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1 Introduction

As robots become more physically robust and capable of sophisticated sensing, nav-
igation, and manipulation, we want them to carry out increasingly complex tasks. A
robot that helps in a household must plan over the scale of hours or days, consid-
ering abstract features such as the desires of the occupants of the house, as well as
detailed geometric models that support locating and manipulating objects. The com-
plexity of such tasks derives from very long time horizons, large numbers of objects
to be considered and manipulated, and fundamental uncertainty about properties and
locations of those objects.

We have developed an approach to integrated task and motion planning that
integrates geometric and symbolic representations in an aggressively hierarchical
planning architecture, called HPN [10]. The hierarchical decomposition allows ef-
ficient solution of problems with very long horizons and the symbolic representa-
tions support abstraction in complex domains with large numbers of objects and are
integrated effectively with the detailed geometric models that support motion plan-
ning. In this paper, we extend the HPN approach to handle two types of uncertainty:
future-state uncertainty about what the outcome of an action will be, and current-
state uncertainty about what the current state actually is. Future-state uncertainty
is handled by planning in approximate deterministic models, performing careful
execution monitoring, and replanning when necessary. Current-state uncertainty is
handled by planning in belief space: the space of sets or probability distributions
over possible underlying world states.

There have been several recent approaches to integrated task and motion plan-
ning [3, 14, 13] but they do not address uncertainty. The use of belief space (and
information spaces [11]) is central to decision-theoretic approaches to uncertain do-
mains [9].
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2 Hierarchical pre-image backchaining

Most planning problems require time on the order of the minimum of: |S| and |A|",
where S is the size of the state space, |A| is the size of the action space and A is
the horizon (the length of the solution). Our approach to making planning tractable
is to construct a temporal hierarchy of short-horizon problems, thus reducing the
complexity of the individual planning problems we have to solve. The hierarchical
approach will not always produce optimal plans; it is, however, complete in domains
for which the goal is reachable from every state.
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Fig. 1 Example of part of a hierarchical plan and execution tree.

We formalize the effects of the robot’s actions in a hierarchy of increasingly
abstract operator descriptions; this hierarchy is constructed by postponing the con-
sideration of preconditions of an action until more concrete levels of abstraction.
Figure 1 shows part of a hierarchical plan for washing an object and putting it into
storage. The operations are first considered abstractly, making a two-step, high-level
plan. Then, the plan to wash the object is elaborated into two steps, of placing the
object into the washer and then washing it. At the next level of abstraction down,
we plan first to pick the object, and then to place it in its destination.

Even short-horizon plans are difficult to find when the branching factor is high.
Searching forward from an initial, completely detailed, state description typically
has a very high (or infinite) branching factor, and it can be difficult to prune actions
heuristically and maintain the effectiveness of the planner. We address this problem
by using pre-image backchaining [12], also known as goal regression [21], to search
backward from the goal description. We presume that the goal has a simple abstract
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description, for example, requiring can A to be in cupboard B. That description de-
notes an infinite set of possible world states (varying according to the exact position
of can A, the robot’s pose, the locations and states of other objects in the world, the
weather, etc.). Chaining backward from the goal, using symbolic operator descrip-
tions together with the goal-driven construction of geometric preconditions, allows
planning to proceed with a relatively low branching factor. Plan 10 in figure 1 shows
a case in which, in order to place an object in storage, the planner determines that it
must first clear out the region of space through which the object must be moved, and
then place the object. A geometric description of that region of space was computed
on demand to specify the pre-image of placing the object into storage.

In the next two sections, we describe how to extend the HPN approach to handle
uncertainty. First, we consider the case in which the robot knows its current state,
but in which the world dynamics are stochastic. Then, we extend the method to the
case in which there is uncertainty about the current state of the world.

3 Future-state uncertainty

The decision-theoretic optimal approach to planning in domains with probabilistic
dynamics is to make a conditional plan, in the form of a tree, supplying an action to
take in response to any possible outcome of a preceding action [22]. For efficiency
and robustness, our approach to stochastic dynamics is to construct a determinis-
tic approximation of the dynamics, use the approximate dynamics to build a plan,
execute the plan while perceptually monitoring the world for deviations from the
expected outcomes of the actions, and replan when deviations occur. This method
has worked well in control applications [4, 15, 20, 6] as well as symbolic planning
domains [23].

