Hierarchical Task and Motion Planning in the Now

Leslie Pack Kaelbling and Tomas Lozano-Pérez

Abstract—1In this paper we outline an approach to the
integration of task planning and motion planning that has
the following key properties: It is aggressively hierarchical; it
makes choices and commits to them in a top-down fashion
in an attempt to limit the length of plans that need to be
constructed, and thereby exponentially decrease the amount of
search required. It operates on detailed, continuous geometric
representations and does not require a-priori discretization of
the state or action spaces.

I. INTRODUCTION

As robots become more physically robust and capable of
sophisticated sensing, navigation, and manipulation, we want
them to carry out increasingly complex tasks. A robot that
helps in a household must plan over the scale of hours or
days, considering abstract features such as the desires of
the occupants of the house, as well as detailed models that
support locating and getting out ingredients and cooking
tools for preparing a meal. The complexity of such tasks
derives from very long time horizons and large numbers of
objects to be considered and manipulated. However, there
are offsetting properties of such domains that can make
planning in them tractable: there are few catastrophic or
entirely irreversible outcomes, the geometry is not ’tight’ in
the sense that there is plenty of room to move objects out of
the way, and strict optimality is not crucial.

Current symbolic task planners and geometric motion
planners have complementary strengths. Task planners can
reason over very large sets of states by manipulating partial
descriptions, while geometric planners operate on completely
detailed specifications of world states: a task planner could
decide that the living room needs to be traversed, regardless
of the detailed arrangement of its furniture. Motion planners
deal beautifully with geometry, but not with non-physical
aspects of the domain; they can plan how to get to the phone
but not decide that a phone call needs to be made.

In this paper we outline an approach to integrating task
planning and motion planning, with two key properties:

o It is aggressively hierarchical. It makes choices and
commits to them, limiting the length of plans and
exponentially decreasing the amount of search required.

« It operates in the domain of continuous geometry, and
does not require any a priori discretization of the state
or action spaces.

Hierarchy: Most work in hierarchical planning uses a
hierarchical structure as a way to speed the construction

This work was supported in part by the NSF under Grant No. 0712012,
in part by ONR MURI grant N00014-09-1-1051 and in part by AFOSR
grant AOARD-104135. Thanks to the reviewers for insightful comments.

CSAIL, MIT, Cambridge, MA 02139 {1pk, tlp}@csail.mit.edu

of a complete low-level plan with guaranteed soundness or
optimality conditions. Our goal is to design a system that can
work effectively with non-determinism in the environment
or in the low-level controllers. In such cases, planning in
detail far into the future will typically be wasted, due to the
inability to predict exactly what will happen. For this reason,
we plan ‘in the now’: we construct a plan at an abstract level,
commit to it, and then recursively plan and execute actions to
achieve the first step in the abstract plan without constructing
the rest of the plan in detail.

The risk associated with this approach is that the abstract
plan might not be executable: the particular way that the first
step is carried out could make it impossible to carry out sub-
sequent steps, at least without undoing the results of earlier
steps. We attempt to avoid such failures by constraining the
abstract plan steps so that they are serializable [1]; that is,
so that for any realization of the first plan step, there exist
realizations for the subsequent ones. So, we simply execute
the first abstract step, observe the resulting world state, and
then plan in detail for the next one. This approach results
in dramatic speed-ups from the hierarchical problem de-
composition when serializability holds. If, for some reason,
serializability fails, then we formulate an interleaved plan for
achieving the effects of both steps; as long as actions in the
environment are ultimately reversible, then any goal can be
achieved, at the expense of sub-optimality in the behavior.

Continuous geometry: In complex, high-dimensional ge-
ometric spaces, it is crucial to avoid indiscriminate dis-
cretization. Purely geometric planners selectively construct
discrete states from the problem description (e.g., vertices of
configuration-space obstacles) or through a problem-driven
sampling process. Task planners, on the other hand, operate
over a set of instantiations of operator schemas, for every
combination of possible values of the operator arguments.
We handle the integration of continuous geometric planning
with task planning by using geometric ‘suggesters’, which
are fast, approximate geometric computations that construct
appropriate choices for the parameters of an operator. For
example, when determining the preconditions for moving an
object from one room to another, the suggester can plan a
path for a conservatively grown object in the 3D workspace
and then establish a precondition that the swept volume of
that path be free of obstacles.

