
Diòerentiable Visual Computing
by

Tzu-Mao Li
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulûllment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 10, 2019

Certiûed by .
Frédo Durand

Professor of Electrical Engineering and Computer Science
_esis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Diòerentiable Visual Computing
by

Tzu-Mao Li

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2019, in partial fulûllment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Derivatives of computer graphics, image processing, and deep learning algorithms have
tremendous use in guiding parameter space searches, or solving inverse problems. As the
algorithms become more sophisticated, we no longer only need to diòerentiate simple mathe-
matical functions, but have to deal with general programs which encode complex transfor-
mations of data. _is dissertation introduces three tools, for addressing the challenges that
arise when obtaining and applying the derivatives for complex graphics algorithms.

Traditionally, practitioners have been constrained to composing programs with a limited
set of coarse-grained operators, or hand-deriving derivatives. We extend the image processing
language Halide with reverse-mode automatic diòerentiation, and the ability to automatically
optimize the gradient computations. _is enables automatic generation of the gradients of
arbitrary Halide programs, at high performance, with little programmer eòort. We demon-
strate several applications, including how our system enables quality improvements of even
traditional, feed-forward image processing algorithms, blurring the distinction between
classical and deep learning methods.

In 3D rendering, the gradient is required with respect to variables such as camera pa-
rameters, light sources, geometry, and appearance. However, computing the gradient is
challenging because the rendering integral includes visibility terms that are not diòeren-
tiable. We introduce, to our knowledge, the ûrst general-purpose diòerentiable ray tracer
that solves the full rendering equation, while correctly taking the geometric discontinuities
into account. We show prototype applications in inverse rendering and the generation of
adversarial examples for neural networks.

Finally, we demonstrate that the derivatives of light path throughput, especially the
second-order ones, can also be useful for guiding sampling in forward rendering. Simulating
light transport in the presence of multi-bounce glossy eòects and motion in 3D rendering
is challenging due to the high-dimensional integrand and narrow high-contribution areas.
We extend the Metropolis Light Transport algorithm by adapting to the local shape of the
integrand, thereby increasing sampling eõciency. In particular, the Hessian is able to capture
the strong anisotropy of the integrand. We use ideas from Hamiltonian Monte Carlo and
simulate physics in Taylor expansion to draw samples from high-contribution region.

_esis Supervisor: Frédo Durand
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to acknowledge by brie�y re�ecting how I ended up writing this dissertation.
I was fascinated by computer science since I knew the existence of computers. I love the

idea of automating tedious computation and the intellectual challenges involved in the process
of automation. Naturally, I enrolled in a computer science program during my undergraduate
education. At there I was introduced to the enchanting world of computer graphics, where
people are able to generate beautiful images with equations and code, instead of pen and
paper. Duringmy undergraduate andmaster’s studies at National TaiwanUniversity, I worked
with Yung-Yu Chuang, the professor who brought me into computer graphics research. I
started to read academic papers, and was mesmerized by people who contribute their own
ideas to improve image generation. In the end I was also able to contribute my own little
idea, by publishing a paper related to denoising Monte Carlo rendering images during my
Master’s study.

I hoped to domore, and decided to pursue a Ph.D. next. Among all the academic literature
I studied, a few names caught my eyes. My Ph.D. advisor Frédo Durand is one of them. His
work on frequency analysis for light transport simulation provides a rigorous and insightful
theoretical foundation for sampling and reconstruction in light transport. I am also amazed
by his versatility in research. At the point this dissertation was written, he has already worked
on physically-based rendering, non-photorealistic rendering, computational photography,
computer vision, geometric and material modeling, human-computer interaction, medical
imaging, and programming systems. A�er I ûrst met him, I also found out that he has a great
sense of humor and is in general a very likable and good-tempered person.

I joined the MIT graphics group as a rendering person. Frédo and I decided that research
on Metropolis light transport [216] aligns our interests the most. Metropolis light transport
is a classical rendering algorithm that was recently revitalized thanks to Wenzel Jakob’s
reimplementation of this notoriously diõcult-to-implement algorithm. We found the classical
literature of LangevinMonte Carlo [181] and HamiltonianMonte Carlo [48], and thought that
the derivatives information these algorithms use can also help Metropolis light transport. I
also learned about the ûeld of automatic diòerentiation, which later became themost essential
tool of this thesis. Frédo, Luke Anderson, and Shuang Zhao had a lot of discussions with me
on this topic, which helped to shape my thoughts. Frédo also brought Ravi Ramamoorthi,
Jaakko Lehtinen, and Wenzel Jakob into this project. Ravi helped the most on this particular
project. When we were collaborating, every week he would monitor my progress, and try
to understand the current obstacles and provide advice. While the discussions with Frédo
and others are usually higher-level, Ravi tried to understand every single detail of what I

5

do. Explaining my thought process to them clariûed my thinking. Ravi and Frédo also have
strong in�uences on my paper writing style. Frédo taught me to focus on the high-level
pictures and Ravi taught me to explain everything in a clear manner.

Like many other computer science research projects, this project ended up to be a huge
undertaking of so�ware engineering. Our algorithm requires the Hessian and gradient of the
light transport contribution. Implementing this eõciently requires complex metaprogram-
ming and is very diõcult with existing tools. _is also motivates my later work on extending
the Halide programming language [171] for generating gradients. Nevertheless, I was still
able to implement the ûrst diòerentiable bidirectional path tracer that is able to generate
gradient and Hessian of path contribution. We published a paper in 2015.

_e results from our ûrst project on improving Metropolis light transport were quite
encouraging. _is motivated us to look deeper into this subûeld. Our derivative-based
algorithm helped local exploration, but the bigger issue of these Markov chain Monte Carlo
methods lies in the global exploration. As light transport contribution is inherently multi-
modal due to discontinuities, the Markov chains in Metropolis light transport algorithms
usually have bad mixing. _is typically manifests as blotchy artifacts on the images. We were
hoping to have a better understanding of the global structure of light transport path space, in
order to resolve the exploration issue. Unfortunately, this turns out to be more diõcult than
we imagined, due to the curse of dimensionality. As the dimensionality of the path space
increases, the diõculty to capture the structure increases exponentially. We were able to get
decent results by ûtting Gaussians on low-dimensional cases (say, 4D), but I got stuck as soon
as I proceeded to higher-dimensional space.1

I stuck on the global Metropolis light transport project for nearly two years. In the mean-
time, I also explored a few other directions. For example, I tried to generalize gradient domain
rendering [127] to the wavelet domain. None of these attempts were very successful. As most
researchers already knew, when working on a research project, it is very diõcult to know
whether the researcher is missing something, or the project simply will go nowhere in the
ûrst place. Still, I gained a lot of useful knowledge in these years. During this period, I helped
Luke Anderson on his programming system for rendering, Aether [7]. _e system stores
the Monte Carlo sampling process symbolically, and automatically produces the probability
density function of this process. Like my ûrst Metropolis rendering project, this process
also heavily involves metaprogramming and huge engineering eòorts. _is increased my
interests in systems research – many computer graphics researches are so engineering heavy,

1Recently, Reibold et al. [175] published a similar idea. A key feature that makes their idea works, in my
opinion, is that they focus on ûtting block-tridiagonal covariance matrices for their Gaussian mixtures, instead
of the full covariance as we tried. _is makes their problem signiûcantly more tractable.

6

that we need better tools to help researchers and engineers for fast prototyping. I also did an
internship at Weta digital to work with the Manuka rendering team, including Marc Droske,
Jirí Vorba, Jorge Schwarzhaupt, Luca Fascione. I also met Lingqi Yan, who was also an intern
there working on appearance modeling. We o�en chatted about research and video games
together. _e internship at Weta taught me a lot about production rendering, visual eòects
practices, and the beauty of New Zealand.

A�er I stagnated on the projects for a while, to avoid sunk cost fallacy, Frédo and I decided
to temporarily move on. Inspired by the recent success of deep learning, and my frustration
on the lack of tools for general and eõcient automatic diòerentiation, we chose to work
on automatic diòerentiating Halide code. We picked Halide because it was developed by
our group, so we are suõciently familiar with it. Halide also strikes the balance between
having a more general computation model than most deep learning frameworks, and focused
enough for us to optimize the gradient code generation. We contacted Jonathan Ragan-
Kelley and Andrew Adams, the parents of Halide, who also had the idea of adding automatic
diòerentiation to Halide for a long time. We also brought in my labmate Michaël Gharbi,
who is one of the most knowledgable and likable people in the world, to work on this. I
learned a lot about deep learning and data-driven computing from Michaël and a lot about
parallel programming systems from Jonathan and Andrew. It was super fun working with
these people. I was also happy that my knowledge of automatic diòerentiation became useful
in ûelds outside of rendering.

At the summer of 2017, I did an internship at Nvidia research at Seattle. Since we published
the 2015 paper on improving Metropolis light transport using derivative information, we
were always thinking about using it also for inverse rendering. Previous work focused on
either simpliûed model [137] or volumetric scattering [62], and we think there are interesting
cases on inverse surface light transport where derivatives can be useful. My collaborator and
friend Jaakko saw my internship as an opportunity for pushing me to work in this direction.
He also pointed out that the main technical challenge in the surface light transport case
would be the non-diòerentiability. Under the help of Jaakko, Marco Salvi, and Aaron Lefohn,
we experimented several diòerent approximation algorithms there. _ey work well in many
cases, but there were always some edge cases that would break the algorithms. _e time at
Nvidia was a fresh break from graduate school. I met Lingqi again there, and Christoph
Peters, another intern who has an unusual passion for the theory of moment reconstruction
problems, and always have only apples for his lunch. I also met two other interns Qi Sun, Tri
Nguyen and maintained friendships with them since then.

A�er I wrapped upmy internship at Nvidia and returned toMIT, I and Jaakko talked with
Frédo and Miika Aittala about the inverse rendering project. Frédo pointed out the relation

7

8

between the mesh discontinuities and silhouette rasterization [190]. A�er more discussions,
we realized that this is highly related to Ravi’s ûrst-order analysis work back in 2007 [173]. I
worked out the math and generalized Ravi’s theory to arbitrary parameters, primary visibility,
and global illumination. Based on my experience on the diòerentiable bidirectional path
tracer from 2015, I was able to quickly come up with a prototype renderer and to write a
paper about this.

_is is how this dissertation was written.
Since I mostly focused on the research part of the story, many people were le� out. I

am grateful to the labmates in MIT graphics group. Lukas Murmann and Alexandre Kaspar
were the students who joined the group at the same time as me. Naturally, we hung out a
lot together (by my standard). YiChang Shih, Abe Davis, and Valentina Shin are the senior
students who guided us when we were lost. Zoya Bylinski made sure we always have enough
snacks and coòee in the oõce. I enjoyed all the trash-talks with Tiam Jaroensri. Prafull
Sharma’s jokes are sometimes funny, sometimes not toomuch. Camille Biscarrat and Caroline
Chan brought energy and fresh air to our oõces. I had a lot of nerdy programming languages
chat with Yuanming Hu. It was also fun to chat about research with Gaurav Chaurasia,
Aleksandar Zlateski, and David Levin. Luke Anderson proofread every single paper I have
written, including this dissertation. Nathaniel Jones broadened my view on rendering’s
application in architectural visualization.

_e reviewer #1 of the inverse rendering paper, who I suspect to be Ravi, provided an
extremely detailed and helpful review. My thesis committee Justin Solomon and Wojciech
Matusik also provided useful comments. Justin pointed out the relation between the Reynold
transport theorem and our edge sampling method in the inverse rendering project. I should
also thank NSF and Toyota Research Institute for the funding support, so I don’t freeze to
death in Boston.

Anton Kaplanyan invited me to intern at Facebook Reality Lab during 2018. I met
_omas Leimkühler, Steve Bako, Christoph Schied, and Michael Doggett there. FRL was a
very competitive and vigorous environment. I loved the free food. _ey had smoked salmon
for the breakfast! I worked with Dejan Azinović, Matthias, Nießner and Anton there on a
material and lighting reconstruction project.

I met my girlfriend Ailin Deng at the end of 2017. She has since then become the oasis
that shelters me when I am tired of programming and research. I thank I-Chao Shen and
Sheng-Chieh Chin for being patient for listening to my rants and non-sensical research ideas.
I am grateful that my parents remain supportive throughout my studies on computer science.

Contents

1 Introduction 13
1.1 Background and Target Audience . 17
1.2 Publications . 17

2 Automatic Diòerentiation 19
2.1 Finite Diòerences and Symbolic Derivatives 20
2.2 Algorithms for Generating Derivatives . 21

2.2.1 Forward-mode . 23
2.2.2 Reverse-mode . 25
2.2.3 Beyond Forward and Reverse Modes 27

2.3 Automatic Diòerentiation as Program Transformation 27
2.3.1 Control Flow and Recursion . 29

2.4 Historical Remarks . 31
2.5 Further Readings . 32

3 Derivative-based Optimization and Markov Chain Monte Carlo Sampling 35
3.1 Optimization . 35

3.1.1 Gradient Descent . 36
3.1.2 Stochastic Gradient Descent . 37
3.1.3 Newton’s Method . 38
3.1.4 Adaptive Gradient Methods . 39

3.2 Markov Chain Monte Carlo Sampling . 41
3.2.1 Metropolis-Hastings Algorithm . 42
3.2.2 Langevin Monte Carlo . 44
3.2.3 Hamiltonian Monte Carlo . 45
3.2.4 Stochastic Langevin or Hamiltonian Monte Carlo 46

3.3 Relation between Optimization and Sampling 46

9

Contents 10

4 Diòerentiable Image Processing and Deep Learning in Halide 49
4.1 Related Work . 53

4.1.1 Automatic Diòerentiation and Deep Learning Frameworks 53
4.1.2 Image Processing Languages . 53
4.1.3 Learning and Optimizing with Images 54

4.2 _e Halide Programming Language . 54
4.3 Method . 56

4.3.1 High-level Strategy . 56
4.3.2 Diòerentiating Halide Function Calls 57
4.3.3 Checkpointing . 61
4.3.4 Automatic Scheduling . 63

4.4 Applications and Results . 64
4.4.1 Custom Neural Network Layers . 64
4.4.2 Parameter Optimization for Image Processing Pipelines 67
4.4.3 Inverse Imaging Problems: Optimizing for the Image 71
4.4.4 Non-image-processing Applications 72
4.4.5 Future Work . 73

4.5 Conclusion . 74

5 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 75
5.1 Related Work . 76

5.1.1 Inverse Graphics . 76
5.1.2 Derivatives in Rendering . 77

5.2 Method . 78
5.2.1 Primary Visibility . 79
5.2.2 Secondary visibility . 84
5.2.3 Cameras with Non-linear Projections 86
5.2.4 Relation to Reynolds transport theorem and shape optimization . . . 87

5.3 Importance Sampling the Edges . 87
5.3.1 Edge selection . 89
5.3.2 Importance sampling on an edge . 90
5.3.3 Next event estimation for edges . 90

5.4 Results . 91
5.4.1 Veriûcation of the method . 92
5.4.2 Comparison with previous diòerentiable renderers 94
5.4.3 Diòerentiable geometry buòer/AOV extension 95

11 Contents

5.4.4 Inverse rendering application . 95
5.4.5 3D adversarial example . 96
5.4.6 Limitations . 96

5.5 Conclusion . 98
5.A Derivation of the 3D edge Jacobian . 98

6 Hessian-Hamiltonian Monte Carlo Rendering 101
6.1 Related Work . 104
6.2 Hamiltonian Monte Carlo . 107
6.3 Hessian-Hamiltonian Monte Carlo . 111
6.4 Implementation . 118
6.5 Results and Discussion . 120

6.5.1 Limitations and Future Work . 122
6.6 Conclusion . 123
6.A Pseudo-code for H2MC . 123

7 Conclusion and Future Vision 129

Contents 12

1 | Introduction

Diòerential calculus seeks to characterize the local geometry of a function. By deûnition,
the derivatives at a point of a function tell us what happens to the outputs if we slightly
move the point. _is property enables us to make smarter decisions, and makes derivatives a
fundamental tool for various tasks including parameter tuning, solving inverse problems,
and sampling.

As computer graphics and image processing algorithms become more sophisticated,
computing derivatives for functions deûned in these algorithms becomes more important.
Derivatives are useful in both data-driven and non data-driven scenarios. For one thing, as
the number of parameters of the algorithm increases, it becomes infeasible to manually adjust
them to achieve the desired behavior. Data-driven approaches allow us to automatically
tune the parameters of our model. For another thing, these sophisticated forwardmodels
can be used for solving inverse problems. For example, the computer graphics community
has developed mature models of how photons interact with scenes and cameras, and it is
desirable to incorporate this knowledge, instead of learning it from scratch using a data-
driven approach. Finally, diòerentiable algorithms are composable, which means we can piece
diòerent diòerentiable algorithms together, and have an end-to-end diòerentiable system
as a whole. _is enables us to compose novel algorithms by adding other diòerentiable
components to the pipeline, such as deep learning architectures. Figure 1-1 illustrates the use
of derivatives.

While deep learning has popularized the use of gradient-based optimization over highly-
parameterized functions, the current building blocks used in deep learning methods are
very limited. A typical deep learning architecture is usually composed of convolution ûlters,
linear combinations of elements (“fully connected” layer), subsampling by an integer factor
(“pooling”, usually by a factor of 2), and element-wise nonlinearities. Most visual computing
algorithms are far more sophisticated than these. _ey o�en combine neighboring pixels
using non-linear kernels (e.g. [209, 28]), downsample a signal preûltered by some antialiasing
ûlters (e.g. [150]), use heavy-tailed non-linear functions to model the re�ectance of surfaces
(e.g. [43]), or traverse trees for ûnding intersections between objects (e.g. [40]).

13

Introduction 14

input
(images, 3D properties, etc)

output

parameters

model 1 model 2
∂

∂input

∂
∂param

Figure 1-1: Diòerentiable visual computing. Derivatives enable us to make smart decisions in our
models. _e derivatives of a model’s output can be taken with respect to the parameters or the inputs
of the model. _is makes it possible to ûnd corresponding inputs for a given output, solving an
inverse problem, or we can ûnd model parameters that map inputs to outputs. _is is useful in both
data-driven and non-data-driven applications.

I argue that most numerical algorithms in computer graphics and image processing
should be implemented in a diòerentiable manner. _is is beneûcial for both data-driven and
non-data-driven applications. Comparing to deep learning approaches, this allows better
control and interpretability by integrating the domain knowledge into the model. It makes
debugging models a lot easier since we have a better idea of how data should interact with
the model. It is o�en more eõcient both in time and memory, and more accurate, since the
model is more tailored to the applications.

Eõciently evaluating derivatives from algorithms that perform complex transformations
on 3D data or 2D images presents challenges in both systems and algorithms. Firstly, existing
deep learning frameworks (e.g. [1, 165]) only have limited expressiveness. While automatic
diòerentiation methods (e.g. [71]) can generate derivatives from almost arbitrary algorithms,
generating eõcient derivative code while taking parallelism and locality into consideration
is still diõcult. Secondly, the algorithms can introduce discontinuities. For example, in 3D
rendering, the visibility term is discontinuous, which prevents direct application of automatic
diòerentiation. Finally, designing algorithms that eõciently utilize the obtained derivatives
is also important.

_e contributions of this dissertation are three novel tools for addressing the challenges
and for investigating the use of derivatives in the context of visual computing.

15 Introduction

Eõcient Automatic Diòerentiation for Image Processing and Deep Learning In Chap-
ter 4, we address the systems challenges for eõciently generating derivatives code from image
processing algorithms. Existing tools for automatically generating derivatives have at least
one of the following two issues:

• General automatic diòerentiation systems (e.g. [22, 69, 77, 86, 229]) are ineõcient
because they do not take parallelism and locality into consideration.

• Deep learning frameworks (e.g. [1, 165]) are in�exible because they are composed of
coarse-grained, specialized operators, such as convolutions or element-wise operations.
For many applications, it is o�en diõcult to assemble these operators to build the
desired algorithm. Even when done successfully, the resulting code is o�en both slow
and memory-ineõcient, saving and reloading entire arrays of intermediate results
between each step, causing costly cache misses.

_ese limitations are one of the main obstacles preventing researchers and developers from
inventing novel diòerentiable algorithms, since they are o�en required to manually derive
and implement the derivatives in lower-level languages such as C++ or CUDA.

In this chapter, we focus on image processing and deep learning. We build on the image
processing language Halide [171, 172], and extend it with the ability to generate gradient code.
Halide provides a concise and natural language for expressing image processing algorithms,
while allowing the separation between high-level algorithm and low-level scheduling for
achieving high-performance across platforms. To generate eõcient gradient code, we develop
a compiler transformation for generating gradient code automatically fromHalide algorithms.
Keys to making the transformation work are a scatter-to-gather conversion algorithm which
preserves parallelism, and a simple automatic scheduling algorithm which specializes in the
patterns in gradient code and provides a GPU backend.

Using this new extension of Halide, we show ûrst that we can concisely and eõciently
implement existing custom deep learning operators, which previously required implementa-
tion in low-level CUDA. Our generated code is as fast or even faster than the corresponding
high-performance hand-written code, with less than 1⇑10 of the lines of code. Secondly, we
show that gradient-based parameter optimization is useful outside of traditional deep learn-
ing approaches. We signiûcantly improve the accuracy of two traditional image processing
algorithms by augmenting their parameters and automatically optimizing them. _irdly,
we show that the system is also useful for inverse problems. We implement a novel joint
burst demosaicking and superresolution algorithm by building a forward image formation
model. Finally, we demonstrate our extension’s versatility by implementing two applications

Introduction 16

outside of image processing – lens design optimization through a ray tracer and a classical
�uid simulator in computer graphics [201].

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling While automatic dif-
ferentiation generates derivatives, it does not handle non-diòerentiability in individual code
paths. In particular, for computer graphics, we are interested in the gradients of the 3D
rendering operation with respect to variables such as camera parameters, light sources, scene
geometry, and appearance. While the rendering integral is diòerentiable, the integrand is
discontinuous due to visibility. Previous works on diòerentiable rendering (e.g. [137, 109])
focused on fast approximate solutions, and do not handle secondary eòects such as shadows
or global illumination.

In Chapter 5, we introduce a general-purpose diòerentiable ray tracer, which, to our
knowledge, is the ûrst comprehensive solution that is able to compute the gradients of
the rendering integral with respect to scene parameters, while correctly taking geometric
discontinuities into consideration. We observe that the discontinuities in the rendering
integral become Dirac delta functions when taking the gradient. _erefore we develop a
novel method for explicit sampling of the triangle edges that introduce the discontinuities.
_is requires new spatial acceleration techniques and importance sampling for eõciently
selecting edges.

We integrate our diòerentiable ray tracer with the automatic diòerentiation library Py-
Torch [165], and demonstrate prototype applications for inverse rendering and ûnding adver-
sarial examples for neural networks.

Hessian-Hamiltonian Monte Carlo Rendering Finally, we show that derivatives, espe-
cially the second-order ones, can also be used for accelerating forward rendering by guiding
light path sampling. In Chapter 6, we present a Markov chain Monte Carlo rendering al-
gorithm that automatically and explicitly adapts to the local shape of the integrand using
the second-order Taylor expansion, thereby increasing sampling eõciency. In particular,
the Hessian is able to capture the strong anisotropy caused by challenging eòects such as
multi-bounce glossy eòects and motion.

Using derivatives in the context of sampling instead of optimization requires more care.
_e second-order Taylor expansion does not deûne a proper distribution, and therefore
cannot be directly importance sampled. We use ideas from Hamiltonian Monte Carlo [48]
that simulates Hamiltonian dynamics in a �ipped version of the Taylor expansion where
gravity pulls particles towards the high-contribution region. _e quadratic landscape leads
to a closed-form anisotropic Gaussian distribution, and results in a standard Metropolis-

17 Introduction

Hastings algorithm [78].
Unlike previous works that derive the sampling procedures manually and only consider

speciûc eòects, our resulting algorithm is general thanks to automatic diòerentiation. In
particular, our method is the ûrst Markov chain Monte Carlo rendering algorithm that is
able to resolve the anisotropy in the time dimension and render diõcult moving caustics.

1.1 Background and Target Audience
Chapter 2 and Chapter 3 review the background of automatic diòerentiation, optimization,
and sampling, and their relationship. _ese are not novel components of this dissertation,
but they represent important components that are glossed over in the individual publications.
Moreover, they connect the central themes of this dissertation: diòerentiating algorithms
and making use of the resulting derivatives.

I imagine the majority of readers of this dissertation to be researchers in the ûelds of
computer graphics, image processing, systems or machine learning, who are interested in
using the individual tools and want to know the details better, or people who are building
their own diòerentiable systems. For both groups of people, I hope the examples in this
dissertation can improve your intuition on building diòerentiable systems in the future.

1.2 Publications
_e content of this dissertation has appeared in the following publications:

• Chapter 4: Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan
Ragan-Kelley. Diòerentiable programming for image processing and deep learning in
Halide. ACM Trans. Graph. (Proc. SIGGRAPH), 37(4):139:1–139:13, 2018

• Chapter 5 Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Diòer-
entiable Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc.
SIGGRAPH Asia), 37(6):222:1–222:11, 2018

• Chapter 6 Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo
Durand. Anisotropic Gaussian mutations for Metropolis light transport through
Hessian-Hamiltonian dynamics.ACMTrans. Graph. (Proc. SIGGRAPHAsia), 34(6):209:1–
209:13, 2015

_e source code of the projects can be downloaded from the corresponding project sites:

• http://gradients.halide-lang.org/

Introduction 18

• https://people.csail.mit.edu/tzumao/diòrt/

• https://people.csail.mit.edu/tzumao/h2mc/

For Chapter 4, I added a hindsight on diòerentiating scan operations (Chapter 4.3.2) and
an example of �uid simulation (Chapter 4.4.4) since the publication.

For Chapter 5, I added more discussions about the pathelogical parallel edges condition
where our method can produce incorrect result (Chapter 5.2). _ere is also some discus-
sions regarding non-linear camera models (Chapter 5.2). I added some discussion related
to Reynolds transport theorem and shape optimization (Chapter 5.2.4). I also revised the
edge selection algorithm (Chapter 5.3.1), added some discussions about a GPU implementa-
tion (Chapter 5.4), and added discussions about diòerentiable geometry buòer rendering
(Chapter 5.4.3).

For Chapter 6, I added a description of an improved large step mutation method (Chap-
ter 6.4), and some discussions to recent works (Chapter 6.5.1).

2 | Automatic Diòerentiation

Evaluating derivatives for computer graphics and image processing algorithms is the key to
this dissertation. We will use them to minimize cost functions, solve inverse problems, and
guide sampling procedures. Intuitively speaking, the derivatives of a function characterize the
local behavior at a given point, e.g. if I move the point to this direction, will the output values
become larger or smaller? _is allows us to ûnd points that result in certain function values,
such as maximizing a utility function, or minimizing the diòerence between the output and
a target.

In this chapter, we review the methods for generating derivatives from numerical pro-
grams. _e chapter serves as an introductory article to the theory and practice of automatic
diòerentiation. _e reader is encouraged to read Griewank and Walther’s textbook [71] for a
comprehensive treatment of the topic.

Given a computer program containing control �ow, loops, and/or recursion, with some
real number inputs and some real number outputs, our goal is to compute the derivatives
between the outputs and the inputs. Sometimes there is only a scalar output but more than
one input, in which case we are interested in the gradient vector. Sometimes there aremultiple
outputs as well, and we are interested in the Jacobian matrix. Sometimes we are interested in
the higher-order derivatives such as the Hessian matrix.

While the title of this chapter is automatic diòerentiation, we will also talk about how
to diòerentiate a program manually, which is less diõcult than one might imagine. We
show how to systematically write down the derivative code just by looking at a program,
without lengthy and convoluted mathematical notation. While this is still more tedious and
error-prone than an automatic compiler transformation (which is why we develop the tool in
Chapter 4), it is a useful practice for understanding the structure of derivative code, and is
even practical sometimes if it is diõcult to parse and transform the code.

19

Automatic Diòerentiation 20

2.1 Finite Diòerences and Symbolic Derivatives
Before discussing automatic diòerentiation algorithms, it is useful to review other ways of
generating derivatives, and compare them to automatic diòerentiation.

A common approximation for derivatives are ûnite diòerences, sometimes also called
numerical derivatives. Given a function f (x) and an input x, we approximate the derivative
by perturbing x by a small amount h:

d f (x)
dx

≈ f (x + h) − f (x)
h

or (2.1)

d f (x)
dx

≈ f (x + h) − f (x − h)
2h

. (2.2)

_e problem with this approximation is two-fold. First, the optimal choice of the step size h
in a computer system is problem dependent. If the step size is too small, the rounding error of
the �oating point representation becomes too large. On the other hand, if the step size is too
large, the result becomes a poor approximation to the true derivative. Second, the method is
ineõcient for multivariate functions. For a function with 100 variables and a scalar output,
computing the full gradient vector requires at least 101 evaluations of the original function.

Another alternative is to treat the content of the function f as a sequence of mathemat-
ical operations, and symbolically diòerentiate the function. Indeed, most of the rules for
diòerentiation are mechanical, and we can apply the rules to generate f ′(x). However, in our
case, f (x) is usually an algorithm, and symbolic diòerentiation does not scale well with the
number of symbols. Consider the following code:

function f(x):
result = x
for i = 1 to 8:

result = exp(result)
return result

Figure 2-1: A code example that iteratively computes a nested exponential for demonstrating the
diòerence between symbolic diòerentiation and automatic diòerentiation.

Using the symbolic diòerentiation tools from mathematical so�ware such as Mathemat-
ica [93] would result in the following expression:

d f (x)
dx

= ex+ee
ee
ee
ex

+ee
ee
e e

x

+ee
ee
ex

+ee
ee

x

+ee
ex
+ee

x
+ex . (2.3)

_e size of derivative expression will become intractable when the size of the loop grows

21 Automatic Diòerentiation

much larger. Using forward-mode automatic diòerentiation, which will be introduced later,
we can generate the following code for computing derivatives:

function d_f(x):
result = x
d_result = 1
for i = 1 to 8:

result = exp(result)
d_result = d_result * result

return d_result

_ecode above outputs the exact same values as the symbolic derivative (Equation 2.3), but
is signiûcantly more eõcient (8 v.s. 37 exponentials). _is is due to automatic diòerentiation’s
better use of the intermediate values and the careful factorization of common subexpressions.

2.2 Algorithms for Generating Derivatives

For a better understanding of automatic diòerentiation, before introducing the fully auto-
matic solution, we will ûrst discuss how to manually diòerentiate a code example. We start
from programs with only function calls and elementary operations such as addition and
multiplication. In particular, we do not allow recursive or circular function calls. Later
in Chapter 2.3.1, we generalize the idea to handle control �ow such as loops and branches,
and handle recursion. _roughout the chapter, we assume all function calls are side-eòect
free. To the author’s knowledge, there are no known automatic diòerentiation algorithms for
transforming arbitrary functions with side eòects.

_e key to automatic diòerentiation is the chain rule. Consider the following code with
input x and output z:

y = f(x)
z = g(y)

Assume we already know the derivative functions d f (x)
dx and dg(y)

dy , and we are interested
in the derivative of the output z with respect to input x. We can compute the derivative by
applying the chain rule:

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

Automatic Diòerentiation 22

We can recursively apply the rule to generate derivative functions, until the function
is an elementary function for which we know the analytical derivatives, such as addition,
multiplication, sin(), or exp().

A useful mental model for automatic diòerentiation is the computational graph. It can
be used for representing dependencies between variables. _e nodes of the graph are the
variables and the edges are the derivatives between the adjacent vertices. In the case above
the graph is linear:

x y z

dy
dx

dz
dy

Computing derivatives from a computational graph involves traversal of the graph, and
gathering of diòerent paths that connect inputs and outputs.

In practice, most functions are multivariate, and o�en times we want to have multiple
derivatives such as for the gradient vector. In this case, diòerent derivativesmay have common
paths in the computational graph that can be factored out, which can greatly impact eõciency.
Consider the following code example and its computational graph:

y = f(x0, x1)
z = g(y)
w0, w1 = h(z)

x0

x1

y z

w0

w1

Figure 2-2: Code example and computational graph with two inputs x0, x1 and two outputs w0, w1

_ere are four derivatives between the two outputs and two inputs. We can obtain them
by traversing the four corresponding paths in the computational graph:

x0

x1

y z

w0

w1

(a) ∂w0
∂x0

x0

x1

y z

w0

w1

(b) ∂w0
∂x1

x0

x1

y z

w0

w1

(c) ∂w1
∂x0

x0

x1

y z

w0

w1

(d) ∂w1
∂x1

For example, in (a), the derivative of w0 with respect to x0 is the product of the three red
edges:

∂w0

∂x0
= ∂w0

∂z
∂z
∂y

∂y
∂x0

, (2.4)

23 Automatic Diòerentiation

and in (b), the derivative of w0 with respect to x1 is

∂w0

∂x1
= ∂w0

∂z
∂z
∂y

∂y
∂x1

. (2.5)

We can observe that some of the derivatives share common subpaths in the computational
graph. For example the two derivatives above ∂w0

∂x0
and ∂w0

∂x1
share the same subpath y, z,

w0. We can therefore factor this subpath out and premultiply ∂w0
∂y = ∂w0

∂z
∂z
∂y for the two

derivatives. In a larger computational graph, this factorization can have enormous impact on
the performance of the derivative code, even aòecting the time complexity in terms of the
number of inputs or outputs.

Diòerent automatic diòerentiation algorithms ûnd common factors in the computational
graph in diòerent ways. In themost general case, ûnding a factorization that results inminimal
operations is NP-hard [154]. Fortunately, in many common cases, such as factorization for
the gradient vector, there are eõcient solutions.1

If the input is a scalar variable, no matter how many variables there are in the output,
forward-mode automatic diòerentiation generates derivative code that has the same time
complexity as the original algorithm. On the other hand, if the output is a scalar variable, no
matter how many input variables there are, reverse-mode automatic diòerentiation generates
derivative code that has the same time complexity as the original algorithm. _e latter case is
particularly interesting, since it means that we can compute the gradient with the same time
complexity (the “cheap gradient principle”), which can be useful for various optimization
and sampling algorithms.

Next, we demonstrate several algorithms for computing the derivatives while carefully tak-
ing the common subexpressions into consideration. We show how to transform a numerical
algorithm with control �ow, loops, or recursion to code that generates the derivatives.

2.2.1 Forward-mode
We start with the simplest algorithm, usually called forward-mode automatic diòerentiation,
and sometimes also called dual number (see Chapter 2.4 for historical remarks). Forward-
mode traverses the computational graph from the inputs to outputs, computing derivatives
of the intermediate nodes with respect to all input variables along the way. Forward-mode is
eõcient when the input dimension is low and the output dimension is high, since for each
node in the computational graph, we need to compute the derivatives with respect to every
single input variable.

1However, this does not take parallelism and memory eõciency into consideration. We show in Chapter 4
how we address this issue.

Automatic Diòerentiation 24

In computer graphics, forward-mode has been used for computing screen-space deriva-
tives for texture preûltering in 3D rendering [90, 118], for computing derivatives in diòerential
equations for physical simulation [72], and for estimating motion in specular objects [243].
Forward-mode is also useful for computing the Hessian, where one can ûrst apply forward-
mode then apply reverse-mode on each output to obtain the full Hessian matrix.

We will describe forward-mode using the previous example in Figure 2-2. Starting from
the inputs, the goal is to propagate the derivatives with respect to the inputs using the chain
rule. To handle function calls, for every function f(x) referenced by the output variables, we
generate a derivative function df(x, dx), where dx is the derivative of x with respect to the
input variables.

We start from the inputs x0, x1 and generate ∂x0
∂x0

= 1 and ∂x1
∂x1

= 1. We use a 2D vector
dx0dx to represent the derivatives of x0 with respect to x0 and x1.

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)
z = g(y)
w0, w1 = h(z)

x0

x1

y z

w0

w1

We then obtain the derivatives for y with respect to the inputs. We assume we already
applied forward-mode automatic diòerentiation for f, so we have a derivative function
df(x0, dx0dx, x1, dx1dx).

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)
dydx = df(x0, dx0dx,

x1, dx1dx)
z = g(y)
w0, w1 = h(z)

x0

x1

y z

w0

w1

We then propagate the derivative to z:

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)
dydx = df(x0, dx0dx,

x1, dx1dx)
z = g(y)
dzdx = dg(y, dydx)
w0, w1 = h(z)

x0

x1

y z

w0

w1

25 Automatic Diòerentiation

Finally, we propagate the derivatives from z to the outputs w0, w1.

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)
dydx = df(x0, dx0dx,

x1, dx1dx)
z = g(y)
dzdx = dg(y, dydx)
w0, w1 = h(z)
dw0dx, dw1dx = dh(z, dzdx)

x0

x1

y z

w0

w1

_e time complexity of the code generated by forward-mode automatic diòerentiation is
O(d) times the time complexity of the original algorithm, where d is the number of input
variables. It is eõcient for functions with few input variables.

However, for many applications of derivatives, we need to diòerentiate functions with
thousands or even millions of input variables. Using forward-mode for this would be infeasi-
ble, as we need to compute the derivatives with respect to all input variables for every output
in the computational graph. Fortunately, there is another algorithm called reverse-mode
automatic diòerentiation that can generate derivative code that has the same time complexity
as the original algorithm when there is only a single output, regardless of the number of input
variables.

