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ABSTRACT
Reversible debuggers have existed since the early 1970s. A
novel approach, URDB, is introduced based on checkpoint/re-
execute. It adds reversibility to a debugger, while still plac-
ing the end user within the familiar environment of their
preferred debugger. The URDB software layer currently in-
cludes modes that understand the syntax for four debuggers:
GDB for C/C++/Java/Fortran, Python (pdb), MATLAB,
and Perl (perl -d). It does so by adding a thin URDB soft-
ware layer on top of the DMTCP checkpoint-restart package.
URDB passes native debugging commands between the end
user and the underlying debugging session. URDB models
the four common debugging primitives that form the basis
for most debuggers: step, next, continue, break. For ex-
ample, given a debugging history of the form [step, next,
step], URDB’s reverse-step produces a new history, [step,
next]. Further, subtle algorithms are described for reverse-
xxx. For example, reverse-step operates correctly when
the last instruction of the history is next or continue.

URDB calls DMTCP to create a checkpoint during a de-
bugging session, and then replays the history from there. An
essential novelty of this work is the extension of DMTCP to
be the first checkpointing package capable of checkpointing
a GDB sesssion to disk (through checkpointing the Linux
ptrace system call). This was a significant barrier to earlier
attempts toward checkpoint/re-execute for GDB. Support
for the GDB debugger is important to any reversible debug-
ger claiming universality. Experimental results are described
for GDB, MATLAB, Python (pdb), and Perl.

1. INTRODUCTION
URDB, a universal reversible debugger based on check-

point, restart and re-execute is presented. A history of de-
bugging commands since the last checkpoint is maintained.
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This yields a simple mechanism for reversibility: re-execution
of that history. Hence, if reverse-step operates on a history
[next, step], it produces a new history, [next]. Replaying
the new history places the user at proper point in time. In
this simple example, reverse-step is equivalent to an undo-

command. However, when a reverse primitive, reverse-xxx,
follows a primitive other than xxx, then a more sophisticated
decomposition algorithm is required (see Section 4).

URDB currently adds reversibilty for four debuggers: GDB
for C/C++/Java/Fortran, Python (pdb), MATLAB, and
Perl (perl -d). The methodology employs external check-
pointing of unmodified binaries. In particular, MATLAB is
closed source, and so any other methodology would face ma-
jor barriers. Reversibility can be added to a new debugger
in less than a day.

This work also describes an advance in the state of the
art for checkpointing: the checkpointing package DMTCP
(Distributed MultiThreaded CheckPointing) [1] has been en-
hanced as DMTCP/ptrace, to support transparent check-
pointing of GDB sessions under Linux. To the best of our
knowledge, DMTCP/ptrace is the first checkpointing pack-
age able to checkpoint a GDB debugging session.

Hence, the novelty of URDB lies in:

1. universality, placing the user within the framework
of a familiar debugger (GDB/Python/MATLAB/Perl)
(Reversibility can be added in less than a day.);

2. the decomposition algorithms for manipulating a his-
tory of debugging primitives; and

3. transparent checkpointing of GDB sessions in DMTCP.

While an earlier technical report [16] covers these three points,
this work describes an improved algorithm for the decom-
position, and also provides some implementation details for
checkpointing of GDB through ptrace support.

Past reversible debuggers have been based either on log-
ging of instructions (at the assembly or source level), or else
on post-mortem debuggers that create a“temporal database”
of the state of the running process throughout its history.
For example, in our tests on GDB’s “target record”, GDB
stored 104 bytes of information per C statement executed.
Note that:

• the two primary approaches above require compara-
tively orders of magnitude greater amounts of storage,
with implications for the length of a debugging session.

Previous implementations of the checkpoint/re-execute ap-
proach also exist [2, 3, 12, 8], but did not capture either



URDB’s transparency (no modification to target binary) or
URDB’s universality.

Outline of Paper.
Section 2 describes the architecture of URDB, as well as

its support for universality. Section 3 describes the im-
plementation of DMTCP/ptrace for checkpointing of GDB
sessions. Section 4 describes the reversibility algorithms,
using checkpointing and decomposition of debugging histo-
ries. Section 5 presents the experimental results. Section 6
presents a brief history of reversible debugging. Finally, Sec-
tion 7 presents the conclusion.