II. RELATED WORK

There is a great deal of work related to ours; we attempt
to illustrate the main points of contact here.

Manipulation planning The problem of manipulation
planning is to take a goal configuration of several objects, and

generate a plan consisting of robot trajectories and grasping
operations that will result in the desired configuration [2],
[3]. Planning in hybrid spaces, combining discrete mode
switching with continuous geometry, can be used to sequence
robot motions involving different contact states or dynamics.
Hauser and Latombe [4] have taken this approach to con-
struct climbing robots.

Planning among movable obstacles generalizes manipu-
lation planning to situations in which additional obstacles
must be moved out of the way in order for a manipulation
or motion goal to be achieved. In this area, the work of
Stilman et al. [5], [6] takes an approach similar to ours, in
that it plans backwards from the final goal and uses swept
volumes to determine, recursively, which additional objects
must be moved. Our solution to the problem of movable
obstacles arises from a general regression-based symbolic
planner, but, in the current implementation, is not guaranteed
to find a solution whenever one exists.

Integrating symbolic and motion planning The need
for integrating geometric and task planning has long been
recognized [7]. In the work of Cambon et al. [8], a symbolic
domain acts as a constraint and provides a heuristic function
for a complete geometric planner. Plaku and Heger [9] extend
this approach to handle robots with differential constraints
and provide a utility-driven search strategy.

Hierarchical planning Hierarchical approaches to plan-
ning have been proposed since the earliest work of Sac-
erdoti [10], whose ABSTRIPS method generated a hi-
erarchy by leaving off preconditions. Marthi et al. [11]
give hierarchical domain descriptions semantics based on
angelic non-determinism, and can dramatically speed up
the search for optimal plans based on upper and lower
bounds on the value of refinements of abstract operators.
Goldman [12] gives an alternative semantics that incorpo-
rates angelic non-determinism during planning and adver-
sarial non-determinism during execution. Nourbakhsh [13]
suggests a hierarchical approach to interleaving planning
and execution that is similar to ours, but does not integrate
geometric reasoning. The work of Wolfe et al. [14] provides
a hierarchical combined task and motion planner based on
hierarchical transition networks (HTNs) and applies it to a
manipulation-planning problem.

III. EXAMPLE

Consider the domain shown in figure 1.1. The goal is for
the object labeled A to be clean and put away in the storage
room. The robot must take A, put it into the washer, wash
it, and then move it to the storage room. Accomplishing this
requires moving other objects. In this section, we describe
informally how this problem is solved by our system.

The initial state is given as a three-dimensional geometric
model (the figures here are shown looking down from above.)
The goal is specified as a conjunction: In(a, storage) A
Clean(a). A recursive process of planning and execution
takes place, as shown in figure 2.

1. Blue nodes in the tree, labeled with numbers, denote
planning problems. The first planning problem is the top-

level goal, which is first addressed with abstract versions
of the operators. Operators are abstracted by postponing
preconditions; we make them progressively more concrete
by requiring more preconditions to hold. For this goal, a
two-step plan is made; it is shown as two descendant purple
nodes, each of which represents an operation (the notation
Ai means that the operator is at abstraction level i.) The
plan is to run the washer with a in it, and then to place a
into the storage region. That plan is recursively executed,
by planning for and executing each of its operations in turn.
If an operation is a primitive action, then it is executed
directly; otherwise, a subgoal is constructed, consisting of
the conditions necessary to guarantee that the rest of the
high-level plan will succeed, and a plan is made for that
subgoal. Here, the abstract Wash(a) operation is refined into
the subgoal Clean(a).

2. We now plan for the goal Clean(a), generating a plan
with two operations. The Wash operator is considered more
concretely, so we plan to satisfy its precondition, that a be
in the washer, by an abstract place operation that puts a into
the washer.

3. We expand the first operation, planning to pick a up
from its starting location and place it into the washer.

4. Now, we plan to satisfy the goal of holding object a. The
resulting plan has two steps. The first requires that a swept
volume of the robot moving to object a and picking it up be
free. The swept volume is shown in figure 3.1 as a complex
brown polygon; it was computed using a fast planner that
considered only translations of the object, with a gripper
attached to it, and of the robot base. It returns the union of
the swept volumes of the base, the gripper, and the object.
The second operation is a concrete pick of object a.

