

Comparison of Diffusion and Transport in Human Head

Comparison of Monte Carlo and Finite Difference predictions of near-infrared light propagation in realistic adult head model

> Anna Custo custo@csail.mit.edu

MIT-MGH, Summer-Fall 2003

Outline

- Overview of the problem and framework
- Two (related) questions:
 - Monte Carlo (MC) or Finite Difference (FD)?
 - Cerebral Spinal Fluid (CSF) optical properties? CSF modelling?
- Our model:
 - Head geometry and probe
 - Tests and setup
 - Results
 - Starting the inverse problem...
- Conclusions
- Future work

Diffuse Optical Tomography (DOT)

- Biological tissue imaging: brain and breast
- Brain
 - Baseline
 - activation: why?
- Head geometry: MRI structural data...
 - Optical properties (5): absorption coefficient (μ_a) and scattering coefficient (μ_s)
 - Probe and opdotes structure

Anna Custo

Adult head geometry

Anna Custo

Monte Carlo (MC)

- Based on Transport equation
- Pro
 - accuracy
 - robustness
- Cons
 - Computational cost
 - Low Signal to Noise Ratio (SNR)

Finite Difference (FD)

- Based on Diffusion Approximation (DA)
- Cons: limited by
 - Boundary Conditions (BC)
 - rough surface
 - small scattering
- Pro
 - Computational cost
 - Good Signal to Noise Ratio (SNR)

Monte Carlo (MC) vs. Finite Difference (FD)

- When can we rely on the faster FD?
 [CSF]
- How much can we rely on FD? [qualitative-quantitative tests]
- How can we improve FD response? [finer lattice plus zero-padded head]
- How much does MC-FD discrepancy affect the optical properties restoration? [inverse problem exploration]

Brain activation overview

• Brain activity: BOLD, CBF, CBV, Hbr and HbO

$$(1 + rCMRO_2) = (1 + rCBF)(1 + rCBV_{ven})^{-1}(1 + rHbr_{ven})$$

Measuring Hemodynamic: hemoglobin concentration

$$SO_2 = \frac{[HbO_2]}{[HbO_2 + Hbr]}$$

$$\begin{cases} \mu_{a,780} = c[Hbr] \cdot \varepsilon_{[Hbr],780} + c[HbO_{2}] \cdot \varepsilon_{[HbO_{2}],780} \\ \mu_{a,830} = c[Hbr] \cdot \varepsilon_{[Hbr],830} + c[HbO_{2}] \cdot \varepsilon_{[HbO_{2}],830} \end{cases}$$

Anna Custo

Tests overview

- Frequency = 0
- Continuous Waves (CW) and Time Domain (TD)
- MC SNR: combination of 11 runs (x100 million photons)
- Linear probe (1 source, 25 detectors)
- Optical properties:

Tissue type	Absorption coefficient (mm ⁻¹)	Scattering coefficient (mm ⁻¹)
Scalp and Skull	0.019	0.86
CSF	0.004	1.0, 0.7, 0.1, 0.2, 0.3, 0.01, 0.001
Gray and White matter	0.01	1.11

Tests overview

- TPSF: Temporal Point Spread Function
- PPF: Partial Optical Path Length Factor

$$\frac{\partial f(t)}{\partial \mu_{a_i}} = \frac{\left(f_{\mu_{a_0}}(t) - f_{\mu_{a_i}}(t)\right)}{\Delta \mu_a}$$

- CW: Continuous Wave (spatial sensitivity profile)
- Test structure
 - Pre-tests on MC
 - Pre-tests on FD finer lattice
 - Tests on MC v. FD

Anna Custo

Pre-tests: CSF [CW]

CSF scattering coefficient estimation (via MC CW and TD simulations)

MIT-MGH, August 2003

Anna Custo

Pre-tests : CSF [TD]

Anna Custo

Anna Custo

Results: Spatial Sensitivity Profile

Anna Custo

Results: TPSF

Anna Custo

PPF MC v. FD (dx 1 mm) [CW $\mu_{s,CSF}$ 0.1 mm⁻¹]

Anna Custo

PPF MC and FD relative discrepancy [CW] [w.r.t. MC]

Anna Custo

PPF MC v. FD (dx 1 mm) [TD] [right μ s,CSF 1.0 mm⁻¹; left μ _{s,CSF} 0.1 mm⁻¹](full MC, empty FD)

Anna Custo

[w.r.t. MC]

Conclusions

- FD reliable for "reasonable" optical properties:
 - CSF: good characterization
 - Accurate head model
 - Finer lattice improves FD reliability but increases run time (zero-padding)

Future work

- Forward model:
 - BC for FD
 - Finer lattice (smoother edges)
 - Use all 5 tissue types
 - Combine multiple sources
 - Use multiple wavelengths
- Inverse model:
 - Tune optimal parameters and stopping criteria
 - Regularization parameters
 - Linear and Non-linear approaches
 - Comparing various inverse techniques

...Questions?

Anna Custo custo@csail.mit.edu