Determinization There are several potential strategies for constructing a deter-
minized model. A popular approach is to assume, for the purposes of planning,
that the most likely outcome is the one that will actually occur. This method can
never take advantage of a less-likely outcome of an action, even if it is the only way
to achieve a goal. We pursue an alternative method, which considers all possible
outcomes, but rather than modeling them as a randomized choice that is made by
nature, instead modeling them as a choice that can be made by the agent [1]. This
method integrates the desire to have a plan with a high success probability with the
desire to have a plan with low action cost by adopting a model where, when an
undesirable outcome happens, the state of the world is assumed to stay the same,
allowing the robot to repeat that action until it has the desired result. If the desired
outcome has probability p of occurring and the cost of taking the action is ¢, then
in this model the expected cost to make the transition to the desired state is ¢/p. We
will search for the plan that has the least cost under this model.

Interleaved planning and execution The planning and execution process can be
thought of as a depth-first tree traversal. Figure 1 illustrates this: The blue nodes
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represent planning problems at different levels of abstraction. The abstraction hier-
archy is not rigid: it is constructed on the fly as the structure of the problem demands.
Purple nodes are operations at different levels of abstraction, and green nodes are
primitive actions. Note that, for instance, the primitive actions in the sub-tree for
plan 2 are executed before plan 8 is constructed. This online, interleaved planning
allows the details of the construction of plan 8§ to depend on the concrete state of the
world that came about as a result of the recursive planning and execution of plan 2.

Assume we have a PLAN procedure, which takes as arguments state, the current
world state, goal, a description of the goal set and abs a description of the level
of abstraction at which planning should take place; it additionally depends on a set
of operator descriptions that describe the domain dynamics. The PLAN procedure
returns a list ((—, o), (a1,81), ---, (an, gn)) Where the g; are operator instances, g, =
goal, g; is the pre-image of g;11 under a;, and state € gg. The pre-image g; is the set
of world states such that if the world is in some state g; and action ;1 is executed,
then the next world state will be in g ; these pre-images are subgoals that serve as
the goals for the planning problems at the next level down in the hierarchy.

The HPN process is invoked by HPN(state, goal,abs, world), where state is a de-
scription of the the current state of world; goal is a set of world states; abs is a
structure that specifies, for any goal condition, the number of times it has served as
a plan step in the HPN call stack above it; and world is an actual robot or a simulator
in which primitive actions can be executed. In the prototype system described in
this paper, world is actually a geometric motion planner coupled with a simulated
or physical robot.

HPN(state, goal,abs,world):

p = PLAN(state, goal, abs)
for (a;,gi) inp
while state € g;.; and not state € g;
if ISPRIM(q;)
state = world . EXECUTE(q;)
else
HPN(state, g;, NEXTLEVEL(abs, a;), world)
if not state € g; return

HPN starts by making a plan p to achieve the top-level goal. Then, it executes
the plan steps, starting with action, a;. Each plan step is executed repeatedly, until
either its desired post-condition, g;, holds in the environment, which means that
the execution has been successful, or until its pre-condition, g;_;, ceases to hold in
the environment, which means that the suffix of the plan starting with this step can
no longer be expected to achieve the goal. If the pre-condition becomes false, then
execution of the plan at this level is terminated and control is returned to the level
of abstraction above.

This process will re-plan and re-execute actions until the goal is reached, as long
as the goal is reachable from every state in the determinized model.
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4 Pre-image backchaining in belief space

When there is uncertainty about the current state of the world, we plan in the space
of beliefs about the world state, instead of the space of world states itself. In this
work, we use probability distributions over world states as belief states. Planning
in this space enables actions to be selected because they cause the robot to gain
information that will enable appropriate physical actions to be taken later in the
plan, for instance.