2. URDB
URDB sits between the end user and the target debug-

ger (see Figure 1). For the most part, URDB passes user
commands to the target debugger and returns the debugger
output (including interrupts (ctrl-C) by the user). When a
checkpoint or restart is requested, URDB passes the com-
mand to the checkpointing package.
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Figure 1: The Architecture.

For the sake of exposition, we describe the reverse com-
mands in the special case that only one checkpoint is taken
during the life of the process. (Section 4.5 presents the al-
gorithms in the presence of multiple checkpoints.) A reverse
command will decompose the history of debugging com-
mands, generate a modified history corresponding to the
result of the reverse command, and then restart from the
checkpoint, and re-execute the modified history.

For efficiency, the re-execution coalesces debugger com-
mands such as next and step. For example, a debugger
command [next, next, next] is replaced by [next 3]. The
existence of interim debugger breakpoints in the middle of
a coalesced debugger command adds a subtle point. Such
interim breakpoints are temporarily disabled as part of a
coalescing of next or step.

In terms of size, URDB has approximately 3,000 lines of
Python code. Further, each debugger-specific personality
file is roughly 150 lines of Python code: 100 lines for MAT-
LAB; 90 lines for Python/pdb; 130 lines for Perl (perl -d);
and 220 lines for GDB. The DMTCP support for ptrace

(GDB) adds approximately 2,000 lines of C/C++.

3. DMTCP/PTRACE
The original DMTCP package was extended as part of

this work to checkpoint ptrace and GDB. We refer to this
extension as DMTCP/ptrace. The ptrace Linux system call

allows a superior process (e.g. GDB) to trace an inferior
process (target application) at the binary level.

The inferior process must stop tracing the superior pro-
cess at the time of a checkpoint. To understand why, note
that the inferior process is normally being traced by a user’s
thread in the superior process. But during a checkpoint, the
DMTCP checkpoint thread has control, and not the user’s
thread. DMTCP then arranges for the user’s thread to re-
sume tracing the inferior process at the time of resuming
(after checkpoint) or restarting (from a checkpoint fie).

Some noteworthy issues in developing DMTCP/ptrace are
presented next.

1. eflags register. ptrace is based on the eflags hardware
register of the x86 architecture. Once the superior pro-
cess starts tracing the inferior process, the eflags trace
bit is set for the inferior process. At restart time, the
eflags trace bit was no longer set, causing the inferior
process to run away.

2. Inside DMTCP code at restart time. Upon restart
by DMTCP, both the superior and inferior processes
begin life inside DMTCP’s own signal handler. (At
checkpoint time, DMTCP had quiesced the user pro-
cess by forcing it into a DMTCP signal handler.) The
superior process needs to single-step the inferior pro-
cess out of the signal handler into user code. Single-
stepping is required to detect the exit from the signal
handler.

3. Tid virtualization. GDB sends a ptrace command to a
specific inferior, identified through a unique thread id.
Upon restart, each thread is given a new thread id by
the operating system. So, a thin virtualization of the
relevant system calls was needed in order to translate
between the original thread id and current thread id.

4. REVERSIBLE ALGORITHMS
We take the “universal” debugging primitives to be step

(step into a function call), next (do not step into any func-
tion calls) and continue (until next breakpoint). Concep-
tually, it is useful to consider a fourth debugging primitive,
next/bkpt (next interrupted by breakpoint). (Note that
step and continue do not have special analogs. step can
never be interrupted by hitting a breakpoint, and continue

is always interrupted by hitting a breakpoint.)
The corresponding reversible commands are reverse-next

(go to previous statement of function, or to caller if at be-
ginning of function), reverse-step (same as reverse-next,
except that if the previous statement was a function call,
then step backwards into the last statement of the function),
and reverse-continue (go to last breakpoint encountered).
In implementation, this causes the trimmed history to be re-
executed from the last checkpoint. Figure 2 illustrates these
commands. If the debugger implements the finish prim-
itive (until end of function), then reverse-finish is sup-
ported (return to the statement of the function that called
the current function). An additional reversible command,
undo-command takes the current history and removes the last
debugging command.

