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Abstract

This paper explores techniques for constructing a 3D
computer model of an object from the real world by
applying tomographic methods to a sequence of
photographic images. While some existing methods can
better handle occlusion and concavities, the techniques
proposed here have the advantageous capability of
generating very high-resolution models with attractive
speed and simplicity. The application of these methods is
presently limited to an appropriate class of mostly convex
objects with Lambertian surfaces. The results are volume
rendered or surface rendered to produce an interactive
display of the object with near life-like realism.

1 Introduction

This paper addresses the problem of reconstructing an
object from its images and rendering it from novel
viewpoints. Virtualized redlity, introduced by Kanade,
Narayanan, and Rander [4,7], has applications from
animated movies, to interactive education, to exchanging
information on the World Wide Web. Creating virtual
representations of real-world scenes departs from the
conventional stereo correspondence problem in that
information must be gathered and integrated from all
sides of the scene.

This paper describes how tomography can be used to
create a model of a 3D object and render it with near life-
like realism, as demonstrated in Figure 1. Tomography
refers to the process of forming cross-sectional images of
an object by illuminating it from many different
directions. Radon [8] first solved the problem of
reconstructing an object from its projectionsin 1917. The
field of medica imaging was revolutionized when
Hounsfield invented the x-ray computed tomographic
(CT) scanner for which he shared the Nobel prize in 1972.
The output of a CT scan is a map of x-ray attenuation
coefficients which offers doctors a view of interna
organs. The new application considered here differs from
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diagnostic medicine in that the object being imaged is
opaque.

Figure 1: Example of a color, 3D model
created using the methods described here.

We propose applying tomographic techniques to
conventional photographic and video imagery. There are
a variety of tomographic reconstruction methods. This
paper applies a type of simple backprojection and
suggests that more methods form the history of
tomography are relevant to forming reconstructions from
photographic images. For example, it may become
necessary to have less restricted camera trgjectories,
which has aready been studied by Horn [3].

2 Related work

Early work by Bolles, Baker, and Marimont [1]
proposed constructing an epipolar-plane image which is
simpler to analyze than a large set of images. Méllor,
Teller, and Lozano-Perez [6] extended their approach to
work with arbitrary camera positions and some forms of
occlusion.  Contour-based methods were applied by
Szeliski [13] and Seales and Faugeras [11]. One approach
explored here is smilar to these in that it employs
silhouettes such as Szeliszki does, yet it avoids the
complexity of using octrees. Our techniques share
similarities with the recent approaches that have turned
away from stereo methods to use first principles. Collins
[2] digitized scene space into voxels that are traversed and
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colored. Seitz and Dyer [10] furthered this approach with
a voxe coloring agorithm to handle occlusion. Szeliski
and Golland [12] also handle occlusion by way of an
ordering technique as they ssimultaneoudly find disparities,
true colors and opacities. Some approaches explored in
this work differ from the other volumetric approaches

approaches in that there is no thresholding or
segmentation until  after the volume has been
reconstructed.

The tomographic methods explored here have
difficulty handling occlusion and concavities. However,
for an appropriate class of mostly convex objects, these
techniques are attractive for their speed and simplicity.
The setup and calibration are fast and easy, and the
equipment is simple, inexpensive, and commonplace.
The agorithm scales linearly in the number of views and
is very computationally inexpensive when compared with
the other techniques. Best of al, the resulting images
look pleasing and have very high resolution. The image
on the previous page was reconstructed using 4.6 million
voxels in 8 minutes on a Pentium 11, 266MHz machine.
For comparison, Seitz and Dyer dtate that their voxel
coloring algorithm reconstructs 53,000 voxels in 95
seconds. If we could assume linear scaling, computing
4.6 million voxels would take 134 minutes.

3 Method

3.1 Data acquisition

In medical imaging, the patient lies on a table while the
X-ray source and detector spin about. We took the easier
approach of revolving the object of interest on a milling
machine rotary table in view of a fixed camera and light
source.

A pullnix color CCD camera was affixed with a FUJI
75 mm lens (long enough to assume orthographic
projection) positioned 93 inches from the object. The
object was a plastic representation of Tweety Bird in front
of a black background. The scene was irradiated with a
spotlight reflected off a white panel directly behind the
camera. 180 color pictures of size 160x180 were taken
over 360 degrees of rotation. Samples are shown in Figure
2.