Planning in belief space is generally quite complex, because it seems to require
representing and searching for trajectories in a very high-dimensional continuous
space of probability distributions. This is analogous to the problem of finding plans
in very high-dimensional continuous space of configurations of a robot and many
objects. We take direct advantage of this analogy and use symbolic predicates to
specify limited properties of belief states, as our previous approach [10] does for
properties of geometric configurations. So, for instance, we might characterize a set
of belief states by specifying that “the probability that the cup is in the cupboard
is greater than 0.95.” Pre-image backchaining allows the construction of high-level
plans to achieve goals articulated in terms of those predicates, without explicitly
formalizing the complete dynamics on the underlying continuous space.

Traditional belief-space planning approaches either attempt to find entire poli-
cies, mapping all possible belief states to actions [19, 9, 17] or perform forward
search from a current belief state, using the Bayesian belief-update equation to com-
pute a new belief state from a previous one, an action and an observation [16]. In
order to take advantage of the approach outlined above to hierarchical planning and
execution, however, we will take a pre-image backchaining approach to planning in
belief space.

HPN in belief space The basic execution strategy for HPN need not be changed for
planning in belief space. The only amendment, shown below, is the need to perform
an update of the belief state based on an observation resulting from executing the
action in the world:

BHPN(belief , goal,abs,world):

p = PLAN(belief, goal, abs)
for (a;,g;) in p
while belief € g; ; and not belief € g;
if ISPRIM(q;)
obs = world EXECUTE(q;)
belief UPDATE(a;, obs)
else
BHPN(belief, gi, NEXTLEVEL(abs, a;), world)
if not belief € g; return

After each primitive action is executed, an observation is made in the world and
the belief state is updated to reflect both the predicted transition and the informa-
tion contained in the observation obs. It is interesting to note that, given an action
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and an observation, the belief state update is deterministic. However, the particu-
lar observation that will result from taking an action in a state is stochastic; that
stochasticity is handled by the BHPN structure in the same way that stochasticity of
action outcomes in the world was handled in the HPN structure.

Hierarchical planning and information gain fit together beautifully: the system
makes a high-level plan to gather information and then uses it, and the interleaved
hierarchical planning and execution architecture ensures that planning that depends
on the information naturally takes place after the information has been gathered.

Symbolic representation of goals and subgoals

When planning in belief space, goals must be described in belief space. Ex-
ample goals might be “With probability greater than 0.95, the cup is in the cup-
board.” or “The probability that more than 1% of the floor is dirty is less than 0.01.”
These goals describe sets of belief states. The process of planning with pre-image
backchaining computes pre-images of goals, which are themselves sets of belief
states. Our representational problem is to find a compact yet sufficiently accurate
way of describing goals and their pre-images.

In traditional symbolic planning, fluents are logical assertions used to represent
aspects of the state of the external physical world; conjunctions of fluents are used
to describe sets of world states, to specify goals, and to represent pre-images. States
in a completely symbolic domain can be represented in complete detail by an as-
signment of values to all possible fluents in a domain. Real world states in robotics
problems, however, are highly complex geometric arrangements of objects and robot
configurations which cannot be completely captured in terms of logical fluents.
However, logical fluents can be used to characterize the domain at an abstract level
for use in the upper levels of hierarchical planning.

We will take a step further and use fluents to characterize aspects of the robot’s
belief state, for specifying goals and pre-images. For example, the condition “With
probability greater than 0.95, the cup is in the cupboard,’, can be written using a
fluent such as Prin(cup,cupboard,0.95), and might serve as a goal for planning.
For any fluent, we need to be able to test whether or not it holds in the current be-
lief state, and we must be able to compute the pre-image of a set of belief states
described by a conjunction of fluents under each of the robot’s actions. Thus, our
description of operators will not be in terms of their effect on the state of the ex-
ternal world but in terms of their effect on the fluents that characterize the robot’s
belief. Our work is informed by related work in partially observed or probabilistic
regression (back-chaining) planning [2, 5, 18]. In general, it will be very difficult
to characterize the exact pre-image of an operation in belief space; we will strive
to provide an approximation that supports the construction of reasonable plans and
rely on execution monitoring and replanning to handle errors due to approximation.