Three utility functions in the algorithms of this section are
defined here: deeper() returns true if the current stack depth
is deeper than the original stack depth just before beginning
the reverse-xxx command, and false otherwise; shallower()
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Figure 2: The reverse analogs of standard debugging
commands.

returns true if the current stack depth is shallower than the
original stack depth; same() returns true if the current stack
depth is equal to the original stack depth.

In the pseudo-code, there is always an implied history of
debugger commands since the last checkpoint. The algo-
rithms take that history as input, and produce a new his-
tory as output. For example, reverse-step([next, step]) →
[next]. The pseudo-code will often refer to the last command
to mean the last debugging command in the current history.
A statement such as “execute next” implies that the next

command is also appended to the history.
The reversible debugging algorithms work across multiple

checkpoints. Each checkpoint has an associated history of
debugging commands, denoted history. One can not reverse
past the first checkpoint, since there is no earlier history.
But if needed, a checkpoint can be taken right at the begin-
ning of the program, allowing one to reverse throughout the
entire lifetime of the process.

4.1 Reverse-next
The reverse-next command is described in Algorithm 1.

It replaces the history since the last checkpoint by a new,
modified history. This brings the program to the same ex-
ecution point as if the reverse-next command of Figure 2
were literally executed backwards in time. Conceptually,
there are two classes of commands to be analyzed: con-

tinue and next/bkpt; and step and next. For motivation,
note that a next/bkpt command has the same result as a
continue command. Both commands terminate at a break-
point. Lines 12 – 16 describe the processing for a continue

command.
A final continue command will expand into a step fol-

lowed by repeated next commands until the breakpoint is
reached, and further iterations may return to these same
lines in order to again replace a final next/bkpt by a step

and repeated next commands.
The remaining pseudo-code is meant to handle the simpler

cases of step and next, and two special cases for next/bkpt.
The handling of next/bkpt at line 7 is essentially the same
case as at line 21. In this situation of exiting a function, it
is irrelevant that the command ends at a breakpoint. The
reverse-finish at lines 9 and 23 has the purpose of main-
taining the original stack depth.

4.2 Reverse-step
Reverse-step is conceptually simpler than reverse-next.

As before, if the last command was continue, it is expanded
into step and repeated next commands. Lines 11 – 15 en-
sure that if the last command is next, then it will be de-
composed into a step (possibly causing the stack to grow
deeper), followed by repeated next commands until the orig-

1: while true do
2: if last command is continue or next/bkpt then
3: set cmd ← last command
4: execute undo-command

5: if cmd is next/bkpt and same() then
6: break
7: else if cmd is next/bkpt and deeper() then
8: {next/bkpt had exited a function}
9: execute reverse-finish

10: break
11: else
12: {else shallower() or cmd is continue}
13: execute step

14: while we are not at breakpoint do
15: execute next

16: {go to to next iter of while loop}
17: else if last command is step or next then
18: execute undo-command

19: if same() or shallower() then
20: break
21: else if deeper() then
22: {next had exited a function}
23: execute reverse-finish

24: break

Algorithm 1: Reverse-next

inal stack depth (same()) is satisfied. If the new last com-
mand is again next, then the loop will be repeated until a
final step command is generated. The final step command
can then be stripped at lines 7 – 9 in order to honor the
semantics of reverse-step.

A similar analysis applies to lines 2 – 6. However, in this
case, the repeated next commands terminate at a breakpoint
instead of when one reaches the original stack depth.

1: while true do
2: if last command is continue or next/bkpt then
3: execute undo-command

4: execute step

5: while we are not at breakpoint do
6: execute next

7: else if last command is step then
8: execute undo-command

9: break
10: else
11: {last command is next}
12: execute undo-command

13: execute step

14: while deeper() do
15: execute next

Algorithm 2: Reverse-step

4.3 Reverse-continue
For each of the four primitive debugging commands in the

history, we add a Boolean attribute at_bkpt for the sake of
the reverse-continue command. The attribute indicates
whether the program was at a breakpoint at the end of that
command. In particular, note that the attribute will always
be true for continue and for next/bkpt. The attribute will
always be false for next. The attribute may have either



value for step. This yields the relatively short pseudo-code
of Algorithm 3.