5. The next subgoal now includes all of the preconditions
for the pick operation to succeed: the robot needs to be
holding nothing, the swept volume for a needs to be clear,
and object a should be in its starting place (that is the
place for which the swept volume was computed; if a is
moved, then clearing the swept volume we just computed
will not necessarily suffice.) The resulting plan is comprised
of abstract operations to remove both b and ¢ from the swept
volume. Because our cost model is still somewhat weak, it
chooses to remove b first.

6. To remove b from the swept volume, a parking place,
shown as PB in figure 3.1, is suggested. The suggestion is
guaranteed not to conflict with picking a. The planner now
determines that c is in the swept volume of b, and finds a
parking place PC for it, as shown in figure 3.2. The plan is to
pick and place c and then to pick and place b. The operation
to pick c is refined into a primitive operation. At this point,
a grasp location is selected and a robot motion planner (in
this case, a simple RRT implementation) is called to plan the
pick operation. The primitive operation is executed in the
world, which results in the robot grasping c. Then it plans to
place c in the parking place and executes that plan, with the
result shown in figure 1.2. Similarly, a detailed motion for
moving b is planned and executed in the world, resulting in
figure 1.3. We continue with the recursive execution of the

1 2 3
(=1
|| storage || storage || storage
D D D
— — ——J
washer washer washer
4 5 6
|| storage || storage || storage
o
— —]
—
washer washer washer
D D
Fig. 1. Washing domain, in which the robot must move object A to the washing area, wash it, and put it in the storage area.

tree we have constructed. Note that executing the operator for
removing ¢ from the swept volume of a requires no further
planning or execution, as the condition it was intended to
establish has already been achieved as part of removing b.

7. Now, we plan and execute motions to pick a and place
it in a location inside the washer, resulting in figure 1.4. The
symbolic primitive Wash is now executed, and the object a
is clean.

8. We have come back to the root of the tree and now
have the job of planning to put a in storage; notice that it is
required that we maintain Clean(a), which was established
by the previous operation. This planning task is illustrative
of the idea of planning in the now: The object a was placed
in some particular pose inside the washer by the low-level
geometric planning and execution system. We never had to
simulate exactly where it would end up. Instead, we have
actually executed it, and the planning problem in this step is
solved with respect to a new starting state, corresponding to
figure 1.4. We plan to pick a from its new location in the
washer (it is denoted aX in the figure, but internally to the
planner it is the exact new geometric location of a) and then
place it in storage.

9. Because there is nothing occluding the path from home
to a’s location in the washer, we need only execute the pick
primitive, resulting in the robot grasping a.

10. Now, we plan to place a in storage, and discover that
there is an object in the swept path, so the plan consists of
clearing the swept path and then placing a.

11. The only step required is to move d out of the new
swept volume for a.

12. A parking place is suggested for d, shown as PD
in figure 3.3, and we plan to move d there. The resulting

plan first ungrasps a, then picks and places d, and finally
regrasps a. Regrasping a is crucial in order to maintain the
correctness of the high-level plan 10. We then plan and
execute primitive motions to move d, resulting in figure 1.5.
Finally, we plan and execute primitive motions to move a
into storage, resulting in figure 1.6.

IV. REPRESENTATION

Fluents The logical aspects of a domain are characterized
using fluents. A fluent is a symbolic predicate applied to
a list of arguments, which may be variables or constants.
Variables begin with a capital letter. Constants can be names
of objects or geometric specifications of regions of space. A
fluent whose arguments are all constants is called a ground
fluent. A state of the world determines the value of every
ground fluent. Values are often Boolean, but need not be.

The fluents used to characterize the washing example are:

e In(O, R): has value True if object O is entirely con-
tained in region R, otherwise Fulse;

o Overlaps(O, R): has value True if object O overlaps
region R, otherwise Fulse;

o ClearX (R, Os): has value True if region R is is not
overlapped by any object except those in the list Os,
otherwise Fualse;

o Holding(): has value None if the robot is not grasping
an object; otherwise the object being grasped; and

e Clean(O): has value True if object O is clean and
otherwise False.