In the rest of this paper, we provide examples of representations of belief sets
using conjunctions of logical fluents, for both discrete and continuous domains, and
illustrate them on example robotics problems.
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5 Coarse object pose uncertainty

Fig. 2 The situation on the left is the real state of the world; the one on the right represents the
mode of the initial belief.

Fig. 3 Point cloud (on right) for scene (on left); red points correspond to the models at their
perceived poses.

We have a pilot implementation of the HPN framework on a Willow Garage PR2
robot, demonstrating integration of low-level geometric planning, active sensing,
and high-level task planning, including reasoning about knowledge and planning to
gain information. Figure 2 shows a planning problem in which the robot must move
the blue box to another part of the table. The actual state of the world is shown on
the left, and the mode of its initial belief is shown on the right.

Objects in the world are detected by matching known object meshes to point
clouds from the narrow stereo sensor on the robot; example detections are shown
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in figure 3. As with any real perceptual system, there is noise in both the reported
poses and identities of the objects. Furthermore, there is significant noise in the re-
ported pose of the robot base, due to wheel slip and other odometric error. There
is additional error in the calibration of the stereo sensor and robot base. The state
estimation process for the positions of objects is currently very rudimentary: object
detections that are significantly far from the current estimate are rejected; those that
are accepted are averaged with the current estimate. A rough measure of the accu-
racy of the estimate is maintained by counting the number of detections made of the
object since the last time the robot base moved. A detailed description of the geo-
metric representation and integration of task and motion planning is available [10].
Here, we emphasize uncertainty handling in the real robot. Here are three of the
relevant operator descriptions:

PICK(O,M) : KHolding = O:

pre: KClearX (PickSwept(M),0) =T,
KCanPickFrom(O,M) = T,KHolding = NOTHING,
KRobotNearLoc(M) = T, LocAccuracy(O,M,3) =T

LOOKAT(O,M,N) : LocAccuracy(O,M,N) =T
pre: KRobotNearLoc(M) = T,LocAccuracy(O,M,N —1) =T

MOVEBASE(M) : KRobotNearLoc(M) =T
pre: KClearX (MoveSwept(M),()) =T
sideEffect: LocAccuracy(O,M',N) = F

The PICK operator describes conditions under which the robot can pick up an
object O, making the fluent KHolding have the value O. The fluent name, KHolding,
is meant to indicate that it is a condition on belief states, that is, that the robot know
that it is holding object O. The primitive pick operation consists of (1) calling an
RRT motion planner to find a path for the arm to a ’pregrasp’ pose, (2) executing
that trajectory on the robot, (3) grasping the object, then (4) lifting the object to a
"postgrasp’ pose.

The operator description has a free variable M, which describes a trajectory for
the robot base and arm, starting from a home pose through to a pose in which the
object is grasped; one or more possible values of M are generated by a procedure
that takes constraints on grasping and motion into account and uses an efficient ap-
proximate visibility-graph motion planner for a simple robot to find a path. This is
not the exact path that the motion primitives will ultimately execute, but it serves
during the high-level planning to determine which other objects need to be moved
out of the way and where the base should be positioned while performing the pick
operation. The preconditions to the primitive pick operation are that: the swept vol-
ume of the path for the arm be known to be clear, with the exception of the object
to be picked up; that the object O be known to be in a pose that allows it be picked
up when the robot base pose is the one specified by M; that the robot is known not
to be currently holding anything; that the robot base is known to be near the pose
specified by M, and that the pose of the object O is known with respect to the robot’s
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base pose in M with accuracy level 3 (that is, it has to have had at least three separate
good visual detections of the object since the last time the base was moved).

The LOOKAT operator looks at an object O from the base pose specified in mo-
tion M, and can make the fluent LocAccuracy(O,M,N) true, which means that the
accuracy of the estimated location of object O is at least level N. The primitive op-
eration computes a head pose that will center the most likely pose of object O in
its field of view when the robot base is in the specified pose and moves the head
to that pose. The image-capture, stereo processing, and object-detection processes
are running continuously and asynchronously, so the primitive does not need to ex-
plicitly call them. This operation achieves a location accuracy of N if the base is
known to be in the appropriate pose and the object had been previously localized
with accuracy N — 1.

