3GHz	
frequency	 =	 4GHz	

Figure A-9: Impact of clock frequency. (s ∼ 3·DRCmin, l = 1mm)

earlier in Section A.3.1.. We enabled an optimization in Cadence Encounter during

parasitic extraction that removes the coupling capacitor between adjacent wires and

instead models it as additional grounded capacitors on the adjacent wires. This

approximation does not affect the energy calculations much, but affects the delay

estimates since it does not fully model crosstalk effects. With this optimization

enabled, Figure A-8 shows that the repeated wire with 1mm repeater spacing is able

to go up to 19mm, as compared to 13mm in the original design.

This design represents the lowest possible delay for the repeated wire if crosstalk

is mitigated. A real design that uses circuit tricks like crossover [70] and shielding

wires [70] to lower crosstalk should be able to push the repeated wire to transmit up

to 13mm-19mm.

A.3.5 Impact of frequency

Figure A-9 plots the energy vs. length graph for a repeated wire at varying clock

frequencies. At 2GHz and 3GHz, the maximum length that the wire can be driven

drops down to 5mm and 3mm respectively. This is less than half and one-third of

13mm (the maximum length at 1GHz). The reason for the super-linear slowdown

is the slew rate of the signal. The signal has some rise time and fall time delay.

At higher frequencies (i.e., shorter clock periods), the repeater is unable to produce

194

A.3. Repeated Wires

0	

5	

10	

15	

20	

25	

30	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	

En
er
gy
	 (f
J/
bi
t/
m
m
)	

Length	 (mm/ns)	

45nm	 (Place-‐and-‐Route)	
32nm	 (Projected)	
22nm	 (Projected)	

Figure A-10: Impact of technology scaling. (s ∼ 3·DRCmin, l = 1mm, p = 1ns)

the extra current required to reduce the rise/fall time proportionally, which ends up

becoming a larger percentage of the wire delay. This could be mitigated by using an

even larger driver at high frequencies. At 4GHz the signal can be driven up to 2mm,

and beyond that it cannot be driven beyond 1mm.

A.3.6 Impact of technology

Figure A-10 plots the energy vs. length graph for repeated wires at 45nm, 32nm

and 22nm technology nodes. The 32nm and 22nm numbers are projections using

DSENT [76] - a timing-driven power modeling tool for on-chip networks. The 45nm

values are from place-and-route, using the crosstalk optimization discussed earlier in

Section A.3.4, since DSENT does a similar optimization. At 45nm, the repeated wire

drives signals up to 19mm. At 32nm and 22nm, the repeated wire drives signals upto

20mm at 20% and 42% lower energy/bit/mm on average respectively.

With technology scaling, the delay of repeated wires is expected to remain simi-

lar [36, 20]. The reason for this trend is as follows. As wire widths become thinner,

their resistance Rw goes up. To compensate for this increase, the height of the (higher)

metal layers has been continuously increasing to keep Rw almost constant. But at

lower technnology nodes, the height cannot be increased further [2] resulting in Rw

going up. However, this rise in Rw gets compensated by a lower capacitance to ground

195

Appendix A. Single-cycle Multi-hop Repeated Wires

Cw−g in the thinner wires. If wires are placed at their minimum spacing, coupling

capacitance Cw−c will go up. But if we give 3X or more spacing, as we showed in

Figure A-5, the effects of coupling capacitance can be reduced significantly. Thus the

overall delay of the wire (Rw × Cw−g) is expected to remain fairly constant as technol-

ogy scales. Transistors, on the other hand, become faster at lower technologies due to

lower capacitances and only slightly higher resistances. Transistors becoming faster

compared to wires has been projected in the past as a motivation to keep global

chip-wide communication to a minimum and heavily optimize for locality [47, 35].

However, we believe that this trend does not in fact hurt communications. Even

if technology scales, chip dimensions are expected to remain fairly constant (due to

yields) and clock frequencies have plateaued off (due to the power wall described in

Chapter 1). Thus the number of cycles it takes to go from a core at one end of the

chip to the other is expected to remain the same, and not go down. This motivates

Chapter 6 where we leverage repeated wires on the data-path to perform single-cycle

traversals across the chip.

196

Bibliography

[1] Intel Nehalem. http://www.realworldtech.com/nehalem.

[2] International Technology Roadmap for Semiconductors. http://www.itrs.net.

[3] The Angstrom Project. http://projects.csail.mit.edu/angstrom.

[4] Wind River Simics Full System Simulation. http://www.windriver.com/

products/simics.

[5] J. L. Abellán, J. Fernández, and M. E. Acacio. Efficient and Scalable Barrier
Synchronization for Many-Core CMPs. In Proceedings of the 7th ACM Interna-
tional Conference on Computing Frontiers, pages 73–74, 2010.