3.2 The radon transform

The Radon transform, P(a,d), of a function, f(x,y), is
computed by forming a projection of the function for each
of many views, a. For a given projection, P(a), the value
a location d, P(a,d), is determined by the line integral
through f(x,y) along aray. This ray makes an angle, a,
with the x-axis, and the ray stands a distance, d, from a
parallel ray through the origin. Hence, the origin projects

onto d=0. This relationship can be written using a delta
function as:

¥ ¥
P(a,d) = o0 (x, y)delta(xcosa +ysina- d)dxdy
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Figure 3 demonstrates this graphically.
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Figure 2: Original photographic views, (a)
through (d), are taken at 0, 50, 90, and 180
degrees, respectively.
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Figure 3: Computation of the radon

transform.
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3.3 The modified radon transform

A sequence of photographic images can be thought of
as a modified Radon transform that differs in being
discrete and operating on opague data. Each image is
taken at a different view angle, a. Each row of an image
is a projection through an axia dice of the object of
interest. Projections are vertically stacked to form a 3D
modified Radon transform. Each pixel of each row has a
value determined by a photographic detector horizontally
located a distance, d, from the center of the lens.

The line integrals in the Radon transform become
something else in the modified version. For translucent
objects, the detectors see the result of compositing the
color and opacity of volume elements, or voxels, in the
order they are encountered along the ray from the object
to the camera. For opague objects, such as our Tweety
Bird, each detector receives the scene radiance of a
surface patch on the object.

Tomographic methods would ideally be applied under
ambient lighting conditions. Patches of a Lambertian
surface have a hemispherical radiation pattern with
brightness proportional to the cosine of the angle between
the view ray and the surface norma. This effect is
cancelled by foreshortening so that different views
receive identical brightness information from a given
portion of the surface. However, one goal of our work is
to model objects as simply and inexpensively as possible.
Given this constraint, ambient lighting conditions are not
always possible, and we used diffuse lighting. In a
diffuse lighting model, the power irradiating a surface
patch fals off with the cosine of the angle between the
incident light ray and the surface normal. (Since the light
source was positioned directly behind the camera in or
case, we can refer to the view angle and the angle of
incidence interchangeably.) Each non-occluded surface
patch makes a brightness contribution to the modified
Radon transform in the half of all views which see its
front side.

Diffuse lighting also introduces artifacts into the final
reconstruction. Consider the fact that we implement
tomography by spinning the object about one axis.
Surface normals have an axial component and a vertical
component. Patches that are more vertically oriented will
contribute less to the modified Radon transform, and this
will appear as an artifact in a reconstruction because more
vertically oriented patches will be darker.

For shiny surfaces, incident light reflects about the
surface normal at an angle equal to the angle of incidence,
just as seen in a mirror. When this angle of reflection
coincides with the viewing angle, a bright spot appears as
specular reflection. Therefore, if a patch is shiny, then
specular highlights will appear in the modified Radon
transform. This leads to artifacts in the fina
reconstruction, because the highlights will be fixed rather

than varying with the viewing angle of the observer who
is exploring the reconstructed object.

Putting these two, small artifacts aside for the
remainder of the discussion, call the axial component of a
patch’s surface normal, a,, the angle of incident light, a;,
and the patch’s brightness, 1. If the patch is small enough
to be seen by only one detector at atime, then the patch’s
total contribution to the modified Radon transformis:

360
a MAX (1 * cos(a, - a,),0)
a,=0

We will later refer to a; - a, asphi.

3.4 Backprojection

Object reconstruction becomes a task of inverting the
modified Radon transform. Refer again to Figure 3 to
observe how we can recover the function, f(x,y). Each
P(a) can be projected back onto the x-y grid, thus earning
the name backprojection. The pixel with a black dot
(located at x=1, y=3) can be recovered by computing the
value of d from the angle, a, and the coordinates, x and v,
from the ray equation:

xcos(a) + ysin(a) =d

Then, d is used to index into P(a) to obtain a value,
P(a,d), to assign to the pixel. This processis repeated for
each view, and the values are summed to accumulate one
aggregate pixel value.

3.5 Filtered Backprojection

Suppose f(x,y) is an impluse of density at the origin.
Then, each image will contribute a ray of brightness that
emanates from the center of the image and intersects the
center of the reconstruction. The composite
reconstruction will appear much like a bunch of bright
spokes intersecting at the center. In the limit of infinitely
many views, the reconstruction will approach a 1/r
distribution, where r is the distance from the origin.

If we view the image collection process and
(unfiltered) backprojection together as a linear system, we
see that the impulse response is 1/r, and because the
components of the system are linear (and shift-invariant),
the response of the system to an arbitrary density will be a
convolution of that density by 1/r.

Ideally, we would prefer the impulse response of our
imaging and reconstruction to be close to a delta function.
To obtain this, we could post-filter the reconstruction with
afilter that has been designed to be an implementation of
the inverse of 1/r — this would be a de-blurring or de-
convolution approach to the problem. It turns out that in
this situation, some efficiency may be gained by using a
suitable filter in the images before they are backprojected
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— this is the standard filtered backprojection (FBP)
approach.