The MOVEBASE operator moves to the base pose specified in motion M. The
primitive operation (1) calls an RRT motion planner to find a path (in the full con-
figuration space of the base and one arm—the other arm is fixed) to the configuration
specified in M and (2) executes it. It requires, as a precondition, that the swept vol-
ume of the suggested path be known to be clear. Importantly, it also declares that it
has the effect of invalidating the accuracy of the estimates of all object poses.

AL:Pick(box, ?)

Plan 4 Replan Plan 6
Holding = box Holding = box Holding = box

! b

A2:Pick(box, m1) AO:ClearX(swept17, (box)) A2:Pick(box, m2)
T l ! 1
P v |
s Plan 7 ]
Plan 5 Antecedent Fail CanPickFrom(box, m2) = True Plan 18
Holding = box ClearX(swept16, (box)) = True Holding = nothing Holding = box
/ l \ ClearX(sweptl7, (box)) = True l \\
AO:MoveBase(m1) AO0:LookAt(box, m1, 3) A3:Pick(box, m1) Al:ClearX(sweptl7, (box)) AO:MoveBase(m2) AO:LookAt(box, m2, 3) A3:Pick(box, m2)
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ClearX(swept17, (box)) = True RobotLoc(m2) = True
ClearX(swept18, (box)) = True

AO:remove(soup, sweptl7) Al:LookAt(box, m2, 2) Al:LookAt(box, m2, 3)
| |
v v
Subtree for moving soup out of the way Look(box) Look(box)

Fig. 4 Partial planning and execution tree for picking up the box, in which the robot notices that
the soup can is in the way and removes it.

Figure 4 shows a fragment of the planning and execution tree resulting from an
execution run of the system. At the highest level (not shown) a plan is formulated to
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pick up the box and then place it in a desired location. This tree shows the picking
of the box. First, the system makes an abstract plan (Plan 4) to pick the box, and
then refines it (Plan 5) to three operators: moving the base, looking at the box until
its location is known with sufficient accuracy, and then executing the pick primitive.
The robot base then moves to the desired pose (green box); once it has moved, it
observes the objects on the table and updates its estimate of the poses of all the
objects. In so doing, it discovers that part of the precondition for executing this plan
has been violated (this corresponds to the test in the last line of code for BHPN)
and returns to a higher level in the recursive planning and execution process. This
is indicated in the planning and execution tree by the orange boxes, showing that it
fails up two levels, until the high-level PICK operation is planned again. Now, Plan
6 is constructed with two steps: making the swept volume for the box clear, and then
picking up the box. The process of clearing the swept volume requires picking up
the soup can and moving it out of the way; this process generates a large planning
and execution tree which has been elided from the figure. During this process, the
robot had to move the base. So Plan 18 consists of moving the base to an appropriate
pose to pick up the box, looking at the box, and then picking it up. Because the robot
was able to visually detect the box after moving the base, the LOOKAT operation
only needs to gather two additional detections of the object, and then, finally, the
robot picks up the box.

6 Fine object pose uncertainty

In the previous example, we had a very coarse representation of uncertainty: the
robot’s pose was either known sufficiently accurately or it wasn’t; the degree of
accuracy of a position estimate was described by the number of times it had been
observed. For more fine-grained interaction with objects in the world, we will need
to reason more quantitatively about the belief states. In this section, we outline a
method for characterizing the information-gain effects of operations that observe
continuous quantities in the environment. We then illustrate these methods in a
robotic grasping example.

Characterizing belief of a continuous variable

We might wish to describe conditions on continuous belief distributions, by re-
quiring, for instance, that the mean of the distribution be within some value of the
target and the variance be below some threshold. Generally, we would like to derive
requirements on beliefs from requirements for action in the physical world. So, in
order for a robot to move through a door, the estimated position of the door needs to
be within a tolerance equal to the difference between the width of the robot and the
width of the door. The variance of the robot’s estimate of the door position is not the
best measure of how likely the robot is to succeed: instead we will use the concept
of the probability near mode (PNM) of the distribution. It measures the amount of
probability mass within some & of the mode of the distribution. So, the robot’s pre-
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diction of its success in going through the door would be the PNM with & equal to
half of the robot width minus the door width.