[6] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tu-
torial. IEEE Computer, 29(12):66–76, 1996.

[7] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A Detailed On-
chip Network Model inside a Full-system Simulator. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), pages 33–42, 2009.

[8] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network Snoop Ordering (INSO):
Snoopy Coherence on Unordered Interconnects. In Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
pages 67–78, 2009.

[9] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD Opteron Shared Memory
MP Systems. In In Proceedings of the 14th HotChips Symposium, 2002.

[10] A. R. Alameldeen and D. A. Wood. Variability in Architectural Simulations of
Multi-Threaded Workloads. In Proceedings of the IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 7–18, 2003.

197

BIBLIOGRAPHY

[11] J. Bae, J.-Y. Kim, and H.-J. Yoo. A 0.6pJ/b 3Gb/s/ch Transceiver in 0.18um
CMOS for 10mm On-chip Interconnects. In Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 2861–2864, 2008.

[12] J. Bainbridge and S. Furber. Chain: A Delay-Insensitive Chip Area Interconnect.
IEEE Micro, 22(5):16–23, Sept 2002.

[13] J. Balfour and W. J. Dally. Design Tradeoffs for Tiled CMP On-Chip Networks.
In Proceedings of the ACM International Conference on Supercomputing (ICS),
pages 187–198, 2006.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings of the
IEEE/ACM International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 72–81, 2008.

[15] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill, and
D. A. Wood. Multicast Snooping: A New Coherence Method Using a Multicast
Address Network. In Proceedings of the IEEE/ACM International Symposium
on Computer Architecture (ISCA), pages 294–304, 1999.

[16] N. Binkert et al. The gem5 simulator. SIGARCH Computer Architecture News,
39(2):1–7, 2011.

[17] T. Bjerregaard and J. Sparso. A Router Architecture for Connection-Oriented
Service Guarantees in the MANGO Clockless Network-on-Chip. In Proceedings
of the IEEE/ACM Design, Automation and Test in Europe (DATE), pages 1226–
1231, 2005.

[18] J. G. Castanos, L. Ceze, K. Strauss, and H. S. Warren Jr. Evaluation of a
Multithreaded Architecture for Cellular Computing. In Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
pages 311–322, 2002.

[19] C.-H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chandrakasan, and
L.-S. Peh. SMART: A Single-Cycle Reconfigurable NoC for SoC Applications. In
Proceedings of the IEEE/ACM Design, Automation and Test in Europe (DATE),
pages 338–343, 2013.

[20] G. Chen, H. Chen, M. Haurylau, N. Nelson, D. Albonesi, P. M. Fauchet, and
E. G. Friedman. Electrical and Optical On-Chip Interconnects in Scaled Micro-
processors. In Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS), pages 2514–2517, 2005.

[21] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache
Hierarchy and Memory Subsystem of the AMD Opteron Processor. IEEE Micro,
30(2):16–29, Mar 2010.

198

BIBLIOGRAPHY

[22] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proceedings of the USENIX Symposium on Operating Systems De-
sign & Implementation (OSDI), pages 137–150, 2004.

[24] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256–268, 1974.

[25] J. Duato, S. Yalamanchili, and L. M. Ni. Interconnection Networks: An Engi-
neering Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[26] P. A. Fidalgo, V. Puente, and J.-Á. Gregorio. MRR: Enabling Fully Adap-
tive Multicast Routing for CMP Interconnection Networks. In Proceedings of
the IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA), pages 355–366, 2009.

[27] M. Galles. Scalable Pipelined Interconnect for Distributed Endpoint Routing:
The SGI SPIDER Chip. In Proceedings of IEEE Annual Symposium on High
Performance Interconnects (HOTI), pages 141–146, 1996.

[28] A. Gara et al. Overview of the Blue Gene/L system architecture. IBM Journal
of Research and Development., 49(2):195–212, Mar 2005.

[29] C. J. Glass and L. M. Ni. The Turn Model for Adaptive Routing. In Proceedings
of the IEEE/ACM International Symposium on Computer Architecture (ISCA),
pages 278–287, 1992.

[30] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and
M. Snir. The NYU Ultracomputer – Designing an MIMD Shared Memory Parallel
Computer. IEEE Transactions on Compututers, 32(2):175–189, Feb 1983.

[31] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W. Keckler,
and D. Burger. On-Chip Interconnection Networks of the TRIPS Chip. IEEE
Micro, 27(5):41–50, Sept 2007.

[32] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express Cube Topologies for
On-Chip Interconnects. In Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 163–174, 2009.

[33] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-NOC: A Heterogeneous
Network-on-Chip Architecture for Scalability and Service Guarantees. In Pro-
ceedings of the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 401–412, 2011.