2.2.2 Reverse-mode

Reverse-mode propagates the derivatives from outputs to inputs, unlike forward-mode,
which propagates the derivatives from inputs to outputs. For each node in the computational
graph, we compute the derivatives of all outputs with respect to the variable at that node.
_erefore reverse-mode is much more eõcient when the input dimension is large and the
output dimension is low. However, reverse-mode is also more complicated to implement
since it needs to run the original algorithm backward to propagate the derivatives.

We again use the same previous example in Figure 2-2 to illustrate how reverse-mode
works. Similar to forward-mode, we need to handle function calls. For every function y = f

(x) referenced by the output variables, we generate a derivative function df(x, dy), where
dy is a vector of derivatives of the ûnal output with respect to the function’s output y (in
contrast, in forward-mode, the derivative functions take the input derivatives as arguments).
Handling control �ow and recursion in reverse-mode is more complicated. We discuss them
in Chapter 2.3.1.

Automatic Diòerentiation 26

We start from the outputs w0, w1 using ∂w0
∂w0

= 1 and ∂w1
∂w1

= 1. We use a 2D vector dwdw0 to
represent the derivatives of w0, w1 with respect to w0.

y = f(x0, x1)
z = g(y)
w0, w1 = h(z)

dwdw0 = {1, 0}
dwdw1 = {0, 1}

x0

x1

y z

w0

w1

Next, we propagate the derivatives to variable z on which the two outputs depend. We
assume we already applied reverse-mode to the function h and have dh(z, dwdw0, dwdw1).

y = f(x0, x1)
z = g(y)
w0, w1 = h(z)

dwdw0 = {1, 0}
dwdw1 = {0, 1}
dwdz = dh(z, dwdw0, dwdw1)

x0

x1

y z

w0

w1

Similarly, we propagate to y from z.

y = f(x0, x1)
z = g(y)
w0, w1 = h(z)

dwdw0 = {1, 0}
dwdw1 = {0, 1}
dwdz = dh(z, dwdw0, dwdw1)
dwdy = dg(y, dwdz)

x0

x1

y z

w0

w1

Finally we obtain the derivatives of the outputs w with respect to the two inputs.

y = f(x0, x1)
z = g(y)
w0, w1 = h(z)

dwdw0 = {1, 0}
dwdw1 = {0, 1}
dwdz = dh(z, dwdw0, dwdw1)
dwdy = dg(y, dwdz)
dwx0, dwx1 = df(x0, x1, dwdy)

x0

x1

y z

w0

w1

27 Automatic Diòerentiation

Amajor diòerence between reverse-mode and forward-mode that makes the implementa-
tion of reverse-modemuchmore complicated, is that we can only start the diòerentiation a�er
the ûnal output is computed. _is makes it impossible to interleave the derivative code with
the original code like in forward-mode. _is issue has the most impact when diòerentiating
programs with control �ow or recursion. We discuss them in Chapter 2.3.1.

2.2.3 Beyond Forward and Reverse Modes

As we have discussed, forward-mode is eõcient when the number of inputs is small, while
reverse-mode is eõcient when the number of outputs is small. When both the number of
inputs and the number of outputs are large, and we are interested in the Jacobian or its subset,
both forward and reverse modes can be ineõcient.

In general, we can think of derivative computation as a pathûnding problem on the
computational graph: We want to ûnd all the paths that connect between inputs and outputs.
Many of the paths share common subpaths and it is more computationally eõcient to factor
out the common subpaths. Forward-mode and reverse-mode are two diòerent greedy ap-
proaches that factor out the common subpaths either from the input node or output node,
and they can deliver suboptimal results that do not have the minimal amount of computation.

For the general Jacobian, ûnding the factorization that results in the minimal amount of
computation is called the “Jacobian accumulation problem” and is proven to beNP-Hard [154].
However, there exist several heuristics (e.g. [70, 153, 73]). Usually, the heuristics use some
form of a greedy approach to factor the node that is reused by themost paths. _ese heuristics
can also be used for higher-order derivatives such as Hessian matrices [65, 223], since the
Hessian is the Jacobian of the gradient vector with respect to the input dimensions.

2.3 Automatic Diòerentiation as Program Transformation

In this section, we discuss the practical implementation of automatic diòerentiation. Typically
the implementation of automatic diòerentiation systems can be categorized as a point in a
spectrum, depending on how much is done at compile-time. At one end of the spectrum,
the tracing approach, or sometimes called the taping approach, re-compiles the derivatives
whenever we evaluate the function. At the other end of the spectrum, the source transforma-
tion approach does as much at compile-time as possible by compiling the derivative code
only once. _e tracing approach has the beneût of simpler implementation, and is easier to
incorporate into existing code, while the source transformation approach has better perfor-
mance, but usually can only handle a subset of a general-purpose language and is much more

Automatic Diòerentiation 28

diõcult to implement.

Tracing _e tracing approach bears similarity to the tracing just-in-time compilation tech-
nique used by various interpreters. Tracing automatic diòerentiation usually records a linear
sequence of the computation at run-time (usually called a tape or Wengert list [227]). Typ-
ically, all the control �ows will be �attened in the trace. _e system then “compiles” the
derivatives just-in-time by traversing the linear sequence. A typical implementation is to use
operator overloading on a special �oating point type, replacing all the elementary operations
by the overloaded functions. _e user is then required to replace all the �oating point type
occurences with the special type in their program, and call a compile function to start the
diòerentiation.

Tracing is the most popular method for implementing general automatic diòerentiation
systems. Most of the popular automatic diòerentiation systems use tracing (e.g. CppAD [16],
ADOL-C [69], Adept [86], and Stan [207]). However, tracing is ineõcient due to the limited
amount of work that can be done during the just-in-time diòerentiation. For example, if
a function is linear, all of the derivatives of it are constant, however, tracing approaches
o�en fail to perform constant folding optimization, since folding the constant at run-time is
o�en more costly than just computing the constant. Metaprogramming techniques such as
expression templates can help mitigate this issue [86, 188], but they cannot optimize across
functions or even statements.

Source Transformation Another approach is to take the source code of some numerical
program, and generate the code for the derivatives. It is also possible to build an abstract
syntax tree using operator overloading, then generate derivative code from the tree (the
systems in Chapter 4 and Chapter 5 used precisely this approach). _is approach is much
more eõcient compared to tracing due to the number of optimizations that can be done
at compile-time (constant folding, copy elision, common subexpression elimination, etc).
However, it is more diõcult to integrate into existing languages, and o�en can only handle
a subset of the language features. For example, none of the existing source transformation
methods is able to handle functions with arbitrary side eòects.

In Chapter 2.2 we already discussed general rules for handling elementary operations
and function calls. A straightforward line to line syntax tree transformation should do the
job. In the subsection below, we brie�y discuss how source transformation can be done for
programs with control �ow including for loops and while loops, and how to handle recursion
or cyclic function calls.

29 Automatic Diòerentiation

2.3.1 Control Flow and Recursion

Handling control �ow and recursion in forward-mode is trivial. We do not need to modify
the �ow at all. Since forward-mode propagates from the inputs, for each statement, we can
compute its derivative immediately a�er like we did in Chapter 2.2.1.

In reverse-mode, however, control �ow and recursion introduce challenges, since we
need to revert the �ow. Consider the iterative exponential example from Figure 2-1. To
apply reverse-mode, we need to revert the for loop. We observe an issue here: we need the
intermediate exp(result) values for the derivatives. To resolve this, we will need to record
the intermediate values during the ûrst pass of the loop:

function d_f(x):
result = x
results = []
for i = 1 to 8:

results.push(result)
result = exp(result)

d_result = 1
for i = 8 to 1:

// one-based indexing
d_result = d_result * exp(results[i])

return d_result

_e general strategy for transforming loops in reverse-mode is to push intermediate
variables into a stack for each loop [217], then pop the items during the reverse loop. Nested
loops can be handled in the same way. For eõcient code generation, dependency analysis is
o�en required to push only variables that will be used later to the stack (e.g. [202]).

_e same strategy of storing intermediate variables in a stack also works for loop con-
tinuations, early exits, and conditioned while loops. We can use the size of the stack as the
termination criteria. For example, we modify the previous example to a while loop and
highlight the derivative code in red:

Automatic Diòerentiation 30

function d_f(x):
result = x
results = []
while result > 0.1 and result < 10:

results.push(result)
result = exp(result)

d_result = 1
for i = len(results) to 1:

d_result = d_result * exp(results[i])
return d_result

Recursion is equally or even more troublesome compared to control �ow for reverse-
mode. Consider the following tail recursion that represents the same function:

function f(x):
if x <= 0.1 or x >= 10:

return x
result = f(exp(x))
return result

It is tempting to use the reverse-mode rules we developed in Chapter 2.2.2 to diòerentiate
the function like the following:

function d_f(x, d_result):
if x <= 0.1 or x >= 10:

return 1
result = f(exp(x))
return d_f(result, d_result) * exp(x)

However, a close inspection reveals that the generated derivative function d_f has higher
time complexity compared to the original function (O(N2) v.s. O(N)), since every time we
call d_f we will recompute f(exp(x)), resulting in redundant computation.

A solution to this, similar to the case of loops, is to use the technique of memoization.
We can cache the result of recursive function calls in a stack, and traverse the recursion tree
in reverse by traversing the stack:

31 Automatic Diòerentiation

function d_f(x, d_result):
if x <= 0.1 or x >= 10:

return 1
results = []
result = f(exp(x), results)

d_result = 1
for i = len(results) to 1:

d_result = d_result * exp(results[i])
return d_result

_is also works in the case where f recursively calls itself several times. A possible implemen-
tation is to use a tree instead of a stack to store the intermediate results.

_e transformations above reveal an issue with the reverse-mode approach. While for
scalar output, reverse-mode is eõcient in time complexity, it is not eõcient in memory
complexity, since the memory usage depends on the number of instructions, or the length of
the loops. A classical optimization to reduce memory usage is called “checkpointing”. _e
key idea is to only push to, or to checkpoint, the intermediate variable stack sporadically, and
recompute the loop from the closest checkpoint every time. Griewank [67] showed that by
checkpointing only O (log (N)) times for a loop with length O(N), we can achieve memory
complexity of O (log (N)), and time complexity of O (N log (N)) for reverse-mode.

Higher-order derivatives can be obtained by successive applications of forward- and
reverse-modes. Applying reverse-mode more than once can be diõcult since the stack
introduces side-eòects (see Chapter 2.5 for more discussions). Furthermore, in the case of
the Jacobian computation, it is diõcult to devise transformation rules for control �ow for
methods beyond forward- and reverse-modes.

2.4 Historical Remarks
Automatic diòerentiation is perhaps one of the most rediscovered ideas in the scientiûc
literature. Forward-mode is equivalent to the dual number algebra introduced in 1871 [41].
_e idea of reverse-mode was �oating around in the 1960s (e.g. [112]), and most likely
materialized ûrst in 1970 [132] for estimating the rounding error of an algorithm, and was
later applied to neural networks and rebranded as backpropagation [228, 187]. In computer
graphics, the ûeld of animation control has a long history of using automatic diòerentiation.
Witkin and Kass developed a Lisp-based system that can automatically generate derivatives
for optimizing character animation [230]. _e ûeld of optimal control theory, which is highly
related to animation control, is also an early user of automatic diòerentiation. _ey take the

Automatic Diòerentiation 32

diòerential equation perspective and usually call forward-mode “tangent” or “sensitivity”
while calling reverse-mode “adjoint”. One of the earlier large-scale usages of automatic
diòerentiation is oceanography (e.g. [145]), where the derivatives of �uid simulators are
used for sensitivity and optimization studies. Due to the strong interest from the science
and engineering communities, many early automatic diòerentiation tools are developed in
Fortran (e.g. ADIFOR [22], TAMC [59], OpenAD [212]). See Griewank and Schmidhuber’s
articles [68, 191] for more remarks.

2.5 Further Readings
Deep learning frameworks _e core of deep learning is backpropagation, or equivalently
reverse-mode automatic diòerentiation. _ere are several recent deep learning frameworks
for implementing neural network architectures. Some of them are closer to the tracing ap-
proach [165], while some of them are closer to the source transformation approach [17, 234, 1].
However, all of them only diòerentiate the code at a coarse-level of operators, while the
operators (e.g. convolution, element-wise operations, pooling) and their gradients are imple-
mented by experts. When the desired operation is easy to express by a few of these operators,
these frameworks deliver eõcient performance. However, for many novel operators, it is
either ineõcient or impossible to implement on top of these frameworks, and practitioners
o�en end up implementing their own custom operators in C++ or CUDA, and derive the
derivatives by hand. In Chapter 4 we discuss this in the context of image processing and deep
learning.

Stochastic approximation of derivatives In addition to ûnite diòerences and symbolic
diòerentiation, one can also employ stochastic approximation to gradients or higher-order
derivatives. Simultaneous perturbation stochastic approximation (SPSA) [21] and evolution
strategy [20] are two examples of this. Curvature propagation [147] takes a similar idea to
stochastically approximate Hessian matrix using exact gradients. _ese methods sidestep
the time complexity of ûnite diòerences, at the cost of having variance on the derivatives
depending on the local dimensionality of the function.

Nested applications of reverse-mode An issue with the approach for handling control �ow
and recursion we introduced in Chapter 2.3.1 is that it does not form a closure, that is, the
derivative code that uses the stack cannot be diòerentiated again, since the stack introduces
side-eòects. Pearlmutter and Siskind [167] propose a solution for this using Lambda calculus,
by developing proper transformation rules in a side-eòect free functional language, which

33 Automatic Diòerentiation

produces closure. _e generated code has similar performance to the stack approach, but has
the beneût of supporting nested applications of reverse-mode. _e resulting transformation
is non-local (in contrast, the one we describe in Chapter 2.2 is local), in the sense that the
functions generated can be vastly diòerent from the original ones. Recently, Shaikhha et
al. [195] generalize Pearlmutter and Siskind’s idea to handle array inputs in a functional
language. _eir current implementation does not generate vectorized code, but it is possible
to further generalize their approach for better code generation.

Higher-order derivatives For Hessian computation, Gower and Mello develop a reverse-
mode-like algorithm that utilizes the symmetry and sparsity [65]. It was later shown to be
equivalent to one of the heursitics for computing Jacobian accumulation [223]. Betancourt [19]
explores the connections between automatic diòerentiation and diòerential geometry, and
develops algorithms for higher-order derivatives similar to Gower and Mello’s method.

Automatic Diòerentiation 34

3 | Derivative-based Optimization and
Markov Chain Monte Carlo Sampling

Most of the uses of derivatives in this dissertation are for optimizing or sampling a function.
For optimization, we are interested in themode of a function, whereas for sampling we are
interested in the statistics, such as mean or variance. In this chapter, we brie�y introduce
classical methods that use derivatives for optimization and Markov chain sampling. _is
is a massive topic and it deserves multiple university courses. _erefore, this chapter is
by no means a comprehensive introduction. I only discuss methods more relevant to the
dissertation. Readers are encouraged to read textbooks from Boyd and Vandenberghe [26],
Nocedal and Wright [157] (both for optimization), Brooks et al. [27] (for sampling, focus
on Markov chain Monte Carlo methods), and Owen [161] (for sampling, introduces various
Monte Carlo integration methods).

Optimization and sampling have myriad applications across all ûelds of computational
science. Optimization can be used for ûnding the parameters of a model given training input
and output pairs, or solving inverse problems, where we want to ûnd inputs that map to
certain outputs. Markov chain sampling can be used for integrating light path contribution
in physically-based rendering, characterizing posterior distributions in Bayesian statistics, or
generatingmolecular structures for computational chemistry. We also discuss the relationship
between optimization and sampling in Chapter 3.3.

3.1 Optimization
Given a function f (x) ∶ Rn → R, we are interested in ûnding an input x∗ that minimizes the
function. _e function f we want to minimize is o�en call the cost function, loss function, or
energy function, where the last term is borrowed from molecular dynamics. Formally, this is
usually written as:

x∗ = argmin
x

f (x). (3.1)

For example, we may want to recover an unknown pose p of a camera, such that when

35

Derivative-based Optimization and Markov Chain Monte Carlo Sampling 36

we pass it to a rendering function r (p), the output matches an observation image I. We
can deûne the loss function as the squared diòerence between the rendering output and the
observed image:

p∗ = argmin
p
∑
i
∏︁r (p) − I∏︁2 . (3.2)

_e goal of optimization is then to ûnd a camera pose p that renders an image similar to the
observation I. _ese problems are usually called inverse problems, since we have a forward
model r, and we are interested in inverting the model.

Another use case is when we have a sequence of example inputs ai and outputs bi , and
we want to learn a mapping between them. We can deûne the mapping as g (ai ; Θ), where Θ
is some set of parameters. We can then deûne the loss function as the diòerence between the
mapped outputs and the example outputs:

Θ∗ = argmin
Θ
∑
i
∏︁g (ai ; Θ) − bi∏︁2 , (3.3)

and optimize the mapping parameters Θ. In statistics, this is o�en called regression, while in
machine learning this is called supervised learning, or empirical risk minimization.

Blindly searching for inputs or parameters that minimize the loss function is ineõcient,
especially when the dimension n is high. Intuitively speaking, the space to search grows
exponentially with respect to the dimensionality. _erefore, it is important to guide the
search towards a direction that lowers the cost function. _is is precisely what a gradient
vector does. _e gradient points in the direction where the function increases the most in the
inûnitesimal neighborhood. If we move along the negative gradient direction, we expect the
cost function to decrease. _is motivates our ûrst optimization algorithm, gradient descent.

3.1.1 Gradient Descent

_e idea of gradient descent dates back to Cauchy [33]. Figure 3-1 illustrates the process. For
a loss function f (x), starting from an initial guess x0, we iteratively reûne the guess using the
gradient ∇ f (x):

xi+1 = xi − γ∇ f (xi), (3.4)

where γ is the step size parameter, sometimes called the learning rate, which determines how
far we move along the negative gradient direction. Choosing the right step size is diõcult, as
it usually depends on the smoothness of the cost function, and typically the best step size is
diòerent for each dimension.

Gradient descent and all optimization methods we introduce in this chapter are local

37 Derivative-based Optimization and Markov Chain Monte Carlo Sampling

Figure 3-1: Gradient descent minimizes a function by iteratively following the negative gradient
direction.

search methods. _is means that they only ûnd a local minimum of the function, while there
can be a global minimum that is lower than the minimum they ûnd.

Without any assumption on the function f , there is no guarantee that gradient descent
will converge even to a local minimum. For example, if we reach a saddle point, the gradient
would be zero and the iteration would stop. _e convergence rate of gradient descent depends
on how convex the function is (is it a “bowl shape” so that it only has a single minimum?), and
whether it is Lipschitz continuous (is there a bound on how fast the function is changing?).
Curious readers can consult textbooks (e.g. [26]) for more convergence proofs.

3.1.2 Stochastic Gradient Descent

In many applications, the gradient∇ f (x)we compute may not be fully accurate. For example,
in regression, our cost function is a sum over example input-output pairs. If we have a huge
database of example pairs, say one million, doing one step of gradient descent would require
ineõciently enumerating all pairs of inputs and outputs. It would be desirable to randomly
select a mini-batch each time we perform a gradient descent step (say, four from the one
million). Furthermore, sometimes in an inverse problem, our forward model itself is a
stochastic approximation to an integral (e.g. the rendering function in Chapter 5), and so is
our loss function and gradients.

Fortunately, if our gradient approximation is unbiased (the expectation is the same
as the true gradient) or consistent (the expectation converges to the true gradient if we
use more samples), gradient descent can still converge to a local minimum [179, 36]. _e
condition for convergence is a gradually reducing step size γ over iterations, or equivalently, an
increasing number of samples for gradient approximation. Intuitively, the noise we introduce
in the gradient approximation brings some randomness to the steps in the gradient descent

Derivative-based Optimization and Markov Chain Monte Carlo Sampling 38

iterations, but on average, they still go in the right direction. When we are closer to the
optimum, the noise makes it harder to hit the exact optimum, so we either need to take
smaller steps, or reduce the noise by increasing the number of samples.

In addition to computational eõciency, it is observed that the randomness can help
stochastic gradient descent escapes from saddle points [55]. _e noise also acts as an early
stopping mechanism [170, 76], which helps regression to generalize better to data not in the
examples, thereby avoiding overûtting. See Chapter 3.3 for more discussions on this, and the
relationship between stochastic gradient descent and other sampling-based methods.

3.1.3 Newton’s Method

Choosing the right step size for gradient descent methods is diõcult and problem-dependent.
Intuitively, for �at regions of cost functions, we want to choose a larger step size, while sharp
regions require a smaller step size. Second-order derivatives are a good measure of how �at
a function is: if the magnitude of the second-order derivatives is large, then the gradient is
changing fast, so we should not take a large step.

In the 1D case, assuming the loss function always has positive second derivatives (which
means it has a bowl shape or is convex), the update step of Newton’s method is

xi+1 = xi −
f ′(xi)
f ′′(xi)

, (3.5)

where we replace the step size γ with the inverse of the second derivative.
To derive Newton’s method for the multivariate case, let us expand the loss function using

the second-order Taylor expansion around xi :

f (xi + ∆x) ≈ f (xi) + ∇ f (xi)∆x +
1
2
∆T
xH(xi)∆x , (3.6)

whereH(xi) is the Hessian matrix. If we solve for the critical point of this approximation by
taking the gradient of ∆x and setting it to zero, we arrive at an update rule:

xi+1 = xi −H(xi)−1∇ f (xi). (3.7)

Essentially we replace the division of the second derivative in Equation 3.5 by multiplication
by the inverse of the Hessian matrix.

Newton’s method can also be modiûed to work in a stochastic setting, where both the
gradient and Hessian are an approximation to the true ones (e.g. [182, 183]).

Newton’s method eliminates the need for choosing the step size, at the cost of several

39 Derivative-based Optimization and Markov Chain Monte Carlo Sampling

disadvantages. First, the critical point of the Taylor expansion is not necessarily theminimum:
it is only the minimum when the Hessian matrix is positive deûnite (all eigenvalues are posi-
tive). Second, computing and inverting the Hessian is expensive in high-dimensional cases.
Various methods address these issues. Quasi-Newton methods or Gauss-Newton methods
approximate the Hessian using ûrst-order derivatives. Hessian-free methods (e.g. [146]) use
the Hessian-vector product (much cheaper than full Hessian computation) to obtain second-
order information. Some methods approximate the Hessian using its diagonal (e.g. [147]).
Adaptive gradient methods adjust the learning rate per dimension using the statistics of
gradients from previous iterations.

Next, we will brie�y introduce adaptive gradient methods, as we use them extensively
in the following chapters. We will skip the discussions on Quasi-Newton, Gauss-Newton
methods and others, since they are less relevant to this dissertation.

3.1.4 Adaptive Gradient Methods

How do we assess the �atness of a function, or how fast the gradients are changing, without
looking at the second-order derivatives? _e idea is to look at previous gradient descent
iterations. _e magnitude of the gradients is o�en a good indicator: if the magnitude is large,
the function is changing fast. Adagrad [49] builds on this idea and uses the inverse of average
gradient magnitude per dimension as the step size:

xi+1 = xi −
γ⌈︂

G2
i + є

○ ∇ f (xi), (3.8)

where G2
i is a vector of the sum of the squared gradients at or before iteration i (the second

moment of the gradient), the division and the ○ here denote element-wise division and
multiplication, and є is a small number (say, 10−8) to prevent division by zero.

Adagrad tends to reduce the learning rate quite aggressively, since it keeps the sum of
squared gradient instead of average. Also, the smoothness of a function may be signiûcantly
diòerent during the course of optimization. A possible modiûcation is to only keep track
of recent squared gradients. _is can be done by an exponential moving average update
(sometimes called an inûnite impulse response ûlter):

G′

i
2 = αG′

i−1
2 + (1 − α)∇ f (xi)2, (3.9)

where α is the weight update parameter. _is leads us to the RMSProp method [208], which

Derivative-based Optimization and Markov Chain Monte Carlo Sampling 40

replaces the second moment G2 with the exponential moving average G′2:

xi+1 = xi −
γ

⌉︂
G′

i
2 + є

○ ∇ f (xi). (3.10)

Finally, in the stochastic setting, the gradient can be noisy, and the exponential moving
average can ûlter out the noise. _erefore, we can also apply the moving average to the
gradient in addition to the second moment, maintaining its ûrst moment mi :

mi = βmi−1 + (1 − β)∇ f (xi), (3.11)

where β is another weight update parameter. We can then use this smoothed gradient for
the update. _is results in the most popular gradient-based optimization algorithm as of the
time this dissertation is written, Adam [115]1:

xi+1 = xi −
γ

⌉︂
G′

i
2 + є

○mi . (3.12)

In regression, an optimizer that achieves low error in the example pairs mapping is not
necessarily going to be considered a good optimizer. What matters more is generalization,
that is, how does the mapping perform for pairs that are not in the examples. Per discussion
in Chapter 3.1.2 and 3.3, the noise in stochastic gradient descent sometimes acts as an early
termination mechanism, making the loss function higher, but also making the mapping
generalize better. _is might also explain why most eòorts on improving Adam recently
are not replacing it for regression tasks. _ere are theories explaining the generalization
behavior of stochastic gradient descent [76, 238]. However, to the author’s knowledge, so far
no theory explains the diòerences in the generalization ability between diòerent adaptive
gradient methods.

_ere are many other variants of adaptive gradient methods, and they are still being
actively developed. ADADELTA [236] is an alternative that also keeps track of the second
moment of the updates (in addition to just the gradient secondmoment). _emoving average
for the gradients in Adam is essentially the same as a popular accelerationmethod for gradient
descent called momentum [63]. Nesterov [156] proposes an acceleration by extrapolating the
momentum, achieving the same convergence rate as Newton’s method in the convex and
non-stochastic setting. It is also possible to incorporate Nesterov’s method in Adam [47].
Reddi et al. [174] study the convergence of Adam and ûnd counterexamples in the convex

1I omit the bias correction for the moving average here for simplicity. See the original paper for more details.

41 Derivative-based Optimization and Markov Chain Monte Carlo Sampling

(a) sampling (b) Markov chain Monte Carlo

rejected

rejected

(c) proposal

Figure 3-2: Sampling. (a) Given a function f (2D in this case), the goal of sampling is to produce
a set of samples xi such that their distribution is proportional to f . (b) Markov chain Monte Carlo
samples from a function by generating a sequence of samples through a local random walk. (c) Each
sample is generated from the previous one, and probabilistically rejected if the contribution is low, so
that we have a higher probability of staying in high contribution regions.

setting where Adam does not converge. _ey propose a ûx by using the maximum second
moment. Maclaurin et al. [143] show that it is possible to optimize the hyperparameters of
adaptive gradient descent methods by performing reverse-mode automatic diòerentiation on
top of gradient descent. Stochastic Average Gradient [192] and Stochastic Variance Reduced
Gradient [102] focus on the mini-batch setting and perform variance reduction on the
gradients by reusing previous mini-batches.

3.2 Markov Chain Monte Carlo Sampling

In this section, we discuss sampling, an operation related to optimization. In contrast to
optimization which is ûnding themode of a function, we are interested in the statistics such
as mean or variance. I focus most of the discussion on Markov chain Monte Carlo methods,
since they are more related to the derivative-based scenario. For Monte Carlo integration in
general, the reader can consult Owen’s textbook for more information [161]. For Monte Carlo
integration for light transport, Veach’s thesis [213] and the textbook by Pharr et al. [168] are
both excellent references.

Figure 3-2 illustrates our goal: Given a positive function f (x) ∶ Rn → R, we want to gen-
erate a set of random samples xi , such that their probability densities p(xi) are proportional

Derivative-based Optimization and Markov Chain Monte Carlo Sampling 42

to f :

xi ∼ p(xi) (3.13)

p(xi) ∝ f (xi). (3.14)

_is is highly related to the optimization problems: given a function g tominimize, we can
set f = e−g and sample from f , and pick the sample with highest f . Sampling has many uses
in statistics, machine learning, and computer graphics. It is useful for estimating uncertainty:
for example, every sample in Figure 3-2 achieves a high score, indicating that the problem is
ill-posed, in the sense that many inputs have an equally good loss. For both inverse problems
and regression, sampling is also a more natural solution in high-dimensional space from a
probabilistic viewpoint (Chapter 3.3). Finally, in physically-based rendering, we estimate the
total energy passing through each pixel by sampling light paths connecting light sources to
the eye.

_ere are many ways to sample from a function, but most of them do not generalize
to arbitrary functions. Inverse transform sampling requires us to integrate f to obtain the
probability density and cumulative density function, and then invert the cumulative density
functions. Rejection sampling is typically ineõcient in high-dimensional space and requires
us to have an upper bound on f .

We focus on a speciûc method for sampling from a function – the Markov chain Monte
Carlo method. It does not assume much on the function it samples from, and more im-
portantly, there are extensions of Markov chain Monte Carlo methods that make use of
derivatives of the function, making the sampling more directed in high-dimensional space.
_e downside is it generates correlated samples that reduce sampling eõciency.

3.2.1 Metropolis-Hastings Algorithm
Markov chainMonte Carlo generates samples in a sequence, forming aMarkov chain (Figure 3-
2b). _at is, the generation of each sample only depends on the previous sample. _is allows
us to employ a local random walk strategy like the ones we used for optimization. To generate
a new sample from the current one, we deûne a proposal distribution Q(a → b), we then
probabilistically accept or reject the proposal based on its contribution f (Figure 3-2c).
Overall the algorithm generates a sequence of samples xt as follows:

1. Propose a new sample x′ from the current sample xt according to the proposal distri-
bution: x′ ∼ Q(xt → x′).

2. Compute acceptance probability a(x′, xt) = min (1, f (x
′
)

f (xt)
Q(x′→xt)
Q(xi→x′))

43 Derivative-based Optimization and Markov Chain Monte Carlo Sampling

3. Set xt+1 = x′ if accepted, otherwise xt+1 = xt .

_e algorithm was developed by Metropolis [149] for symmetric proposal distributions,
later extended by Hastings [78] for handling asymmetric proposals, and extended again by
Green [66] for handling spaces of varying dimensions. Intuitively speaking, this algorithm
allows us to put more samples in the high contribution regions, while having non zero
probability of visiting all of f ’s domain. Below we provide a sketch of proof explaining why
the sequence xt is distributed proportionally to f .

It is easier to explain Markov chains in the discrete state space. Let us for now assume xt

represents a positive integer and f maps fromN toR. Our transition distributionQ becomes a
matrix Qi j representing the probability to transition from i to j, and the acceptance probability
is also a matrix ai j. All the statements below naturally generalize to continuous state space.

First, we need to deûne the concept of a stationary distribution. We represent our current
sample distribution as a probability mass function vector πt. Each iteration in the Markov
chain, is essentially transforming the probability mass function:

Kπt = πt+1, (3.15)

where K is the kernel matrix of the Markov chain. We say π is a stationary distribution
of the kernel K if Kπ = π. In other words, π is a ûxed point of the kernel K, or π is the
eigenvector corresponding to eigenvalue 1. If a Markov chain is ergodic, that is, a�er enough
transitions, a state has a non-zero probability of reaching all states, then it has a unique
stationary distribution. _is means that, in the limit, any distribution will converge to the
stationary distribution a�er enough iterations.

Next, we deûne the detailed balance condition. A Markov chain with kernel K and a
distribution π is said to satisfy the detailed balance condition if:

Ki jπi = K jiπ j ∀i , j, (3.16)

where the kernel matrix Ki j describes the probability of state i transitioning to state j. In-
tuitively, this means that the probability of transitioning from i to j is the same as from j
to i. A kernel satisfying detailed balance implies that it has a stationary distribution, but a
kernel with a stationary distribution does not necessarily satisfy detailed balance. _is can
be observed by summing over j in Equation 3.16:

∑
j
Ki jπi = πi = ∑

j
K jiπ j, (3.17)

Derivative-based Optimization and Markov Chain Monte Carlo Sampling 44

where the ûrst equation comes from∑ j Ki j = 1 since the probabilities of state transition sum
to one.

Finally, we show that the kernel speciûed by the Metropolis-Hastings algorithm satisûes
detailed balance for the distribution proportional to f . _erefore, as long as the transition
distribution T is ergodic, it will converge to the right solution. We observe that state i
transitions to state j with probability Ti jai j (accept), and stays in i with∑ j Ti j(1− ai j) (reject).
Hence the kernel K is:

Ki j =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

Ti jai j, if i ≠ j

Tiiaii +∑ j Ti j(1 − ai j), i = j
. (3.18)

By substituting ai j = min (1, f jTji
f iTi j

) into the kernel Ki j, and applying some algebra, it can be
shown that Ki j fi = K ji f j.

_e same proof also applies to the continuous state space by replacing all sums with
integrals.

While Metropolis-Hastings generates a correct distribution in the limit, the rate it reaches
that limit can vary (usually called themixing rate). _e success of Markov chain Monte Carlo
methods depends on the transition kernels. If most proposals are rejected, we stay in the
same state and waste many samples. On the other hand, even if all the proposals are accepted,
if we do not move away enough from the starting position to explore the state space, we still
get a bad mixing rate.

Similarly, in the optimization case, blindly moving samples around (say, using an isotropic
Gaussian distribution as proposal distribution) can be ineõcient, especially in the high-
dimensional case and when the contribution function is sparse. Below we discuss two
variants of Markov chain Monte Carlo methods that use derivatives to improve the mixing
rate – Langevin Monte Carlo and Hamiltonian Monte Carlo.

3.2.2 Langevin Monte Carlo

Langevin Monte Carlo, or the Metropolis-adjusted Langevin Algorithm [181], while derived
from Langevin dynamics for describing the behavior of molecules, has a pretty simple intu-
ition: it follows the gradient �ow by using a proposal distribution whose center is shi�ed by
the gradient (Figure 3-3). Formally the transition from state x to state y is:

T(x → y) ∼ 𝒩(−γ∇ f (x), σ 2I), (3.19)

45 Derivative-based Optimization and Markov Chain Monte Carlo Sampling

Figure 3-3: Langevin Monte Carlo, or the Metropolis-adjusted Langevin Algorithm [181] follows the
gradient ûeld by generating proposals from an isotropic Gaussian distribution, whose mean is shi�ed
by the gradient of the sampling function.

where𝒩 is the normal distribution, γ is the step size or learning rate, σ is a scalar standard
deviation, and I is the identity matrix.

_is simple modiûcation already brings signiûcant beneûts. Roberts and Rosenthal [180]
show that if f (x) is high-dimensional (say, more than 5) and separable (the dimensions of
the input x are independent to each other), then the optimal acceptance rate of Langevin
Monte Carlo is around 57%, while the optimal acceptance rate of the Metropolis algorithm
using isotropic Gaussian is around 23%. _is means that the sampling eõciency of Langevin
Monte Carlo is much better than zero-mean isotropic Gaussian in this case. Langevin Monte
Carlo also produces less correlated samples. For d-dimensional separable functions, the
expected number of samples needed to reach a nearly independent point grows as d 4

3 , where
when using isotropic Gaussian the number grows as d2 [155].

3.2.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo [48] takes the idea of following gradient �ow further, blurring
the distinction between sampling and optimization. Figure 3-4 illustrates a mental model
for Hamiltonian Monte Carlo: we ûrst �ip the landscape of f upside down, moving high
contribution regions to the lower ground. Assuming the current sample is a rigid ball, we
assign a random initial velocity to the ball, and simulate physics to let gravity pull the ball
towards the lower ground, which are the higher contribution regions since we �ipped f . In
Chapter 6 we build on this idea to develop a Markov chain Monte Carlo rendering algorithm.
We will provide a more formal introduction of Hamiltonian Monte Carlo and related work
there.

_e result of this physics simulation is that we follow the gradient ûeld of the function
guided by a momentum (similar to the gradient descent momentum we discussed in Chap-

Derivative-based Optimization and Markov Chain Monte Carlo Sampling 46

(a) original landscape (b) �ip, random velocity (c) simulate dynamics

Figure 3-4: Hamiltonian Monte Carlo [48] takes the sampling function (a) and �ips it upside down
(b). It then assigns a random velocity to the sample and simulates physics to let gravity pull the balls
and stop at some ûxed time (c).

ter 3.1.4). Comparing to Langevin Monte Carlo, Hamiltonian Monte Carlo reduces the
randomness by only accepting or rejecting a sample a�er a ûxed time. It scales even better
with dimensionality (d 5

4 for d-dimensional separable functions) and also has a better optimal
acceptance rate (65% for high-dimensional separable functions). _e downside is it needs to
discretize the physics simulation into multiple timesteps, making the cost of generating a
sample very high. In fact, LangevinMonte Carlo is a special case of HamiltonianMonte Carlo
with only a single time step. _e method we develop in Chapter 6 combines the beneûts of
HamiltonianMonte Carlo and LanveginMonte Carlo by simulatingHamiltonian dynamics in
a local neighborhood, while potentially sacriûcing some beneûts of the reduced randomness.