1: repeat
2: execute undo-command

3: until we are at a breakpoint
4: {NOTE: An optimization can scan the history and

replay it until the last bkpt before the current stmt}
Algorithm 3: Reverse-continue

4.4 Reverse-finish
The reverse-finish algorithm follows a logic similar in

spirit to that of reverse-next and reverse-step. It can be
implemented by executing a sequence of reverse-next’s and
checking the stack depth after each reverse-next. While
this makes reverse-finish and reverse-next mutually re-
cursive, the algorithms can easily be shown to terminate.

4.5 Multiple checkpoints
There is an obvious extension of the preceding algorithms

to handle multiple checkpoints. Multiple checkpoints are
useful as an optimization to reduce the cost of replaying his-
tories. Each checkpoint has associated with it a history that
continues until the next checkpoint. If an algorithm exe-
cutes an undo-command when the history is currently empty,
then one reverts to the earlier checkpoint and its associated
history. In the future, taking extra checkpoints will be au-
tomated.

5. EXPERIMENTAL RESULTS
Two types of experiments are presented: the performance

of URDB as applied to each of four common debuggers;
and timing comparisons with the gdb-7.2 reversible debug-
ger. All experiments were performed on a quad-core AMD
Opteron 8346 HE CPU with 2 MB of L2 and L3 cache.

Experiments on URDB across Debuggers.
The times to execute command reverse-xxx were mea-

sured on a program that inserts twenty numbers into a linked
list. Each insertion is done by making a function call. This
program was ported to C, MATLAB, Python and Perl.

The timings are presented in Table 1. For both reverse-

next and reverse-step, two breakpoints were added: one
at the main function and another one after the insertion of
all twenty elements into the list. A checkpoint is taken at the
main function. reverse-next and reverse-step are issued
at the second breakpoint.

For reverse-continue, one breakpoint was added at main,
one inside the function that inserts an element into the
linked list and another one after the insertion of all twenty el-
ements. The reverse-continue was issued at the last break-
point. To test reverse-finish we make use of the first two
breakpoints mentioned above. Once the second breakpoint
was hit, a reverse-finish command was issued.

The timings for checkpoint-restart across the four debug-
gers are presented in Table 2. The primary conclusion is
that a checkpoint/re-execute strategy for reversibility using
DMTCP is fast enough for interactive use in a reversible
debugger.

Command gdb-7.2 MATLAB Perl Python
reverse-next 20.44s 21.61s 16.75s 12.93s
reverse-step 22.14s 18.40s 16.42s 12.80s
reverse-continue 7.78s 7.43s 5.77s 5.62s
reverse-finish 3.67s 1.86s 0.88s 0.78s

Table 1: URDB: Times for reverse-next, reverse-
step, reverse-continue, and reverse-finish in seconds.

Command gdb-7.2 MATLAB Perl Python
checkpoint 1.86s 2.02s 0.17s 0.18s
restart 1.20s 1.65s 0.20s 0.17s

Table 2: URDB: Times for checkpoint/restart in
seconds.

Timing comparison with reversibility in gdb-7.2.
It was decided to compare the timings of URDB with gdb-

7.2, since that reversible debugger is readily available as a
timing benchmark. The gdb-7.2 debugger [4] achieves re-
versibility by logging each assembly level instruction.

For testing, a C program was written to create a linked
list with 1,000,000 elements. The program allocated its own
memory and avoided the use of C malloc, to model a purely
CPU-intensive program. The times measured in running
the program in the forward direction were 0.063 s (native
C program), 0.144 s (C under gdb-7.2 under URDB), and
1,440.27 s (C under gdb-7.2 using target record mode for
reversibility). Hence, URDB was 5,200 times faster than
the target record mode of gdb-7.2. In both cases, a re-
verse instruction runs with reasonable interactive time. For
gdb-7.2, the reverse time depends on the number of reverse
steps executed, while for URDB, the reverse time depends
on the number of forward instructions from the last check-
point. In URDB, intermediate checkpoints can be taken for
higher reverse performance. Gdb-7.2 also incurs a memory
consumption per instruction in target record mode. For our
C program, this was measured at 104 bytes per C statement.