199

BIBLIOGRAPHY

[34] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Require-
ments for Scalable Directory-Based Cache Coherence Schemes. In In Proceedings
of the International Conference on Parallel Processing (ICPP), pages 312–321,
1990.

[35] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: Near-
Optimal Block Placement and Replication in Distributed Caches. In Proceedings
of the IEEE/ACM International Symposium on Computer Architecture (ISCA),
pages 184–195, 2009.

[36] Ron Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Stanford Univer-
sity, Aug 2003.

[37] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz Mesh
Interconnect for a Teraflops Processor. IEEE Micro, 27(5):51–61, Sept 2007.

[38] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm
CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference
(ISSCC), pages 108–109, 2010.

[39] T. N. K. Jain, P. V. Gratz, A. Sprintson, and G. Choi. Asynchronous Bypass
Channels: Improving Performance for Multi-synchronous NoCs. In Proceed-
ings of the IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
pages 51–58, 2010.

[40] N. D. E. Jerger and L.-S. Peh. On-Chip Networks. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2009.

[41] N. D. E. Jerger, L.-S. Peh, and M. Lipasti. Virtual Circuit Tree Multicast-
ing: A Case for On-chip Hardware Multicast Support. In Proceedings of the
IEEE/ACM International Symposium on Computer Architecture (ISCA), pages
229–240, 2008.

[42] D. Johnson et al. Rigel: A 1,024-Core Single-Chip Accelerator Architecture.
IEEE Micro, 31(4):30–41, Jul 2011.

[43] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: a fast and accurate
NoC power and area model for early-stage design space exploration. In Proceed-
ings of the IEEE/ACM Design, Automation and Test in Europe (DATE), pages
423–428, 2009.

[44] Y.-H. Kao, M. Yang, N. S. Artan, and H. J. Chao. CNoC: High-Radix Clos
Network-on-Chip. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 30(12):1897–1910, 2011.

[45] B. Kim and V. Stojanović. Equalized Interconnects for On-Chip Networks: Mod-
eling and Optimization Framework. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 552–559, 2007.

200

BIBLIOGRAPHY

[46] B. Kim and V. Stojanovic. A 4Gb/s/ch 356fJ/b 10mm Equalized On-Chip Inter-
connect with Nonlinear Charge-Injecting Transmit Filter and Transimpedance
Receiver in 90nm CMOS. In Proceedings of the IEEE International Solid-State
Circuits Conference (ISSCC), pages 66–67, 2009.

[47] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform Cache Struc-
ture for Wire-Delay Dominated On-Chip Caches. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 211–222, 2002.

[48] J. Kim, J. Balfour, and W. J. Dally. Flattened Butterfly Topology for On-
Chip Networks. In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 172–182, 2007.

[49] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchitecture of a High-
Radix Router. In Proceedings of the IEEE/ACM International Symposium on
Computer Architecture (ISCA), pages 420–431, 2005.

[50] T. Krishna, C.-H. O. Chen, W.-C. Kwon, and L.-S. Peh. Breaking the On-
Chip Latency Barrier Using SMART. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 378–
389, 2013.

[51] T. Krishna, A. Kumar, L.-S. Peh, J. Postman, P. Chiang, and M. Erez. Express
Virtual Channels with Capacitively Driven Global Links. IEEE Micro, 29(4):48–
61, 2009.

[52] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt. Towards the Ideal
On-Chip Fabric for 1-to-Many and Many-to-1 Communication. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
71–82, 2011.

[53] T. Krishna, J. Postman, C. Edmonds, L.-S. Peh, and P. Chiang. SWIFT:
A SWing-reduced Interconnect For a Token-based Network-on-Chip in 90nm
CMOS. In Proceedings of the IEEE International Conference on Computer De-
sign (ICCD), pages 439–446, 2010.

[54] V. Krishnan and J. Torrellas. The Need for Fast Communication in Hardware-
Based Speculative Chip Multiprocessors. International Journal of Parallel Pro-
gramming, 29(1):3–33, Feb 2001.

[55] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha. A 4.6Tbits/s 3.6GHz
Single-cycle NoC Router with a Novel Switch Allocator in 65nm CMOS. In
Proceedings of the IEEE International Conference on Computer Design (ICCD),
pages 63–70, 2007.

[56] A. Kumar, L.-S. Peh, and N. K. Jha. Token Flow Control. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
342–353, 2008.

201

BIBLIOGRAPHY

[57] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha. Express Virtual Channels:
Towards the Ideal Interconnection Fabric. In Proceedings of the IEEE/ACM In-
ternational Symposium on Computer Architecture (ISCA), pages 150–161, 2007.

[58] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C. Kimerling,
and A. Agarwal. ATAC: A 1000-Core Cache-Coherent Processor with On-Chip
Optical Network. In Proceedings of the IEEE/ACM International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 477–488,
2010.