3.2.4 Stochastic Langevin or Hamiltonian Monte Carlo

Gradient descent works when the gradient is a stochastic approximation. Fortunately,
Langevin Monte Carlo and Hamiltonian Monte Carlo also work when gradients are stochas-
tic [155, 226, 38]. It may seem trivial, since any proposal distribution that satisûes detailed
balance should converge (the gradients do not even need to be unbiased or consistent). How-
ever, especially in the case of Hamiltonian Monte Carlo, to ensure a good convergence rate,
care has to be taken to balance the dynamics to counter the noise injected in the trajectory [38].

3.3 Relation between Optimization and Sampling
From a probabilistic viewpoint, we can view optimization as trying to ûnd a point that
is maximizing the probability density distribution. For example, if we use a squared loss
f (x) = ⋃︀g(x) − y⋃︀2, we can see this as ûnding the mode of a normal distribution centered
around y (more precisely, the density is p (g (x)) ∝ e

− f (x)
σ2 for some standard deviation

47 Derivative-based Optimization and Markov Chain Monte Carlo Sampling

σ representing the uncertainty). If we use the absolute diòerence, o�en called L1 loss, it
corresponds to the Laplace distribution. In contrast to optimization, sampling algorithms try
to sample from the Gaussian distribution, so points with higher density are more likely to be
sampled.

Recently, researchers have started to explore the relationship between Markov chain
Monte Carlo sampling and various gradient descent methods. In certain non-convex settings
for optimization, Markov chain Monte Carlo methods, when used for optimization, have a
faster convergence rate than gradient-based optimization algorithms [141]. On the other hand,
some variants of Langevin Monte Carlo always accept proposals [226], making the methods
resemble gradient-based optimization more. _ere are many similar parallel developments
between the sampling and optimization literature. HamiltonianMonte Carlo’s introduction of
momentum to Langevin Monte Carlo is similar to the momentum in gradient descent. Gibbs’
sampling [56] is similar to coordinate descent by treating only a subset of input variables
at a time. Riemannian Manifold Langevin and Hamiltonian Monte Carlo [60] introduces
the second-order derivatives similar to Newton’s method or natural gradient method [6]. It
is fair to expect sampling and optimization algorithms to converge in the future, making it
unnecessary to distinguish between them.

_e connection between sampling and the generalizing eòect of stochastic gradient
descent [76, 144] is also worth noting. In a high-dimensional space, most of the mass
of distribution does not distribute around its mode [32]. _e intuition is that it is very
unlikely that a person has the average height, average weight, average size of eyes and mouth,
average length of arms and legs. _erefore, probabilistically, it makes little sense to ûnd the
exact minimum in high-dimensional space, since the minimum is not representative of the
distribution. When we sample from a high-dimensional distribution, most of the samples
would not be around the mode, but have a small distance to it. _is is exactly what the
noise in stochastic gradient descent is doing: in a practical number of iterations, it makes the
optimization miss the exact minimum, but end up in a position having a small distance to the
minimum. In eòect this allows stochastic gradient descent to achieve better generalization,
since they ûnd a more typical instance of the probability distribution.

Derivative-based Optimization and Markov Chain Monte Carlo Sampling 48

4 | Diòerentiable Image Processing and
Deep Learning in Halide

d_gridd_guide

output

bilateral grid

d_loss

input

guide map

(a) neural network operator:
bilateral slicing

d_prior

blurry input
blur

kernel

prior

output
d_loss

(b) optimizing the parameters
of a forward image processing

pipeline

burst of RAW inputs homographies

reconstructiongradient
prior

warp

d_loss

d_H

d_R

(c) optimizing the reconstruction and
warping parameters of an inverse

problem

Figure 4-1: Diòerentiable image processing. Our system automatically derives and optimizes
gradient code for general image processing pipelines, and yields state-of-the-art performance on both
CPUs and GPUs. _is enables a variety of imaging applications, from training custom neural network
layers (a), to optimizing the parameters of traditional image processing pipelines (b), to solving inverse
problems (c). To support these applications, we extend the Halide language to automatically and
eõciently compute gradients. We also introduce a new automatic performance optimization that can
handle the speciûc computation patterns of the gradient. Using our system, a user can easily write
high-level image processing algorithms, and then automatically derive high-performance gradient
code for CPUs, GPUs, and other architectures. Images from le� to right are from MIT5k dataset [30],
ImageNet [45], and deep demosaicking dataset [57], respectively.

Optimization and end-to-end learning are driving rapid progress in graphics and imag-
ing, by viewing either the output image or large sets of pipeline parameters as unknowns,
e.g. [80, 94, 13, 58]. Key to this progress is the surprising power of gradient-based optimization
methods to ûnd solutions to nonlinear objectives over large sets of unknowns. Unfortunately,
the computation of gradients remains a challenge in the general case, especially when per-
formance is paramount such as for training neural networks or when solving for images
via optimization. In Chapter 2, we discussed methods for generating derivative code from
programs, but they are not designed for image processing programs, and they do not take

49

Diòerentiable Image Processing and Deep Learning in Halide 50

parallelism and locality into consideration. Typically, practitioners have to either manually
derive gradients or they are limited to the composition of building blocks oòered by deep
learning libraries. _e result is o�en ineõcient, and when users decide to stray from existing
operators, the implementation of fast GPU derivative code is a major undertaking.

At ûrst glance, modern machine learning frameworks like PyTorch [165], TensorFlow [1]
or CNTK [234] seem like appealing environments for new gradient-based graphics algo-
rithms. When limited to their walled-gardens of pre-made, coarse-grained operations, these
frameworks provide high-performance kernel implementations and automatic diòerentiation
through chains of operations. As general programming languages, however, they are a poor ût
for many imaging applications. Building new algorithms requires contorting a problem into
complex and tangled compositions of existing building blocks. Even when done successfully,
the resulting implementation is o�en both slow andmemory-ineõcient, saving and reloading
entire arrays of intermediate results between each step, causing costly cache misses.

Consider the following example. A recent neural network-based operator for approxi-
mating image processing algorithms was built around a new “bilateral slicing” layer based
on the bilateral grid [58, 35]. At the time it was published, neither PyTorch nor TensorFlow
was even capable of practically expressing this computation.1 As a result, the authors had to
deûne an entirely new operator, written by hand in about 100 lines of CUDA for the forward
pass and 200 lines more for its manually-derived gradient (Figure 4-2, right). _is was a
sizeable programming task which took signiûcant time and expertise. While new operations
now make it possible to implement this operation in 42 lines of PyTorch, this yields less
than 1/3rd the performance on small inputs and runs out of memory on realistically-sized
images (Figure 4-2, middle). _e challenge of eõciently deriving and computing gradients
for custom nodes remains a serious obstacle to deep learning.

_is pattern is ubiquitous. New custom nodes require major eòort to implement cor-
rectly and eõciently, making it hard to experiment. Similarly, general image processing
pipelines o�en do not map well to deep learning toolboxes. As a result, most researchers
limit themselves to consider only operations which are already well-supported by existing
frameworks, while NVIDIA and the framework developers must constantly expand the set
of native operations. _e only alternative is to invest orders of magnitude more eòort in
developing custom operations, hand-deriving, reimplementing, and debugging gradient
code for every change during the development of a new algorithm.

Recently, the Halide domain-speciûc language [171, 172] has enabled the implementation

1Technically, TensorFlow graphs are Turing-complete, thanks to their inclusion of a while loop node.
However, implementing the algorithm at this level would be both incredibly complex and run at least thousands
of times slower.

51 Diòerentiable Image Processing and Deep Learning in Halide

#include <THC/THC.h>
#include <iostream>
#include "math.h"

extern THCState *state;

__device__ float diff_abs(float x) {
 float eps = 1e-8;
 return sqrt(x*x+eps);
}

__device__ float d_diff_abs(float x) {
 float eps = 1e-8;
 return x/sqrt(x*x+eps);
}

__device__ float weight_z(float x) {
 float abx = diff_abs(x);
 return max(1.0f-abx, 0.0f);
}

__device__ float d_weight_z(float x) {
 float abx = diff_abs(x);
 if(abx > 1.0f) {
 return 0.0f;
 // return abx;
 } else {
 return d_diff_abs(x);
 }
}

__global__ void BilateralSliceApplyKernel(
 int64_t nthreads,
 const float* grid, const float* guide, const float* input,
 const int bs, const int h, const int w,
 const int gh, const int gw, const int gd,
 const int input_chans, const int output_chans,
 float* out)
{
 // - Samples centered at 0.5.
 // - Repeating boundary conditions

 int grid_chans = (input_chans+1)*output_chans;
 int coeff_stride = input_chans+1;

 const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
 if(idx < nthreads) {
 int x = idx % w;
 int y = (idx / w) % h;
 int out_c = (idx / (w*h)) % output_chans;
 int b = (idx / (output_chans*w*h));

 float gx = (x+0.5f)*gw/(1.0f*w);
 float gy = (y+0.5f)*gh/(1.0f*h);
 float gz = guide[x + w*(y + h*b)]*gd;

 int fx = static_cast<int>(floor(gx-0.5f));
 int fy = static_cast<int>(floor(gy-0.5f));
 int fz = static_cast<int>(floor(gz-0.5f));

 // Grid strides
 int sx = 1;
 int sy = gw;
 int sz = gw*gh;
 int sc = gw*gh*gd;
 int sb = grid_chans*gd*gw*gh;

 float value = 0.0f;
 for (int in_c = 0; in_c < coeff_stride; ++in_c) {
 float coeff_sample = 0.0f;
 for (int xx = fx; xx < fx+2; ++xx) {
 int x_ = max(min(xx, gw-1), 0);
 float wx = max(1.0f-abs(xx+0.5-gx), 0.0f);
 for (int yy = fy; yy < fy+2; ++yy)
 {
 int y_ = max(min(yy, gh-1), 0);
 float wy = max(1.0f-abs(yy+0.5-gy), 0.0f);
 for (int zz = fz; zz < fz+2; ++zz)
 {
 int z_ = max(min(zz, gd-1), 0);
 float wz = weight_z(zz+0.5-gz);
 int grid_idx =
 sc*(coeff_stride*out_c + in_c) + sz*z_ + sx*x_
 + sy*y_ + sb*b;
 coeff_sample += grid[grid_idx]*wx*wy*wz;
 }
 }
 } // Grid trilinear interpolation
 if(in_c < input_chans) {
 int input_idx = x + w*(y + input_chans*(in_c + h*b));
 value += coeff_sample*input[input_idx];
 } else { // Offset term
 value += coeff_sample;
 }
 }
 out[idx] = value;
 }
}

__global__ void BilateralSliceApplyGridGradKernel(
 int64_t nthreads,
 const float* grid, const float* guide, const float* input,
 const float* d_output, const int bs, const int h, const int w,
 const int gh, const int gw, const int gd,
 const int input_chans, const int output_chans,
 float* out)
{
 int grid_chans = (input_chans+1)*output_chans;
 int coeff_stride = input_chans+1;

 const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
 if(idx < nthreads) {
 int gx = idx % gw;
 int gy = (idx / gw) % gh;
 int gz = (idx / (gh*gw)) % gd;
 int c = (idx / (gd*gh*gw)) % grid_chans;
 int b = (idx / (grid_chans*gd*gw*gh));

 float scale_w = w*1.0/gw;
 float scale_h = h*1.0/gh;

 int left_x = static_cast<int>(floor(scale_w*(gx+0.5-1)));
 int right_x = static_cast<int>(ceil(scale_w*(gx+0.5+1)));
 int left_y = static_cast<int>(floor(scale_h*(gy+0.5-1)));
 int right_y = static_cast<int>(ceil(scale_h*(gy+0.5+1)));

 // Strides in the output
 int sx = 1;

 int sy = w;
 int sc = h*w;
 int sb = output_chans*w*h;

 // Strides in the input
 int isx = 1;
 int isy = w;
 int isc = h*w;
 int isb = output_chans*w*h;

 int out_c = c / coeff_stride;
 int in_c = c % coeff_stride;

 float value = 0.0f;
 for (int x = left_x; x < right_x; ++x)
 {
 int x_ = x;

 // mirror boundary
 if (x_ < 0) x_ = -x_-1;
 if (x_ >= w) x_ = 2*w-1-x_;

 float gx2 = (x+0.5f)/scale_w;
 float wx = max(1.0f-abs(gx+0.5-gx2), 0.0f);

 for (int y = left_y; y < right_y; ++y)
 {
 int y_ = y;

 // mirror boundary
 if (y_ < 0) y_ = -y_-1;
 if (y_ >= h) y_ = 2*h-1-y_;

 float gy2 = (y+0.5f)/scale_h;
 float wy = max(1.0f-abs(gy+0.5-gy2), 0.0f);

 int guide_idx = x_ + w*y_ + h*w*b;
 float gz2 = guide[guide_idx]*gd;
 float wz = weight_z(gz+0.5f-gz2);
 if ((gz==0 && gz2<0.5f) || (gz==gd-1 && gz2>gd-0.5f)) {
 wz = 1.0f;
 }

 int back_idx = sc*out_c + sx*x_ + sy*y_ + sb*b;
 if (in_c < input_chans) {
 int input_idx = isc*in_c + isx*x_ + isy*y_ + isb*b;
 value += wz*wx*wy*d_output[back_idx]*input[input_idx];
 } else { // offset term
 value += wz*wx*wy*d_output[back_idx];
 }
 }
 }
 out[idx] = value;
 }
}

__global__ void BilateralSliceApplyGuideGradKernel(
 int64_t nthreads,
 const float* grid, const float* guide, const float* input,
 const float* d_output, const int bs, const int h, const int w,
 const int gh, const int gw, const int gd,
 const int input_chans, const int output_chans,
 float* out)
{
 int grid_chans = (input_chans+1)*output_chans;
 int coeff_stride = input_chans+1;

 const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
 if(idx < nthreads) {
 int x = idx % w;
 int y = (idx / w) % h;
 int b = (idx / (w*h));

 float gx = (x+0.5f)*gw/(1.0f*w);
 float gy = (y+0.5f)*gh/(1.0f*h);
 float gz = guide[x + w*(y + h*b)]*gd;

 int fx = static_cast<int>(floor(gx-0.5f));
 int fy = static_cast<int>(floor(gy-0.5f));
 int fz = static_cast<int>(floor(gz-0.5f));

 // Grid stride
 int sx = 1;
 int sy = gw;
 int sz = gw*gh;
 int sc = gw*gh*gd;
 int sb = grid_chans*gd*gw*gh;

 float out_sum = 0.0f;
 for (int out_c = 0; out_c < output_chans; ++out_c) {

 float in_sum = 0.0f;
 for (int in_c = 0; in_c < coeff_stride; ++in_c) {

 float grid_sum = 0.0f;
 for (int xx = fx; xx < fx+2; ++xx) {
 int x_ = max(min(xx, gw-1), 0);
 float wx = max(1.0f-abs(xx+0.5-gx), 0.0f);
 for (int yy = fy; yy < fy+2; ++yy)
 {
 int y_ = max(min(yy, gh-1), 0);
 float wy = max(1.0f-abs(yy+0.5-gy), 0.0f);
 for (int zz = fz; zz < fz+2; ++zz)
 {
 int z_ = max(min(zz, gd-1), 0);
 float dwz = gd*d_weight_z(zz+0.5-gz);

 int grid_idx = sc*(coeff_stride*out_c + in_c) + sz*z_ + sx*x_
 + sy*y_ + sb*b;
 grid_sum += grid[grid_idx]*wx*wy*dwz;
 } // z
 } // y
 } // x, grid trilinear interp

 if(in_c < input_chans) {
 in_sum += grid_sum*input[input_chans*(x+w*(y+h*(in_c+input_chans*b)))];
 } else { // offset term
 in_sum += grid_sum;
 }
 } // in_c

 out_sum += in_sum*d_output[x + w*(y + h*(out_c + output_chans*b))];
 } // out_c

 out[idx] = out_sum;
 }
}

__global__ void BilateralSliceApplyInputGradKernel(
 int64_t nthreads,
 const float* grid, const float* guide, const float* input,
 const float* d_output, const int bs, const int h, const int w,
 const int gh, const int gw, const int gd,
 const int input_chans, const int output_chans,
 float* out)
{
 int grid_chans = (input_chans+1)*output_chans;
 int coeff_stride = input_chans+1;

 const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
 if(idx < nthreads) {
 int x = idx % w;
 int y = (idx / w) % h;
 int in_c = (idx / (w*h)) % input_chans;
 int b = (idx / (input_chans*w*h));

 float gx = (x+0.5f)*gw/(1.0f*w);
 float gy = (y+0.5f)*gh/(1.0f*h);
 float gz = guide[x + w*(y + h*b)]*gd;

 int fx = static_cast<int>(floor(gx-0.5f));
 int fy = static_cast<int>(floor(gy-0.5f));
 int fz = static_cast<int>(floor(gz-0.5f));

 // Grid stride
 int sx = 1;
 int sy = gw;
 int sz = gw*gh;
 int sc = gw*gh*gd;
 int sb = grid_chans*gd*gw*gh;

 float value = 0.0f;
 for (int out_c = 0; out_c < output_chans; ++out_c) {
 float chan_val = 0.0f;
 for (int xx = fx; xx < fx+2; ++xx) {
 int x_ = max(min(xx, gw-1), 0);
 float wx = max(1.0f-abs(xx+0.5-gx), 0.0f);
 for (int yy = fy; yy < fy+2; ++yy)
 {
 int y_ = max(min(yy, gh-1), 0);
 float wy = max(1.0f-abs(yy+0.5-gy), 0.0f);
 for (int zz = fz; zz < fz+2; ++zz)
 {

 int z_ = max(min(zz, gd-1), 0);

 float wz = weight_z(zz+0.5-gz);

 int grid_idx = sc*(coeff_stride*out_c + in_c) + sz*z_ + sx*x_
 + sy*y_ + sb*b;
 chan_val += grid[grid_idx]*wx*wy*wz;
 } // z
 } // y
 } // x, grid trilinear interp

 value += chan_val*d_output[x + w*(y + h*(out_c + output_chans*b))];
 } // out_c
 out[idx] = value;
 }
}

// -- KERNEL LAUNCHERS ---
void BilateralSliceApplyKernelLauncher(
 int bs, int gh, int gw, int gd,
 int input_chans, int output_chans,
 int h, int w,
 const float* const grid, const float* const guide,
 const float* const input, float* const out)
{
 int total_count = bs*h*w*output_chans;
 const int64_t block_sz = 512;
 const int64_t nblocks = (total_count + block_sz - 1) / block_sz;
 if (total_count > 0) {
 BilateralSliceApplyKernel<<<
 nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
 total_count, grid, guide, input,
 bs, h, w, gh, gw, gd, input_chans, output_chans,
 out);
 THCudaCheck(cudaPeekAtLastError());
 }
}

void BilateralSliceApplyGradKernelLauncher(
 int bs, int gh, int gw, int gd,
 int input_chans, int output_chans, int h, int w,
 const float* grid, const float* guide, const float* input,
 const float* d_output,
 float* d_grid, float* d_guide, float* d_input)
{
 int64_t coeff_chans = (input_chans+1)*output_chans;
 const int64_t block_sz = 512;
 int64_t grid_count = bs*gh*gw*gd*coeff_chans;
 if (grid_count > 0) {
 const int64_t nblocks = (grid_count + block_sz - 1) / block_sz;
 BilateralSliceApplyGridGradKernel<<<
 nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
 grid_count, grid, guide, input, d_output,
 bs, h, w, gh, gw, gd,
 input_chans, output_chans,
 d_grid);
 }

 int64_t guide_count = bs*h*w;
 if (guide_count > 0) {
 const int64_t nblocks = (guide_count + block_sz - 1) / block_sz;
 BilateralSliceApplyGuideGradKernel<<<
 nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
 guide_count, grid, guide, input, d_output,
 bs, h, w, gh, gw, gd,
 input_chans, output_chans,
 d_guide);
 }

 int64_t input_count = bs*h*w*input_chans;
 if (input_count > 0) {
 const int64_t nblocks = (input_count + block_sz - 1) / block_sz;
 BilateralSliceApplyInputGradKernel<<<
 nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
 input_count, grid, guide, input, d_output,
 bs, h, w, gh, gw, gd,
 input_chans, output_chans,
 d_input);
 }
}

308 lines
CUDA

2270 ms (4 MPix)
430 ms (1 MPix)
Runtime

xx = Variable(th.arange(0, w).cuda().view(1, -1).repeat(h, 1))
yy = Variable(th.arange(0, h).cuda().view(-1, 1).repeat(1, w))
gx = ((xx+0.5)/w) * gw
gy = ((yy+0.5)/h) * gh
gz = th.clamp(guide, 0.0, 1.0)*gd
fx = th.clamp(th.floor(gx - 0.5), min=0)
fy = th.clamp(th.floor(gy - 0.5), min=0)
fz = th.clamp(th.floor(gz - 0.5), min=0)
wx = gx - 0.5 - fx
wy = gy - 0.5 - fy
wx = wx.unsqueeze(0).unsqueeze(0)
wy = wy.unsqueeze(0).unsqueeze(0)
wz = th.abs(gz-0.5 - fz)
wz = wz.unsqueeze(1)
fx = fx.long().unsqueeze(0).unsqueeze(0)
fy = fy.long().unsqueeze(0).unsqueeze(0)
fz = fz.long()
cx = th.clamp(fx+1, max=gw-1);
cy = th.clamp(fy+1, max=gh-1);
cz = th.clamp(fz+1, max=gd-1)
fz = fz.view(bs, 1, h, w)
cz = cz.view(bs, 1, h, w)
batch_idx = th.arange(bs).view(bs, 1, 1, 1).long().cuda()
out = []
co = c // (ci+1)
for c_ in range(co):
 c_idx = th.arange((ci+1)*c_, (ci+1)*(c_+1)).view(\
 1, ci+1, 1, 1).long().cuda()
 a = grid[batch_idx, c_idx, fz, fy, fx]*(1-wx)*(1-wy)*(1-wz) + \
 grid[batch_idx, c_idx, cz, fy, fx]*(1-wx)*(1-wy)*(wz) + \
 grid[batch_idx, c_idx, fz, cy, fx]*(1-wx)*(wy)*(1-wz) + \
 grid[batch_idx, c_idx, cz, cy, fx]*(1-wx)*(wy)*(wz) + \
 grid[batch_idx, c_idx, fz, fy, cx]*(wx)*(1-wy)*(1-wz) + \
 grid[batch_idx, c_idx, cz, fy, cx]*(wx)*(1-wy)*(wz) + \
 grid[batch_idx, c_idx, fz, cy, cx]*(wx)*(wy)*(1-wz) + \
 grid[batch_idx, c_idx, cz, cy, cx]*(wx)*(wy)*(wz)
 o = th.sum(a[:, :-1, ...]*input, 1) + a[:, -1, ...]
 out.append(o.unsqueeze(1))
out = th.cat(out, 1)

out.backward(adjoints)
d_input = input.grad
d_grid = grid.grad
d_guide = guide.grad

PyTorch
42 lines

Runtime
1440 ms (1 MPix)
out of memory (4 MPix)

// Slice an affine matrix from the grid and
// transform the color
Expr gx = cast<float>(x)/sigma_s;
Expr gy = cast<float>(y)/sigma_s;
Expr gz =
 clamp(guide(x,y,n),0.f,1.f)*grid.channels();
Expr fx = cast<int>(gx);
Expr fy = cast<int>(gy);
Expr fz = cast<int>(gz);
Expr wx = gx-fx, wy = gy-fy, wz = gz-fz;
Expr tent =
 abs(rt.x-wx)*abs(rt.y-wy)*abs(rt.z-wz);
RDom rt(0,2,0,2,0,2);
Func affine;
affine(x,y,c,n) +=
 grid(fx+rt.x,fy+rt.y,fz+rt.z,c,n)*tent;
Func output;
Expr nci = input.channels();
RDom r(0, nci);
output(x,y,co,n) = affine(x,y,co*(nci+1)+nci,n);
output(x,y,co,n) +=
 affine(x,y,co*(nci+1)+r,n) * in(x,y,r,n);

// Propagate the gradients to inputs
auto d = propagate_adjoints(output, adjoints);
Func d_in = d(in);
Func d_guide = d(guide);
Func d_grid = d(grid);

Halide Runtime
24 lines 64 ms (1 MPix)

165 ms (4 MPix)

Figure 4-2: Code comparison. Implementations of the forward and gradient computations of the
bilateral slicing layer [58] in Halide, PyTorch, and CUDA. Using our automatic diòerentiation and
scheduling extensions, the Halide implementation is clear, concise, and fast. _e PyTorch imple-
mentation is modestly more complex, but runs 20× slower on a 1k × 1k input, fails to complete (out
of memory on a 12GB NVIDIA Titan Xp) on a 2k × 2k input, and is only possible thanks to new
operators added to PyTorch since the original publication. _e CUDA implementation, developed by
the original authors, is not only complex (an order of magnitude larger than either Halide or PyTorch),
but is dominated by hand-derived gradient computations. It is faster than PyTorch and scales to
larger inputs, but is still about 10× slower than the Halide version. Note: code size includes a few lines
beyond the core logic shown for both Halide and PyTorch.

of high-performance image-processing pipelines. It is an eòective solution to implement-
ing custom nodes and general image processing pipelines, but it still requires the manual
derivation of gradients. Furthermore, our experience shows that the computation pattern of
derivatives diòers from that of forward code, which causes existing automatic performance
optimizations in Halide to fail. Critically, the current built-in Halide autoscheduler does not
support GPU schedules.

We extend Halide with methods to automatically and eõciently compute the gradients of
arbitrary Halide programs using reverse-mode automatic diòerentiation (Chapter 4.3). _is
transformation supports most existing features in the language, except for a few cases where
side-eòects are introduced (Section 4.3.2).

Building atop Halide has several advantages. It provides a concise, natural language in
which to express image processing computations, and for which there is already a library of
existing algorithms. _eHalide compiler portably targets numerous processor and accelerator
architectures, from mobile CPUs, to image processing DSPs, to data center GPUs, and
supports compilation to very high-performance code. Finally, Halide’s existing language and

Diòerentiable Image Processing and Deep Learning in Halide 52

scheduling constructs compose with reverse-mode automatic diòerentiation to naturally
express and generalize essential optimizations from the traditional automatic diòerentiation
literature (Chapter 4.3.3). Keys to making our compiler transformation work are a scatter-
to-gather conversion algorithm which preserves parallelism (Chapter 4.3.2), and a simple
automatic scheduling algorithm specialized to the patterns that appear in generated gradient
code (Chapter 4.3.4). Halide’s existing system of powerful dependence analyses is essential for
both. In contrast to traditional Halide, automatic scheduling is critical given the complexity
of the automatically-generated gradient code.

Using our new automatic gradient computation and automatic scheduler, we show how
we can easily implement three recently-proposed neural network layers using code that
is both faster and signiûcantly simpler than the authors’ original custom nodes written in
C++ and CUDA (Chapter 4.4.1). For example, the aforementioned bilateral slicing layer
is expressed in 24 lines of Halide (Figure 4-2, le�), including just four lines to compute
and extract its gradients, while compiling automatically to an implementation about 10×
faster than the authors’ original handwritten CUDA, and 20× faster than a more limited
version in PyTorch. We believe that this ease of implementation and performance tuning
will dramatically facilitate prototyping, by delivering both automatic gradients and high
performance at the outset of experimentation, not a�er-the-fact once the usefulness of a
node has been established.

We also argue that this approach of gradient-based optimization through arbitrary pro-
grams is useful outside the traditional deep learning applications which have popularized it.
Our vision is that any image-processing pipelines can beneût from an automatic tuning of
internal parameters. Currently, this step is usually done by hand through user trial-and-error.
_e availability of automatic derivatives makes it possible to systematically optimize any inter-
nal parameter of an image processing pipeline, given some output objectives. _is is especially
appealing when gradients are available in the same language used for high-performance code
deployment. We show how to signiûcantly improve the performance of two traditional image
processing algorithms by automatically optimizing their key parameters and ûlters (Chap-
ter 4.4.2). We also develop a novel joint burst demosaicking and superresolution algorithm
by inverting a forward image formation model including warps by unknown homographies,
solving for the image and homographies simultaneously (Chapter 4.4.3). Finally, we show
the versatility of our approach and implement a lens design optimization by diòerentiating
an optical simulator and �uid simulator (Chapter 4.4.4).

53 Diòerentiable Image Processing and Deep Learning in Halide

4.1 RelatedWork

4.1.1 Automatic Diòerentiation and Deep Learning Frameworks

Following the methods in Chapter 2, it is possible to generate derivative code from a given
program. Many automatic diòerentiation frameworks have been developed for general
programming languages [22, 69, 77, 86, 229], but general programming languages can be
cumbersome for image processing applications. Writing eõcient image processing code
requires enormous eòort to take parallelism, locality, and memory consumption/bandwidth
into account [171]. _ese diõculties are compounded when we also want to compute deriva-
tives. In particular, none of the existing automatic diòerentiation compilers or libraries can
handle automatic diòerentiation of vectorized code.

Recent deep learning packages provide higher level, highly optimized diòerentiable
building blocks for users to assemble their program [17, 234, 1, 165]. _ese packages are
eõcient when the algorithm to be implemented can be conveniently expressed by combining
these building blocks. But it is quite common for users to write their own custom operators
in low-level C++ or CUDA to extend a package’s functionalities.

Using our approach, one can simply write the forward program. Our algorithm gener-
ates the derivatives and, thanks to Halide’s decoupling of algorithm and schedule and our
automatic scheduler, provides convenient handles to easily produce eõcient code.

4.1.2 Image Processing Languages

Our work builds on the Halide [171] image processing language, which we brie�y introduce
in Chapter 4.2.

_e Opt language [46] focuses on nonlinear least squares problems. It provides language
constructs to describe the least squares cost and automatically generates solvers. It uses the
D* algorithm [73] to generate derivatives for the Jacobian. _e ProxImaL [79] language, on
the other hand, focuses on solving inverse problems using proximal gradient algorithms. _e
language provides a set of functions and their corresponding proximal operators. It then
generates Halide code for optimization. Our system can be used to generate the adjoints
required by new ProxImaL operators.

_ese languages focus on a speciûc set of solvers, namely nonlinear least squares and
proximal methods, and provide high-level interfaces to them. On the other hand, we deal
with any problem that requires the gradient of a program. Our system can also be used
to solve for unknowns other than images, such as optimizing the hyperparameters of an
algorithm or jointly optimizing images and parameters. Chapter 4.4.3 demonstrates this with

Diòerentiable Image Processing and Deep Learning in Halide 54

some examples.
Recently, there have been attempts to automatically speed-up image processing pipelines [152,

233, 151, 198, 11]. We developed a new automatic scheduler in Halide with specialized mecha-
nisms for parallel reductions [203], which o�en occur in the gradients of image processing
code. Our system could further beneût from future developments in automatic code opti-
mization.

4.1.3 Learning and Optimizing with Images

Gradient-based optimization is commonly used in image processing. It has been used
for image restoration [186], image registration [244], optical �ow estimation [89], stereo
vision [13], learning image priors [184, 211] and solving complex inverse problems [80]. Our
work alleviates the need to manually derive the gradient in such applications, which enables
faster experimentation.

Deep learning has revitalized interest in building diòerentiable forward image processing
pipelines whose parameters can be tuned by stochastic gradient descent. Successful instances
include image restoration [57, 239], photographic enhancement [231], and applications such
as colorization [91, 240], and style transfer [54, 140]. Some of these methods call for custom
operators [94, 92, 58], typically not available in mainstream frameworks. For these custom
operators, forward and gradient operations are implemented manually. Our work provides a
convenient way to explore new custom computations.

4.2 _e Halide Programming Language
Our system extends the Halide programming language. We give a brief overview of the
constructs in Halide that are relevant to our system. For more detail on Halide, see the
original papers [171, 172] and documentation.2

Halide is a language designed to make it easy to write high-performance image- and array-
processing code. _e key idea in Halide is the separation of a program into the algorithm,
which speciûes what is computed, and the schedule, which dictates the order of computation
and storage. _e algorithm is expressed as a pure functional, feed-forward pipeline of
arithmetic operations on multidimensional grids. _e schedule addresses concerns such as
tiling, vectorization, parallelization, mapping to a GPU, etc. _e language guarantees that
the output of a program depends only on the algorithm and not on the schedule. _is frees
the user from worrying about low-level optimizations while writing the high-level algorithm.

2http://halide-lang.org/

http://halide-lang.org/

55 Diòerentiable Image Processing and Deep Learning in Halide

_ey can then explore optimization strategies without unintentionally altering the output.
By adding automatic diòerentiation to Halide, we build on this philosophy. To create a

diòerentiable pipeline, the user no longer needs to worry about the correctness and eõciency
of the gradient code. With the sole speciûcation of a forward algorithm, our system synthesizes
the gradient algorithm. Optimization strategies can then be explored for both, eithermanually
or with an auto-scheduler.

_e following code shows an example Halide program that performs gamma correction
on an image and computes the L2 norm between the output and a target image:

Param<float> g; // Gamma parameter
Buffer<float> im, tgt; // 2-D input and target buffers
Var x, y; // Integer variables for the pixel coordinates
Func f; // Halide function declarations
// Halide function definition
f(x, y) = pow(im(x, y), g);
// Reduction variables to loop over target’s domain
RDom r(tgt);
Func loss; // We compute the MSE loss between f and tgt
loss() = 0.f; // Initialize the sum to 0
Expr diff = f(r.x, r.y) - tgt(r.x, r.y);
loss() += diff * diff; // Update definition

Halide is embedded in C++. Halide pipeline stages are called functions and represented in
code by the C++ class Func. Each Halide function is deûned over an n-dimensional grid.
_e deûnition of a function comprises:

• an initial value that speciûes a value for each grid point.

• optional recursive updates that modify these values in-place.

_e function deûnitions are speciûed as Halide expressions (objects of type Expr). Halide
expressions are side-eòect-free, including arithmetic, logical expressions, conditionals, and
calls to other Halide functions, input buòers, or external code (such as sin or exp).

Reduction operators, such as summation or general convolution, are implemented
through recursive updates of a Halide function. _e domain of a reduction is represented
in code as an RDom, which implies a loop over that domain. All loops in Halide are implicit,
whether over the domain of a function or a reduction.

Scheduling is expressed through methods exposed on Func. _ere are many scheduling
operators, which transform the computation to trade oò between memory bandwidth, paral-
lelism, and redundant computation. Halide lowers the schedule and algorithm into a set of
loop nests and kernels. _ese are then compiled to machine code for various architectures.
We use the CUDA and x86 backends for the applications demonstrated in this chapter.

Diòerentiable Image Processing and Deep Learning in Halide 56

forward Halide program

requested derivatives

forward and backward
CPU/GPU code

f

tgt

im

g

loss

synthesized backward program

automatic
differentiation

manual
schedule

Halide
compiler

automatic
scheduler

d_fd_im

d_g

d_im d_g

d_loss

tgt d_tgt

g

im

f

Figure 4-3: Overview of our compiler. _e user writes a forward Halide program as they would
normally. _en, they specify the set of outputs and gradients the system should produce. Our
automatic diòerentiation generates new Halide functions that implement the requested gradients. _e
user can either manually schedule the pipeline or use our automatic scheduler. Finally, the Halide
compiler generates machine code for the scheduled forward and backward algorithms.

4.3 Method
To use our system, a programmer ûrst writes a forward Halide algorithm. _ey then request
the gradient of some scalar loss with respect to any Halide function, image buòer, or parameter
in the pipeline. Our automatic diòerentiation system visits the graph of functions that
describes the forward algorithm and synthesizes new Halide functions that implement the
gradient computation (Chapter 4.3.1). _e programmer can either specify the schedule
for these new functions manually or use our automatic scheduler (Chapter 4.3.4). Unlike
Halide’s built-in auto-scheduler [151], ours recognizes patterns that arise when reversing the
computation graph (Chapter 4.3.2). Figure 4-3 illustrates the work�ow.

4.3.1 High-level Strategy

We assume we want to compute the derivatives of some scalar ℒ, typically a cost function
to be minimized. Our system implements reverse-mode automatic diòerentiation, which
computes the gradient with the same time complexity as the forward function (Chapter 2.2.2).
We propagate the adjoints ∂ℒ

∂g to each function in the forward pipeline g, until we reach the
inputs. _e adjoints of the inputs are the components of the gradient.

Speciûcally, given a Halide program represented as a graph of Halide functions, we
traverse the graph backward from the output and accumulate contributions to the adjoints
using the chain rule. Halide function deûnitions are represented as expression trees, so
within each function, we perform a similar backpropagation through the expression tree,
propagating adjoints to all leaves.

A key diòerence between our algorithm and traditional automatic diòerentiation arises
when an expression is a Halide function call. We need to construct a computation which

57 Diòerentiable Image Processing and Deep Learning in Halide

accumulates adjoints onto the called function in the face of non-trivial data dependencies
between the two functions. Chapter 4.3.2 describes this in detail.