For a planning goal of PNM(X,8) > 6, we need to know expressions for the
regression of that condition under the a and o in our domain. In the following, we
determine such expressions for the case where the underlying belief distribution
on state variable X is Gaussian, the dynamics of X are stationary, a is to make an
observation, and the observation o is drawn from a Gaussian distribution with mean
X and variance 62.

For a one-dimensional random variable X ~ .4/ (u, 6%),

PNM(X,8) = @ <§) - (f) erf<\/§c) ;

where @ is the Gaussian CDF. If, at time ¢ the belief is .4 (1;,6), then after an
observation o, the belief will be

2, 52 5252
(BTG Fo07 oo
o240} 'o2+o}
o t o t

So, it PNM(X,,8) = 6, = erf(%) then
't

§ |o2+0?
PNM(X,41,8) = 6,41 =erf | — [ —2=—"
( t+1 ) t+1 <\/§ 63612

Substituting in the expression for 6,2 in terms of 6;, and solving for 6;, we have:

52
6, = PNMregress(6,,1,8,02) = erf <\/erfl (641)%— W)
o

So, to guarantee that PNM(X;+1,6) > 6,41 holds after taking action a and observ-
ing 0, we must guarantee that PNM (X,,8) > PNMregress(6;.1,8,02) holds on the
previous time step.

Integrating visual and tactile sensing for grasping

In general, visual sensing alone is insufficient to localize an object sufficiently to
guarantee that it be grasped in a desired pose with respect to the robot’s hand.
Attempts to grasp the object result in tactile feedback that significantly improve
localization. The Willow Garage reactive grasping ROS pipeline [8] provides a
lightweight approach to using the tactile information, assuming that the desired
grasp orientation is fixed relative to the robot (rather than the object). Other work [7]
takes a belief-space planning approach to this problem. It constructs a fixed-horizon
search tree (typically of depth 2), with branches on possible observations. That ap-
proach is effective, but computationally challenging due to (1) replanning on every
step; (2) a large branching factor and (3) the fact that a completely detailed belief-
state update must be computed at each node in the forward search tree.
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In this section, we outline an approach of intermediate complexity. It makes
a complete plan using a deterministic and highly abstract characterization of pre-
images in belief space, which is very efficient. It can handle objects of more general
shapes and different grasping strategies, and automatically trades off the costs and
benefits of different sensing modalities.

Operator descriptions We have reformulated the pick operator from section 5,
with the accuracy requirement for the location of O specified with the fluent
PNMLoc(0, 0, 6,), which is true if and only if the probability that object O’s lo-
cation is within J, of its most likely location is greater than 6. The definition of
near is now on three-dimensional object poses with threshold J,, selected empiri-
cally.
PICK(O,M) : KHolding = O:
pre: KClearX(PickSwept(M),0) =T,
KCanPickFrom(O,M) = T,KHolding = NOTHING,
KRobotNearLoc(M) = T,PNMLoc(0, 0,6,) =T
cost: 1/6
The threshold 6 is a free parameter here. If 5, is the amount of pose error that can
be tolerated and still result in a successful grasp, then this operator says that if we
know the object’s location to within &, with probability 6, then we will succeed in
grasping with probability 8. This success probability is reflected in the cost model.
We have two ways of acquiring information. The first is by looking with a cam-
era. The field of view is sufficiently wide that we can assume it always observes the
object, but with a relatively large variance, 6, in the accuracy of its observed
pose, and hence a relatively small increase in the PNM.
Loo0k(0,0,0) : PNMLoc(0,0,6) =T:
pre: PNMLoc(O,PNMRegress(0,8,62,,),8) =T
cost: 1
The second method of gaining information is by attempting to grasp the object. If
the probability of the object’s pose being within the hand’s size of the mode is very
low, then an attempt to grasp is likely to miss the object entirely and generate very
little information. On the other hand, if the probability of being within a hand’s size
of the mode is high, so that an attempted grasp is likely to contact the object, then
observations from the touch sensors on the hand will provide very good information
about the object’s position.
TRYGRASP(O,0,6) : PNMDoorLoc(D, 6,6) = T:
pre: KClearX(PickSwept(M),0) =T,
KCanPickFrom(O,M) = T,KHolding = NOTHING,
KRobotNearLoc(M) =T
PNMLoc(O,PNMRegress(0,0, Gt%l ctile
PNMLoc(O, Opanasize, handSize /2) = T
cost: 1/ ehandSize
In this operator description, we use the PNMRegress procedure as if the informa-
tion gained through an attempted grasp were the result of an observation with Gaus-
sian error being combined with a Gaussian prior. That is not the case, and so this