6. RELATED WORK
A brief discussion of the current four different approaches

to building a reversible debugger is presented next. URDB
is an example of checkpoint/re-execute. Unlike other exam-
ples, URDB checkpoints to disk, thus allowing it to manage
the many checkpoints needed by a long-running program.

Record/Reverse-execute.
The record phase logs the state of each instruction as it

is executed. In addition to logging instructions, one can log
external I/O, signals, and other events, for better replay. On
replay, the information from the log is used. As an exam-
ple, on record, an assembly store instruction will cause the
previous value in memory to be saved in the log entry. On
reverse-execute, the old value in memory is restored.

While the benefits are clear, there are also significant dis-
advantages. The need for logging instructions means that
the debugger executes at less than near native speed. Fur-
ther, the size of the log files can be significant.

Among the reversible debuggers implementing the record/
reverse-execute approach are: the AIDS debugger [5] for
FORTRAN, Zelkowitz [17] for PL/I, the work of Appel and
Tolmach [13, 14] for Standard ML and more recently, gdb-



7.2 [4]. Another example is TotalView [15], a proprietary
debugger that provides reversibility by saving the state in-
formation as the program executes. The saved state infor-
mation is the program’s execution history, which is limited
to several megabytes. Also, TotalView’s re-execute phase
creates up to thirty extra processes.

Record/Replay.
This approach employs virtual machine snapshots and

event logging. It was demonstrated in the work of King
et al. [6] and Lewis et al. [9]. Snapshots record the state
of the machines at given intervals. A reproducible clock is
achieved through values of certain CPU registers, such as
the number of loads and stores since startup. This allows
asynchronous events to be replayed according to the time of
the original clock when they occurred.

Snapshots have the advantage that forward execution can
be extremely fast, running much closer to full native speed,
especially if there are few events to log. This approach does
not need to log each instruction, but only external events.
The main disadvantages of this approach are: the cost of vir-
tual machine snapshots is high (about 30 seconds per snap-
shot and GigaBytes footprints) and it does not extend to
SMP multi-core hardware.

Checkpoint/Re-execute.
This approach typically uses live checkpoints as the check-

pointing strategy. During live checkpointing, checkpoints
are created by forking off a child process of the debugged ap-
plication, such as IGOR [3] (modified compiler and kernel,
and special interpreter during re-execution), Flashback [12]
(via an OS extension), ocamldebugger [8, Part III, Chap-
ter 16] and the work by Boothe [2] (modified compiler).
Boothe [2] uses event counters that are added during com-
pilation at each statement, as well as the entry and exit
point of each function. This leads to high overhead. An-
other limitation is the number of live checkpoints that can
be maintained at any given time.

Post-mortem debugging.
In this approach, a database on disk is created that logs

all events of interest. Debugging is then done after the pro-
cess of interest has terminated. Only the database of events
is required. This approach was demonstrated by Omniscient
Debugger [10, 11] and Tralfamadore [7]. The Omniscient De-
bugger is limited by the speed of disk, with 89 megabytes per
second being generated. Tralfamadore represents a some-
what different approach to post-mortem debugging, by uni-
fying an execution trace with the source code itself. One
begins by examining the code at a high level, looking, for
example, for frequent paths through the code.

7. CONCLUSION
URDB is a universal reversible debugger. Reversibility for

a new debugger can be added in less than a day. URDB uses
multiple checkpoints, with re-execute via a history of debug-
ging commands. Two enabling techniques were developed
for this purpose: decomposition of debugging commands,
and checkpointing of GDB sessions. A representation of
standard debugging commands is the key to universality.
URDB has been demonstrated on four widely different de-
buggers: GDB, Python (pdb), MATLAB and Perl (perl -d).

In the example of GDB, URDB was demonstrated to run
5,200 times faster than the GDB reversibility mode (using
“record target”).

Previous reversible debuggers have emphasized either log-
ging of instructions or databases for post-mortem analysis.
Boothe [2] represents a limited version of the DMTCP ap-
proach (a modified compiler inserting an event counter for
each statement; a custom debugger; and the use of live
checkpoints through fork() (one process per checkpoint)).
URDB presents a fully transparent approach that adapts to
each existing debugger.
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