We illustrate our algorithm on the example in Chapter 4.2, which performs gamma
correction on an image and computes the L2 distance between the output and some target
image. To compute the gradients of the distance with respect to the input image and the
gamma parameter, one would write:
// Obtain gradients with respect to image and gamma parameters
auto d_loss_d = propagate_adjoints(loss);
Func d_loss_d_g = d_loss_d(g);
Func d_loss_d_im = d_loss_d(im);

_roughout this chapter, we use the convention that preûxing a function’s name with
d_ refers to the gradient of that Halide function. We extend Halide with a key feature
propagate_adjoints. It takes a scalar Halide function and generates gradients in the
form of new Halide functions for every Halide function, buòer, and real number parameter
the output depends on. Our system can also be used as a component in other automatic
diòerentiation systems that compute gradients. In this case, the user can specify a non-scalar
Halide function and a buòer representing the adjoints of the function. Figure 4-3 shows the
computational graph for both the original and gradient computations.

4.3.2 Diòerentiating Halide Function Calls

An important diòerence between automatic diòerentiation in Halide and traditional au-
tomatic diòerentiation, is that Halide functions are deûned on multi-dimensional grids,
therefore function calls and the elements on the grids can have non-trivial aggregate interac-
tions.

Given each input-output pair of Halide functions, we synthesize a new Halide function
deûnition that accumulates the adjoint of the output function onto the adjoint of the input.
For performance, we want these new deûnitions to be as parallelizable as possible.

Scatter-gather conversion

Two cases require special care for correctness and eõciency. _e ûrst andmost important case
occurs when each output element reads and combines multiple input values. _is happens for
example in the simple convolution of Figure 4-4(a). We call this pattern a gather operation.

When computing gradients in reverse automatic diòerentiation, the natural reverse of this
gather is a scatter operation: each input writes to multiple elements of the output. Scattering
operations, however, are not naturally parallelizable since they may lead to race conditions on
write. For this reason, we want to convert scatters back to gathers whenever possible. We do

Diòerentiable Image Processing and Deep Learning in Halide 58

parallel gather

(a) forward 1D convolution

race condition

(b) backward general scatter

parallel gather

(c) backward with
our gather conversion

Figure 4-4: Scatter-to-gather conversion. Our compiler transform enables eõcient, parallel code. In
this example of a 1D 3-tap convolution, each dot represents a value in the input (resp. output) array.
_e forward computation (a) produces an output value from three inputs (the faded dots account
for boundary conditions). _is 3-tap reduction can easily be run in parallel over the output buòer
(green dots). Computing the adjoint operator by simply reversing the dependency graph (b), that
is by looping in parallel over the output nodes (orange), leads to race conditions since two inputs
might need to write to the same location in the input’s adjoint buòer (highlighted in red). _is is a
common issue with general scattering operations. Using our scatter-to-gather conversion, we convert
this backward operation to a reduction over d_out (the adjoint of a convolution is a correlation). In
turn, this transformed computation is readily parallelized over d_out’s domain (c).

this by shearing the iteration domain (e.g. [124]). To illustrate this transformation, consider
the following code that convolves a 1D signal with a kernel, also illustrated in Figure 4-4(a):

Func output;
output(x) = input(x - r.x) * kernel(r.x);

Assume that we are interested in propagating the gradient to input. _is is achieved by
reversing the dependency graph between the input and output variables as shown in Figure 4-
4(b). In code, this transformation would yield:
RDom ro;
d_input(ro.y - ro.x) += d_output(ro.y) * kernel(ro.x);

where ro.x iterates over the original r.x, and ro.y iterates over the domain of output. For
each argument in the calls to input, we replace the pure variables (x here) with reduction
variables that iterate over the domain of the output (in this case ro.y). r.x is renamed to
ro.x so we can merge the reduction variables into a single reduction domain ro.

_is new update deûnition cannot be computed in parallel over ro.y since multiple
ro.y - ro.x may write to the same memory location. A more eõcient way to compute the
update, illustrated in Figure 4-4(c), is to rewrite the same computation as follows:

d_output(x) = select(x >= a && x < b, d_output(x), 0.f);
d_input(x) += d_output(x + r.x) * kernel(r.x);

where a and b are the bounds of output. By shearing the iteration domain with the variable
substitution x = ro.y - ro.x, we havemade d_input parallelizable over x. Because Halide

59 Diòerentiable Image Processing and Deep Learning in Halide

Listing 1Derivatives generated by our algorithm for the bilateral slicing code in the le� of
Figure 4-2.

// We start with d_output, which contains the adjoint of output
// We propagate the derivatives from d_output to in and affine:
RDom ri(0, nci, 0, adjoints.channels());
d_in(x, y, ri.x, n) +=
d_output(x, y, ri.y, n) * affine(x, y, ri.y * (nci + 1), n);

d_affine(x, y, ri.y*(nci+1)+ri.x, n) +=
d_output(x, y, ri.y, n) * in(x, y, ri.x, n);

// Variable co is converted into a reduction variable rco.
RDom rco(0, adjoints.channels());
d_affine(x, y, rco*(nci+1)+nci, n) += d_output(x, y, rco, n);

// The derivatives are then propagated from affine to grid.
RDom rg(0, 2, 0, 2, 0, 2, 0, sigma_s, 0, sigma_s);
Expr inv_x = (x - rg[0]) * sigma_s + rg[3];
Expr inv_y = (y - rg[1]) * sigma_s + rg[4];
d_grid(x, y, fx + rg[2], c) +=
d_affine(inv_x, inv_y, c, n) * d_tent;

// d_tent is tent with (x, y) replaced by (inv_x, inv_y).
// The scattering operation is transformed by solving
// x == inv_x/sigma_s+rt.x and y == inv_y/sigma_s+rt.y
// for inv_x and inv_y.

// Finally, and less obviously, affine also depends on guide.
RDom rgu(0, 2, 0, 2, 0, 2, adjoints.channels());
Expr wxy = abs(rgu[0] - wx) * abs(rgu[1] - wy);
Expr wz = select(rgu[2] - wz > 0.f, 1.f, -1.f);
d_guide(x, y, n) +=
select(guide(x, y, n) >= 0.f && guide(x, y, n) <= 1.f,

d_affine(x, y, rgu[3], c, n)*wxy*wz*grid.channels(), 0.f);

only iterates over rectangles, and the sheared iteration domain is no longer a rectangle, we add
a zero-padding boundary condition to d_output, and iterate over a conservative bounding
box of the sheared domain:

ro.y x

<a

>b

We use Halide’s equation-solving tools to deduce the variable substitution to apply. For
each argument in a function call, we construct an equation e.g. u = x − rx and solve for x.
Importantly, we solve for the smallest interval of x where the condition holds, since x may
map to multiple values. _is may introduce new reduction variables, as in the following
upsampling operation:
output(x) = input(x/4);

Since x is an integer, 4 values in input are used to produce each value of output. Accordingly,
our converter will generate the following adjoint code:
RDom r(0, 4); // loops from 0 to 3
d_output(x) = d_input(4*x + r.x)

Diòerentiable Image Processing and Deep Learning in Halide 60

If any step of this procedure fails to ûnd a solution, we fall back to a general scattering
operation. It is still possible to parallelize general scatters using atomics. We added atomic
operations toHalide’s GPU backend to handle this case. A general scatter with atomics usually
remains signiûcantly less eõcient than our transformed code. For instance, the backward
pass of a 2D convolution layer applied to a 16× 16×256×256 input takes 68 ms using atomics
and 6 ms with our scatter-to-gather conversion.

Listing 1 shows some derivatives our system would generate for the bilateral slicing
example in the le� of Figure 4-2.

Diòerentiating in-place updates

_e second case requiring special care arises when an update overwrites some variables of
the function, introducing side eòects. We categorize the in-place update further into two
cases. In the ûrst case the update statements do not reference the variables being overwritten
(e.g. f(x) = 1.f), and in the second case the overwritten variables are referenced (e.g.
f(x) = 2 * f(x) + 1).

Diòerentiating an update without self-reference is simpler. For example, consider the
following forward code:
g(x) = f(x);
g(1) = 2.f; // update to f that overwrites a value
h(x) = g(x);

When backpropagating the adjoints, we need to propagate correctly through the chain of
update deûnitions. While h(x) depends on f(x) for most x (via g(x)), this is not true for
x==1. _e update deûnition to g hides the previous dependency on f(1). _e corresponding
gradient code is:
d_g_update(x) = d_h(x); // Propagate to the first update
d_g(x) = d_g_update(x); // Propagate to the initial definition
d_g(1) = 0.f; // Mask unwanted dependency
d_f(x) = d_g(x); // Propagate to f

In general, if we detect diòerent update arguments between two consecutive function updates
(in the example above, g(1) is diòerent from g(x)), we mask the adjoint of the ûrst update
to zero using the update argument of the second update.

In the second case, when the update overwrites an intermediate value, and the intermedi-
ate value is required for the derivative, the situation is more complicated. For example:
f(x) = g(x)
f(x) = f(x) * f(x)

_e gradient with respect to g requires the overwritten f(x), making it impossible to back-
propagate. Following is another example:

61 Diòerentiable Image Processing and Deep Learning in Halide

f(x) = 0
f(x) = 2 * f(x) + g(r.x)

In this case the reduction loop r.x introduces a dependency between the adjoint of g(r.x)
and the intermediate f(x). On the other hand, if there is only one self-reference, and the
adjoint to that self-reference is 1, then we can diòerentiate as usual without special treatment:

f(x) = 0
f(x) = f(x) + g(r.x)

_is is because all the intermediate f(x) share the same adjoint.
For the ûrst two examples, it is possible to rewrite the forward operation so that the update

no longer overwrites intermediate, in a way similar to the stack we used for recording inter-
mediate values in Chapter 2.3.1 and Pearlmutter and Siskind’s lambda calculus approach [167].
_e ûrst example can be rewritten as:

f_(x, 0) = g(x)
f_(x, 1) = f_(x, 0) * f_(x, 0)
f(x) = f_(x, 1)

While the second example can be rewritten as:
f_(x, 0) = 0
f_(x, r.x + 1) = 2 * f_(x, r.x) + g(r.x)
f(x) = f_(x, r.x.max() + 1)

It is possible for the compiler to do the rewrite automatically, but this transformation would
change the original algorithm, making manual scheduling more diõcult. We opt for more
predictive behavior of the compiler. _erefore we detect the following two cases and return
an error, asking the user to rewrite the function as above:

• We check if the derivatives depend on a previous value, and if that particular value has
been overwritten.

• For updates with reduction variables, unless the derivative of self-reference is 1 or 0,
and there is at most one self-reference, we check if the overwritten derivative is used
by others.

4.3.3 Checkpointing

Reverse-mode automatic diòerentiation on complex pipelines must traditionally deal with a
diõcult trade-oò. Memoizing values from the forward evaluation to be reused in the reverse
pass saves compute, but costs memory. Even with unlimited memory, bandwidth is limited,
so it can be more eõcient to recompute values. In automatic diòerentiation systems, this
trade-oò is addressed with checkpointing [218], which reduces memory usage by recomputing

Diòerentiable Image Processing and Deep Learning in Halide 62

parts of the forward expressions. Fortunately, this is just a speciûc instance of the general
recomputation-vs-memory trade-oò already addressed by Halide’s scheduling primitives.

For each function, we can decide whether to create an intermediate buòer for later reuse
(the compute_root construct), or recompute values at every call site (the compute_inline
construct). We can also compute these values at some intermediate granularity, i.e., by setting
its computation somewhere in the loop nest of their consumers (the compute_at construct).
Halide also allows checkpointing across diòerent Halide pipelines by using a global cache
(the memoize construct). _is is useful when the forward pass and backward pass are in
separately-compiled units.

As an example, consider the following 2D convolution implementation in Halide:
RDom rk, rt;
convolved(x, y) = 0.f;
convolved(x, y) += in(x - rk.x, y - rk.y) * kernel(rk.x, rk.y);
loss() = 0.f; // define an optimization objective
loss() += pow(convolved(rt.x, rt.y) - target(rt.x, rt.y), 2.f);
auto d = propagate_adjoints(loss);
Func d_in = d(in);

We are interested in d_in, the gradient of loss with respect to in. It is given by a cross
correlation of 2*(convolved-target) with kernel, where the cross correlation depends
on the values of convolved. Using the scheduling handles provided by Halide, we can easily
decide whether to cache the values of convolved for the gradient computation. For example,
if we write:

convolved.compute_root();

the values of convolved are computed once and will be fetched from memory when we need
them for the derivative d_in. On the other hand, if we write:

convolved.compute_inline();

the values of convolved are computed on-the-�y and no buòer is allocated to store them.
_is can be advantageous when the convolution kernel is small (say 2× 1) since this preserves
memory locality, or when the pipeline is much longer and we cannot aòord to store every
intermediate buòer.

Halide provides scheduling primitives that are more general than binary checkpointing
decisions. Fine-grained control over the schedule allows exploration of memory/recom-
putation trade-oòs in the forward and gradient code. For instance, we can interleave the
computation and storage of convolved with the computation of another Halide function
that consumes its value (in this case d_in). _e following code instructs Halide to compute
and store a tile of convolved for each 32 × 32 tile of d_in computed. _is oòers a potentially

63 Diòerentiable Image Processing and Deep Learning in Halide

faster balance between computing all of convolved before backpropagation, or recomputing
each of its pixels on-demand:

d_in.compute_root().tile(x, y, xi, yi, 32, 32);
convolved.compute_at(d_in, x); // compute at each tile of d_in

We timed the three schedules above by computing d_in. With multi-threading and
vectorization on a CPU, on an image with size of 2560 × 1600 and kernel size 1 × 5, the
compute_inline schedule takes 5.6 milliseconds while the compute_root schedule takes
10.1 milliseconds and the compute_at schedule takes 9.7 milliseconds. On the same image
but with kernel size 3 × 5, the compute_inline schedule takes 66.2 milliseconds while the
compute_root schedule takes 18.7 milliseconds and the compute_at schedule takes 12.3
milliseconds.

4.3.4 Automatic Scheduling

Halide’s built-in auto-scheduler [151] navigates performance trade-oòs well for stencil pipelines,
but struggles with patterns that arise when reversing their computational graph (Chap-
ter 4.3.2). In particular, it does not try to optimize large reductions, like those needed to
compute a scalar loss. It also does not generate GPU schedules for the current version of
Halide 3. _erefore we implemented a custom automatic scheduler for gradient pipelines.

Similar to Halide’s built-in auto-scheduler, we ask the user to provide an estimate of the
input and output buòer sizes. We then infer the extent of all the intermediate functions’
domains.

Our automatic scheduler checkpoints (compute_root) any stage that scatters or reduces,
along with those called by more than one other function. We leave any other functions to
be recomputed on-demand (compute_inline). For the checkpointed functions, we tile the
function domain and parallelize the computation over tiles when possible. Speciûcally, on
CPUs, we split the function’s domain into 2D tiles (16 × 16) and launch CPU threads for each
tile, vectorizing the innermost dimension inside a tile. On GPUs, we split the domain into
3D tiles (16 × 16 × 4). _e tiles are mapped to GPU blocks, and elements within a tile to GPU
threads. In both cases, we tile the ûrst two (resp. three) dimensions of the function’s domain
that are large enough. We split the domain if its dimensionality is too low.

If the function’s domain is not large enough for tiling, and the function performs a
large associative reduction, we transform it into a parallel reduction using Halide’s rfactor
scheduling primitive [203]. _is allows us to factorize the reduction into a set of partial

3Mullapudi et al.’s work did include experiments on GPU and ARM, but as the Halide compiler has evolved,
the original implementation was not able to consistently generate valid schedules.

Diòerentiable Image Processing and Deep Learning in Halide 64

reductions which we compute in parallel and a ûnal, serial reduction. Like before, we ûnd the
ûrst two dimensions of the reduction domain which are large enough for tiling. We reduce the
tiles in parallel over CPU threads (resp. GPU blocks). Within each 2D tile, we vectorize (resp.
parallelize overGPU threads) the column-wise reductions. We also implemented amulti-level
parallel reduction schedule but found it unnecessary in the applications presented. When
compiling to GPUs, if both the function domain and the reduction domain are large enough
for tiling, but the recursive update does not contain enough pure variables for parallelism,
we parallelize the reduction using atomics.

To allow control over checkpointing, the automatic scheduler decisions can be overridden.
We ask the user to provide optional lists of Halide functions they do or do not want to inline.
We currently do not use compute_at in our automatic scheduler.

4.4 Applications and Results

We generate gradients for pipelines in three groups of applications (Figure 4-1). First, we show
that our system can be integrated into existing deep learning systems to more easily develop
new custom operators. Second, we show that we can improve existing image processing
pipelines by optimizing their internal parameters on a dataset of training images. Finally, we
show how to use our derivatives to solve inverse imaging problems (i.e., optimizing for the
image itself).

Unless otherwise speciûed, we use our automatic scheduler (Chapter 4.3.4) to schedule
all the applications throughout the section (i.e., for both the forward code and the derivatives
we generate). _erefore, our implementation only requires the programmer to specify the
forward pass of the algorithm.

4.4.1 Custom Neural Network Layers

_e class of computations expressible with deep learning libraries such as Caòe [101], Py-
Torch [165], TensorFlow [1], or CNTK [234] is growing increasingly rich. Nonetheless, it is
still common for a practitioner to require a new, custom node tailored to their problem. For
instance, TensorFlow oòers a bilinear interpolation layer and a separable 2D convolution layer.
However, even a simple extension of these operations to 3D would require implementing a
new custom operator in C++ or CUDA to be linked with the main library. _is can already
be tedious and error-prone. Furthermore, while the forward algorithm is being developed,
the gradient must be re-derived by hand and kept in sync with the forward operator. _is
makes experimentation and prototyping especially diõcult. Finally, both the forward and

65 Diòerentiable Image Processing and Deep Learning in Halide

Table 4.1: Custom neural network operators. Performance of our approach for custom neural
network operators. _e runtime measures end-to-end latency for forward+backward evaluation.
_e spatial transformer transforms a batch of 4 × 16 × 512 × 512. _e Flownet node warps a batch of
4 × 64 × 512 × 512 images with a 2D warping ûeld. _e BilateralSlice layer processes images with size
4× 4× 1024× 1024 and grid size 4× 12× 64× 64. Measurements were made on an Intel Core i7-3770K
CPU @ 3.50GHz, with 16GB of RAM and an NVIDIA Titan X (Pascal) GPU with 12 GB of RAM.

operator SpatialTransformer Flownet BilateralSlice

PyTorch (cpu) 1094 ms 4240 ms 19819 ms
ours (cpu) 461 ms 2466 ms 1957 ms

PyTorch (gpu) 11 ms 482 ms 1440 ms
CNTK (gpu) 136 ms 404 ms 270 ms
manual CUDA (gpu) — 181 ms 430 ms
ours (gpu) 13 ms 178 ms 64 ms

backward implementations ought to be reasonably optimized so that a model can be trained
in a ûnite amount of time to verify its design.

We implemented a PyTorch backend for Halide so that our derivatives can be plugged into
PyTorch’s autograd system. We used this backend to re-implement custom operators recently
proposed in the literature: the transformation layer in the spatial transformer network [94],
the warping layer in Flownet 2.0 [92], and the bilateral slicing layer in deep bilateral learn-
ing [58]. _e performance of our automatically scheduled code matches highly-optimized
primitives written in CUDA, and is much faster than unoptimized code. We compare the
runtime of our method to PyTorch, CNTK, and hand-written CUDA code in Table 4.1.

Spatial transformer network

_e spatial transformer network of Jaderberg et al.[94] applies an aõne warp to an interme-
diate feature map of a neural network.

_e function containing the forward Halide code is 31 lines long excluding comments,
empty lines, and function declarations. Due to the popularity of this operator, deep learning
frameworks have implemented specialized functions for the layer. _e cuDNN library [39]
added its own implementation in version 5 (2016), a year a�er the original publication.
It took another year for PyTorch to implement a wrapper around the cuDNN code. We
compare our performance to PyTorch’s grid_sample and affine_grid functions which use
the cuDNN implementation on GPU. On 512 × 512 images with 16 channels and a batch
size of 4, our CPU code is around 2.3 times faster than PyTorch’s implementation, and our
GPU code is around 20% slower than the highly-optimized version implemented in cuDNN.
Currently, Halide does not support texture sampling on GPU, which could be causing some
of the slowdown. We also compare our performance to a CNTK implementation of spatial

Diòerentiable Image Processing and Deep Learning in Halide 66

transformer using the gather operation. Our GPU code is around 10 times faster than the
CNTK implementation.

Having ûxed functions such as affine_grid can be problematic when users want to
slightly modify their models and experiment with diòerent ideas. For example, changing
the interpolation scheme (e.g., bicubic or Lanczos instead of bilinear), or interpolating
over more dimensions (e.g., transforming volume data) would require implementing a new
custom operator. Using our system, these modiûcations only require minor code changes
to the forward algorithm. Our system then generates the derivatives automatically, and our
automatic scheduler provides performance without further eòort.

Warping layer

FlowNet 2.0 [92], which targets optical �ow applications, introduced a new 2D warping layer.
Compared to the previous spatial transformer layer, this warping layer is a more general
transform using a per-pixel warp-ûeld instead of a parametric transformation.

_e function containing the forward Halide code is 18 lines long. _e original warping
function was implemented as a custom node in Caòe. _e authors had to write the forward
and reverse code for both the CPU and GPU backends. In total it comprises more than
400 lines of code4. While the custom node can handle 2D warps well, adapting it to higher-
dimensional warps or semi-parametric warps would be challenging. Our system makes this
much easier. In addition to PyTorch and CNTK, we also compare the performance of our
GPU code with a highly-optimized reimplementation from NVIDIA5. _e performance of
our code is comparable to the highly-optimized CUDA code.

Bilateral slicing layer

Deep bilateral learning [58] is a general, high-performance image processing architecture
inspired by bilateral grid processing and local aõne color transforms. It can be used to
approximate complicated image processing pipelines with high throughput. _e algorithm
works by splatting a 2D image onto a 3D grid using a convolutional network. Each voxel of
the grid contains an aõne transformation matrix. A high-resolution guidance map is then
used to slice into the grid and produce a unique, interpolated, aõne transform to apply to
each input pixel. _e original implementation in TensorFlow had to implement a custom
node6 for the ûnal slicing operation due to the lack of an eõcient way to perform trilinear

4FlowNet 2.0: https://github.com/lmb-freiburg/flownet2/blob/master/src/
caffe/layers/flow_warp_layer.cu

5Nvidia FlowNet 2.0: https://github.com/NVIDIA/flownet2-pytorch
6https://github.com/mgharbi/hdrnet/blob/master/hdrnet/ops/bilateral_

slice.cu.cc

https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/flow_warp_layer.cu
https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/flow_warp_layer.cu
https://github.com/NVIDIA/flownet2-pytorch
https://github.com/mgharbi/hdrnet/blob/master/hdrnet/ops/bilateral_slice.cu.cc
https://github.com/mgharbi/hdrnet/blob/master/hdrnet/ops/bilateral_slice.cu.cc

67 Diòerentiable Image Processing and Deep Learning in Halide

kodak mcm vdp moiré time

bilinear 32.9 32.5 25.2 27.6 *127ms
Adobe Camera Raw 9 33.9 32.2 27.8 29.8 —
AHD [85] 36.1 33.8 28.6 30.8 *1618ms
ours (2 ûlters, 5x5) 36.7 34.7 29.4 31.5 71ms
ours (9 ûlters, 5x5) 36.8 35.2 29.8 31.7 177ms
ours (15 ûlters, 7x7) 37.3 35.5 30.1 32.0 324ms
Gharbi [57] 41.2 39.5 34.3 37.0 2932ms

Table 4.2: Performance-accurarcy trade-oòs. Peak signal-to-noise ratio for several demosaicking
techniques following the evaluation methodology of Gharbi et al. [57] (higher is better). We imple-
mented a version of AHD demosaicking algorithm [85] with our system. Despite the simplicity of
our approach, by relaxing the algorithm’s speciûcations (i.e. adding more ûlters on the green channel
reconstruction with larger footprints) and re-optimizing the parameters, we achieve higher ûdelity
(over 1 dB better) for a similar computational cost. While our method does not rival state-of-the-art
deep-learning-based techniques, it is signiûcantly faster and opens up new avenues to optimize more
parsimoniously parametrized algorithms tailored to the problem. (Timings reported for a 1 megapixel
image. (*)Timing for these algorithms is from non-optimized MATLAB code.)

interpolation on the grid. _is custom node also applies the aõne transformation on the �y to
avoid instantiating a high-resolution image containing all the aõne parameters at each pixel.
_e reference custom node had around 300 lines of CUDA code excluding comments and
empty lines. Using the recently introduced general scattering functionality, we can implement
the same operation directly in PyTorch. Figure 4-2 shows a comparison between our Halide
code, reference CUDA code, and PyTorch code.

PyTorch andCNTK implementations aremodestly more complex than our code. PyTorch
is 20 times slower while CNTK is 4 times slower on an 1024 × 1024 input with a grid size of
32×32×8 and a batch size of 4. CNTK is faster than PyTorch due to diòerent implementation
choices on the gather operations. _e manual CUDA code aims for clarity more than
performance, but is both more complicated and 6.7 times slower than our code.

Gharbi et al. [58] argue that training on high-resolution images is key to capturing the high-
frequency features of the image processing algorithm being approximated. Both the PyTorch
and CNTK code run out of memory on a 2048 × 2048 input with grid size 64 × 64 × 8 on a
Titan GPU with 12 GB of memory. _is makes it almost impossible to experiment with high-
resolution inputs. Our code is 13.7 times faster than the authors’ reference implementation
on this problem size.

4.4.2 Parameter Optimization for Image Processing Pipelines

Traditionally, when developing an image processing algorithm, a programmer manually
tunes the parameters of their pipeline to make it work well on a small test set of images.

Diòerentiable Image Processing and Deep Learning in Halide 68

AHD (19.6 dB) ours, 8 5 × 5 ûlters (24.7 dB) reference

AHD (19.7 dB) ours, 8 5 × 5 ûlters (21.4 dB) reference

Figure 4-5: Tuning demosaicking algorithms. We use our automatic gradients to relax the adaptive
homogeneity-directed demosaicing (AHD) algorithm (a) by adding more ûlters to interpolate the
green channel (8 instead of 2 here, with 5x5 footprint instead of 5x1). With this simple tweak, and by
optimizing the ûlters using our automatically generated derivatives, we can obtain sharper images in
diõcult cases (b), ûrst row. _e small-footprint of this simple demosaicking method nevertheless
inherits some of the limitations of AHD. In particular, it leads to artifacts in complex, moiré-prone
patterns (second row). Images are taken from the deep demosaicking dataset [57].

When the number of parameters is large, manually determining these parameters becomes
diõcult.

In contrast, modern deep learning methods achieve impressive results by using a large
number of parameters and many training images. We demonstrate that it is possible to apply
a similar strategy to general image processing algorithms, by augmenting the algorithm with
more parameters, and tuning these parameters through an oøine training process. Our
system provides the necessary gradients for this optimization. Users write the forward code
in Halide, and then optimize the parameters of the code using training images.

We demonstrate this with an image demosaicking algorithm based on the adaptive
homogeneity directed demosaicking [85] (AHD), and a non-blind image deconvolution
algorithm based on sparse adaptive priors [52].

69 Diòerentiable Image Processing and Deep Learning in Halide

blurred Fortunato
(25.39 dB)

ours
(27.37 dB)

reference

blurred Fortunato
(25.83 dB)

ours
(27.86 dB)

reference

Figure 4-6: Tuning deconvolution algorithms. We use automatic gradients to enhance Fortunato
and Oliveira’s non-blind deconvolution algorithm [52]. We use more iterations and automatically
train the weights, thresholds and ûltering parameters. We are able to get sharper results. On eight
randomly selected-images we achieve an average PSNR of 29.57 dB. Using the original algorithm with
its original parameters the PSNR is 28.51 dB. Image taken from ImageNet [45]

Image demosaicking

Demosaicking seeks to retrieve a full-color image from incomplete color samples captured
through a color ûlter array, where each pixel only contains one out of three red, green and
blue colors. Traditional demosaicking algorithms work well on most cases, but can exhibit
structured aliasing artifacts such as zippering andmoiré (Figure 4-5). Recent methods using
deep learning have achieved impressive results [57], however, the execution time is still
an issue for practical usage. We relax the adaptive homogeneity-directed demosaicking
algorithm (AHD) [85], variations of which are the default algorithms in Adobe Camera Raw
and dcraw. We increase the number of ûlters to interpolate the green channel. We also
ûne-tune the chrominance (red-blue) interpolation ûlters from the AHD reference. We
experiment with diòerent numbers of ûlters and ûlter sizes to explore the runtime versus
accuracy trade-oò. We optimized the ûlter weights on Gharbi et al.’s [57] training dataset
using the gradients provided by our system. _e results are illustrated in Table 4.2. With this
simple modiûcation, we obtain a signiûcant 1 to 1.5 dB improvement on the more diõcult
datasets (moiré and vdp), depending on the number of ûlters used. We also obtain visually

Diòerentiable Image Processing and Deep Learning in Halide 70

sharper images in many challenging cases, as shown in Figure 4-5.

With its limited footprint and ûltering complexity, our optimized demosaicking still
struggles onmoiré-prone textures. Our system allows users to experiment withmore complex
ideas without having to implement the derivatives at each step. For instance, we were able to
quickly experiment with (and ultimately discard) alternative algorithms (e.g. using ûlters
that take the ratio between colors into account and 1D directional ûlters).

Non-blind image deconvolution

_e task of non-blind image deconvolution is: given a point spread function and a blurry
image, which is the result of a latent natural image convolved with the function, recover the
underlying image. _e problem is highly ill-posed, therefore the quality of the reconstruction
heavily depends on the priors we place on the image. It is thus important to learn a good set
of parameters for those priors.

We based our implementation on the sparse adaptive prior proposed by Fortunato and
Oliveira [52]. _e original method works in a 2-stage fashion. In the ûrst stage, they solve
a conventional L2 deconvolution using a set of discrete derivative ûlters as the prior. _en
they use an edge-aware ûlter to clean up the noise in the image. In the second stage, another
L2 deconvolution is solved for large discrete derivatives by matching the prior terms to the
result of the ûrst stage, masked by a smooth thresholding function.

We extend the method by increasing the number of stages (we use 4 instead of 2), and
having a diòerent set of ûlters for the priors for each stage. We optimize the weights of the
prior ûlters, the smoothness parameters of the edge-aware ûlter (we use a bilateral grid), and
the thresholding parameters in the smooth thresholding functions.

To demonstrate the ability of our system to handle nested derivatives, we implemented a
generic conjugate gradient solver using a linear search algorithm based on Newton-Raphson
to solve for the L2 deconvolution. We write the conjugate gradient loop in PyTorch, but
implement the gradient and vector-Hessian-vector product (required in the line search step)
in Halide. We also implemented the bilateral grid ûltering step in Halide. To optimize the
parameters, we then diòerentiate through the gradients we used for the non-linear conjugate
gradient algorithm. We train our method on ImageNet [45] and use the point spread function
generation scheme described in Kupyn et al.’s work [119]. We initialize the parameters to the
recommended parameters described in Fortunato and Oliveira’s work. Figure 4-6 shows the
result.

71 Diòerentiable Image Processing and Deep Learning in Halide

(a) dcraw (AHD)
single frame

(b) Gharbi et al. [57]
single frame

(c) our output R

Figure 4-7: Gradients for inverse problems. Automatic gradients can be used for inverse problems
such as high-resolution demosaicking from a burst of images. _e user only needs to implement the
forward model. Bursts of RAW images are captured with a Nikon D810 camera then jointly aligned
and demosaicked (13 and 23 images respectively, only showing crops). We initialize our reconstruction
to a simple bilinear interpolation (not shown) and solve an inverse problem to recover both a set of
homographies and a demosaicked image that matches the captured data when reprojected. Compared
to the result of dcraw’s AHD algorithm (a) and Gharbi et al. [57] (b), our output (c) is much sharper,
and shows less noise (red square) and color moiré (green square).

4.4.3 Inverse Imaging Problems: Optimizing for the Image

_e derivatives produced by our automatic diòerentiation algorithm can be readily employed
to solve inverse problems in computational photography. Using our system, users can quickly
experiment with diòerent forward models or diòerent priors. We demonstrate this on a
burst-demosaicking inverse pipeline.

Given N misaligned Bayer RAW images, our goal is to reconstruct a full-color image as
well as estimate the homography parameters that align our reconstruction to the input data.
We do this by minimizing the following cost function:

min
R,H i

N
∑
i=1
⋃︀⋃︀MHiR − Ii ⋃︀⋃︀22 + λ⋃︀⋃︀∇R⋃︀⋃︀1 (4.1)

Diòerentiable Image Processing and Deep Learning in Halide 72

(a) lens optimization

original optimized target

(b) inverse �uid simulation

Figure 4-8: Non-image-processing applications. Halide augmented with gradients is useful for a
wider range of applications than just image processing and machine learning. (a) By expressing a
ray tracer for an optical system in Halide and taking derivatives of sharpness with respect to the lens
parameters, we can reoptimize a classic Zeiss lens design [125] (above) to be more compact (below)
while maintaining as much sharpness as possible. (b) We can also optimize for �uid simulation, by
taking a key frame from an original animation, and optimizing it to be as similar as possible to the
target. We implement stable �uid [201] in Halide and optimize for the force ûeld per frame, diòusion
constant, viscosity, and time step size to make the last frame of the animation match the target.

where M decimates the color samples according to the Bayer mosaic pattern. _e homogra-
phies Hi align our reconstruction R to the input data Ii .

Gradient descent can help us minimize the function locally, but Equation 4.1 is highly
non-convex, so a good initialization is critical. We initialize the Hi using RANSAC [51]
and SIFT-based features [139] in a pairwise fashion. We also initialize R = I0. _is part is
implemented in OpenCV7. From this starting point, we jointly reûne the alignment and
our estimate of the full-color image by minimizing the loss function (4.1). Compared to
any individual image Ii , our reconstruction is sharper, and does not suòer from color moiré
artifacts (Figure 4-7). We use the Adam gradient-descent optimizer [115] for 300 iterations,
setting the learning rate to 10−2 for R and 10−4 for Hi . Our algorithm provides the gradient of
the loss with respect to the reconstructed image R and homographies Hi . We set λ = 10−3.
For 13 2048 × 2048 images, computing the initial homographies takes 44.5s, initializing the
reconstruction 0.1s. Minimizing the cost function takes 179.4s using the code generated by
our automatic scheduler on a Titan X (Pascal) GPU.

4.4.4 Non-image-processing Applications

While we focus on image processing, Halide can express any feed-forward pipeline of arith-
metic on multi-dimensional arrays (Figure 4-8). _ere are numerous non-imaging appli-
cations in this class, and taking derivatives is useful for many of them. We implement two

7OpenCV: https://github.com/opencv/opencv

73 Diòerentiable Image Processing and Deep Learning in Halide

examples of this. First, we implemented a simple ray-tracer for a system of spherical lenses
in Halide, and used our system to construct derivatives of the sharpness with respect to the
lens positions and curvatures. In Figure 4-8a, we start from an existing Zeiss design [125]
and re-optimize it to be more compact while maintaining the ûeld of view, F-number, and
sharpness.

Secondly, we implement a classical grid-based �uid simulation algorithm [201] and use
our system to diòerentiate the whole �uid simulation process. We implement a �uid control
system (Figure 4-8b). Given a target keyframe and an initial sequence of simulation images,
we try to ûnd a source force that “bends” the �uid to the desired image. We optimize for the
force ûelds per frame, diòusion constant, viscosity, and time step size. _is is not a novel
application, but previously the derivatives were hand-derived [210, 148], while our system is
capable of generating derivatives automatically, and adapt to new simulation algorithms.

4.4.5 Future Work

As these applications demonstrate, our system automatically delivers state of the art perfor-
mance when computing the gradients of general image processing pipelines. We see three
major directions for future work.

Higher-order derivatives and non-scalar outputs. Some optimization methods require
derivatives of non-scalar outputs, the full Hessian matrix, or even higher-order deriva-
tives [60]. Our system supports repeated or nested application of diòerentiation. However,
it only diòerentiates with respect to one scalar at a time. When the dimensionality of both
the input and the output are high, there are automatic diòerentiation algorithms that are
more eõcient than both forward- and reverse-mode (Chapter 2.2.3). Incorporating these
algorithms into our system, and developing better interfaces for non-scalar outputs and
higher-order derivatives, will broaden the range of possible applications.

Better automatic scheduling. While it is possible to manually schedule the synthesized
reverse computation, we found it challenging for non-trivial examples, and relied on our
automatic scheduler entirely for this work. Its performance is good for gradient pipelines, but
inspecting the generated code reveals plenty of room for further improvement. We consider
the general Halide automatic scheduling problem still unsolved.

More general programming model. Halide assumes all operations are performed on a
multi-dimensional grid. While this is a rather general programming model, there are many
operations outside of image processing that are ill-suited for this model, such as sparse

Diòerentiable Image Processing and Deep Learning in Halide 74

matrix multiplication or tree traversal. Generalizing Halide to handle diòerentiation of these
operations, or developing new diòerentiable programming language to explore diòerent
trade-oòs are both interesting directions.