)’5) =T,



Pre-image backchaining in belief space 13

is a very loose approximation; in future work, we will estimate this non-Gaussian
PNM pre-image function from data.

Both the GRASP and TRYGRASP operations are always executed with the mode
of the belief distribution as the target pose of the object. This planning framework
could support other choices of sensing actions, including other grasps or sweeping
the hand through the space; it could also use a different set of fluents to describe
the belief state, including making distinctions between uncertainty in position and
in orientation of the object.

State estimation In order to support planning in belief space, we must implement
a state estimator, which is used to update the belief state after execution of each
primitive action in BHPN. The space of possible object poses is characterized by
X,Y, 0, assuming that the object is resting on a known stable face on a table of known
height: x and y describe positions of the object on the table and 0 describes its
orientation in the plane of the table.

The grasping actions are specified by [fargetObjPose, grasp), where targetObjPose
is a pose of the object and grasp specifies the desired placement of the hand with
respect to the object. An action consists of moving back to a pregrasp configura-
tion with the hand open, then performing a guarded move to a target hand pose and
closing the fingers. The fingers are closed compliantly, in that, as soon as one finger
contacts, the wrist moves away from the contacting finger at the same time the free
finger closes. The resulting two-finger contact provides a great deal of information
about the object’s position and orientation. During the guarded move, if any of the
tactile sensors or the wrist accelerometer is triggered, the process is immediately
halted. In the case of an accelerometer trigger, the fingers are compliantly closed.

The observations obtained from grasping are of the form

[handPose, gripperWidth, trigger, contacts| ,

where handPose is the pose of the robot’s hand (reported based on its propriocep-
tion) at the end of the grasping process; gripperWidth is the width of the gripper
opening; trigger is one of {rightTip, leftTip,accel, None} indicating whether the mo-
tion was stopped due to a contact from one of the fingertip sensors, the accelerom-
eter, or was not stopped; and contacts is a list of four Boolean values indicating
whether each of four sensors (left finger tip, right finger tip, left internal pad, and
right internal pad) is in contact.

In order to perform state estimation, we need to provide an observation model
Pr(o|s,a), which specifies the probability (or density) of making a particular obser-
vation o if the object is actually in pose s and the robot executes the action specified
by a. There is stochasticity in the outcome of commanded action a due to both to
error in the robot’s proprioception and in its controllers, causing it to follow a trajec-
tory ¢ that differs from the one specified by a. So, we can formulate the observation
probabilities as

Pr(ols,a) :/tPr(0|s,t)Pr(t|s,a) .
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Decomposing o into ¢ (contacts and trigger) and A (hand-pose and gripper width),
we can write

Pr(os,a) — /, Pr(c, hls, ) Pr(t]s, )
_ / Pr(cls, ) Pr(h|r) Pr(t]s, a)

However, the integral is too difficult to evaluate, so we approximate it by considering
the trajectory ¢ that maximizes the right hand side

Pr(ols,a) =~ mtaxPr(c\sJ) Pr(h|t) Pr(t]s,a) .

This, too, is difficult to compute; we approximate again by assuming that there is lit-
tle or no error in the actual contact sensors, and so we consider the set of trajectories
that would generate the contacts c if the object were at pose s, T(c, s), SO

Pr(ols,a) ~ ?RCgSPr(hU)Pr(t\s,a) .