It is useful to observe that the standard filters used in
the first step of FBP are essentially high-pass filters.
Therefore, they may be also viewed as edge-enhancing
filters, and then FBP may be summarized as edge-
enhance, then backproject.

Figure 4: Cross sections of reconstructed
density using filtered backprojection.

We employed a 1D filtering kerne prior to
backprojection. The kernel is due to Ramachandran et al.
[9], uses linear interpolation, and has the form:

k(0)=1/4
i -1 U
o odd i
k(i) = { (pi)’ y
10, even i 'D

The results of FBP reconstruction are shown in Figure
4 (the contrast of the images has been adjusted for
viewing). It is a 3D volume containing a representation
of the object as an intensity density. In this example, the
object appears as a bright region embedded in a dark
volume. |In the reconstruction, the bright region is shaped
like the original 3D object. The surface of the object
appears as a prominently bright shell, and the brightness
of the shell is modulated by the brightness of the original
object. For example, in the coronal cross section, which
has been chosen to intersect the reconstruction in the
region of the face, the bright and dark areas of the eyes
are clearly visible.

3.6 A new filter for backprojection

Figure 2ad shows samples of the origina
photographs. There is a modified Radon transform image
for each axia dice of Tweety. Figure 5a shows the
Radon transform for one dice through Tweety’'s eyes.
Each row of the image is a projection for a view, or P(a),
and each columnisad.

Figure 5: Radon transform (a). Image (b) is
derived from applying a threshold to (a) just
above the background noise floor. Image
(c) is derived from filling the gaps along
each row of (b).

Figure 6a shows the unfiltered backprojection of the

first row of 5a. Figure 6b adds the backprojection of the



© 1999 |EEE

middle row. Observe how the yellow color of the back of
Tweety’s head has overwritten the blue and black color of
his eyes. The eye color is still apparent, yet it has lost its
origina brilliant saturation by being averaged with
intruder colors that do not belong at that location on the

1

F
igure 6: Images (a) through (h), are
tomographic reconstructions using 1, 2, 4,
8, 16, 32, 64, and 180 equally spaced views,
respectively.

The process continues unfolding in Figure 6¢, which is
a tomographic reconstruction from 4 equaly spaced
views. Observe that the blue and black color of surface
patches in the eyes are still seen from the side views, but
the patches experience foreshortening. Figure 6
demonstrates that the shape of the object emerges in as
few as 16 views, but shape and color accuracy continue
improving as more views are added.

During backprojection, a pixel corresponding to a
surface patch on Tweety, receives back its contribution to
the Radon transform from the views which saw it as
expressed earlier in eguation form. However, the other
half of the views also contribute intruder colors to the
pixel. The pixel’s color becomes averaged with the
average color seen by that pixel’s detector in the other
half of the views. The end result (Figure 6h) is a
reconstruction of both the object’s shape and texture
situated in atomographic fog.

A correct inverse modified Radon transform will
assign each pixel the exact value that it contributed to the
transform. We can dissipate the fog and block intruder
colors by stopping the projections from views that do not
see the patch. However, an accurate inverse modified
Radon transform is not desired! When the absolute value
of the difference between the angle of incident light and
the axial component of the surface normal, /phi|, is large
(near 90 degrees), the patch is seen to be darker by the
detector. Therefore, the patch’s contribution to the
modified Radon transform is darker than the patch itself,
and thiswill result in a3D model with muted colors.

We can correct for both problems simultaneously by
weighting each backprojection by cos(phi). However, the
surface normals are not initially known. This suggests a
two-pass algorithm where the first pass uses standard
filtered backprojection to recover the object. The surface
normals are then computed from the reconstruction, and
then filtered backprojection is re-implemented with a
different filter for each phi.

3.7 Rendering the reconstruction

The end goal of this work is a redlistic graphics
rendering of the object. Filtered backprojection of all
three color components of the data provides a 3D volume
of object texture. The data can be visualized through
volume rendering. Consider the 2D output image to be a
window into the scene. For each pixel in the window, a
ray is cast into the scene, and a color vaue can be
assigned to the pixel using one of a variety of methods.
Maximum Intensity Projection (MIP) [14] colors the pixel
with the maximum intensity found aong the ray.
Composite rendering composites colors that the ray
passes through according to the opacity values of those
voxels, and the order in which the ray encounters them.

Either method encounters trouble with Tweety Bird.
The black eyes are nearly indistinguishable from the dark
surroundings, so MIP colors the eyes with the yellow
color from the back of Tweety's head. Composite
rendering requires opacity information.