4.5 Conclusion
Gradient-based optimization is revolutionizing many ûelds including image processing, but
eõcient computation of derivatives has so far been diõcult, requiring one to either conform
to limited building blocks or to error-prone manual derivation and challenging performance
tuning. In contrast, our method can automatically generate high-performance gradient code
for general image processing pipelines. Our method only requires the implementation of the
operators in a language that is concise, easy to maintain, and portable. It then automatically
derives the gradient code using reverse automatic diòerentiation. We have presented a new
automatic performance tuner that handles the particular computation patterns exhibited by
derivatives. Our code compiles to a variety of platforms such as x86, ARM, and GPUs, which
is critical both for ûnal deployment and for eõcient training.

We have demonstrated that our work enables several types of applications, from custom
neural network nodes, to the tuning of internal image processing parameters, to the solution
of inverse problems. It dramatically simpliûes the exploration of custom neural network
nodes by automatically providing a level of performance that has so far been reserved to
advanced CUDA programmers. It makes it easy to optimize internal weights and parameters
for general image-processing pipelines, a step that few practitioners feel they can aòord
due to the cost of implementing gradients, which is especially true during the algorithmic
exploration stages. Our system can also be used for inverse problems (which can even include
unknown imaging parameters in addition to the unknown image). _e user now only needs
to worry about implementing the forward model. Each of the demonstrated applications was
implemented initially in a few hours, and then evolved rapidly, with correct gradients and
high-performance implementation automatically provided at each step by our method. We
believe this will create new opportunities for rapid research and development in learning-
and optimization-based imaging applications.

5 | Diòerentiable Monte Carlo Ray Tracing
through Edge Sampling

(a) initial guess (b) photograph (c) camera
gradient

(d) table albedo
gradient

(e) light
gradient

(f) our ûtted
result

Figure 5-1: Diòerentiable Monte Carlo ray tracing. We develop a general-purpose diòerentiable
renderer that is capable of handling general light transport phenomena. Our method generates
gradients with respect to scene parameters, such as camera pose (c), material parameters (d), mesh
vertex positions, and lighting parameters (e), from a scalar loss computed from the output image.
(c) shows the per-pixel gradient contribution of the L1 diòerence with respect to the camera moving
into the screen. (d) shows the gradient with respect to the red channel of table albedo. (e) shows
the gradient with respect to the green channel of the intensity of one light source. As one of our
applications, we use our gradient to perform an inverse rendering task by matching a real photograph
(b) starting from an initial conûguration (a) with a manual geometric recreation of the scene. _e
scene contains a ûsheye camera with strong indirect illumination and non-Lambertian materials. We
optimize for camera pose, material parameters, and light source intensity. Despite slight inaccuracies
due to geometry mismatch and lens distortion, our method generates an image (f) that almost matches
the photo reference.

_e increasing importance of derivatives-based optimization creates a need for rendering
algorithms that can be diòerentiated with respect to arbitrary input parameters, such as
camera location and direction, scene geometry, lights, material appearance, or texture values.
Unfortunately, the rendering integral includes visibility terms that are not diòerentiable at
object boundaries. Whereas the ûnal image function is usually diòerentiable once radiance
has been integrated over pixel preûlters, light source areas, etc., the integrand of rendering
algorithms is not. In particular, the derivative of the integrand has Dirac delta terms at
occlusion boundaries that cannot be handled by traditional sampling strategies.

Previous work in diòerentiable rendering [137, 109] has focused on fast, approximate

75

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 76

solutions using simpler rendering models that only handle primary visibility, and ignore
secondary eòects such as shadows and indirect light. Analytical solutions exist for diòuse
interre�ection [9] but are diõcult to generalize for arbitrary material models. _e work
by Ramamoorthi et al. [173] is an exception but it only diòerentiates with respect to image
coordinates, whereas we want derivatives with respect to arbitrary scene parameters. Other
previous work usually also relies on ûnite diòerences, with the usual limitation of these
methods when the function is complex, namely that these methods work well for simple
conûgurations but they do not propose a comprehensive solution to the full light transport
equation.

In this chapter, we propose an algorithm that is, to the best of our knowledge, the ûrst to
compute derivatives of scalar functions over a physically-based rendered imagewith respect to
arbitrary input parameters (camera, light materials, geometry, etc.). Our solution is stochastic
and builds on Monte Carlo ray tracing [105]. For this, we introduce new techniques to
explicitly sample edges of triangles in addition to the usual solid angle sampling of traditional
approaches. _is requires new spatial acceleration strategies and importance sampling to
eõciently sample edges. Our method is general and can sample derivatives for arbitrary
bounces of light transport. _e running times we observed range from a second to a minute
depending on the required precision, for an overhead of roughly 10 × −20× compared to
rendering an image alone.

We integrate our diòerentiable ray tracer with the automatic diòerentiation library Py-
Torch [165] for eõcient integration with optimization and learning approaches. _e scene
geometry, lighting, camera, and materials are parameterized by PyTorch tensors, which
enables a complex combination of 3D graphics, light transport, and neural networks. Back-
propagation runs seamlessly across PyTorch and our renderer.

5.1 RelatedWork

5.1.1 Inverse Graphics

Inverse graphics techniques seek to ûnd the scene parameters given observed images. Vision
as inverse graphics has a long history in both computer graphics and vision (e.g. [14, 235, 166]).
Many techniques in inverse graphics use derivatives of the rendering process for inference.

Blanz and Vetter [24] optimized for the shape and texture of a face. Shacked and Lischin-
ski [194] andBousseau et al. [25] optimized a perceptualmetric for lighting design. Gkioulekas
et al. [62, 61] focused on scattering parameters. Aittala et al. [4, 5, 3] inferred spatially vary-
ing material properties. Barron et al. [12] proposed a solution to jointly optimize shape,

77 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

illumination, and re�ectance. Khungurn et al. [114] and Zhao et al. [242] concentrated on
optical properties of fabrics. All of the above approaches use gradients for solving the inverse
problem, and had to develop a specialized solver to compute the gradient of the speciûc light
transport scenarios they were interested in.

Loper and Black [137] and Kato et al. [109] proposed two general diòerentiable rendering
pipelines. Rhodin et al. [177] developed a diòerentiable volumetric ray caster. Liu et al. [134]
diòerentiated rendering process for inverse geometry editing. Athalye et al. [10], Zeng et al. [237],
and Liu et al. [135] all use diòerentiable rasterizers for adversarial example synthesis. All of
them focus on performance and approximate the primary visibility gradients when there
are multiple triangles inside a pixel, and assume Lambertian materials and do not compute
shadows and global illumination.

Recently, it is increasingly popular for deep learning methods to incorporate a diòeren-
tiable rendering layer in their architecture (e.g. [133, 178]). _ese rendering layers are usually
special purpose and do not handle geometric discontinuities such as primary visibility and
shadow.

To our knowledge, our method is the ûrst that is able to diòerentiate through a full path
tracer, while taking the geometric discontinuities into account.

5.1.2 Derivatives in Rendering

Analytical derivatives have been used for computing the footprint of light paths [196, 90, 204]
and predicting the changes of specular light paths [37, 97, 106]. _e derivatives are usually
manually derived for the particular type of light paths the work focused on, making it diõcult
to generalize to arbitrary material models or lighting eòects. Unlike these methods, we
compute the gradients using a hybrid approach that mixes automatic diòerentiation and
manually derived derivatives focusing on the discontinuous integrand.

Arvo [9] proposed an analytical method for computing the spatial gradients for irradiance.
_e method requires clipping of triangle meshes in order to correctly integrate the form
factor, and does not scale well to scenes with large complexity. It is also diõcult or impossible
to compute closed-form integration for arbitrary materials.

Ramamoorthi et al.’s work on ûrst order analysis of light transport [173] is highly related to
our method. _eir method is a special case of ours. Our derivation generalizes their method
to diòerentiate with respect to any scene parameters. Furthermore, we handle primary
visibility, secondary visibility, and global illumination.

Irradiance or radiance caching [224, 117, 99] numerically computes the gradient of inter-
re�ection with respect to spatial position and orientation of the receiver. To take disconti-

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 78

(a) area sampling (b) edge sampling

Figure 5-2: Area sampling v.s. edge sampling. (a) _e ûgure shows a pixel overlapped with two
triangles. We are interested in computing the derivative of pixel color with respect to the green
triangle moving up. Since the area covered by the green triangle increases, the ûnal pixel color will
contain more green area and less white background. Traditional area sampling (yellow samples) even
instrumented with automatic diòerentiation does not account for the change in the covered area. (b)
In addition to traditional area sampling, we propose a novel edge sampling algorithm (blue samples)
to sample the diòerential area on the edges. Our method computes unbiased gradients and correctly
takes occlusion into account.

nuities into account, these methods resort to stratiûed sampling. Unlike these methods, we
estimate the gradient integral directly by automatic diòerentiation and edge sampling.

In Chapter 6, we propose a variant of the Metropolis light transport [216] algorithm by
computing the Hessian of a light path contribution with respect to the path parameters using
automatic diòerentiation. It focuses on second-derivatives for forward rendering and does
not take geometric discontinuities into account. We will discuss more in Chapter 6.

5.2 Method

Our task is the following: given a 3D scene with a continuous parameter set Φ (including
camera pose, scene geometry, material and lighting parameters), we generate an image using
the path tracing algorithm [105]. Given a scalar function computed from the image (e.g. a
loss function we want to optimize), our goal is to backpropagate the gradient of the scalar
with respect to all scene parameters Φ.

_e pixel color is formalized as an integration over all light paths that pass through the
pixel ûlter. We use Monte Carlo sampling to estimate both the integral and the gradient of the
integral [213, 168]. However, since the integrand is discontinuous due to edges of geometry
and occlusion, traditional area sampling does not correctly capture the changes due to camera
parameters or triangle vertex movement (Figure 5-2 a). Mathematically, the gradient of the
discontinuous integrand is a Dirac delta function, therefore traditional sampling has zero

79 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

(a) half-spaces

zero contribution

(b) occlusion

Figure 5-3: Edge sampling. (a) An edge splits the space into two half-spaces fu and fl . If the edge
moves right, the green area increases while the white area decreases. We integrate over edges to
compute gradients by taking into account the change in areas. To compute the integration, we sample
a point (the blue point) on the edge and compute the diòerence between the half-spaces by computing
the color on the two sides of the edge. (b) Our method handles occlusion correctly since an occluded
sample will land on the continuous part of the path contribution function, thus having the exact same
contribution on the two sides (for example, the grey sample has zero contribution to the gradient).

probability of capturing the Dirac deltas.
Our strategy for computing the gradient integral is to split it into smooth and discontinu-

ous regions (Figure 5-2). For the smooth part of the integrand (e.g. Phong shading or trilinear
texture reconstruction), we employ traditional area sampling with automatic diòerentiation.
For the discontinuous part, we use a novel edge sampling method to capture the changes
at boundaries. In this section, we ûrst focus on primary visibility where we only integrate
over the 2D screen-space domain (Chapter 5.2.1). We then generalize the method to handle
shadow and global illumination (Chapter 5.2.2).

We focus on triangle meshes and we assume the meshes have been preprocessed such
that there is no interpenetration. We also assume no point light sources and no perfectly
specular surfaces. We approximate these with area light sources and materials with very low
roughness. We also focus on static scenes and leave integration over the time dimension for
motion blur as future work.

5.2.1 Primary Visibility
We start by focusing on the 2D pixel ûlter integral for each pixel that integrates over the pixel
ûlter k and the radiance L, where the radiance itself can be another integral that integrates over
light sources or the hemisphere. We also focus on linear projective cameras for simplicity.
We will generalize the method to handle discontinuities inside the radiance integral in
Chapter 5.2.2. We will also generalize to nonlinear projections such as ûsheye cameras in

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 80

Chapter 5.2.3. _e pixel color I can be written as:

I =∬ k(x , y)L(x , y)dxdy. (5.1)

For notational convenience, we will combine the pixel ûlter and radiance and call them
scene function f (x , y) = k(x , y)L(x , y). We are interested in the gradients of the integral
with respect to some parameters Φ in the scene function f (x , y; Φ), such as the position of a
mesh vertex or camera pose:

∇I = ∇∬ f (x , y; Φ)dxdy. (5.2)

_e integral usually does not have a closed-form solution, especially when more complex
eòects such as non-Lambertian materials are involved. _erefore we rely on Monte Carlo
integration to estimate the pixel value I:

I ≈ 1
N ∑i

f (xi , yi ; Φ), (5.3)

where N is the number of samples we use for pixel I, and xi , yi are the screen-space samples.
Unfortunately, we cannot take the naive approach of applying the sameMonte Carlo estimator
for the gradient ∇I, since the scene function f is not necessarily diòerentiable with respect
to the scene parameters (Figure 5-2a).

A key observation is that all the discontinuities happen at triangle edges, since we assume
no interpenetration. _is allows us to explicitly integrate over the discontinuities. A 2D
triangle edge splits the space into two half-spaces (fu and fl in Figure 5-3). We can model it
as a Heaviside step function θ:

θ(α(x , y)) fu(x , y) + θ(−α(x , y)) fl(x , y), (5.4)

where fu represents the upper half-space, fl represents the lower half-space, and α deûnes
the edge equation formed by the triangles.

For each edge with two endpoints (ax , ay), (bx , by), we can construct the edge equation
by forming the line α(x , y) = Ax +By +C, since we assume we are using a projective camera.
If α(x , y) > 0 then the point is in the upper half-space, and vice versa. For the two endpoints
of the edge α(x , y) = 0. Hence, by plugging in the two endpoints we obtain:

α(x , y) = (ay − by)x + (bx − ax)y + (axby − bxay). (5.5)

81 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

We can rewrite the scene function f as a summation of Heaviside step functions θ with
edge equation αi multiplied by an arbitrary function fi :

∬ f (x , y)dxdy = ∑
i
∬ θ(αi(x , y)) fi(x , y)dxdy. (5.6)

fi itself can containHeaviside step functions: for example, a triangle deûnes amultiplication of
three Heaviside step functions. Occlusion can also be modeled by multiplying step functions
from other edges closer to the camera. fi can even be an integral over light sources or the
hemisphere. _is is crucial for our later generalization to secondary visibility.

We want to analytically diòerentiate the Heaviside step function θ and explicitly integrate
over its derivative – the Dirac delta function δ. To do this we ûrst swap the gradient operator
inside the integral, then we use the product rule to separate the integral into two:

∇∬ θ(αi(x , y)) fi(x , y)dxdy

=∬ δ(αi(x , y))∇αi(x , y) fi(x , y)dxdy +∬ ∇ fi(x , y)θ(αi(x , y))dxdy.
(5.7)

Equation (5.7) shows that we can estimate the gradient using two Monte Carlo estimators.
_e ûrst one estimates the integral over the edges of triangles containing the Dirac delta
functions, and the second estimates the original pixel integral except the smooth function fi
is replaced by its gradient, which can be computed through automatic diòerentiation.

To estimate the integral containing Dirac delta functions, we eliminate the Dirac function
by performing a variable substitution to rewrite the ûrst term containing the Dirac delta
function to integrate over the edge, that is, over the regions where αi(x , y) = 0:

∬ δ(αi(x , y))∇αi(x , y) fi(x , y)dxdy = ∫
α i(x ,y)=0

∇αi(x , y)
∫︁∇x ,yαi(x , y)∫︁

fi(x , y)dσ(x , y),

(5.8)
where ∫︁∇x ,yαi(x , y)∫︁ is the L2 length of the gradient of the edge equations αi with respect
to x , y, which takes the Jacobian of the variable substitution into account. σ(x , y) is the
measure of the length on the edge [88].

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 82

_e gradients of the edge equations αi are:

∫︁∇x ,yαi∫︁ =
⌉︂
(ax − bx)2 + (ay − by)2

∂αi

∂ax
= by − y, ∂αi

∂ay
= x − bx

∂αi

∂bx
= y − ay ,

∂αi

∂by
= ax − x

∂αi

∂x
= ay − by ,

∂αi

∂y
= bx − ax .

(5.9)

As a byproduct of the derivation, we also obtain the screen space gradients ∂
∂x and

∂
∂y , which

can potentially facilitate adaptive sampling as shown in Ramamoorthi et al.’s ûrst-order
analysis [173]. We can obtain the gradient with respect to other parameters, such as camera
parameters, 3D vertex positions, or vertex normals by propagating the derivatives from the
projected triangle vertices using the chain rule:

∂α
∂p

= ∑
k∈{x ,y}

∂α
∂ak

∂ak

∂p
+ ∂α

∂bk

∂bk

∂p
, (5.10)

where p is the desired parameter.

We use Monte Carlo sampling to estimate the Dirac integral (Equation (5.8)). Recall that
a triangle edge deûnes two half-spaces (Equation (5.4)), therefore we need to compute the
two values fl(x , y) and fu(x , y) on the edge (Figure 5-3). By combining Equation (5.4) and
Equation (5.8), our Monte Carlo estimation of the Dirac integral for a single edge E on a
triangle can be written as:

1
N

N
∑
j=1

∏︁E∏︁∇αi(x j, y j)(fu(x j, y j) − fl(x j, y j))
P(E) ∫︁∇x j ,y jαi(x j, y j)∫︁

, (5.11)

where ∏︁E∏︁ is the length of the edge and P(E) is the probability of selecting edge E.

In practice, we use a path tracer to evaluate the values on the two sides of an edge (fl(x , y)
and fu(x , y)). We trace two light paths from the screen space position (x , y), and oòset them
by a small amount (say, 10−6). We use the same random number sequence for both light paths
to minimize the variance through correlated sampling. Note that this is diòerent from ûnite
diòerences: we do not move the target parameter to acquire their derivatives.

If we employ smooth shading, most of the triangle edges are in the continuous regions and
the Dirac integral is zero for these edges since by deûnition of continuity fu(x , y) = fl(x , y).
Only the silhouette edges (e.g. [83]) have non-zero contribution to the gradients. We select

83 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

Figure 5-4: Parallel edges. Our method almost always handles occlusion correctly. However, it can
produce incorrect results in the pathological case where two edges are exactly parallel to the viewport.
If we sampled the occluded parallel edge, we consider it occluded and wrongly ignore the color of
the occluded triangle. If we sampled the edge that occludes other parallel edges, we do not take
the occluded triangle color into consideration. Fortunately, this is a zero-measure case and it rarely
happens in practice.

the edges by projecting all triangle meshes to screen space and clip them against the camera
frustum. We select one silhouette edge with probability proportional to the screen space
lengths. We then uniformly pick a point on the selected edge. For thin-lens camera that
produce depth-of-ûeld eòects, we use the center of the camera pupil as the basis of projection,
and we conservatively test the silhouette using the four corners of the pupil bounding box.

Our method handles occlusion correctly, since if the sample is blocked by another surface,
(x , y) will always land on the continuous part of the contribution function f (x , y). Such
samples will have zero contribution to the gradients. Figure 5-3b illustrates the process.
However, in the pathological case where two edges are exactly parallel to the viewport
(Figure 5-4), we can compute the wrong result. _is is because occlusion is modeled as
a multiplication between two Heaviside step functions in Equation (5.6), and if two step
functions coincide exactly, we completely mask the occluded edge and wrongly ignore its
contribution. In theory, this can be resolved by detecting parallel edges in the ray casting
operation, and properly breaking even: If we sampled an edge occluded by a parallel edge,
treat it as not occluded. On the other hand, if we sampled an edge that occludes other parallel
edges, set the other half-space to the occluded triangle. However, since this is a zero-measure
case and we never observe it in practice, we do not implement it at the moment.

To recap, we use two sampling strategies to estimate the gradient integral of pixel ûlter
(Equation (5.2)): one for the discontinuous regions of the integrand (ûrst term of Equa-
tion (5.7)), one for the continuous regions (second term of Equation (5.7)). To compute the
gradient for discontinuous regions, we need to explicitly sample the edges. We compute the
diòerence between two sides of the edges using Monte Carlo sampling (Equation (5.11)).

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 84

light source

blocker

shading point

(a) secondary visibility

edge surface element

scene surface element

(b) width correction

Figure 5-5: (a) Ourmethod can be easily generalized to handle shadow and global illumination. Similar
to the primary visibility case (Figure 5-3), a geometry edge (v0, v1) and the shading point p splits
the 3D space into two half-spaces fu and fl and introduces a discontinuity. Assuming the blocker is
moving right, we integrate over the edge to compute the diòerence. By doing so we take account of
the increase in blocker area and the decrease in light source area looking from the shading point. _e
integration over the edge is deûned on the intersection between the scene manifold and the plane
formed by the shading point and the edge (the semi-transparent triangle). (b) _e orientation of the
inûnitesimal width of the edge diòers from the scene surface element the edge intersects with. During
the integration, we need to project the scene surface element width onto the edge surface element.
_e ratio of the widths between the two is determined by 1

sin θ , which is one over the length of the
cross product between the normal of the edge plane and the scene surface.

5.2.2 Secondary visibility

Ourmethod can be easily generalized to handle eòects such as shadow and global illumination
by integrating over the 3D scene. Figure 5-5 illustrates the idea.

We focus on a single shading point p since we can propagate the derivatives back to screen
space and camera parameters using Equation (5.7). Given the shading point, the shading
equation involves integration over all points m on the scene manifoldℳ:

g(p) = ∫
ℳ

h(p,m)dA(m), (5.12)

where A is the area measure of point m, and h is the scene function including material
response, geometric factor, incoming radiance, and visibility. Note that g(p) can itself be
part of the pixel integrand f (x , y) in the previous section (Equation (5.1)). _erefore we
can propagate the gradient of g(p) using the chain rule or automatic diòerentiation with
Equation (5.7).

Similar to the primary visibility case, an edge (v0, v1) in 3D introduces a step function

85 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

into the scene function h:

θ(α(p,m))hu(p,m) + θ(−α(p,m))hl(p,m). (5.13)

We can derive the edge function α(m) by forming a plane using the shading point p and the
two points on the edge. _e sign of the dot product between the vector m − p and the plane
normal determines the two half-spaces. _erefore, the edge equation α(m) can be deûned by

α(p,m) = (m − p) ⋅ (v0 − p) × (v1 − p) . (5.14)

To compute the gradients, we analogously apply the derivation used for primary visibility,
using the 3D version of Equation (5.7) and Equation (5.8) with x , y replaced by p,m. _e
edge integral integrating over the line on the scene surface, analogous to Equation (5.8) is:

∫
α(p,m)=0

∇α(p,m)
∏︁∇mα(p,m)∏︁

h(p,m) 1
∏︁nm × nh∏︁

dσ ′(m)

nh =
(v0 − p) × (v1 − p)
∏︁(v0 − p) × (v1 − p)∏︁

,
(5.15)

where nm is the surface normal on point m. _ere are two crucial diòerences between the 3D
edge integral (Equation (5.15)) and the previous screen space edge integral (Equation (5.8)).
First, while the measure of the screen space edge integral σ(x , y) coincides with the unit
length of the 2D edge, the measure of the 3D edge integral σ ′(m) is the length of projection
of a point on the edge from the shading point p to a point m on the scene manifold (the
semi-transparent triangle in Figure 5-5a illustrates the projection). Second, there is an extra
area correction term ∏︁nm × nh∏︁, since we need to project the scene surface element onto the
inûnitesimal width of the edge (Figure 5-5b).

To integrate the 3D edge integral using Monte Carlo sampling we substitute the variable
again from the point m on the surface to the line parameter t on the edge v0 + t(v1 − v0):

∫
1

0

∇α(p,m(t))
∏︁∇mα(p,m(t))∏︁

h(p,m(t)) ∏︁Jm(t)∏︁
∏︁nm × nh∏︁

dt, (5.16)

where the Jacobian Jm(t) is a 3D vector describing the projection of edge (v0, v1) onto the
scene manifold with respect to the line parameter. We derive the Jacobian in Appendix 5.A.

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 86

Figure 5-6: Cameras with non-linear projection. Our method can also be extended to work with
cameras with non-linear projection, such as a ûsheye camera as shown in this ûgure. Gradients of these
camera models cannot be computed directly using the 2D edge sampling described in Section 5.2.1
and Figure 5-3, because the projection of edges are not straight lines. Instead of sampling the projected
edge in screen space, we directly sample the edge (v0, v1) in the 3D space, and use the 3D step function
as in the secondary visibility case to split the spaces into two half-spaces hu and hl (Section 5.2.2 and
Figure 5-5).

_e derivatives for α(p,m) needed to compute the edge integral are:

v0
′ = v0 − p, v1

′ = v1 − p, m′ = m − p

∏︁∇mα(p,m)∏︁ = ∏︁v0
′ × v1

′∏︁

∇v0α(p,m) = v1
′ ×m′

∇v1α(p,m) = m′ × v0
′

∇pα(p,m) = v0
′ × v1

′ +m′ × v1
′ + v0

′ ×m′.

(5.17)

Eõcient Monte Carlo sampling of secondary edges is more involved. Unlike primary
visibility where the viewpoint does not change much, shading point p can be anywhere in
the scene. _e consequence is that we need a more sophisticated data structure to prune the
edges with zero contribution. Chapter 5.3 describes the process for importance sampling
edges.

5.2.3 Cameras with Non-linear Projections

In Chapter 5.2.1, we desribed how we compute gradients for projective cameras. In this
subsection, we discuss generalization of the camera model to handle non-linear projections.
_ese cameras need a diòerent treatment because we assumed we could obtain a closed-form
of the edge equations in screen-space a�er projection. For projective cameras, a line in 3D is
still a line a�er projection to screen space. For non-linear projections such as ûsheye cameras,
this assumption does not hold.

87 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

Fortunately, as Figure 5-6 illustrated, we can reuse the 3D extention we developed in
the previous subsection for secondary visibility. For a camera location at position p and
a 3D edge (v0, v1) in camera space, we can form the exact same edge equation α(p,m) as
formulated in Equation 5.13. _e gradient then can be computed the same way as in the
previous section (Equation (5.16) and (5.17)).

5.2.4 Relation to Reynolds transport theorem and shape optimization

While we derive the gradients caused by discontinuities in the integrand using Dirac delta
functions, it is also possible to represent the discontinuities using the integral boundary.
Instead of using Heaviside functions to represent the shape boundaries, we can integrate over
the domain on one side of the edge. _erefore, in the primary visibility case, Equation (5.6)
can be rewritten as:

∇∬ θ(αi(x , y)) fi(x , y)dxdy = ∇∬
Ω i(Θ)

fi(x , y)dxdy, (5.18)

where Ωi (Θ) represents the domain where the Heaviside function θ(αi(x , y)) = 1. Criti-
cally, the domain depends on the scene parameters Θ. Reynolds transport theorem [176],
commonly used in �uid mechanics, addresses this speciûc case:

∇t∬
Ω i(Θ)

fi(x , y)dxdy =

∬
Ω i(Θ)

∇ fi(x , y)dxdy +∬
∂Ω i(Θ)

(v ⋅ n) fi(x(s), y(s))ds,
(5.19)

where ∂Ωi (Θ) is the boundary of the domain, v is the velocity at the boundary of the domain,
and n is the normal vector of the boundary. _is mirrors Equation (5.7) and also separates the
gradient integral into a continuous part and a discontinuous part. If we choose to diòerentiate
the x component, the velocity would be (1, 0) and the normal before normalization would
be (ay − by , bx − ax), which matches the results in Equation (5.9). Similar derivation also
appears in shape optimization [200], where the goal is to ûnd the optimal shape boundary
that minimizes certain cost integral, using gradient-based optimization. Shape optimization
has been applied in computer graphics in the context of diòusion curve optimization [241].

5.3 Importance Sampling the Edges

Our edge sampling method described in Chapter 5.2 requires us to sample an edge from
hundreds of thousands, or even millions of triangles in the scene. _e problem is two-fold:

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 88

uniform w/o hierarchy w/o LTC w/o NEE all
ours ours ours ours

bunny 144 spp 84 spp 72 spp 103 spp 72 spp

teapot 375 spp 194 spp 140 spp 179 spp 135 spp

Figure 5-7: Equal time (24 seconds) comparison between sampling with and without our importance
sampling methods. We tested our algorithm on scenes with so� shadow, global illumination, and
specular re�ection. We show the per-pixel derivatives of average color with respect to the bunny
moving up in the top row, and the derivatives with respect to the re�ected plane with the SIGGRAPH
logo moving right in the second row. For the second row we only show the gradients in the red
inset. Uniform indicates uniformly picking an edge based on length and uniformly picking a point
on the edge, and is ineõcient at sampling important contributions. We selectively turn oò the three
optimizations we introduce for importance sampling: the hierarchical edge selection (Chapter 5.3.1),
the linearly transformed cosines (LTC) based importance sampling for a single edge (Chapter 5.3.2),
and the sampling based on the next event estimation (NEE) rays’ intersections with edge billboards
(Chapter 5.3.3). Both the hierarchical edge selection and the LTC sampling are important for picking
important or silhouette edges (see the teapot). _e NEE intersection is important for shadow caused
by relatively small light sources (see the bunny).

we need to sample an edge and then sample a point on the edge eõciently. Typically only
a tiny fraction of these edges contribute to the gradients, since most of the edges are not
silhouette (e.g. [83, 31]), and some of them are shadow blockers which can have signiûcant
contributions. Naive sampling methods fail to select important edges (Figure 5-7). Even if the
number of edges is small, it is o�en the case that only a small region on an edge has non-zero
contributions, especially when there exist highly-specular materials.

As mentioned in Chapter 5.2.1, the case for primary visibility is easier since the viewpoint
is the camera. We project all edges onto the screen in a preprocessing pass, and test whether
they are silhouettes with respect to the camera position. We sample an edge based on the
distance of two points on the screen and uniformly sample in screen space. For secondary
visibility, the problem is much more complicated. _e viewpoint can be anywhere in the
scene, and we need to take the material response between the viewpoint and the point on the
edge into account.

89 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

In this section, we describe a scalable edge sampling implementation given arbitrary
viewpoint. We introduce three optimizations: a hierarchical data structure for selecting
important edges, an importance sampling scheme for selecting a point on a single edge, and
a method that extracts shadow blocker edges using next event estimation rays. Our solution
is inspired by previous methods for sampling many light sources using hierarchical data
structures (e.g. [163, 221, 50]), eõcient data structures for selecting silhouette edges [189, 84,
158], and the more recent closed-form solution for linear light sources [81, 82].

5.3.1 Edge selection

Given a shading point, our ûrst task is to importance sample one or more triangle edges.
_ere are several factors to take into account when selecting the edges: whether the edge is a
silhouette, the geometric foreshortening factor inversely proportional to the distance to the
edge, the material response between the shading point and the point on the edge, and the
radiance incoming from the edge direction (e.g. whether it hits a light source or not). We
address the incoming radiance in Chapter 5.3.3 and the rest in this subsection.

Ourmethod involves building hierarchies of edges and probabilistically pruning out unim-
portance ones during traversal. We follow Olson and Zhang’s Hough space approach [158]
and build two hierarchies. _e ûrst contains the triangle edges that are silhouettes with
respect to the camera position. _e second contains the remaining edges. For the ûrst set of
edges, we build a 3D bounding volume hierarchy using the 3D positions of the two endpoints
of an edge. For the second set of edges, we build a 6D bounding volume hierarchy using
the two endpoint positions and the two planes associated with the two faces of an edge,
transformed into the Hough space. For quick rejections of non-silhouette edges, we form
a sphere between the shading point and the camera position (the v-sphere [158]), and test
the intersection of the sphere and the bounding box of the planes in Hough space. We build
the hierarchy parallelly by building a radix tree on top of the sorted Morton codes of the
bounding box centroids [126, 107]. We also optimize for the surface area heuristics cost [142]
using the treelet approach proposed by Karras and Aila [108].

We traverse the hierarchies to sample edges. For better stratiûcation, we use a scheme
similar to the Gaussian kd-tree [2]. We start with a number of samples at the root (say, 16).
During the traversal, for each node in the hierarchy, we distribute the samples to the two chil-
dren proportional to an importance estimation of the contributions, similar to the lightcuts
algorithm [221]. We estimate the importance using the total length of edges, multiplied by
the inverse distance to the center of the bounding box, times an upper bound estimation
of the BRDF, by ûtting the BRDF to a Linearly Transformed Cosine Distribution [81]. We

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 90

use the linearly transformed cosines for BRDF upper bound estimation since the linear
transformation preserves the mode of the distribution, therefore we linearly transform the
bounding box and compute the upper bound of the cosine distribution using Walter et al.’s
method [221]. We set the importance to zero if the node does not contain any silhouette. We
set the importance of both children to one if the shading point is inside the bounding box of
their parent. Finally, we select one edge using weighted reservoir sampling [34], where the
weight is the importance of the leaf node.

5.3.2 Importance sampling on an edge

O�entimes with a highly-specular BRDF, only a small portion of the edges have signiûcant
contributions. We employ the recent technique on integrating linear light sources over the
linearly transformed cosines [82]. Heitz and Hill’s work provides a closed-form solution
of the integral between a point and a linear light source, weighted by BRDF and geomet-
ric foreshortening. We numerically invert the integrated cumulative distribution function
using Newton’s method for importance sampling. We precompute a table of ûtted linearly
transformed cosines for our BRDFs.

5.3.3 Next event estimation for edges

_e techniques above do not address the case of a small fraction of edges blocking a relatively
small light sources. _ese edges cause sharp boundaries that have large gradients and are
diõcult to sample even with the edge hierarchy. We propose a method to address this by
reusing the next event estimation samples we used in the forward pass. We transform all
edges into billboards with ûnite width facing the next event estimation ray. We then collect
all the edge billboards that intersect with the ray. We sample one of them based on the
importance of the edge described in Chapter 5.3.1. We project the intersection of the ray and
the billboard onto the nearest point on the edge, and the point on the edge is our sample.
We set the width of the edge billboards to the L2 sum of two percent of the mean absolute
deviation of the triangle vertex positions over each coordinate.

We evaluate our importance sampling method using equal-time comparisons on GPU
and show the results in Figure 5-7. We compare against the baseline approach of uniformly
sampling all edges by length. We also perform ablation study by selectively turning oò the
three optimizations. _e baseline approach is not able to eõciently sample rare events such
as shadows cast by a small light source or highly-specular re�ection of edges, while our
importance sampling generates images with much lower variance.

91 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

initial guess

target

optimized

(a) primary
occlusion (b) shadow (c) camera &

glossy (d) glossy
receiver (e) near

specular (f) global
illumination

Figure 5-8: We verify our renderer by matching a range of synthetic scenes with diòerent light transport
conûgurations. For each scene, we start from an initial parameter (ûrst row) and attempt to set scene
parameters so that the rendering matches the target (second row) using gradient-based optimization.
Each scene is intended to test a diòerent aspect of the renderer. (a) optimizes triangle positions under
the presence of occlusion. (b) optimizes blocker position for shadow. (c) optimizes camera pose and
material parameters over textured and glossy surfaces. (d) optimizes the blocker position where the
shadow receiver is highly glossy. (e) optimizes an almost specular re�ection of a plane behind the
camera; the free parameter is the plane position. (f) optimizes camera pose under the presence of
global illumination and so� shadow. Our method is able to generate gradients for these scenes and to
optimize the parameters correctly, resulting in minimal diòerence between the optimized result (ûnal
row) and target (second row). All the scenes are rendered with 4 samples per pixel during optimization.
_e ûnal renderings are produced with 625 samples per pixel, except for (f) we use 4096 samples.
We encourage the reader to refer to the project page (https://people.csail.mit.edu/tzumao/diòrt/) for
videos and more scenes.

5.4 Results

We implement our method in a stand-alone C++/CUDA renderer with an interface to the
automatic diòerentiation library PyTorch [165]. To use our system, the user constructs
their scenes using lists of PyTorch tensors. For example, triangle vertices and indices are
represented by �oating point and integer tensors. Our renderer in the forward pass outputs
an image which is also a PyTorch tensor. _e user can then compute a scalar loss on the
output image and obtain the gradient by backpropagating to the scene parameters.

Our renderer is structured similarly to a wavefront path tracer [123]. We trace one path
per pixel at a time for all pixels. In the forward pass we store the path vertex information for

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 92

image

ûnite diòerences

ours

(a) triangles (b) shadow (c) teapot

Figure 5-9: We compare with central ûnite diòerences by rendering the scenes in Figure 5-8 at 32 × 32.
_e scenes are slightly adjusted tomake the per-pixel gradient look clearer in the image. _e derivatives
are with respect to (a) each rightmost vertex of the two triangles moving le� (b) the shadow blocker
moving up (c) the camera moving into the screen. Our derivatives match the ûnite diòerences within
an error of 1% relative to the L1 norm of the gradients. Finite diòerences usually take two or three
orders of magnitude more samples to reach the same error. For our method, we use 16 thousand
samples per pixel for the scene with two triangles and 32 thousand samples per pixel for the other two
scenes. For ûnite diòerences, we use 1 million samples per pixel for the triangles scene and 10 million
samples per pixel for the rest.

each bounce (i.e. we checkpoint at each path vertex). We manually backpropagate both the
edge gradients and smooth gradients in Equation (5.7) by traversing the light path backward
(using in principle introduced in Chapter 2). We use Embree [220] and OptiX prime [164]
for our ray casting operations. _e renderer supports pinhole or thinlens camera with planar
and equiangular spherical projection, Lambertian and Blinn-Phong BRDFs with Schlick
approximation for Fresnel re�ection, trilinear reconstruction of textures for diòuse and
specular re�ectance and roughness, area light sources with triangle meshes and environment
maps.