[59] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.
In Proceedings of the IEEE/ACM International Symposium on Computer Archi-
tecture (ISCA), pages 241–251, 1997.

[60] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-based Cache Coherence Protocol for the DASH Multiprocessor. In
Proceedings of the IEEE/ACM International Symposium on Computer Architec-
ture (ISCA), pages 148–159, 1990.

[61] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling
Performance and Correctness. In Proceedings of the IEEE/ACM International
Symposium on Computer Architecture (ISCA), pages 182–193, 2003.

[62] M. M. K. Martin et al. Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset. SIGARCH Computer Architecture News, (4):92–99,
2005.

[63] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga. Prediction Router:
Yet Another Low Latency On-Chip Router Architecture. In Proceedings of
the IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA), pages 367–378, 2009.

[64] G. Michelogiannakis, J. D. Balfour, and W. J. Dally. Elastic-Buffer Flow Control
for On-Chip Networks. In Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 151–162, 2009.

[65] R. Mullins, A. West, and S. Moore. Low-Latency Virtual-Channel Routers for
On-Chip Networks. In Proceedings of the IEEE/ACM International Symposium
on Computer Architecture (ISCA), pages 188–197, 2004.

[66] S. Park, T. Krishna, C.-H. O. Chen, B. Daya, A. P. Chandrakasan, and L.-
S. Peh. Approaching the Theoretical Limits of a Mesh NoC with a 16-Node
Chip Prototype in 45nm SOI. In Proceedings of the ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 398–405, 2012.

[67] L.-S. Peh and W. J. Dally. A Delay Model and Speculative Architecture for
Pipelined Routers. In Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 255–266, 2001.

202

BIBLIOGRAPHY

[68] G. F. Pfister et al. The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture. In In Proceedings of the International Conference
on Parallel Processing (ICPP), pages 764–771, 1985.

[69] J. Postman, T. Krishna, C. Edmonds, L.-S. Peh, and P. Chiang. SWIFT: A Low-
Power Network-On-Chip Implementing the Token Flow Control Router Architec-
ture With Swing-Reduced Interconnects. IEEE Transactions on VLSI Systems
(TVLSI), 21(8):1432–1446, 2013.

[70] J. Rabaey and A. Chandrakasan. Digital Integrated Circuits: A Design Perspec-
tive. Prentice Hall Pub., 2002.

[71] A. Raghavan, C. Blundell, and M. M. K. Martin. Token tenure: PATCHing
token counting using directory-based cache coherence. In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 47–
58, 2008.

[72] S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient Unicast and Multicast
Support for CMPs. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 364–375, 2008.

[73] F. A. Samman, T. Hollstein, and M. Glesner. Multicast Parallel Pipeline Router
Architecture for Network-on-Chip. In Proceedings of the IEEE/ACM Design,
Automation and Test in Europe (DATE), pages 1396–1401, 2008.

[74] S. Scott, D. Abts, J. Kim, and W. J. Dally. The BlackWidow High-Radix Clos
Network. In Proceedings of the IEEE/ACM International Symposium on Com-
puter Architecture (ISCA), pages 16–28, 2006.

[75] K. Strauss, X. Shen, and J. Torrellas. Uncorq: Unconstrained Snoop Request
Delivery in Embedded-Ring Multiprocessors. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 327–342, 2007.

[76] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh,
and V. Stojanovic. DSENT - A Tool Connecting Emerging Photonics with Elec-
tronics for Opto-Electronic Networks-on-Chip Modeling. In Proceedings of the
IEEE/ACM International Symposium on Networks-on-Chip (NOCS), pages 201–
210, 2012.

[77] M. B. Taylor et al. The Raw Microprocessor: A Computational Fabric for Soft-
ware Circuits and General-Purpose Programs. IEEE Micro, 22(2):25–35, Mar
2002.

[78] H. Wang, L.-S. Peh, and S. Malik. Power-driven Design of Router Microarchi-
tectures in On-chip Networks. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 105–116, 2003.

203

BIBLIOGRAPHY

[79] L. Wang, Y. Jin, H. Kim, and E. J. Kim. Recursive Partitioning Multicast:
A Bandwidth-Efficient Routing for Networks-on-Chip. In Proceedings of the
IEEE/ACM International Symposium on Networks-on-Chip (NOCS), pages 64–
73, 2009.

[80] M. A. Watkins and D. H. Albonesi. ReMAP: A Reconfigurable Heterogeneous
Multicore Architecture. In Proceedings of the IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 497–508, 2010.

[81] D. Wentzlaff et al. On-Chip Interconnection Architecture of the Tile Processor.
IEEE Micro, 27(5):15–31, Sept 2007.

[82] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In Proceedings
of the IEEE/ACM International Symposium on Computer Architecture (ISCA),
pages 24–36, 1995.

204