We consider the class of trajectories that are rigid displacements of the com-
manded trajectory a that result in contacts ¢, and such that no earlier point in the
trajectory would have encountered an observed contact. We compute the configura-
tion space obstacle for the swept volume of the gripper relative to the object placed
at s. Facets of this obstacle correspond to possible observed or unobserved contacts.
We first compute a;, which is the displacement of a that goes through the observed
hand pose &, and then seek the smallest displacement of a; that would move it
to 7(c,s); this is the smallest displacement & that produces a contact in the rele-
vant facet of the configuration-space obstacle. We assume that the displacements
between actual and observed trajectories are Gaussian, so we finally approximate
Pr(o|s,a) as 4(5,0,02) where ¢ is the Gaussian PDF for value § in a distribution
with mean 0 and variance o2.

The relationship between observations and states is highly non-linear, and the
resulting state estimates are typically multi-modal and not at all well approximated
by a Gaussian. We represent the belief state with a set of samples, using an adaptive
resolution strategy to ensure a high density of samples in regions of interest, but
also to maintain the coverage necessary to recover from unlikely observations and
to maintain a good estimate of the overall distribution (not just the mode).

Results Using BHPN with the operator descriptions and state estimator described
in this section, we constructed a system that starts with a very large amount of
uncertainty and has the goal of believing with high probability that it is holding
an object. Figure 5 shows an example planning and execution tree resulting from
this system. It plans to first look, then do an attempted grasp to gain information,
and then to do a final grasp. It executes the Look and the TryGrasp steps with the
desired results in belief space, and then it does another grasp action. At that point,
the confidence that the robot is actually grasping the object correctly is not high



Pre-image backchaining in belief space 15

Plan 1
Holding() = True

A0:Look(0.500, 0.300) AO0:TryGrasp(0.800, 0.015) A0:Grasp()
| ! -7 S~
1 I e ~o
v v »” l N
Look TryGrasp Grasp Repad Grasp

(Holding() = True)

Fig. 5 Planning and execution tree for grasping, showing the initial plan, and a re-execution.

enough. However, the PNM precondition of the Grasp action still holds, so it replans
locally and decides to try the Grasp action again, and it works successfully.

We compared three different strategies in a simulation of the PR2: using only the
TryGrasp action to gain information, using only the Look action to gain information,
and using a combination of the Look and TryGrasp actions, mediated by the plan-
ner and requirements on PNM. We found the following average number of actions
required by each strategy:

o TryGrasp only: 6.80 steps
e Look only: 73 steps (estimated)
o LookandTryGrasp: 4.93 steps

The Look operation has such high variance that, although in the limit the PNM
would be sufficiently reduced to actually grasp the object, it would take a very long
time. The estimate of 73 is derived using the PNM regression formulas (and in fact
the planner constructs that plan). The TryGrasp-only strategy works reasonably well
because we limited the region of uncertainty to the workspace of the robot arm, and
it can reasonably easily rule out large parts of the space. Were the space larger, it
would take considerably more actions. Using the Look action first causes the PNM
to be increased sufficiently so that subsequent 7ryGrasp actions are much more in-
formative. It also sometimes happens that, if the noise in the 7ryGrasp observations
is high, the PNM falls sufficiently so that replanning is triggered at the high level
and a new Look action is performed, which refocuses the grasp attempts on the cor-
rect part of the space. These results are preliminary; our next steps are to integrate
this planning process with the rest of the motion and manipulation framework.

7 Conclusion

This paper has described a tightly integrated approach, weaving together perception,
estimation, geometric reasoning, symbolic task planning, and control to generate
behavior in a real robot that robustly achieves tasks in complex, uncertain domains.
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It is founded on these principles: (1) Planning explicitly in the space of the robot’s
beliefs about the state of the world is necessary for intelligent information-gathering
behavior; (2) Planning with simplified domain models is efficient and can be made
robust by detecting execution failures and replanning online; (3) Combining logical
and geometric reasoning enables effective planning in large state spaces; and (4)
Online hierarchical planning interleaved with execution enables effective planning
over long time horizons.
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