5.4.1 Veriûcation of the method

We tested our method on several synthetic scenes covering a variety of eòects, including
occlusion, non-Lambertian materials, and global illumination. Figure 5-8 shows the scenes.
We start from an initial parameter, and optimize the parameters to minimize the L2 diòer-

93 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

(a) 4 spp (b) 16 spp (c) 128 spp (d) 1024 spp

Figure 5-10: We visualize the per-pixel gradient contribution generated by our method over diòerent
numbers of samples per pixel. We take the bunny scene from Figure 5-7. _e gradient is the average of
color with respect to the bunny moving right. _e 1024 samples per pixel image took around 5minutes
to compute on a Pascal GPU. In practice we usually use 4 samples per pixel for inverse rendering.

ence between the rendered image and target image using gradients generated by our method
(except for the living room scene in Figure 5-8 (f) where we optimize for the L2 diòerence
between the Gaussian pyramids of the rendered image and target image). Our PyTorch inter-
face allows us to apply their in-stock optimizers, and backpropagate to all scene parameters
easily. We use the Adam [115] algorithm for optimization. _e number of parameters ranges
from 6 to 30. _e experiment shows that our renderer is able to generate correct gradients for
the optimizer to infer the scenes. It also shows that we are able to handle many diòerent light
transport scenarios, including cases where a triangle vertex is blocked but we still need to
optimize it into the correct position, optimization of blocker position when we only see the
shadow, joint optimization of camera and material parameters, pose estimation in presence
of global illumination, optimizing blockers occluding highly-glossy re�ection, and inverting
near specular re�ection. See the supplementary materials for more results.

We also compare our method to central ûnite diòerences on a lower resolution version of
the synthetic scenes in Figure 5-9. Our derivatives match the ûnite diòerence within an error
of 1% relative to the L1 norm of the gradients. _e comparison is roughly equal quality. We
increase the number of samples for the ûnite diòerences until the error is low enough. In
general ûnite diòerences require a small step size to measure the visibility gradient correctly,
thus they usually take two or three orders of magnitude more samples to reach the same
error as our result. In addition, ûnite diòerences do not scale with the number of parameters,
making them impractical for most optimization tasks.

Figure 5-10 demonstrates the convergence of our method by visualizing the gradients
of the bunny scene in Figure 5-7 over diòerent numbers of samples per pixel. We show the
gradients of the average of pixel colors with respect to the bunny moving right on the screen.
Generating the near-converged 1024 samples per pixel image takes around 5 minutes on

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 94

(a) planar scene (b) OpenDR (c) Neural (d) ours

Figure 5-11: (a) A plane lit by a point light close to the plane. We are interested in the derivative of the
image with respect to the plane moving right. Since the point light stays static, the derivatives should
be zero except for the boundary. (b) (c) Previous work uses color buòer diòerences to approximate
the derivatives, making them unable to take large variation between pixels into account and output
non zero derivatives at the center. (d) Our method outputs the correct derivatives.

a Pascal GPU. In practice we don’t render converged images for optimization. We utilize
stochastic gradient descent and render a low sample count image (usually 4).

5.4.2 Comparison with previous diòerentiable renderers

In this subsection we compare our method with two previously proposed diòerentiable
renderers: OpenDR [137] and Neural 3D Mesh renderer [109]. Both previous methods focus
on speed and approximate the gradients even under Lambertian materials with unshadowed
direct lighting. In contrast, our method outputs consistent gradients and supports arbitrary
non-Dirac materials, shadow, and global illumination, as shown in Figure 5-8.

Both OpenDR and the Neural 3D Mesh renderer follow the approach of ûrst rendering
into a color buòer using a traditional rasterizer with z-buòer. _ey then approximate the
derivatives with respect to screen-space triangle vertex positions using the rendered color
buòer. OpenDR performs a screen-space ûltering approach based on a brightness constancy
assumption [103]. _e shape of the ûlter is determined by boundary detection using triangle
ID. For the horizontal derivatives of a pixel neighboring an occlusion boundary on the le�,
they use the kernel (︀0,−1, 1⌋︀. For pixels that are not neighboring any boundaries, or are
intersecting with boundaries, or are neighboring more than one occlusion boundary, they use
the kernel 1

2 (︀−1, 0, 1⌋︀. _e Neural 3DMesh renderer performs an extra edge rasterization pass
of the triangle edges and accumulates the derivatives by computing the diòerence between the
color diòerence on the color buòer around the edge. _e derivative responses are modiûed
by applying a smooth falloò.

Both previous diòerentiable renderers output incorrect gradients in the case where there
is brightness variation between pixels due to lighting. Figure 5-11 shows an example of a plane
lit by a point light with inverse squared distance falloò. We ask the two renderers and ours to

95 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

(a) 3D position (b) normal (c) albedo (d) deferred shading

Figure 5-12: Geometry buòer rendering. Our method can also output correct gradients of (a) 3D
position (b) normal, (c). _is enables vision applications such as matching RGB-D signals. _e
buòers can also be combined with deferred shading techniques to produce ûnal rendering (d), for
high-performance rendering.

compute the derivatives of the pixel color with respect to the plane moving right. Since the
light source does not move, the illumination on the plane remains static and the derivatives
should be zero except for the boundaries of the plane. Since both previous renderers use the
diòerences between color buòer pixels to approximate derivatives, they incorrectly take the
illumination variation as the changes that would happen if the plane moves right, and output
non-zero derivatives around the highlights. On the other hand, since we sample on the edges,
our method correctly outputs zero derivatives for continuous regions.

OpenDR’s point light does not have distance falloò and the Neural 3D mesh renderer
does not support point lights so we modiûed their renderers. Our renderer does not support
pure point lights so we use a small planar area light to approximate a point light. We also
tessellate the plane into 256 × 256 grids as both previous renderers use Gouraud shading.

5.4.3 Diòerentiable geometry buòer/AOV extension
Our method naturally generalizes to arbitrary shading functions, and can be used for gener-
ating geometry or AOV (arbitrary output variable) buòers, such as 3D position, normal, or
material parameters. Our primary edge sampling (Chapter 5.2.1) backpropagates the deriva-
tives of these auxiliary buòers correctly. _is can be useful for computer vision applications
(e.g. matching RGB-D signal), and also enables us to apply deferred shading techniques [44]
to speed up rendering. Only coherent primary rays need to be traced in this case. Figure 5-12
shows the geometry buòers generated by our renderer.

5.4.4 Inverse rendering application
We apply our method on an inverse rendering task for ûtting camera pose, material param-
eters, and light source intensity. Figure 5-1 shows the result. We take the scene photo and

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 96

geometry data from the thesis work of Jones [104], where the scene was used for validating
daylight simulation. _e scene contains strong indirect illumination and has non-Lambertian
materials. We assign most of the materials to white except for plastic or metal-like objects,
and choose an arbitrary camera pose as an initial guess. _ere are in total 177 parameters for
this scene. We then use gradient-based optimizer Adam and the gradients generated by our
method to ûnd the correct camera pose and material/lighting parameters. In order to avoid
getting stuck in local minima, we perform the optimization in a multi-scale fashion, starting
from 64 × 64 and linearly increasing to the ûnal resolution 512 × 512 through 8 stages. For
each scale we use an L1 loss and perform 50 iterations. We exclude the light source in the loss
function by setting the weights of pixels with radiance larger than 5 to 0.

5.4.5 3D adversarial example

Recently, it has been shown that gradient-based optimization can also be used for ûnding
adversarial examples for neural networks (e.g. [206, 64]) for analysis or mining training
data. _e idea is to take an image that was originally labelled correctly by a neural network
classiûer, and use backpropagation to ûnd an image that minimizes the network’s output with
respect to the correct output. Our system can be used for mining adversarial examples of 3D
scenes since it provides the ability to backpropagate from image to scene parameters. Similar
ideas have been explored [10, 237, 135], but we use a more general renderer.

We demonstrate this in Figure 5-13. We show a stop sign classiûed correctly as a street
sign by the VGG16 classiûer [197]. We then optimize for 2256 parameters including camera
pose, light intensity, sun position, global translation, rotation, and vertex displacement of the
stop sign. We perform stochastic gradient descent to minimize the network’s output of the
classes street sign and traõc light, using 256 samples per pixel. A�er 5 iterations the network
starts to output handrail as the most probable class. A�er 23 iterations both the street sign
class and traõc light class are out of the top-5 predictions and the sum of the two has less
than 5% probability.

We do not claim this as a robust way to break or to attack neural networks, since the
CG scene we use has diòerent statistics compared to real world images. Nevertheless this
demonstrates that our gradient can be used for ûnding interesting scene conûgurations and
can be potentially used for mining training data.

5.4.6 Limitations

Performance. Our current GPU implementation takes a few hundredmilliseconds to generate
a small resolution image (say 256×256) with a small number of samples (say 4). Note though

97 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

(a) input scene
53% street sign

14.5% traõc light
6.7% handrail

(b) 5 iterations
26.8% handrail
20.2% street sign
4.8% traõc light

(c) 25 iterations
23.3% handrail

3.39% street sign or
traõc light

0 5 10 15 20 25 30

0.1
0.2
0.3
0.4
0.5
0.6

iteration

cla
ss

sc
or
e

(d) combined class score of street sign and traõc light

Figure 5-13: Ourmethod can be used for ûnding 3D scenes as adversarial examples for neural networks.
We use the gradient generated by our method to optimize for the geometry of the stop sign, camera
pose, light intensity and direction to minimize the class scores of street sign and traõc light classes.
A�er 5 iterations the network classiûes the stop sign as a handrail, and a�er 25 iterations both street
sign and traõc light are out of the top 5 predictions. In (d) we plot the sum of street sign and traõc
light class scores as a function of iteration. As we optimize scene parameters such as the stop sign shape,
gradient descent tries to ûnd the geometry that minimizes the class scores, thus we see decreasing of
the score.

that when using stochastic gradient descent it is usually not necessary to use high sample
counts.

We have found that, depending on the type of scene, the bottleneck can be at the edge
sampling phase or during automatic diòerentiation of the light paths, when we need to
perform large reductions for the pixels hitting the same object (Chapter 4). Developing
better sampling algorithms such as incorporating bidirectional path tracing [120] or photon
mapping [100] could be an interesting avenue of future work. In particular, sampling the
Dirac delta introduced by the edges is related to photon beams [98]. Developing better
compiler techniques for optimizing automatic diòerentiation code is also an important task.
While we achieved promising results in Chapter 4, the programmingmodel focused on image
processing and is unsuitable for many tasks in rendering such as tree traversal.

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 98

Other light transport phenomena. We assume static scenes with no participating media.
Diòerentiating motion blur requires sampling on 4D edges with an extra time dimension.
Combining our method with Gkioulekas et al.’s work [62] for handling participating media is
le� as future work.

Interpenetrating geometries and parallel edges. Dealing with the derivatives of interpene-
tration of triangles requires a mesh splitting process and its derivatives. Interpeneration can
happen if the mesh is generated by some simulation process. As shown in Figure 5-4, our
method also does not handle the case where two edges are perfectly aligned as seen from the
center of projection (camera or shadow ray origin). However, these are zero-measure sets in
path space, and as long as the two edges are not perfectly aligned to the viewport, we will be
able to converge to the correct solution.

Shader discontinuities. We assume our BRDF models and shaders are diòerentiable and
do not handle discontinuities in the shaders. We handle textures correctly by diòerentiat-
ing through the smooth reconstruction, and many widely-used re�ection models such as
GGX [222] (with Smith masking) or Disney’s principled BRDF [29] are diòerentiable. How-
ever, we do not handle the discontinuities at total internal re�ection and some other BRDFs
relying on discrete operations, such as the discrete stochastic microfacet model of Jakob et
al. [96]. Extremely high frequency textures also require preûltering to have low variance on
both the rendered images and the gradients. Compiler techniques for band-limiting BRDFs
can be applied to mitigate the shader discontinuity issue [232].

5.5 Conclusion
We have introduced a diòerentiable Monte Carlo ray tracing algorithm that is capable of
generating correct and unbiased gradients with respect to arbitrary input parameters such
as scene geometry, camera, lights and materials. For this, we have introduced a novel edge
sampling algorithm to take the geometric discontinuities into consideration, and derived the
appropriate measure conversion. For increased eõciency, we use a new discrete sampling
method to focus on relevant edges as well as continuous edge importance sampling. We
believe this method and the so�ware that we release will have an impact in inverse rendering
and deep learning.

5.A Derivation of the 3D edge Jacobian
We derive the Jacobian Jm(t) in Equation 5.16. _e goal is to compute the derivatives of point
m(t) with respect to the line parameter t. _e relation between m(t) and t is described by a

99 Diòerentiable Monte Carlo Ray Tracing through Edge Sampling

ray-plane intersection. _at is, we are intersecting a plane at point m with normal nm with a
ray of origin p and unnormalized direction ω(t):

ω(t) = v0 + (v1 − v0)t − p

τ(t) = (m − p) ⋅ nm

ω(t) ⋅ nm

m(t) = τ(t)ω(t).

(5.20)

We can then derive the derivative Jm(t) = ∂m(t)
∂t as:

Jm(t) = τ(t)((v1 − v0) − ω(t)(v1 − v0) ⋅ nm

ω(t) ⋅ nm
) (5.21)

Diòerentiable Monte Carlo Ray Tracing through Edge Sampling 100

6 | Hessian-Hamiltonian Monte Carlo
Rendering

OURS REF OURS MEMLT MMLT BDPT

Figure 6-1: Cars: Equal-time (20 minutes) comparison on the cars scene, with a static car and a
moving car lit by an area light. _e direct lighting is computed separately. _e interior of the car is
enclosed by near-specular glass windows, which gives rise to specular-diòuse-specular paths that
are challenging to sample. _e three insets show the renderings of our method (H2MC), Manifold
Exploration Metropolis Light Transport (MEMLT) [97], Multiplexed Metropolis Light Transport
(MMLT) [74], and Bidirectional Path Tracing (BDPT) [214]. _e reference (REF) is rendered by our
method in roughly 15 hours. BDPT cannot eõciently sample the sparse contribution function and
suòers from severe noise. MMLT tends to get trapped in the hard-to-ûnd features and produces
correlated noise. MEMLT specializes in ûnding diõcult static specular paths, but does not consider
the anisotropy in the time domain, resulting in ghosting artifacts. Our method can eõciently resolve
the hard-to-ûnd caustics light paths like the specialized method, and is more general so that it can
resolve moving caustic paths in the window by capturing the correlation between the time domain
and path space.

In the previous chapters, we focused on inverse applications, where we try to ûnd a set of
parameters or inputs satisfying certain outputs. In this chapter, we discuss something slightly
diòerent, in particular we show that derivatives can also be useful for accelerating forward
rendering.

Light transport phenomena such as caustics, multiple-bounce glossy transport andmotion
blur o�en concentrate high contributions in a narrow volume within the high-dimensional
sample space. While eõcient methods exist for local importance sampling of individual

101

Hessian-Hamiltonian Monte Carlo Rendering 102

scattering events, their combined eòect on path throughput is intricate and hard to sample,
leading to noisy images. Figure 6-2 shows a caustic caused by a glossy gold ring. _e
integrand (Figure 6-2 (b)) is sparse: for points on the �oor (x), only a few incident directions
(θ) contribute radiance through re�ection. Even in this simple scene, sparsity makes standard
numerical integrationmethods ineõcient. _e region of high-contribution is continuous, but
highly anisotropic, and the anisotropy varies over the integrand. In this chapter, we present
a general solution by extending Metropolis Light Transport [216] (a Markov Chain Monte
Carlo sampler) to exploit the local structure of the path contribution function over its entire
high-dimensional domain.

Adapting to the local anisotropic behavior of the integrand has been a long-standing
challenge in rendering. Previous work has focused on model-based characterizations of
anisotropy that are tied to speciûc eòects (specular transfer, motion, etc.) [97, 15, 106], and
combining them is not easy. Closest to our work is Manifold Exploration [97] and Half-
vector Space Light Transport [106, 75] which use assumptions about the mirror direction and
specular re�ection to derive major directions of anisotropy (Figure 6-2e), and walk along a
lower-dimensional manifold. In contrast, we seek for a general solution that can characterize
the “thickness” of the manifold in all directions, avoiding case-speciûc manual derivations.

_e adaptation boils down to two main problems: 1) characterizing the anisotropy using
local information and 2) sampling according to the derived information. We solve 1) by
characterizing the local throughput using its derivatives. Since the gradient provides weak
directional information, we also use the second derivative, the Hessian matrix. Whereas the
gradient points only into the direction of the strongest increase, the Hessian additionally
captures the correlation between coordinates. While the Hessian has been used before in
rendering, e.g. [87, 193], its manual derivation is tedious and has usually been restricted to spe-
ciûc transport phenomena such as diòuse-only. In contrast, we use automatic diòerentiation
(Chapter 2) which allows us to handle general eòects.

While the Hessian captures anisotropy well, the second problem of sampling remains: it
is not possible to directly sample from the resulting quadratic approximation because it does
not deûne a proper distribution and grows to inûnity. Instead, we start from Hamiltonian
Monte Carlo [48], a Markov chain Monte Carlo sampling algorithm that proposes new
sample locations by simulating the dynamics of a particle that starts at the current sample
with a random initial velocity, brie�y mentioned in Chapter 3.2.3. _e particle evolves under
gravity in a landscape composed of the contribution function �ipped upside down so that
the particle is attracted to high contribution areas (low height) by gravity. Crucially, we do
not apply Hamiltonian Monte Carlo directly: this would be too expensive, because it would
require numerical integration to generate just a single sample, and each integration time step

103 Hessian-Hamiltonian Monte Carlo Rendering

(a) ring

x

θ

(b) path space slice

θ

x

(c) scene conûguration

green: accept

red: reject

(d) traditional
128 proposals

(acc. rate 59.37%)

(e) ME [97]
(schematic view)

(f) ours
128 proposals

(accept rate 75.58%)

original
inset

(g) traditional
1024 MCMC states
(acc. rate 57.52%)

original
inset

(h) ours
1024 MCMC states
(accept rate 92.99%)

(i) our proposal
is a closed-form

Gaussian

Figure 6-2: Ring example: (a) A motivating example showing the caustics caused by a highly-glossy
gold ring, lit by a distant point light. (b) A slice of the two-bounce indirect light ûeld around the red
star, where x represents one of the dimensions in screen-space, and θ represents one of the dimensions
along the BRDF sampling direction (the conûguration is shown in (c)). _e path contribution is
sparse, and most of the contributions are zero. (d) _e green/red dots represent the accepted/rejected
proposal samples of a traditional MCMC rendering algorithm [111], which uses isotropic mutation that
makes the sampling ineõcient. (e) We also show the schematic of Manifold Exploration (ME) [97],
which only travels on the tangent of a lower dimensional space. (f) Our approach builds a Gaussian
approximation around the neighborhood, enabling us to eõciently traverse the target function locally.
Some samples are rejected due to the adaptivity, but it still results in a higher acceptance rate. (g)(h)
We show the zoomed out slice (the positions of the original insets (d) and (e) are at the bottom of the
images) with dots now representing the samples obtained by simulating the Markov chain for 1024
states; our method explores the space more thoroughly. We also show the false color visualization of
the Gaussian approximation in (i), which takes the width of the function into consideration.

would involve costly ray tracing, shading, and derivatives which do not directly contribute to
the image. In practice, up to a hundred time steps per sample may be needed [155]. Instead,
we apply a modiûed version of HMC that results in closed-form integration. As we show
in the paper, running Hamiltonian dynamics on a second-order function with a Gaussian
distribution of initial momentums leads to a Gaussian distribution of ûnal positions, and it
results in a standard Metropolis-Hastings sampling. While traditional Metropolis sampling
also uses a Gaussian distribution of proposals, it is usually isotropic and is centered on the
current sample. In contrast, our Gaussian proposal is anisotropic, conforms to the shape
of the contribution function, and is centered towards higher values according to the local
gradient and Hessian.

Hessian-Hamiltonian Monte Carlo Rendering 104

While our method can be used with arbitrary path parametrization, a carefully designed
parametrization can lead to better mixing of the Markov chain. We propose a modiûed
parameterization of the path space based on the primary sample space proposed by Kelemen
et al. [111]. _e modiûed parameterization reduces the correlation between the dimensions
(Figure 6-7).

Our method is general thanks to the use of the second-order Taylor expansion and
automatic diòerentiation. In particular, it can be easily extended to time for motion blur
eòects, so that we are able to resolve the correlation between path-space and time for a light
path that contains a moving caustic in a window (Figure 6-1). We focus on surface rendering
in this paper, though conceptually our general approach could be extended to handle a variety
of other phenomena such as BSSRDFs or participating media.

6.1 RelatedWork

Our work is closely related to the rendering algorithms that build upon MCMC sampling
and the methods that utilize derivatives to drive the sampling process.

Metropolis Light Transport In light transport simulation, we need to compute the path
integral [213] I j for each pixel j:

I j = ∫
Ω
h j (x) f (x) dµ (x), (6.1)

where Ω is path space, which contains all the light paths, h j is the camera response function
for pixel j, f (x) is the path contribution function [213], and µ (x) is the area density of path
x.

Veach and Guibas [216] apply the Markov Chain Monte Carlo sampling method (see
Chapter 3.2 for a brief review) by generating a sequence of Markov chain samples xi . A
new proposal sample is mutated from the previous sample, and probabilistically accepted or
rejected. Speciûcally, given a sample xi−1, and a target function f ∗ (x), which is commonly
set to the luminance of f (x), we ûrst generate a proposal sample x′ with the transition
probability Q (xi−1 → x′), and set the next sample xi as follows:

xi =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

x′ with probability a (xi−1 → x′)

xi−1 otherwise,
(6.2)

105 Hessian-Hamiltonian Monte Carlo Rendering

where the acceptance probability a is deûned as

a (xi−1 → x′) = min(1, f
∗ (x′)Q (x′ → xi−1)

f ∗ (xi−1)Q (xi−1 → x′)) (6.3)

_is satisûes the detailed balance condition. _at is, for any light paths x and y, we have

f ∗ (x)Q (x → y) a (x → y) = f ∗ (y)Q (y → x) a (y → x) . (6.4)

As mentioned in Chapter 3.2, if a transition function satisûes the detailed balance con-
dition, and if there is a strict positive probability to sample all light paths with non-zero
contribution (ergodicity), it will converge to a distribution proportional to the target function
f ∗(x). Veach and Guibas then approximated the path integral I j at pixel j using the weighted
average of the Markov chain samples:

I j =
b
N

N
∑
i=1

h j (xi) f (x)
f ∗ (x) , (6.5)

where b is a normalization constant, which is the average of f ∗ (x) over the image.1 Originally
Veach andGuibas designed several specializedmutation strategies to address diòerent lighting
scenarios. Each strategy has a diòerent asymmetric probability distribution, which introduces
a signiûcant challenge to implement all the strategies correctly. To simplify the algorithm,
Kelemen et al. [111] proposed to mutate the state in the random number space, which makes
the mutation agnostic to the particular lighting eòect. Later, Jacopo [162], Otsu et al. [23]
and Bitter et al. [23] propose methods to combine the two mutation strategies by ûnding the
random number that generates a certain light path produced by Veach and Guibas’s mutation.
Unfortunately, both the mutation strategies proposed by Veach and Guibas and Kelemen et
al. do not respect the complex local structure in the sampling domain, which makes them
ineõcient in some diõcult cases.

Metropolis Light Transport has been extended in several aspects. Cline et al. [42] proposed
the Energy Redistribution Path Tracing technique by running many short Markov chains.
Lai et al. [122] adapted mutations with diòerent parameters using Population Monte Carlo.
Kitaoka et al. [116] introduced replica exchange, or parallel tempering [205], that exchanges
states between multiple Markov chains to avoid getting stuck at local modes. All these
methods require some form of local mutation strategies. We introduce a new local sampling
strategy that adapts to the local structure of the function. Lai et al. [121] proposed a temporal

1Since we need to estimate the normalizing constant b, this particular use of Markov chain is only useful
when we are interested in multiple integrals, where their integrals are correlated.

Hessian-Hamiltonian Monte Carlo Rendering 106

mutation strategy based on object-space transformation. Unlike their method, which requires
a specially designed mutation, we treat the time dimension the same as the other dimensions,
and handle the correlation between coordinates using second derivatives.

Jakob and Marschner [97], Kaplanyan et al. [106], and Hanika et al. [75] use the ûrst
derivatives of the half-vectors of a specular light path to guide the MCMC sampling. _ese
methods apply a form of Newton-iteration to sample new light paths satisfying certain
constraints. While they improve the sampling eõciency of glossy and specular surfaces
signiûcantly, their methods can sometimes be ineõcient on small, highly-curved surfaces,
because of their ûrst-order approximation. In addition, they only account for a subset of terms
in the path contribution function, ignoring important eòects such as the Fresnel re�ection or
light source emission proûles. In contrast, we utilize second-order derivatives and do not
assume any particular eòect. For example, we are able to render diõcult moving caustics
(Figure 6-1), where their methods would suòer from ghosting artifacts

Hachisuka et al. [74] proposed Multiplexed Metropolis Light Transport that combines
Kelemen et al’s mutation startegy with multiple importance sampling [215]. _eir method
is orthogonal to our algorithm, and we build our bidirectional path tracer based on their
approach.

Derivatives in rendering Shinya et al. [196] used a second-order power series along with
paraxial approximation to approximate the neighborhood of a ray. Irradiance caching tech-
niques [225, 224, 193] compute the gradients and the Hessians of the irradiance with respect
to the screen coordinates for sparse interpolation for diòuse or low-glossy surfaces. Ray
diòerentials [90] and path diòerentials [204] compute the footprint of the light paths for
texture ûltering using ûrst derivatives. Chen and Arvo [37] use ûrst and second-order deriva-
tives of the specular light paths for sparse interpolation. Path gradients [204] are used for
hierarchical radiosity applications, where the gradients of the paths are hand-derived. Ra-
mamoorthi et al. [173] performed a ûrst-order analysis for the direct illumination light ûeld.
Gradient-domain rendering approaches, e.g. [127, 113], sample in the gradient domain to
exploit the sparsity of gradients in image space. _ey use ûnite diòerences of the path on the
image coordinates, whereas our method uses analytical derivatives of all dimensions. While
ûnite diòerences could capture the discontinuities of the signal, they are more expensive to
generate and do not scale well with dimensionality.

Our usage of derivatives diòers from previous works in several respects. First, we use
automatic diòerentiation to compute the derivatives, which means that we do not assume
any particular eòect. _is enables our method to handle various combinations of lighting
scenarios. Second, we take the derivatives with respect to all the sampling dimensions, so

107 Hessian-Hamiltonian Monte Carlo Rendering

x(0)

(a) given current sample x(0)
and target function

− log
ÐÐ→

p(0)

x(0)

(b) �ip function so that gravity
pulls the particle, sample initial

momentum p(0)

ÐÐ→
x(T)

x(0)

(c) simulate Hamiltonian
dynamics for time T to obtain

proposal at x(T)

Figure 6-3: Hamiltonian Monte Carlo: Given the current sample position x(0) and a target
function (the 2D slice from Figure 6-2), a physical analogy of Hamiltonian Monte Carlo is: (a) ûrst it
takes the logarithm of the target function and �ips it upside down so that “gravity” pulls towards high
contribution areas. (b) _en it gives the current sample an initial momentum p(0) and (c) lets the
point move for some time T with respect to the geometry of the �ipped function.

we can capture the high-dimensional structure of the light path. _ird, we take both the
ûrst and the second derivatives. _e Hessians enable us to take the correlation between the
dimensions of the sampling domain into account. Finally, we apply the derivatives in the
MCMC sampling context.

6.2 Hamiltonian Monte Carlo
We review theHamiltonianMonte Carlo [48]method; also seeNeal’s introduction article [155]
for a more thorough description and survey. Hamiltonian Monte Carlo generates the new
proposal samples from the current sample by simulating Hamiltonian dynamics driven by
the landscape of the target function.

Markov chainMonteCarlomethods generate a sequence of samples xi , whose distribution
converges to a distribution proportional to a speciûc target function f ∗ (xi), by forming a
Markov chain of the sample sequence. For the sake of notational simplicity, we denote the
target function as f (x). At iteration i+ 1, a new proposal sample is drawn from a distribution
based on xi . _en the proposal sample is probabilistically accepted or rejected. If accepted, it
forms the new state of the Markov chain. From now on, we assume that the samples xi lie in
a hypercube of (︀0, 1⌋︀N , similar to the primary sample space [111]. Operating directly in path-
space [213] is more challenging due to its deûnition as a cross product of lower-dimensional
manifolds.

Figure 6-3 gives an illustration of Hamiltonian Monte Carlo where, in a nutshell, state
is modiûed by giving the current sample a random initial velocity (or more precisely, a
momentum), and simulating its motion under gravity. _e target function ûrst needs to

Hessian-Hamiltonian Monte Carlo Rendering 108

x(0)

(a) original target and
sample position

→

x(T)

x(0) p(0)

(b) simulate dynamics
on local quadratic
approximation

→
N(μ, Σ)

(c) proposals result in a
Gaussian distribution

→

N(μ*, Σ*)=
N(μ, Σ)·N(0, σ2 I)

(d) multiply with a
prior to limit variance,

draw from red

Figure 6-4: Hessian-Hamiltonian Monte Carlo: (a) Given the original function and sample
position x (0), (b) we approximate the costly Hamiltonian dynamics simulation by ûrst constructing
a local quadratic approximation at the current sample position x (0). (c) Diòerent initial momentum
p (0) results in diòerent proposal positions x (T), which makes x (T) a random variable. We show
that trajectories with a Gaussian distribution for initial momentum result in a Gaussian distribution
(the yellow shaded area) for ûnal destination. (d) Finally, we multiply the Gaussian with a prior (the
purple shaded area) to prevent proposals from going too far when the second derivative is low. _e
resulting sample proposal distribution is shown in red, and we draw our proposals from the resulting
distribution.

be “�ipped” so that high contribution regions correspond to a lower height and samples
are attracted there by gravity (Figure 6-3 (b)). _e particle is given an initial momentum,
typically drawn from a Gaussian, and its motion is simulated in the height ûeld given by the
�ipped contribution function for a ûxed amount of time. Acceptance rules are then applied,
although if the integrator preserves energy, samples are always accepted. _is approach helps
the samples stay in the high contribution region (low height in the �ipped function) because
of the eòect of gravity.

Hamiltonian dynamics Formally, Hamiltonian dynamics is a system of diòerential equa-
tions deûned on the Hamiltonian energy E:

∂x
∂t

= ∂E
∂p

∂p
∂t

= −∂E
∂x .

(6.6)

_e auxiliary momentum variable p is introduced to drive the sampling of position x, and p
has the same number of dimensions as x. _e Hamiltonian energy E (x , p) is a composite
of the potential energy U (x) = − log f (x) and the kinetic energy K (p) = 1

2 pTAp. _e
potential energy is deûned in the logarithmic domain to better capture the dynamic range of

109 Hessian-Hamiltonian Monte Carlo Rendering

the target functions:

E (x , p) = U (x) + K (p) = − log f (x) + 1
2
pTAp, (6.7)

where A is a user-deûned “inverse mass matrix”, which represents the inverse of the mass of
the particle. Typically, it is set to a scalar 1

m times an identity matrix, wherem is the mass, but
in our work we will use a full matrix (discussed in Section 6.3). _e negative of the function
log f (x) is taken to enable high contribution regions to have low potential energy (as shown
in Figure 6-3).

We substitute the deûnition of the Hamiltonian energy (Equation (6.7)) into the Hamilto-
nian equation (Equation (6.6)), and obtain:

∂x
∂t

= Ap

∂p
∂t

= ∂ log f (x)
∂x .

(6.8)

Equation (6.8) deûnes a trajectory of position x and momentum p over time t. Intuitively, if
the momentum at time t is high, we will make a large jump from the current position x (t),
and if the derivatives of the target function at x (t) are low, the increment to the momentum
will be small. Hamiltonian Monte Carlo is highly adaptive to the local structure of the target
function.

Markov chainMonte Carlo withHamiltonian dynamics To apply Hamiltonian dynamics
in the context of Markov chain Monte Carlo, we ûrst take the exponent of the negative
Hamiltonian energy:

exp (−E (x , p)) = f (x) exp(− 1
2
pTAp) =∶ f (x)ϕ(p) . (6.9)

exp (− 1
2 pTAp), which we denote as ϕ (p), is proportional to the PDFof a zero-meanGaussian

with covariance A−1. To generate a new proposal position, we pick a zero-mean Gaussian
distributed momentum p (0) with covariance A−1 and a ûxed time T , and simulate the
Hamiltonian dynamics to obtain the position at x (T).

Hessian-Hamiltonian Monte Carlo Rendering 110

_e proposal position is probabilistically accepted with the probability a, where

a ((x (0) , p (0)) → (x (T) , p (T)))

= min(exp (−E (x (T) , p (T)))
exp (−E (x (0) , p (0)))

, 1)

= min(f (x (T))ϕ (p (T))
f (x (0))ϕ (p (0))

, 1) .

(6.10)

Intuitively, the acceptance rule resembles the Metropolis-Hastings rule (Equations (6.2)
and (6.3)), where the transition probability T is substituted with the (unnormalized) PDF of
the momentumGaussian ϕ. Furthermore, if the Hamiltonian dynamics is simulated perfectly,
exp (−E (x , p)) is a constant throughout the simulation because of energy conservation, and
the acceptance probability is 1.

Properties ofHamiltoniandynamics More formally, given a ûxed timeT , theHamiltonian
equation creates amapping M between (x (0) , p (0)) and (x (T) , p (T)). Neal [155] showed
that this mapping has several important properties:

1. _emapping is time-reversible: if we �ip themomentumat timeT anduse (x (T) ,−p (T))
as the input to M, the output of the mapping would be (x (0) ,−p (0)). _at is, if we
simulate the Hamiltonian dynamics in a backward manner from the end point, it will
go back to the starting point.

2. _e mapping preserves the volume: If we apply the mapping for a region R0 of points
(x (0) , p (0)), and map them to another region RT , the volumes of the two regions in
the position-momentum space remain the same (known as Liouville’s theorem).

3. _e mapping preserves energy: the Hamiltonian energy E (Equation (6.7)) remains
the same a�er the mapping.

_e ûrst property is crucial for the detailed balance condition (Equation (6.4)) to hold, since
it ensures that the mapping is one-to-one. _e second property ensures that we do not
need to account for the Jacobian of the mapping in the Metropolis acceptance rule. _e
energy preservation property shows that the probability of acceptance is in fact 1 since
E (x (0) , p (0)) = E (x (T) , p (T)). Recently, it has been shown [199] that it is also possible
to design transition rules for Hamiltonian Monte Carlo to converge without satisfying the
detailed balance condition.

Unfortunately, Equation (6.8) does not have a known analytical solution for an arbitrary
target function. It is usually required to integrate the diòerential equation using numerical

111 Hessian-Hamiltonian Monte Carlo Rendering

integrators such as leapfrog integrators. _ese integrators maintain the time-reversibility and
volume-preservation, but do not preserve energy. _e Hamiltonian dynamics are approx-
imated and the acceptance probability is no longer 1. Furthermore, numerical integrators
are expensive for light transport simulation because each step involves costly ray tracing
operations and derivative computations of the shader.

Discussion. As discussed in Chapter 3.2, Langevin Monte Carlo [181] is a one-step ap-
proximation to Hamiltonian Monte Carlo. Its proposal distribution is isotropic, except that
the mean of the proposal distribution is shi�ed by the ûrst derivatives (gradient) times a
user-speciûed constant. Our method is also a one-step approximation, but the proposal dis-
tribution of our method adapts to the anisotropy of the signal, because we utilize the second
derivatives. It is possible to precondition Langevin Monte Carlo using a positive-deûnite
mass matrix, such as the Fisher information matrix [60]. However, it remains unclear how
to relate the Hessian matrix to the positive-deûnite mass matrix. Betancourt [18] proposed
the SoftAbs metric that removes the sign of the eigenvalues of the Hessian matrix using
a smooth mapping. In contrast, we treat positive and negative eigenvalues diòerently by
directly simulating Hamiltonian dynamics on the quadratic landscape.

6.3 Hessian-Hamiltonian Monte Carlo
Figure 6-4 illustrates our sampling algorithm. We compute the second order Taylor expansion
(local quadratic approximation) of the logarithm of the target function ûrst, where the
gradient and the Hessian are computed using automatic diòerentiation. _e quadratic
function does not deûne a proper distribution, since it might grow to inûnity, which prevents
us from directly importance sampling it. Hamiltonian dynamics enables us to sample from
this quadratic function to obtain the proposal position, since it works on any continuous
function.

_e Hamiltonian dynamics have an analytical solution in the case of a quadratic func-
tion. However, we cannot use the acceptance rule in standard Hamiltonian Monte Carlo
(Equation (6.10)) to compute the acceptance probability. It would break time-reversibility,
since each light path would have a diòerent associated quadratic function. Fortunately, we
can derive from the analytical solution that the distribution of a proposal, given a Gaussian
momentum, is a Gaussian distribution (Figure 6-4 (c)). _erefore, we associate each light
path with a Gaussian distribution derived from the quadratic function and Hamiltonian
dynamics, and it is possible to compute the acceptance probability using the Metropolis-
Hastings rule (Equation (6.3)). Finally, we multiply the analytical Gaussian with a prior

Hessian-Hamiltonian Monte Carlo Rendering 112

Gaussian distribution to place a limit on its variance (Figure 6-4 (d)), so that the proposals
do not go too far away where the second order approximation can be inaccurate.