Figure 7 shows a MIP of the reconstructed intensities
from aviewpoint that was chosen to be below the plane of
the views of the input data. In this preliminary
experiment, the front/back surface issue was handled by
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manually suppressing the rear half of the intensity data
The purpose of this experiment is to demonstrate that
useful surface brightness information is present in the
reconstruction, yet the filtering has introduced highlight
and shadow artifacts most pronounced around the
eyebrows, which are high-frequency  texture.
Consequently, the next renderings were generated from
reconstructions that result from unfiltered backprojection.

Figure 7: MIP of filtered, backprojected
reconstruction from novel viewpoint.

3.8 Recovering opacity

D

Figure 8: Image (a) is an opacity map
derived from backprojecting (5.b). Image
(b) is derived from (5.c) to assign non-zero
opacity to the eyeballs. Image (c) is one
slice of the reconstruction, while image (d)
is the same slice rendered using the
opacity information in (b).

To aid the rendering process, a second backprojection
(but with only a single color component: gray) was

performed to create an opacity map to complement the
reconstructed texture map. The Radon transforms were
automatically thresholded just above the noise floor of the
background, as shown in Figure 5.c.

A reconstruction made from this filtered transform is
shown in Figure 8.8, where the eyeballs do not exist.
Using the assumption of a mostly convex object, the
threshold operation was modified to fill in gaps. The
resulting Radon transform shown in Figure 5.d was used
to reconstruct the opacity map of Figure 8.b.

The color and opacity information form a 4-component
volume that can be used successfully for rendering.
Figure 8.c and 8.d show arendering of the unfiltered, one-
pass reconstructed dice with and without using opacity
information to segment the image.

4  Results

In an effort to perform object modeling in the most
computationally inexpensive way, renderings were made
from the unfiltered, single-pass backprojection with the
help of the opacity map.

Figure 9: Image (a) is a volume rendering
using intensity projection of texture from
(8.c) and the opacity information from (8.b).
Image (b) is a surface model of the opacity

map in (8.b). Image (c) is the surface
model of (b) with the texture from the
backprojected reconstruction (8.c). Image
(d) is similar, except the texture is taken
from the original photographic images (2).
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4.1 Volume rendering

Figure 9.a shows an intensity projection made from
casting rays through the opacity information until a voxel
is encountered with a opacity greater than 90% of full.
Then the color values were taken from that voxel.

The flat result is a nature of intensity projection. More
beautiful results can be obtained by computing the surface
normals of the opacity map and applying a lighting model
to shade the object. This technique was performed with
the surface rendering described below.

4.2 Surface rendering

An dternative to visualizing our reconstructed
volumes through ray-casting is to construct a surface
model as a collection of triangles. The Marching Cubes
algorithm [5] was run on the opacity map to extract the
surface. Marching Cubes can be thought of as creating a
polygon that intersects each voxel where the volume's
scalar data crosses a threshold, such as opacity being 90%
of full value. Figure 9.b shows a 3D rendering of the
Tweety’s surface. Figure 9.c colored each triangle vertex
using the color components from the unfiltered
backprojection, and the surface normals from the opacity
map. Figure 10 shows a close-up of the many triangles
that comprise Tweety’ s surface.

Figure 10: Image (a) ilose-up view of
the eye of (6.d). Image (b) is a wire frame
representation.

4.3 Projected texture

Figure 9.d is the most life-like representation of
Tweety. The surface model described above was colored
by computing the axial component of each surface
normal. The angle of this vector was used to select the
original photographic image with the closest view angle.
(Equivaently, a row was selected from the modified
Radon transform for this axia dlice). Then the detector,
d, which observed the vertex in this view was computed
from the ray equation described earlier. The vertex’s color
could then be taken from P(a,d).

This process is effectively performing backprojection
with a delta function that selects the view that saw a

surface patch most directly. Thus, unconcluded patches
are recovered with their fully saturated brightness.

30 delta(a, - a, )(1 * cos(a, - a,))

a,=0

4.4 Future work

Figure 9.d appears a little rough due to inaccuracies in
the computation of the surface normals. Errors could be
averaged out by modifying the above equation to weight a
number of views that observed the patch most directly.
Future work can similarly use the opacity map to assign
weights to eliminate occluded views. The occlusion in
some types of objects could be handled by performing
tomography about two different axis of rotation.
Furthermore, another class of tomographic techniques
[15] offers algebraic reconstruction techniques (ART) as
an iterative alternative to backprojection.

5 Summary

This paper presents an analysis of how tomography
could offer a simple, computationaly inexpensive
solution to recovering an object’s shape and texture from
multiple views. These techniques apply best to aobjects
that are mostly convex, opague, and with Lambertian
surfaces. Under these circumstances, the agorithms
produce nice-looking, very high-resolution results in a
comparatively short time.
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