Approximating Hamiltonian dynamics We ûrst show how to derive the closed-form so-
lution to the diòerential equations for Hamiltonian dynamics (Equation (6.8)), given an
initial momentum and position. _en, we will show how to infer the Gaussian distribution
of proposals. We start from a second-order approximation of log f . For the sake of simplicity
and without loss of generality, in the following we assume the current position x(0) is at the
origin. Any small oòset x from the origin can be approximated by:

log f (x) ≈ 1
2
xTHx +GTx + log f (0), (6.11)

where H is the Hessian matrix and G is the gradient vector at log f (0). If we substitute this
approximation into the Hamiltonian equation (Equation (6.8)) using ∂ log f (x)

∂x ≈ Hx +G and
combine the two diòerential equations, we get:

∂2x (t)
∂t2

= AHx (t) + AG . (6.12)

_e above equation is a standard second-order diòerential equation system, and has an
analytical solution. We start from the one-dimensional case, then generalize it to higher
dimensions. Assuming x is a one-dimensional variable, if we let α = AH, β = AG, an analytical
solution is:

x (t) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

c1 exp (
⌋︂
αt) + c2 exp (−

⌋︂
αt) − β

α if α > 0

c1 cos (
⌋︂
−αt) + c2 sin (

⌋︂
−αt) − β

α if α < 0

c1t + c2 + βt2
2 if α = 0,

(6.13)

which can be veriûed by plugging the solution back into the equation. _e constantmultipliers
c1, c2 can be obtained by plugging in the initial condition x(0) = 0, x′ (0) = Ap (0) (where
p (0) is sampled from the Gaussian distribution ϕ deûned in Equation (6.9)) into the original
Hamiltonian equation (Equation (6.8)). Speciûcally, the constants are:

c1 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1
2 (

β
α +

p̂(0)
⌋︂

α) if α > 0
β
α if α < 0

p̂ (0) if α = 0

, c2 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1
2 (

β
α −

p̂(0)
⌋︂

α) if α > 0
p̂(0)
⌋︂

−α if α < 0

0 if α = 0,

(6.14)

where we denote p̂ (0) = Ap (0) for clarity.
To illustrate, since the inverse mass A is required to be positive, if the second derivative

113 Hessian-Hamiltonian Monte Carlo Rendering

H is strictly negative, we consider the α < 0 case and the trajectory x (t) becomes a linear
combination of a cosine curve and a sine curve, which oscillates in the ridges of the �ipped
function. On the other hand, if the second derivative is strictly positive, then the trajectory
climbs straight up the hill and goes to inûnity as t increases.

If x is an N-dimensional vector instead, the general solution of this diòerential equation
system becomes a linear combination of the eigenvectors ei of the matrix AH:

x (t) =
N
∑
i=1

xi (t) ei , (6.15)

where the coeõcient xi (t) is similar to the one-dimensional case (Equation (6.13)), but
with α substituted with matrix AH’s i-th eigenvalue λi , and β and p̂ (0) substituted with
the projection of the vector AG and p̂ (0) on the i-th eigenvector ei , respectively. Again, we
can obtain the constant multipliers as in the one-dimensional case by plugging in the initial
conditions.

AGaussian equivalent to the approximation We have derived an analytical trajectory for
a ûxed initial momentum. However, having the analytical trajectory is not enough. Recall that
Hamiltonian Monte Carlo starts by generating a Gaussian distributed momentum p (0) ∼
𝒩 (0,A−1), and generates a new position proposal x (T) at a ûxed time T . Unfortunately, a
direct application of the analytical solution to Hamiltonian Monte Carlo using the original
acceptance rule (Equation (6.10)) is infeasible. _e gradient and Hessian generally would be
diòerent at the proposal position, and the time-reversibility would be violated.

An observation from the analytical solution (Equations (6.13) and (6.14)) reveals that the
Hamiltonian dynamics are actually linear mappings from the Gaussian distributed variable
p (0) to the new position x (T) if we have t = T ûxed. _is means that x (T) is also Gaussian
distributed since Gaussian variables are closed under linear transformations. _erefore,
we can generate x (T) using a single Gaussian distribution. Furthermore, the probability
density of the Gaussian can be used as the transition probability T to compute the Metropolis-
Hastings acceptance probability (Equation (6.3)).

Now we will show why the mapping is linear and how to derive the covariance and the
mean of x (T). Again we start from the one-dimensional case. If we plug the multipliers
c1 and c2 (Equation (6.14)) into the analytical solution (Equation (6.13)) and rearrange the

Hessian-Hamiltonian Monte Carlo Rendering 114

terms in one-dimensional x (T), we have:

x (T) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(exp(
⌋︂

αT)−exp(−
⌋︂

αT)
2
⌋︂

α) p̂ (0)

+ β
2α (exp (

⌋︂
αT) + exp (−

⌋︂
αT) − 1) if α > 0

1
⌋︂

−α sin (
⌋︂
−αT) p̂ (0)

+ βα (cos (
⌋︂
−αT) − 1) if α < 0

T p̂ (0) + βT2

2 if α = 0

= s p̂ (0) + o

= sAp (0) + o,

(6.16)

which is a linear function of p (0) and we denote the scaling coeõcient as s and the oòset
coeõcient as o.

For theN-dimensional case, since x (T) is a linear combination of xi (T) (Equation (6.15)),
it is still a linear transform. Moreover, if we write xi (T) = si ⋅ p̂i (0) + oi , where p̂i (0) is the
projection of p̂ (0) on the i-th eigenvector ei of the matrix AH, we can write out the linear
transformation in matrix form:

x (T) = SAp (0) + o, (6.17)

where the matrix S and the vector o can be obtained from the eigenvectors ei , and the
coeõcients si and oi :

S =
N
∑
i=1

siei , o =
N
∑
i=1

oiei . (6.18)

Recall that p (0) is a zero-mean Gaussian variable with covariance A−1. _erefore the covari-
ance matrix Σ and the mean µ of the Gaussian random variable x (T) are

Σ = (SA)A−1 (SA)T = SAST , µ = o. (6.19)

Multiplying with prior Gaussian In practice, our second order approximation (Equa-
tion (6.11)) can be inaccurate when the proposal is far from the current state, or if there
are discontinuities such as visibility changes. To compensate for this, we introduce a prior
Gaussian distribution with zero mean and isotropic variance using a user speciûed constant
σ 2, and multiply the PDF of it with the PDF of the Gaussian random variable x (T), to
eòectively place a limit on the maximum variance (which corresponds to the movement of
the path in path space).

Another way to think about the prior is that it acts as a regularization term that penalizes

115 Hessian-Hamiltonian Monte Carlo Rendering

(a) σ 2 = 0.028
accept rate 28.96%

(b) σ 2 = 0.007
accept rate 54.02%

(c) σ 2 = 0.001
accept rate 82.11%

Figure 6-5: We show the eòect of the prior Gaussian parameter σ2 using an inset from the bathroom
scene (Figure 6-8). (a) High σ2 results in low acceptance rate and a noisy image. (c) Low σ2 results in
high acceptance rate, but produces correlated noise. (b) We choose a σ2 so that the acceptance rate
falls in the ranges from 50% − 70%.

high variance. If σ 2 is high, then the change of the light path would be large, and the acceptance
rate would be lower. On the other hand, if σ 2 is low, then the change of the light path is small,
and the acceptance rate would be higher. We show the eòects of diòerent σ 2 in Figure 6-5. In
our current implementation we manually set σ2 to achieve a certain acceptance rate (50% to
70%), but it may be possible to automatically adjust the parameter using adaptive MCMC [8].
_e ûnal mean µ∗ and covariance Σ∗ are

Σ∗ = (Σ−1 + 1
σ2)

−1
, µ∗ = Σ∗Σ−1o. (6.20)

Computing acceptance probability In order to apply the Metropolis-Hastings rule (Equa-
tion (6.2)) given a current position x, we generate a new proposal position y from a Gaussian
variable with mean µ∗x and covariance matrix Σ∗x computed using Equation (6.20). _en we
compute the mean µ∗y and covariance matrix Σ∗y at the proposal position. _e acceptance
probability (Equation (6.3)) is computed using the density of Gaussians:

a (x → y) = min(1, f (y)Q (y → x)
f (x)Q (x → y))

= min(1,
f (y)Φy (x − y)
f (x)Φx (y − x)) ,

(6.21)

Hessian-Hamiltonian Monte Carlo Rendering 116

where Φx (y − x) is the Gaussian PDF with covariance Σ∗x and mean µ∗x computed at x
(Equation (6.20)). Speciûcally, if we deûne z = y − x, it is:

Φx (z) = (2π)−
N
2 ⋃︀Σ∗x ⋃︀

1
2 exp(− 1

2
(z − µ∗x)

T Σ∗x
−1 (z − µ∗x)) . (6.22)

Φy (−z) is deûned similarly with covariance and mean computed at y.

Setting parameters A and T A remaining question is how to choose the inverse mass
matrix A and simulation time T . Previous work in Hamiltonian Monte Carlo suggests setting
A to the covariance of the target function [155, 60]. As an example, consider a target function
f (x) that is a Gaussian distribution with covariance Σ f . If we ignore multiplication with the
prior, setting A to the covariance of the target function, and setting T = π⇑2 will result in a
Gaussian mutation (Equation (6.19)) that precisely matches the target function. 2

In general, the target function need not be a Gaussian and a global covariance Σ f may not
be suõcient to describe the function. We approximate the covariance locally using the fact
that we have the Hessian H of the log of the function. If the target function is a Gaussian, the
negative inverse of the Hessian −H−1 would exactly be the covariance of the target function.
It would be tempting to directly set A to −H−1, but the covariance matrix of a Gaussian
distribution is required to be positive semideûnite (all eigenvalues need to be positive), and
−H−1 is not necessarily positive deûnite in general. We approximate the local covariance of
the function by substituting the eigenvalues in −H−1 by their absolute values, and set A to the
approximated local covariance:

A =
N
∑
i=1

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1
⋂︀λH

i ⋂︀
eH
i if λH

i ≠ 0

0 otherwise,
(6.23)

where eH
i and λH

i are the i-th eigenvector and eigenvalue of H. Finally, we set T to π
2 , as in

the Gaussian example above.
_e construction of A and T also simpliûes the implementation, since A and H share

the same set of eigenvectors and A’s eigenvalues are the inverse of the absolute value of
H’s eigenvalues or zero. _e eigenvalues λi of matrix AH would then be either −1, 1, or
0, depending on the sign of the eigenvalue of H. _e magnitudes of the eigenvalues in

2In this case, the Hessian H for log f will simply be −Σ−1f , and α = AH will be a negative identity matrix.
_erefore, we consider the α < 0 case in Equation (6.16), where s = 1 for T = π⇑2, and S is the identity matrix.
_erefore, the covariance matrix Σ from Equation (6.19) is given simply by A, leading to a Gaussian distribution
with covariance Σ f , which is exactly the target function. _is justiûes setting A to the covariance of the target
function, and setting T = π⇑2.

117 Hessian-Hamiltonian Monte Carlo Rendering

(a) HMC
128 proposals

no Markov chain
accept rate 94.53%

100 steps
12929 function
evaluations

(b) ours
128 proposals

no Markov chain
accept rate 75.78%

1 step
129 function
evaluations

(∼ 100 times fewer)

(c) HMC
128 states

accept rate 92.97%
100 steps

12929 function
evaluations

(d) ours
128 states

accept rate 94.53%
1 step

129 function
evaluations

(∼ 100 times fewer)

(e) ours
1024 states

accept rate 92.29%
1 step

1025 function
evaluations

(∼ 12.5 times fewer)

Figure 6-6: We compare the sample distribution of the original Hamiltonian Monte Carlo (HMC)
method and our method using the zoomed out slices from Figures 6-2 (g) and (h). _e le� box shows
the “proposals” drawn from the current sample position, without running the Markov chain, and the
right box shows the actual Markov chain states. While the original HMC is able to generate proposals
with high acceptance probability, and over longer trajectories (compare (a) to (b) and (c) to (d)), each
proposal in the original HMC requires many steps to compute (100 steps in this case), and each step
involves costly ray tracing, shading, and derivative computation. Our method achieves much better
space coverage using a single step (as opposed to the 100 steps in the original HMC), and requires an
order of magnitude fewer function evaluations (e).

the Hessian H (and hence A) are still taken into consideration when sampling from the
momentum using the inverse mass matrix A. We show the pseudo-code of our algorithm
in Appendix 6.A, which outputs the ûnal mean µ∗ and covariance Σ∗ given the gradient G,
Hessian H, and prior σ2.

Finally, we compare the proposals and the Markov chain of original Hamiltonian Monte
Carlo with a leapfrog integrator, and our Hessian-HMCmethod in Figure 6-6, using a 2D
slice in the ring scene (Figure 6-2). We use a step size of 0.0005 with 100 steps for the
leapfrog numerical integrator in Hamiltonian Monte Carlo, and we set the prior Gaussian
σ 2 = 0.01 for our method. _e target acceptance rate is set higher because the dimensionality
of the function is low [155]. Although original Hamiltonian Monte Carlo is able to use
longer trajectories to explore the space more thoroughly with the same number of samples,
a single sample in Hamiltonian Monte Carlo requires 100 steps of ray tracing, shading and
derivatives computation. Choosing a bigger step size or smaller step number for HMCmay
result in energy loss or inferior space exploration eõciency, and this parameter of original
Hamiltonian Monte Carlo is notoriously hard to tune. Our H2MCmethod can explore the
space better using an order of magnitude fewer function evaluations (Figure 6-6(e)).

Hessian-Hamiltonian Monte Carlo Rendering 118

(a) torus (b) Kelemen et al. [111],
isotropic proposal

(c) Ours,
isotropic proposal

(d) Ours,
H2MC proposal

Figure 6-7: We compare our new parameterization to Kelemen et al.’s parameterization on the torus
scene, with a diòuse torus inside a glossy glass cube lit by a point light. _e le� image is computed
using 5000 samples per pixel using our method, and the three insets are computed with 256 samples
per pixel. _e original parameterization incurs correlation between screen space and the outgoing
sample directions on the glass and the torus, creating streaks on the torus. Our new parameterization
greatly reduces this correlation. Our Hessian-Hamiltonian proposal further improves the sampling
eõciency dramatically.

6.4 Implementation
We implement ourmethod in a stand-alone renderer with the Embree ray tracing engine [220].
We implement an embedded automatic diòerentiation compiler in C++ that overloads all
the common functions and operators, and compiles the gradient and Hessian of the path
throughput function into an ispc [169] kernel. _e renderer supports the Phong BRDF, the
microfacet refraction model [222], point and area light sources, environment maps, and
linear object motion. Each sample in the Markov chain represents a single light path that
connects the light to the camera. As in most previous Markov chain Monte Carlo rendering
methods, we employ multiple mutation strategies to better cover diòerent types of light paths.
Speciûcally, we adopt three diòerent types of mutation strategies: a multiplexed large step
mutation [111, 74], a novel modiûed small step perturbation, and a lens perturbation. _e
large step mutation is responsible for making large jumps between diòerent disconnected
components of light paths, the small step perturbation is responsible for making a small
change to all dimensions of the function, and ûnally the lens perturbation changes only part
of the light path to alleviate diõcult visibility issues. We apply the H2MC sampling on the
small step and the lens perturbation to explore the local structure of the path throughput
function. In the rest of this section, we address some technical details of the implementation.

Multiplexed large step mutation To ensure the ergodicity of the Markov chain, that is, to
ensure we have a strictly positive probability to sample all light paths with non-zero contri-
bution, we include a large step mutation to generate a proposal light path that is completely

119 Hessian-Hamiltonian Monte Carlo Rendering

independent of the current sample. Our large step mutation is a hybrid between Multiplexed
Metropolis Light Transport (MMLT) [74] and Kelemen et al.’s mutation. Speciûcally, like
MMLT, the state of our Markov chain only represents one of the N2 pairs connections (where
in Kelemen style the state would be the sum of all connections). However, instead of choosing
path length and subpath length a priori as in MMLT, we sample all pairs of connections of a
bidirectional path tracer, and probabilistically pick one based on their contributions weighted
by multiple importance sampling (similar to Multiple-try Metropolis [136] and importance
resampling [185]). Comparing to MMLT, this has the beneût of stratiûcation, since we al-
ways sample all path and subpath lengths instead of randomly choosing one. Comparing to
Kelemen’s mutation, during the other local perturbations, we only keep a single subpath in a
bidirectional path tracer, therefore we beneût from multiple importance sampling just like
MMLT. We notice that the acceptance rate of large steps signiûcantly increases in diõcult
scenes compared to MMLT when using our approach.

H2 small step perturbation We adopt amodiûed version of the small step perturbation [111]
as the main component to explore the path throughput function locally. In Kelemen et al.’s
work, the light paths are represented as the random numbers that are used to generate them.
_e perturbation is done by making small changes to the random numbers, and results in a
new light path. We make two modiûcations to the parameterization.

First, we classify the surfaces into specular and non-specular by applying a user-deûned
threshold on the roughness. If the surface is near-specular, the outgoing directions are
parameterized using the random numbers. On the other hand, if the surface is non-specular,
the outgoing directions are parameterized using the global directions expressed in absolute
spherical coordinates. We found that this change improves sampling eõciency because the
correlation between the dimensions is reduced. Kelemen’s parameterization handles specular
surfaces well, because importance sampling captures the peak of the target function well. On
the other hand, the local parameterization introduces extra correlation between dimensions,
because the outgoing direction depends on the normal of the surface, and the normal depends
on the previous outgoing direction. _e parameterization change is beneûcial because H2MC
is invariant to linear parametrization changes, while the parameterization change is non-linear.
We show a comparison of the original parameterization with the new one in Figure 6-7.

Second, if the light path hits a light source without next event estimation (that is, no
explicit connection is made), we substitute the parameterization of the last outgoing direction,
to the position on the light source, so that the perturbation is more likely to hit the light
source (a limited form of Reversible Jump Markov Chain Monte Carlo [162, 160, 23]). We
assume a pinhole camera in our implementation, but the second change can also apply in

Hessian-Hamiltonian Monte Carlo Rendering 120

H2MC MMLT MEMLT HSLT
Bathroom 610 1288 600 331
Kitchen 5169 12453 4749 3319
Balls 2943 8554 2961 N/A
Cars 1576 5361 1422 N/A

Table 6.1: Sample count per pixel of each method for the equal-time comparisons.

the case when the light path starts from the light source and hits the camera lens without
explicit connection. _e new parameterization represents the sample position x in the H2MC
sampling.

_e time dimension is treated the same as other dimensions. _e generality of H2MC
sampling makes it agnostic to the underlying representation. _is enables us to detect the
correlation between time and other dimensions, which was not considered in previous
Markov chain Monte Carlo rendering methods.

H2 lens perturbation Consider light paths involving small and �at surfaces. If we mutate
the whole path, chances are high that we will miss the surfaces and result in zero contribution.
A better strategy for these light paths is to perturb only a subset of the full path, and keep
the rest of the vertices ûxed. We implement the lens perturbation in the original Metropolis
Light Transport algorithm [216], which mutates only the lens subpath. For lens perturbation,
the sample position x in the H2MC sampling is the two dimensional image coordinate.

6.5 Results and Discussion

We compare against three other MCMC rendering methods: Multiplexed MLT (MMLT) [74],
Manifold Exploration MLT (MEMLT) [97], and the improved Half-vector Space Light Trans-
port (HSLT) [75]. MMLT is a general rendering algorithm that does not assume any particular
lighting eòect, but its isotropic mutation makes it ineõcient on diõcult light paths such as
highly-glossy transports. We compare to MMLT to show the eõciency of the anisotropic
proposal sampling. MEMLT and HSLT are two rendering algorithms dedicated to specular
and glossy transport by using ûrst-order derivatives of the half-vectors. _ey can eõciently
resolve diõcult specular light paths, but o�en produce noisy results on highly-curved surfaces.
Furthermore, since they assume a speciûc lighting scenario, they cannot resolve diõcult
moving caustics, and usually result in ghosting artifacts (Figures 6-1 and 6-11). We did not
compare to HSLT on the scenes with motion blur because their implementation does not
allow it. We render four scenes – Bathroom (1280 × 720), Kitchen (1024 × 576), Balls

121 Hessian-Hamiltonian Monte Carlo Rendering

(768×576), Cars (768×576) – with diòerent lighting, material, and geometry conûgurations
(Figure 6-1 and Figures 6-8 to 6-11).

For MMLT we use our own implementation, for MEMLT and HSLT we use the imple-
mentation in the Mitsuba [95] renderer. HSLT is used with the lens perturbation because in
our experiments it results in better images. _e comparisons are equal-time using an Intel
Core i7-4770 at 3.40GHz using 4 cores. _e maximum path length is set to 7. References are
rendered using the PSSMLT [111] implementation in Mitsuba and rendered for 2-3 days on a
64 core machine, except that the reference for the Cars is rendered using our method for
roughly 15 hours on the 4 core machine (PSSMLT did not converge in 2-3 days computation).
We show the sample count per pixel of each method in each scene in Table 6.1. In general our
method is 2-3.5 times slower per sample than MMLT because of the derivatives and Gaussian
computation, and is about the same speed as MEMLT. HSLT is slower than MEMLT because
it works on a higher-dimensional manifold.

Bathroom Figure 6-8 shows an equal-time (10 minutes) comparison on the bathroom scene
with multiple glossy-to-glossy transports lit by a distant area light. For this particular scene,
only indirect illumination is shown to highlight the diòerences between the algorithms.
MMLT generates noisy results because of their isotropic mutation distribution. MEMLT
and HSLT do generally well, but produce noisy results on high curvature surfaces because
they use a ûrst-order approximation on the surface. Our method is able to capture the local
structure of the function and generates accurate results.

To demonstrate the anisotropic proposal distribution of our method, we visualize the
screen space slice of the contribution of some light paths and the slice of our Gaussian
approximation in Figure 6-9. Our method is able to adapt to the sparse and sharp path
contribution function, and fall back to isotropic sampling when the contribution function is
smooth. MEMLT and HSLT o�en fail to capture small screen space features, because they
isotropically sample some dimensions ûrst, and such sampling o�en misses the feature. Note
that our method adapts to all dimensions, and we only show the screen space slice for the
sake of visualization.

Kitchen Figure 6-10 shows an equal-time (1 hour) comparison on the kitchen scene with
complex materials and a diõcult geometry conûguration lit by four area lights close to the
table. _is is a challenging scene and the reference rendered by PSSMLT is still slightly noisy
a�er 2 days of computation on a 64 core machine. MMLT produces spiky noise because some
glossy-to-glossy light paths have small and high-contribution regions. MEMLT and HSLT
generate noisy results on small and highly curved surfaces. Our method is able to follow the

Hessian-Hamiltonian Monte Carlo Rendering 122

small image features closely, producing smoother results.
In general, light paths involving highly curved surfaces can be troublesome for MEMLT

and HSLT, which only use ûrst derivatives. Both of them need to start from an initial subpath,
then iteratively converge to the new light path on the manifold. _e light paths involving
curved surfaces o�en have narrow contribution areas, and are highly non-linear. It is likely
that the initial subpath will miss the highlight entirely, making it impossible to converge to a
new light path. Even if the initial subpath hits the highlight, it could take many iterations
to converge due to the non-linearity. In contrast, the second derivatives along with the
anisotropic Gaussian mutation enable us to generate the proposal path directly with respect
to the local shape of the function, avoiding the convergence issue.

Balls Figure 6-11 shows a 30 minute rendering of the balls scene, which consists of three
moving near-specular glass balls lit by a point light. MMLT is unable to resolve the diõcult
specular-diòuse-specular paths inside the moving balls and the caustics on the table. While
MEMLT excels at resolving the specular light paths given the time ûxed, it relies on seeding
to sample the time dimension, which causes the ghosting artifacts on the balls. Our method
is able to capture correlation between the time and the path-space, so that it can eõciently
sample the diõcult moving caustics and specular highlights.

Cars. Figure 6-1 shows a 20 minute rendering of the cars scene, with a static car and a
moving car lit by an area light. _is is a challenging scene because of the hard-to-ûnd
specular-diòuse-specular (SDS) light paths between the car interior and the near-specular
window. MMLT has a hard time ûnding the specular light paths, and is o�en trapped in local
modes, producing streaks on the image. MEMLT is able to resolve the static SDS paths more
eõciently, but produces ghosting artifacts since it does not move in the time dimension. Our
method moves in all dimensions and generates smooth results.

6.5.1 Limitations and Future Work

Integrating our method into an existing renderer requires some work, because we need to
automatically diòerentiate the shaders. However, once automatic diòerentiation has been
set up, it is easier to integrate other distributed eòects such as motion blur. Automatic
diòerentiation could also be helpful for the shaders/integrators that require the derivatives
of the light path (e.g. ray diòerentials). _e production renderer Arnold [118] uses forward-
mode automatic diòerentiation to compute ray diòerentials.

As with most Markov-chain Monte Carlo rendering algorithms, high frequency visibility
changes can signiûcantly lower the eõciency. Our Gaussian prior reduces this eòect but tiny

123 Hessian-Hamiltonian Monte Carlo Rendering

geometry can still cause problems. In addition to visibility changes, there can also be some
pathological cases where the path contribution function is extremely noisy. For example,
multiple-bounce re�ections involving glossy surfaces with high frequency displacement
maps. In these cases the derivatives become unreliable, and our method might start to
produce correlated noise or have low acceptance rate. Combining our method with the
visibility gradient introduced in Chapter 5, or the recent cone ûtting approach [159] could be
interesting future work. Proper preûltering of geometry and texture is also important for the
derivatives to be well-behaved (e.g. [138]).

We also observe that light transport integration involves both global and local exploration
challenges. We need to globally ûnd high-contribution regions, and then locally sample them
despite their narrowness. Our method improves local sampling, but it still needs seed paths
that are globally reasonably well distributed. Combining recent data-driven methods, e.g.,
[219, 175], with local perturbation is one possible research direction.

Finally, since the derivatives and covariance computation incurs extra overhead, for
relatively simple scenes and BSDFs where ray casting is cheap and isotropic mutation is
suõcient, the adaptiveness of our method may not be worth the cost.

6.6 Conclusion
We presented a novel Hessian-based Hamiltonian Monte Carlo method and applied it to
light transport simulation. By introducing Hamiltonian dynamics, we are able to sample
from the local quadratic representation that does not deûne a distribution. Our method can
capture the local correlation of the path throughput function, making it suitable for rendering
diõcult lighting scenarios such as the combination of glossy-to-glossy transport and motion
blur. We anticipate that the method’s generality will make it possible to render a wider variety
of eòects such as retrore�ective materials, spectral eòects, and participating media.

6.A Pseudo-code for H2MC
Given the gradient G and the Hessian H of the log target function log f (x), and a user
parameter σ2, our method outputs an anisotropic Gaussian distribution Σ∗, µ∗. _e following
page shows the pseudo code of this procedure. Note that we simplify the algorithm using the
fact that the inverse mass matrix A and H have the same set of eigenvectors.

Hessian-Hamiltonian Monte Carlo Rendering 124

1: procedureH2MC(G ,H, σ 2) ▷ gradient, Hessian, and prior
2: N ← dimension of the target function
3: T = π

2 ▷ Simulation time
4: for i ← 1,N do ▷ Eigendecomposition of H
5: eH

i ← i-th eigenvector of H
6: λH

i ← i-th eigenvalue of H
7: end for
8: A = 0N×N ▷ Initialize with zero matrix
9: for i ← 1,N do ▷ Construction of A
10: eAi ← eH

i
11: if ⋃︀λH

i ⋃︀ > є then ▷ є is set to a small number.
12: λAi ← 1

⋂︀λH
i ⋂︀

13: else
14: λAi ← 0
15: end if
16: A = A+ λAi eAi
17: end for
18: for i ← 1,N do ▷ Eigendecomposition of the matrix AH
19: ei ← eH

i
20: if ⋃︀λH

i ⋃︀ > є then
21: λi ←

λH
i

⋂︀λH
i ⋂︀

▷ λAi = 1
⋂︀λH

i ⋂︀

22: else
23: λi ← 0
24: end if
25: end for
26: S = 0N×N
27: o = 0N×1
28: for i ← 1,N do ▷ Scales and oòsets (Equation (6.16))
29: α ← λi ▷ AH’s i-th eigenvalue
30: β ← λAi GTei ▷ Projection of AG on ei
31: if λi > 0 then
32: si ←

exp(
⌋︂

αT)−exp(−
⌋︂

αT)
2
⌋︂

α

33: oi ← β
2α (exp (

⌋︂
αT) + exp (−

⌋︂
αT) − 1)

34: else if λi < 0 then
35: si ← 1

⌋︂

−α sin (
⌋︂
−αT)

36: oi ← β
α (cos (

⌋︂
−αT) − 1)

37: else
38: si ← T
39: oi ← − βT

2

2
40: end if
41: S = S + siei ▷ Equation (6.18)
42: o = o + oiei
43: end for
44: Σ = SAST ▷ Equation (6.19)
45: µ = o
46: Σ∗ = (Σ−1 + 1

σ 2)
−1 ▷ Prior multiplication (Equation (6.20))

47: µ∗ = Σ′Σµ
48: return Σ∗, µ∗
49: end procedure

125 Hessian-Hamiltonian Monte Carlo Rendering

REF H2MC MEMLT HSLT MMLT

Figure 6-8: Bathroom: An equal-time (10 minutes) comparison on the bathroom scene with multiple
glossy re�ections lit by a distant area light. _e top image is generated by our method in 10 minutes.
Our method achieves less noisy results on highly curved glossy surfaces and the caustics because we
can adapt to the curvatures of the surfaces using second-order derivatives.

Hessian-Hamiltonian Monte Carlo Rendering 126

Figure 6-9: We visualize the screen space slice of the contribution of three diòerent light paths and
our Gaussian approximation𝒩 (µ∗, Σ∗) in the bathroom scene. _e center row of the insets shows
the contribution of perturbing the light path in the screen space. _e le� column shows a 4 bounce
glossy re�ection light path, the center column shows a 3 bounce diòuse re�ection light path, and the
right column shows a 3 bounce caustic light path caused by the metal towel ring. Glossy/specular
transport results in sparse and anisotropic contributions, which are hard to sample using isotropic
mutations. _e bottom row shows our Gaussian approximation projected onto the screen space. _e
approximation matches the sharp contribution function and falls back to isotropic sampling when the
contribution is smooth. Note that our method is anisotropic in all sampling dimensions, and we only
show the screen space slices for visualization purposes.

127 Hessian-Hamiltonian Monte Carlo Rendering

REF H2MC MEMLT HSLT MMLT

Figure 6-10: Kitchen: An equal-time (1 hour) comparison on the kitchen scene with complex material
and geometry conûguration lit by four area lights right above the table. _e top image is generated
by our method in an hour. _is is a challenging scene and the reference rendered by PSSMLT is still
slightly noisy a�er 2 days of computation on a 64 core machine. Our method excels at following the
small features of the image such as the fork and the knife on the table, or the edges on the chair. It
is also good at following the multiple glossy re�ections on the highly curved surfaces such as the
re�ection on the �ask.

Hessian-Hamiltonian Monte Carlo Rendering 128

H2MC MEMLT MMLT

Figure 6-11: Balls: 30 minute rendering of the balls scene, which consists of three moving near-
specular glass balls lit by a point light. _e le� image is generated by our method in 30 minutes. _e
moving balls show complex patterns with a combination of re�ection from the room and the resulting
caustics on the table. Neither MMLT nor MEMLT are able to eõciently resolve the moving features
within the given time budget. Our method is able to closely follow the specular highlights and caustics
in the glass because it detects the correlation between the time domain and path-space.

7 | Conclusion and Future Vision

_is dissertation introduced three very diòerent tools related to computing and applying
derivatives for computer graphics, image processing, and deep learning applications. Ap-
plying derivatives is desirable, but also challenging. At the system level, accounting for
parallelism and locality, while preserving expressiveness of a programming language, is not
trivial. At the algorithm level, resolving discontinuities, making use of ûrst- or higher-order
derivatives o�en require domain-speciûc knowledge. _e three tools we introduced tackled
these challenges in diòerent ways, and are important ûrst steps toward making all programs
diòerentiable.

In the future, my vision is that the distinction between deep learning and traditional
algorithms will become even blurrier than they are at the moment. Neural network architec-
tures will become more and more sophisticated, and traditional methods will become more
data-driven. For problems where data is limited, it is useful to apply our prior knowledge by
formulating a forward model. A key to bridge the gap between deep learning and traditional
methods is the generality of automatic diòerentiation, and the challenges that arose when
developing themethods in this dissertation will repeatedly appear when trying to diòerentiate
other programs.

I envision the following future research directions to be important:

Fully diòerentiable computer graphics While we have been successful at diòerentiating
physically-based rendering (Chapter 5 and 6) and a small �uid simulation example (Chap-
ter 4), these are only subsets of the whole ûeld of computer graphics. It would be desirable to
make the whole 3D modeling, simulation, and rendering pipeline diòerentiable. As shown
throughout this dissertation, having fully diòerentiable pipelines enables data-driven training
and inverse inference. As computer graphics models the world with tremendous detail and
principled simulation, it would have enormous use in real-world applications.

Automatic diòerentiation compilers for other computation While we can automatically
generate eõcient gradient code for image processing and deep learning operators (Chapter 4),
the programming model is still relatively limited compared to a fully general compiler. _is is

129

Conclusion and Future Vision 130

necessary to achieve high performance while writing concise code. However, it is important
to cover other computation for automatic diòerentiation, such as tree traversal, sparse or
graph data structures, sorting, etc. As we did in Chapter 4, we need to properly hint the
compiler about the computation patterns involved in order to reason about the computation
and generate eõcient code. I argue that we need more domain speciûc languages for high
performance automatic diòerentiation.

Generalizing diòerentiation Derivatives are only one possibility for representing the neigh-
borhood of a point in a function. For example, the Fourier transform and wavelets also charac-
terize the smoothness of a function, with non-local information. While using derivatives are
better than treating the program as a black box, it is natural to question whether derivatives
are the most useful information we can retrieve from a program. A�er all, automatic diòer-
entiation is merely a program transformation. Finding other transformations of programs
that beneût the tasks we are interested in is an interesting direction to pursue. For example,
is it possible to ûnd a transformation that is an approximation to the derivatives, but cheaper
to compute, or more robust to high frequency changes of the function? Mathematics-wise,
generalizations of derivatives have been proposed. Discrete calculus studies functions with
integer inputs and real number outputs. Subgradients are commonly used in optimization
theory. Systems-wise, program synthesis techniques [128] have been proven to be useful for
ûnding program transformations.

Local minimum, overparametrization, and preûltering When dealing with function
landscapes that are noisy and bumpy, derivative-based methods are known to be unsta-
ble. Deep learning does not seem to suòer from this, most likely due to their large amount of
parameters (e.g. [53, 110]). Figuring out how to overparametrize traditional algorithms is the
key to truly fuse the two domains. Preûltering in signal processing could also play an impor-
tant role: if we can smooth out a function before we sample it, it will make the derivatives
much more well-behaved. Yang and Barnes [232] hinted on how to do this automatically
for shader programs in computer graphics, but generalizing their approach to arbitrarily
high-dimensional functions requires future research.

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeòrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoòrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015.

[2] Andrew Adams, Natasha Gelfand, Jennifer Dolson, and Marc Levoy. Gaussian
kd-trees for fast high-dimensional ûltering. ACM Trans. Graph. (Proc. SIGGRAPH),
28(3):21, 2009.

[3] Miika Aittala, Timo Aila, and Jaakko Lehtinen. Re�ectance modeling by neural
texture synthesis. ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):65:1–65:13, 2016.

[4] Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. Practical SVBRDF capture in the
frequency domain. ACM Trans. Graph. (Proc. SIGGRAPH), 32(4):110:1–110:12, 2013.

[5] Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. Two-shot SVBRDF capture for
stationary materials. ACM Trans. Graph. (Proc. SIGGRAPH), 34(4):110:1–110:13, 2015.

[6] Shun-ichi Amari. Neural learning in structured parameter spaces-natural riemannian
gradient. In Advances in Neural Information Processing Systems, pages 127–133, 1997.

[7] Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. Aether: An
embedded domain speciûc sampling language for Monte Carlo rendering. ACM
Trans. Graph. (Proc. SIGGRAPH), 36(4):99:1–99:16, 2017.

[8] Christophe Andrieu and Johannes _oms. A tutorial on adaptive MCMC. Statistics
and Computing, 18(4):343–373, 2008.

[9] James Arvo. _e irradiance Jacobian for partially occluded polyhedral sources. In
SIGGRAPH, pages 343–350. ACM Press/Addison-Wesley Publishing Co., 1994.

[10] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust
adversarial examples. In International Conference on Machine Learning, pages
284–293, 2018.

131

Bibliography 132

[11] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and portable code.
In Code Generation and Optimization. IEEE, Feburary 2019.

[12] Jonathan T Barron and Jitendra Malik. Shape, illumination, and re�ectance from
shading. IEEE Trans. Pattern Anal. Mach. Intell., 37(8):1670–1687, 2015.

[13] Jonathan T Barron and Ben Poole. _e fast bilateral solver. In European Conference on
Computer Vision, pages 617–632, 2016.

[14] Bruce Guenther Baumgart. Geometric modeling for computer vision. Technical
report, Stanford University, 1974.

[15] Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Frédo Durand. 5D
covariance tracing for eõcient defocus and motion blur. ACM Trans. Graph.,
32(3):31:1–31:18, 2013.

[16] Bradley Bell. CppAD: A package for diòerentiation of C++ algorithms, 2003–2019.

[17] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
_eano: a CPU and GPU math expression compiler. In Python for Scientiûc
Computing Conference (SciPy), 2010.

[18] Michael Betancourt. A general metric for Riemannian manifold Hamiltonian Monte
Carlo. In Geometric Science of Information, pages 327–334, 2013.

[19] Michael Betancourt. A geometric theory of higher-order automatic diòerentiation.
arXiv:1812.11592, 2018.

[20] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies – a comprehensive
introduction. Natural computing, 1(1):3–52, may 2002.

[21] Shalabh Bhatnagar, HL Prasad, and LA Prashanth. Stochastic recursive algorithms for
optimization: simultaneous perturbation methods, volume 434. Springer, 2012.

[22] Christian Bischof, Alan Carle, George Corliss, and Andreas Griewank. ADIFOR:
Automatic diòerentiation in a source translator environment. In International
Symposium on Symbolic and Algebraic Computation, pages 294–302, 1992.

[23] Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. Reversible jump
Metropolis light transport using inverse mappings. ACM Trans. Graph., 37(1):1:1–1:12,
2017.

[24] Volker Blanz and_omas Vetter. A morphable model for the synthesis of 3D faces. In
SIGGRAPH, pages 187–194. ACM Press/Addison-Wesley Publishing Co., 1999.

133 Bibliography

[25] Adrien Bousseau, Emmanuelle Chapoulie, Ravi Ramamoorthi, and Maneesh
Agrawala. Optimizing environment maps for material depiction. Comput. Graph.
Forum (Proc. EGSR), 30(4):1171–1180, 2011.

[26] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[27] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov
Chain Monte Carlo. CRC press, 2011.

[28] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image
denoising. In Computer Vision and Pattern Recognition, volume 2, pages 60–65. IEEE,
2005.

[29] Brent Burley. Physically-based shading at Disney. In SIGGRAPH Course Notes.
Practical physically-based shading in ûlm and game production., volume 2012, pages 1–7.
ACM, 2012.

[30] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning
photographic global tonal adjustment with a database of input / output image pairs.
In Computer Vision and Pattern Recognition. IEEE, 2011.

[31] Pierre BÃľnard and Aaron Hertzmann. Line drawings from 3D models.
arXiv:1810.01175, 2018.

[32] Bob Carpenter. Typical sets and the curse of dimensionality. https://mc-stan.
org/users/documentation/case-studies/curse-dims.html.
Accessed: 2019-01-20.

[33] Augustin Cauchy. Méthode générale pour la résolution des systemes dâĂŹéquations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[34] M. T. Chao. A general purpose unequal probability sampling plan. Biometrika,
69:653–656, 1982.

[35] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-aware image
processing with the bilateral grid. ACM Trans. Graph. (Proc. SIGGRAPH), 26(3), 2007.

[36] Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent
gradient estimators. arXiv:1807.11880, 2018.

[37] Min Chen and James Arvo. _eory and application of specular path perturbation.
ACM Trans. Graph., 19(4):246–278, 2000.

[38] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian
Monte Carlo. In International Conference on Machine Learning, pages 1683–1691, 2014.

[39] Sharan Chetlur, Cliò Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cuDNN: Eõcient primitives for deep learning.
arXiv:1410.0759, 2014.

https://mc-stan.org/users/documentation/case-studies/curse-dims.html
https://mc-stan.org/users/documentation/case-studies/curse-dims.html

Bibliography 134

[40] James H Clark. Hierarchical geometric models for visible surface algorithms.
Commun. ACM, 19(10):547–554, 1976.

[41] Cliòord. Preliminary sketch of biquaternions. Proceedings of the London
Mathematical Society, s1-4(1):381–395, nov 1871.

[42] David Cline, Justin Talbot, and Parris Egbert. Energy redistribution path tracing.
ACM Trans. Graph. (Proc. SIGGRAPH), 24(3):1186–1195, 2005.

[43] R. L. Cook and K. E. Torrance. A re�ectance model for computer graphics. ACM
Trans. Graph., 1(1):7–24, 1982.

[44] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duòy, and Neil Hunt. _e
triangle processor and normal vector shader: A VLSI system for high performance
graphics. Comput. Graph. (Proc. SIGGRAPH), 22(4):21–30, jun 1988.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition. IEEE, 2009.

[46] Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan
Ragan-Kelley, Christian _eobalt, Pat Hanrahan, Matthew Fisher, and Matthias
Niessner. Opt: A domain speciûc language for non-linear least squares optimization
in graphics and imaging. ACM Trans. Graph., 36(5):171:1–171:27, 2017.

[47] Timothy Dozat. Incorporating Nesterov momentum into Adam. In International
Conference on Learning Representations – Workshop track, 2016.

[48] Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid
monte carlo. Physics Letters B, 195(2):216 – 222, 1987.

[49] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

[50] Alejandro Conty Estevez and Christopher Kulla. Importance sampling of many lights
with adaptive tree splitting. ACM Comput. Graph. Interact. Tech. (Proc. HPG),
1(2):25:1–25:17, 2018.

[51] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for
model ûtting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, jun 1981.

[52] Horacio E. Fortunato and Manuel M. Oliveira. Fast high-quality non-blind
deconvolution using sparse adaptive priors. Visual Comput., 30(6-8):661–671, 2014.

[53] Jonathan Frankle and Michael Carbin. _e lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on Learning Representations,
2019.

135 Bibliography

[54] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In Computer Vision and Pattern Recognition, pages
2414–2423. IEEE, 2016.

[55] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle
pointsâĂŤonline stochastic gradient for tensor decomposition. In International
Conference on Learning _eory, pages 797–842, 2015.

[56] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–741,
1984.

[57] Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. Deep joint
demosaicking and denoising. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
35(6):191:1–191:12, 2016.

[58] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoò, and Frédo
Durand. Deep bilateral learning for real-time image enhancement. ACM Trans.
Graph. (Proc. SIGGRAPH), 36(4):118:1–118:12, 2017.

[59] Ralf Giering and_omas Kaminski. Recipes for adjoint code construction. ACM
Trans. Math. So�w., 24(4):437–474, 1998.

[60] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

[61] Ioannis Gkioulekas, Anat Levin, and Todd Zickler. An evaluation of computational
imaging techniques for heterogeneous inverse scattering. In European Conference on
Computer Vision, pages 685–701, 2016.

[62] Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. Inverse
volume rendering with material dictionaries. ACM Trans. Graph., 32(6):162:1–162:13,
nov 2013.

[63] Gabriel Goh. Why momentum really works. Distill, 2017.

[64] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations, 2015.

[65] Robert Mansel Gower and MP Mello. A new framework for the computation of
Hessians. Optimization Methods and So�ware, 27(2):251–273, 2012.

[66] Peter J Green. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4):711–732, 1995.

[67] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic diòerentiation. Optimization Methods and So�ware, 1(1):35–54,
1992.

Bibliography 136

[68] Andreas Griewank. Who invented the reverse mode of diòerentiation? Documenta
Mathematica, Extra Volume ISMP, pages 389–400, 2012.

[69] Andreas Griewank, David Juedes, and Jean Utke. Algorithm 755: ADOL-C: A package
for the automatic diòerentiation of algorithms written in C/C++. ACM Trans. Math.
So�w., 22(2):131–167, jun 1996.

[70] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the
Markowitz rule. In Automatic Diòerentiation of Algorithms: _eory, Implementation,
and Application, pages 126–135. SIAM, 1991.

[71] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Diòerentiation. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2008.

[72] Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. Discrete shells.
In Symposium on Computer Animation, pages 62–67. Eurographics Association, 2003.

[73] Brian K Guenter. Eõcient symbolic diòerentiation for graphics applications. ACM
Trans. Graph. (Proc. SIGGRAPH), 26(3), 2007.

[74] Toshiya Hachisuka, Anton S Kaplanyan, and Carsten Dachsbacher. Multiplexed
Metropolis light transport. ACM Trans. Graph. (Proc. SIGGRAPH), 33(4):100:1–100:10,
2014.

[75] Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. Improved half vector
space light transport. Comput. Graph. Forum (Proc. EGSR), 34(4):65–74, 2015.

[76] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better:
Stability of stochastic gradient descent. In International Conference on Machine
Learning, pages 1225–1234, 2016.

[77] Laurent Hascoet and Valérie Pascual. _e Tapenade automatic diòerentiation tool:
Principles, model, and speciûcation. ACM Trans. Math. So�w., 39(3):20:1–20:43, 2013.

[78] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[79] Felix Heide, Steven Diamond, Matthias Niessner, Jonathan Ragan-Kelley, Wolfgang
Heidrich, and Gordon Wetzstein. ProxImaL: Eõcient image optimization using
proximal algorithms. ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):84:1–84:15, 2016.

[80] Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushûqur Rouf, Dawid Pająk, Dikpal
Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen Egiazarian, Jan Kautz, and
Kari Pulli. FlexISP: A �exible camera image processing framework. ACM Trans.
Graph. (Proc. SIGGRAPH), 33(6):231:1–231:13, 2014.

[81] Eric Heitz, Jonathan Dupuy, Stephen Hill, and David Neubelt. Real-time
polygonal-light shading with linearly transformed cosines. ACM Trans. Graph. (Proc.
SIGGRAPH), 35(4):41:1–41:8, 2016.

137 Bibliography

[82] Eric Heitz and Stephen Hill. Linear-light shading with linearly transformed cosines.
In GPU Zen. Black Cat Publishing, 2017.

[83] Aaron Hertzmann. Introduction to 3D non-photorealistic rendering: Silhouettes and
outlines. In Stuart Green, editor, SIGGRAPH Course Notes. Course on
Non-Photorelistic Rendering. ACM Press/ACM SIGGRAPH, New York, 1999.

[84] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In SIGGRAPH,
pages 517–526. ACM Press/Addison-Wesley Publishing Co., 2000.

[85] Keigo Hirakawa and_omas W. Parks. Adaptive homogeneity-directed demosaicing
algorithm. IEEE Trans. Image Process., 14(3):360–369, 2005.

[86] Robin J. Hogan. Fast reverse-mode automatic diòerentiation using expression
templates in C++. ACM Trans. Math. So�w., 40(4):26:1–26:16, jul 2014.

[87] Nicolas Holzschuch and FranÃğois X. Sillion. An exhaustive error-bounding
algorithm for hierarchical radiosity. Comput. Graph. Forum, 17(4):197–218, 1998.

[88] Lars Hörmander. _e analysis of linear partial diòerential operators I: Distribution
theory and Fourier analysis. Springer, 1983.

[89] Berthold KP Horn and Brian G Schunck. Determining optical �ow. Artiûcial
intelligence, 17(1-3):185–203, 1981.

[90] Homan Igehy. Tracing ray diòerentials. In SIGGRAPH, pages 179–186. ACM
Press/Addison-Wesley Publishing Co., 1999.

[91] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be color!: joint
end-to-end learning of global and local image priors for automatic image colorization
with simultaneous classiûcation. ACM Trans. Graph. (Proc. SIGGRAPH),
35(4):110:1–110:11, 2016.

[92] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. FlowNet 2.0:
Evolution of optical �ow estimation with deep networks. In Computer Vision and
Pattern Recognition. IEEE, 2017.

[93] Wolfram Research, Inc. Mathematica, Version 11.3. Champaign, IL, 2018.

[94] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
Spatial transformer networks. In Advances in Neural Information Processing Systems,
pages 2017–2025, 2015.

[95] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

[96] Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and
Steve Marschner. Discrete stochastic microfacet models. ACM Trans. Graph. (Proc.
SIGGRAPH), 33(4):115:1–115:10, 2014.

Bibliography 138

[97] Wenzel Jakob and Steve Marschner. Manifold exploration: a Markov Chain Monte
Carlo technique for rendering scenes with diõcult specular transport. ACM Trans.
Graph., 31(4):58:1–58:13, 2012.

[98] Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. A
comprehensive theory of volumetric radiance estimation using photon points and
beams. ACM Trans. Graph., 30(1):5:1âĂŞ5:19, 2011.

[99] Wojciech Jarosz, Volker Schönefeld, Leif Kobbelt, and Henrik Wann Jensen. _eory,
analysis and applications of 2D global illumination. ACM Trans. Graph.,
31(5):125:1–125:21, 2012.

[100] Henrik Wann Jensen. Global illumination using photon maps. In Rendering
Techniques (Proc. EGWR), pages 21–30. Eurographics Association, 1996.

[101] Yangqing Jia, Evan Shelhamer, Jeò Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caòe: Convolutional architecture
for fast feature embedding. In International Conference on Multimedia, MM ’14, pages
675–678, 2014.

[102] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in Neural Information Processing Systems,
pages 315–323, 2013.

[103] Michael J. Jones and Tomaso Poggio. Model-based matching by linear combinations
of prototypes. Technical report, Massachusetts Institute of Technology, 1996.

[104] Nathaniel Louis Jones. Validated interactive daylighting analysis for architectural
design. PhD thesis, Massachusetts Institute of Technology, 2017.

[105] James T. Kajiya. _e rendering equation. Comput. Graph. (Proc. SIGGRAPH),
20(4):143–150, 1986.

[106] Anton S Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. _e
natural-constraint representation of the path space for eõcient light transport
simulation. ACM Trans. Graph. (Proc. SIGGRAPH), 33(4):102:1–102:13, 2014.

[107] Tero Karras. Maximizing parallelism in the construction of BVHs, octrees, and k-d
trees. In High Performance Graphics, pages 33–37. ACM/Eurographics Association,
2012.

[108] Tero Karras and Timo Aila. Fast parallel construction of high-quality bounding
volume hierarchies. In High Performance Graphics, pages 89–99. ACM/Eurographics
Association, 2013.

[109] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3D mesh renderer. In
Computer Vision and Pattern Recognition, pages 3907–3916. IEEE, 2018.

139 Bibliography

[110] Kenji Kawaguchi and Leslie Pack Kaelbling. Elimination of all bad local minima in
deep learning. arXiv:1901.00279, 2019.

[111] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. A simple
and robust mutation strategy for the Metropolis light transport algorithm. Comput.
Graph. Forum (Proc. Eurographics), 21(3):531–540, 2002.

[112] Henry J Kelley. Gradient theory of optimal �ight paths. ARS Journal, 30(10):947–954,
1960.

[113] Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker. Gradient-domain path tracing. ACM Trans. Graph. (Proc.
SIGGRAPH), 34(4):123:1–123:13, 2015.

[114] Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve
Marschner. Matching real fabrics with micro-appearance models. ACM Trans. Graph.,
35(1):1:1–1:26, 2015.

[115] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

[116] Shinya Kitaoka, Yoshifumi Kitamura, and Fumio Kishino. Replica exchange light
transport. Comput. Graph. Forum, 28(8):2330–2342, 2009.

[117] Jaroslav Krivanek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch.
Radiance caching for eõcient global illumination. IEEE Trans. Vis. Comput. Graph.,
pages 550–561, 2005.

[118] Christopher Kulla, Alejandro Conty, Cliòord Stein, and Larry Gritz. Sony Pictures
Imageworks Arnold. ACM Trans. Graph., 37(3):29:1–29:18, 2018.

[119] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri
Matas. DeblurGAN: Blind motion deblurring using conditional adversarial networks.
arXiv:1711.07064, 2017.

[120] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In Compugraphics,
pages 145–153, 1993.

[121] Yu-Chi Lai, , Feng Liu, and Charles Dyer. Physically-based animation rendering with
Markov Chain Monte Carlo. Technical Report UW-CS-TR-1653, University of
Wisconsin - Madison Computer Sciences Department, 2009.

[122] Yu-Chi Lai, Shaohua Fan, Stephen Chenney, and Charcle Dyer. Photorealistic image
rendering with population Monte Carlo energy redistribution. Rendering Techniques
(Proc. EGSR), pages 287–295, 2007.

[123] Samuli Laine, Tero Karras, and Timo Aila. Megakernels considered harmful:
wavefront path tracing on GPUs. In High Performance Graphics, pages 137–143.
ACM/Eurographics Association, 2013.

Bibliography 140

[124] Leslie Lamport. _e hyperplane method for an array computer. In Proceedings of the
Sagamore Computer Conference on Parallel Processing, pages 113–131, 1975.

[125] Gunther Lange. Gauss type photographic objective containing two outer collective
and two inner dispersive members. U.S. Patent 2,799,207 A, July 1957.

[126] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and
Dinesh Manocha. Fast bvh construction on gpus. Comput. Graph. Forum (Proc.
Eurographics), 28(2):375–384, 2009.

[127] Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo
Aila. Gradient-domain Metropolis light transport. ACM Trans. Graph. (Proc.
SIGGRAPH), 32(4):95:1–95:12, 2013.

[128] A Solar Lezama. Program synthesis by sketching. PhD thesis, UC Berkeley, 2008.

[129] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Diòerentiable Monte
Carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH
Asia), 37(6):222:1–222:11, 2018.

[130] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan
Ragan-Kelley. Diòerentiable programming for image processing and deep learning in
Halide. ACM Trans. Graph. (Proc. SIGGRAPH), 37(4):139:1–139:13, 2018.

[131] Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand.
Anisotropic Gaussian mutations for Metropolis light transport through
Hessian-Hamiltonian dynamics. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
34(6):209:1–209:13, 2015.

[132] Seppo Linnainmaa. _e representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s thesis, Univ.
Helsinki, 1970.

[133] Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. Material
editing using a physically based rendering network. In International Conference on
Computer Vision, pages 2280–2288. IEEE, 2017.

[134] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Paparazzi: Surface editing by
way of multi-view image processing. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
37(6):221:1–221:11, 2018.

[135] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and Alec
Jacobson. Beyond pixel norm-balls: Parametric adversaries using an analytically
diòerentiable renderer. In International Conference on Learning Representations, 2019.

[136] Jun S Liu, Faming Liang, and Wing Hung Wong. _e multiple-try method and local
optimization in Metropolis sampling. J. Am. Stat. Assoc., 95(449):121–134, 2000.

141 Bibliography

[137] Matthew M. Loper and Michael J. Black. OpenDR: An approximate diòerentiable
renderer. In European Conference on Computer Vision, volume 8695, pages 154–169.
ACM, 2014.

[138] Guillaume Loubet and Fabrice Neyret. Hybrid mesh-volume lods for all-scale
pre-ûltering of complex 3D assets. Comput. Graph. Forum, 36(2):431–442, 2017.

[139] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, 2004.

[140] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep photo style transfer.
In Computer Vision and Pattern Recognition, pages 4990–4998. IEEE, 2017.

[141] Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I Jordan.
Sampling can be faster than optimization. arXiv:1811.08413, 2018.

[142] J David MacDonald and Kellogg S Booth. Heuristics for ray tracing using space
subdivision. Visual Comput., 6(3):153–166, 1990.

[143] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based
hyperparameter optimization through reversible learning. In International Conference
on Machine Learning, pages 2113–2122, 2015.

[144] Stephan Mandt, Matthew D Hoòman, and David M Blei. Stochastic gradient descent
as approximate Bayesian inference. J. Mach. Learn. Res., 18(1):4873–4907, 2017.

[145] Jochem Marotzke, Ralf Giering, Kate Q Zhang, Detlef Stammer, Chris Hill, and Tong
Lee. Construction of the adjoint MIT ocean general circulation model and
application to Atlantic heat transport sensitivity. Journal of Geophysical Research:
Oceans, 104(C12):29529–29547, 1999.

[146] James Martens. Deep learning via Hessian-free optimization. In International
Conference on Machine Learning, volume 27, pages 735–742, 2010.

[147] James Martens, Ilya Sutskever, and Kevin Swersky. Estimating the Hessian by
back-propagating curvature. In International Conference on Machine Learning, 2012.

[148] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid control
using the adjoint method. ACM Trans. Graph. (Proc. SIGGRAPH), 23(3):449–456,
2004.

[149] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
J. Chem. Phys., 21(6):1087–1092, 1953.

[150] Don P Mitchell and Arun N Netravali. Reconstruction ûlters in computer-graphics.
Comput. Graph. (Proc. SIGGRAPH), 22(4):221–228, 1988.

Bibliography 142

[151] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. Automatically scheduling Halide image processing pipelines.
ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):83:1–83:11, jul 2016.

[152] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. PolyMage: Automatic
optimization for image processing pipelines. SIGARCH Comput. Archit. News,
43(1):429–443, 2015.

[153] Uwe Naumann. Eõcient calculation of Jacobian matrices by optimized application of
the chain rule to computational graphs. PhD thesis, Verlag nicht ermittelbar, 1999.

[154] Uwe Naumann. Optimal jacobian accumulation is np-complete. Mathematical
Programming, 112(2):427–441, 2008.

[155] Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 54:113–162, 2010.

[156] Yurii Nesterov. A method for unconstrained convex minimization problem with the
rate of convergence o(1⇑k2). In Doklady AN USSR, volume 269, pages 543–547, 1983.

[157] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, second
edition, 2006.

[158] Matt Olson and Hao Zhang. Silhouette extraction in Hough space. Comput. Graph.
Forum (Proc. Eurographics), 25(3):273–282, 2006.

[159] Hisanari Otsu, Johannes Hanika, Toshiya Hachisuka, and Carsten Dachsbacher.
Geometry-aware Metropolis light transport. ACM Trans. Graph. (Proc. SIGGRAPH
Asia), 37(6):278:1–278:11, 2018.

[160] Hisanari Otsu, Anton S. Kaplanyan, Johannes Hanika, Carsten Dachsbacher, and
Toshiya Hachisuka. Fusing state spaces for Markov chain Monte Carlo rendering.
ACM Trans. Graph. (Proc. SIGGRAPH), 36(4):74:1–74:10, 2017.

[161] Art B. Owen. Monte Carlo theory, methods and examples, 2013.

[162] Jacopo Pantaleoni. Charted Metropolis light transport. ACM Trans. Graph. (Proc.
SIGGRAPH), 36(4):75:1–75:14, 2017.

[163] Eric Paquette, Pierre Poulin, and George Drettakis. A light hierarchy for fast
rendering of scenes with many lights. Comput. Graph. Forum (Proc. Eurographics),
pages 63–74, 1998.

[164] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. OptiX: A general purpose ray tracing engine. ACM Trans. Graph.
(Proc. SIGGRAPH), 29(4):66:1–66:13, 2010.

143 Bibliography

[165] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
diòerentiation in PyTorch. In NIPS Autodiò Workshop, 2017.

[166] Gustavo Patow and Xavier Pueyo. A survey of inverse rendering problems. Comput.
Graph. Forum, 22(4):663–687, 2003.

[167] Barak A. Pearlmutter and Jeòrey Mark Siskind. Reverse-mode AD in a functional
framework: Lambda the ultimate backpropagator. Trans. Program. Lang. Syst.,
30(2):7:1–7:36, 2008.

[168] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From
_eory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., 3rd edition, oct
2016.

[169] Matt Pharr and William R Mark. ispc: A SPMD compiler for high-performance CPU
programming. In Innovative Parallel Computing, pages 1–13, 2012.

[170] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages
55–69. Springer, 1998.

[171] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, and Frédo Durand. Decoupling algorithms from schedules for easy
optimization of image processing pipelines. ACM Trans. Graph. (Proc. SIGGRAPH),
31(4):32:1–32:12, jul 2012.

[172] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. SIGPLAN Not.,
48(6):519–530, 2013.

[173] Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. A ûrst-order analysis of
lighting, shading, and shadows. ACM Trans. Graph., 26(1):2, 2007.

[174] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and
beyond. In International Conference on Learning Representations, 2018.

[175] Florian Reibold, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. Selective
guided sampling with complete light transport paths. ACM Trans. Graph. (Proc.
SIGGRAPH Asia), 37(6):223:1–223:14, 2018.

[176] Osborne Reynolds, Arthur William Brightmore, and William Henry Moorby. _e
sub-mechanics of the universe, volume 3. University Press, 1903.

[177] Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian
_eobalt. A versatile scene model with diòerentiable visibility applied to generative
pose estimation. In International Conference on Computer Vision, pages 765–773.
IEEE, 2015.

Bibliography 144

[178] Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel. Learning detailed face
reconstruction from a single image. In Computer Vision and Pattern Recognition,
pages 5553–5562. IEEE, 2017.

[179] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math.
Statist., 22(3):400–407, 1951.

[180] Gareth O. Roberts and Jeòrey S. Rosenthal. Optimal scaling of discrete
approximations to Langevin diòusions. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 60(1):255–268, 1998.

[181] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin
distributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

[182] Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled newton methods i:
globally convergent algorithms. arXiv:1601.04737, 2016.

[183] Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled newton methods ii:
local convergence rates. arXiv:1601.04738, 2016.

[184] S. Roth and M. J. Black. Fields of Experts: A framework for learning image priors. In
Computer Vision and Pattern Recognition, volume 2, pages 860–867. IEEE, 2005.

[185] Donald B Rubin. Comment: A noniterative sampling/importance resampling
alternative to the data augmentation algorithm for creating a few imputations when
fractions of missing information are modest: _e sir algorithm. J. Am. Stat. Assoc.,
82(398):543–546, 1987.

[186] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[187] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. In Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1, pages 318–362. MIT Press, 1986.

[188] Max Sagebaum, Tim Albring, and Nicolas R. Gauger. Expression templates for primal
value taping in the reverse mode of algorithmic diòerentiation. Optimization Methods
and So�ware, 33(4–6):1207–1231, 2018.

[189] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Snyder.
Silhouette clipping. In SIGGRAPH, pages 327–334. ACM Press/Addison-Wesley
Publishing Co., 2000.

[190] Pedro V. Sander, Hugues Hoppe, John Snyder, and Steven J. Gortler. Discontinuity
edge overdraw. In Symposium on Interactive 3D Graphics and Games, pages 167–174.
ACM, 2001.

[191] Jürgen Schmidhuber. Who invented backpropagation? http://people.idsia.
ch/~juergen/who-invented-backpropagation.html.

http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

145 Bibliography

[192] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing ûnite sums with the
stochastic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[193] Jorge Schwarzhaupt, Henrik Wann Jensen, and Wojciech Jarosz. Practical
Hessian-based error control for irradiance caching. ACM Trans. Graph. (Proc.
SIGGRAPH Asia), 31(6):193:1–193:10, 2012.

[194] Ram Shacked and Dani Lischinski. Automatic lighting design using a perceptual
quality metric. Comput. Graph. Forum, 20(3):215–227, 2001.

[195] Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, Simon Peyton Jones, and
Christoph Koch. Eõcient diòerentiable programming in a functional
array-processing language. arXiv:1806.02136, 2018.

[196] Mikio Shinya, T. Takahashi, and Seiichiro Naito. Principles and applications of pencil
tracing. Comput. Graph. (Proc. SIGGRAPH), 21(4):45–54, 1987.

[197] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556, 2014.

[198] Savvas Sioutas, Sander Stuijk, Henk Corporaal, Twan Basten, and Lou Somers. Loop
transformations leveraging hardware prefetching. In Code Generation and
Optimization, pages 254–264. IEEE, 2018.

[199] Jascha Sohl-Dickstein, Mayur Mudigonda, and Michael DeWeese. Hamiltonian
Monte Carlo without detailed balance. In International Conference on Machine
Learning, pages 719–726, 2014.

[200] Jan Sokolowski and Jean-Paul Zolésio. Introduction to shape optimization. In
Introduction to Shape Optimization, pages 5–12. Springer, 1992.

[201] Jos Stam. Stable �uids. In SIGGRAPH, pages 121–128. ACM Press/Addison-Wesley
Publishing Co., 1999.

[202] Michelle Mills Strout and Paul Hovland. Linearity analysis for automatic
diòerentiation. In International Conference on Computational Science, pages 574–581.
Springer, 2006.

[203] Patricia Suriana, Andrew Adams, and Shoaib Kamil. Parallel associative reductions in
Halide. In Code Generation and Optimization. IEEE, 2017.

[204] Frank Suykens and Yves D. Willems. Path diòerentials and applications. In Rendering
Techniques (Proc. EGWR), pages 257–268. Eurographics Association, 2001.

[205] Robert H Swendsen and Jian-Sheng Wang. Replica monte carlo simulation of
spin-glasses. Phys. Rev. Lett., 57(21):2607, 1986.

[206] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
International Conference on Learning Representations, 2014.

Bibliography 146

[207] Stan Development Team. Stan Modeling Language Users Guide and Reference Manual,
Version 2.9.0, 2015.

[208] Tijmen Tieleman and Geoòrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude, 2012.

[209] Carlo Tomasi and Roberto Manduchi. Bilateral ûltering for gray and color images. In
International Conference on Computer Vision, pages 839–846. IEEE, 1998.

[210] Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. Keyframe control
of smoke simulations. ACM Trans. Graph. (Proc. SIGGRAPH), 22(3):716–723, 2003.

[211] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior.
arXiv:1711.10925, 2017.

[212] Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout, Patrick
Heimbach, Chris Hill, and Carl Wunsch. Openad/f: A modular open-source tool for
automatic diòerentiation of fortran codes. ACM Trans. Math. So�w., 34(4):18, 2008.

[213] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,
Stanford University, 1998.

[214] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In
Photorealistic Rendering Techniques (Proc. EGWR). Eurographics Association, 1994.

[215] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for
Monte Carlo rendering. In SIGGRAPH, pages 419–428. ACM Press/Addison-Wesley
Publishing Co., 1995.

[216] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In SIGGRAPH, pages
65–76. ACM Press/Addison-Wesley Publishing Co., 1997.

[217] Dominique Villard and Michael B Monagan. ADrien: an implementation of
automatic diòerentiation in Maple. In International Symposium on Symbolic and
Algebraic Computation, pages 221–228, 1999.

[218] Yu. M. Volin and G. M. Ostrovskii. Automatic computation of derivatives with the use
of the multilevel diòerentiating technique — I: Algorithmic basis. Computers and
Mathematics with Applications, 11:1099–1114, 1985.

[219] Jirí Vorba, Ondrej Karlík, Martin Sik, Tobias Ritschel, and Jaroslav Krivánek. On-line
learning of parametric mixture models for light transport simulation. ACM Trans.
Graph. (Proc. SIGGRAPH), 33(4):101:1–101:11, 2014.

[220] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst.
Embree: a kernel framework for eõcient CPU ray tracing. ACM Trans. Graph. (Proc.
SIGGRAPH), 33(4):143:1–143:8, 2014.

147 Bibliography

[221] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian,
and Donald P. Greenberg. Lightcuts: A scalable approach to illumination. ACM Trans.
Graph. (Proc. SIGGRAPH), 24(3):1098–1107, 2005.

[222] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance.
Microfacet models for refraction through rough surfaces. Rendering Techniques (Proc.
EGSR), pages 195–206, 2007.

[223] Mu Wang, Alex Pothen, and Paul Hovland. Edge pushing is equivalent to vertex
elimination for computing Hessians. In Workshop on Combinatorial Scientiûc
Computing, pages 102–111. SIAM, 2016.

[224] Greg Ward and Paul Heckbert. Irradiance gradients. In Eurographics Workshop on
Rendering, pages 85–98. Eurographics Association, May 1992.

[225] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution
for diòuse interre�ection. Comput. Graph. (Proc. SIGGRAPH), pages 85–92, 1988.

[226] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In International Conference on Machine Learning, pages 681–688, 2011.

[227] R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM,
7(8):463–464, aug 1964.

[228] Paul J Werbos. Applications of advances in nonlinear sensitivity analysis. In System
modeling and optimization, pages 762–770. Springer Berlin Heidelberg, 1982.

[229] Alexander B Wiltschko, Bart van Merriënboer, and Dan Moldovan. Tangent:
automatic diòerentiation using source code transformation in Python.
arXiv:1711.02712, 2017.

[230] Andrew Witkin and Michael Kass. Spacetime constraints. Comput. Graph. (Proc.
SIGGRAPH), 22(4):159–168, 1988.

[231] Li Xu, Jimmy Ren, Qiong Yan, Renjie Liao, and Jiaya Jia. Deep edge-aware ûlters. In
International Conference on Machine Learning, pages 1669–1678, 2015.

[232] Y. Yang and C. Barnes. Approximate program smoothing using mean-variance
statistics, with application to procedural shader bandlimiting. Comput. Graph. Forum
(Proc. Eurographics), 37(2):443–454, 2018.

[233] Yuting Yang, Sam Prestwood, and Connelly Barnes. VizGen: Accelerating visual
computing prototypes in dynamic languages. ACM Trans. Graph. (Proc. SIGGRAPH
Asia), 35(6):206:1–206:13, nov 2016.

[234] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu Zhang,
Frank Seide, Zhiheng Huang, Brian Guenter, Huaming Wang, Jasha Droppo, Geoòrey
Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey, Malcolm Slaney,
Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac, Alexey Kamenev,

Bibliography 148

Vladimir Ivanov, Scott Cypher, Hari Parthasarathi, Bhaskar Mitra, Baolin Peng, and
Xuedong Huang. An introduction to computational networks and the computational
network toolkit. Technical report, Microso� Research, October 2014.

[235] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. Inverse global
illumination: Recovering re�ectance models of real scenes from photographs. In
SIGGRAPH, pages 215–224. ACM Press/Addison-Wesley Publishing Co., 1999.

[236] Matthew D Zeiler. ADADELTA: an adaptive learning rate method. arXiv:1212.5701,
2012.

[237] Xiaohui Zeng, Chenxi Liu, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi Keung Tang,
and Alan L Yuille. Adversarial attacks beyond the image space. arXiv:1711.07183, 2017.

[238] Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Karthik Sridharan, Brando Miranda,
Noah Golowich, and Tomaso Poggio. _eory of deep learning iii: Generalization
properties of sgd. Technical report, Center for Brains, Minds and Machines (CBMM),
2017.

[239] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans.
Image Process., 26(7):3142–3155, 2017.

[240] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
European Conference on Computer Vision, pages 649–666, 2016.

[241] Shuang Zhao, Frédo Durand, and Changxi Zheng. Inverse diòusion curves using
shape optimization. IEEE Trans. Vis. Comput. Graph., 24(7):2153–2166, 2018.

[242] Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. Downsampling
scattering parameters for rendering anisotropic media. ACM Trans. Graph. (Proc.
SIGGRAPH Asia), 35(6):166:1–166:11, 2016.

[243] Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler,
Wojciech Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung.
Path-space motion estimation and decomposition for robust animation ûltering.
Comput. Graph. Forum (Proc. EGSR), 34(4):131–142, 2015.

[244] Barbara Zitova and Jan Flusser. Image registration methods: a survey. Image and
vision computing, 21(11):977–1000, 2003.

	Introduction
	Background and Target Audience
	Publications

	Automatic Differentiation
	Finite Differences and Symbolic Derivatives
	Algorithms for Generating Derivatives
	Forward-mode
	Reverse-mode
	Beyond Forward and Reverse Modes

	Automatic Differentiation as Program Transformation
	Control Flow and Recursion

	Historical Remarks
	Further Readings

	Derivative-based Optimization and Markov Chain Monte Carlo Sampling
	Optimization
	Gradient Descent
	Stochastic Gradient Descent
	Newton's Method
	Adaptive Gradient Methods

	Markov Chain Monte Carlo Sampling
	Metropolis-Hastings Algorithm
	Langevin Monte Carlo
	Hamiltonian Monte Carlo
	Stochastic Langevin or Hamiltonian Monte Carlo

	Relation between Optimization and Sampling

	Differentiable Image Processing and Deep Learning in Halide
	Related Work
	Automatic Differentiation and Deep Learning Frameworks
	Image Processing Languages
	Learning and Optimizing with Images

	The Halide Programming Language
	Method
	High-level Strategy
	Differentiating Halide Function Calls
	Checkpointing
	Automatic Scheduling

	Applications and Results
	Custom Neural Network Layers
	Parameter Optimization for Image Processing Pipelines
	Inverse Imaging Problems: Optimizing for the Image
	Non-image-processing Applications
	Future Work

	Conclusion

	Differentiable Monte Carlo Ray Tracing through Edge Sampling
	Related Work
	Inverse Graphics
	Derivatives in Rendering

	Method
	Primary Visibility
	Secondary visibility
	Cameras with Non-linear Projections
	Relation to Reynolds transport theorem and shape optimization

	Importance Sampling the Edges
	Edge selection
	Importance sampling on an edge
	Next event estimation for edges

	Results
	Verification of the method
	Comparison with previous differentiable renderers
	Differentiable geometry buffer/AOV extension
	Inverse rendering application
	3D adversarial example
	Limitations

	Conclusion
	Derivation of the 3D edge Jacobian

	Hessian-Hamiltonian Monte Carlo Rendering
	Related Work
	Hamiltonian Monte Carlo
	Hessian-Hamiltonian Monte Carlo
	Implementation
	Results and Discussion
	Limitations and Future Work

	Conclusion
	Pseudo-code for H2MC

	Conclusion and Future Vision