World States A world state is a completely detailed
description of both the geometric and non-geometric aspects
of a situation. World states can be represented in any way
that is convenient. We never attempt to represent a complete

Plan 1
In(a, storage)
Clean(a)

/

AO0:Wash(a)

1
|
|

\
Plan 2
Clean(a)

/l

AO:Place(a, washer) Al:Wash(a)

| |
I I
X \J
Plan 3
In(a, washer)

/

A1l:Pick(a, aStart) Al:Place(a, washer)

1 1
| |
1 1
| |

\/ \/
Plan 4 Plan 7
HoldIing() = a In(a, washer)

T l

AO:ClearX(swept_a, (a)) A2:Pick(a, aStart) A2:Place(a, washer)

1 T !
| |
| I
\J 1
Plan 5 v v
HoldIing() = None .

Ina, aStart) Pick(a, aStart)
ClearX(swept_a, (a))

L

Place(washer)

N

AO:Place(a, storage)

1
|

\J
Plan 8
Clean(a)
In(a, storage)

PN

Al:Pick(a, aX) Al:Place(a, storage)

1 1
| |

v v
Plan 9 Plan 10
Clean(a) Clean(a)
Holding() = a In(a, storage)

' LT

A2:Pick(a, aX) AO:ClearX(swept_aX, (a)) A2:Place(a, storage)

1 1 1
| | |

I ' I
" Gonta '
. ean(a;
Pick(a, aX) Holding() = a Place(storage)

ClearX(swept_aX, (a))

l

AO:Remove(d, swept_aX)

1
|

v
Plan 12
Clean(a)
Overlaps(c, swept_aX) = False
Overlaps(b, swept_aX) = False
HoldIng() = a
Overlaps(d, swept_aX) = False

) N

AO:Remove(b, swept_a) AO:Remove(c, swept_a) A2:Place(a, aX) A2:Pick(d, dStart) A2:Place(d, ps51040:) A2:Pick(a, aX)
? | | | |
' I I I I
Plan 6 . ! ! !
Overlaps(d, swept_a) = False v v \J v
HoldIng() = None Place(aX) Pick(d, dStart) Place(ps51040:) Pick(a, aX)

In(a, aStart)
Overlaps(b, swept_a) = False

N\ T

A2:Pick(c, cStart) A2:Place(c, ps29385:) A2:Pick(b, bStart) A2:Place(b, ps28541:)

1 1 1 1
| | | |

v v v v
Pick(c, cStart) Place(ps29385:) Pick(b, bStart) Place(ps28541:)

Fig. 2. Planning and execution tree for washing and putting away an object.
1 2 3
C
D D | ¢ D
swept_a swept_aX
Pt home SWept_b home home
- PC [B1 [CIPD

Fig. 3.

Suggestions for swept paths and parking locations. The region swept;, is clear in the starting state, so it never appears in the planning subgoals.

characterization of the world state in terms of fluents; this
is important because the set of possible geometric regions
that could serve as arguments to a fluent is infinite. The only
requirement is that, for each fluent type, there is a procedure
that will take a list of ground arguments and return the value
of that fluent in the world state.

In our implementation, the world state is represented by
a configuration of the robot and a set of objects, each of
which has attributes including pose, shape (union of convex
polyhedra that are extrusions in z), whether it is grasped by
the robot, and whether it is clean.

Goals A goal for our planning and execution system is a
set of world states, described using a conjunction of ground
fluents. The goal of having object a to be clean and in the
washer can be articulated as:

In(a, washer) = True A Clean(a) = True .
During the course of regression-based planning intermediate
goals are represented as conjunctions of fluents as well. We
will write s € G to mean that world state s is contained in
the set of goal states G.

Operators A planning domain is characterized by a set of
primitive actions. In our formulation, we handle the lowest
level of planning with a special-purpose geometric grasp and
path planner for the robot. Thus, for the purposes of the rest
of the planning, the primitives are actions that encapsulate the
planning and execution of two primary operations: Pick(O),
which causes the robot to move to object O and pick it up;
and Place(R), which causes the robot to take the currently
held object, possibly move to an open part of the space and
regrasp it, and then move to an appropriate pose and ungrasp
the object, guaranteeing that the object is entirely contained
in region R. There is one additional primitive that has no
geometric component: Wash() simply causes the washing
machine to be run, and any objects that are in the washer
area will become clean.

Each of these operations is characterized by one or more
operator descriptions. Each operator description can be used
at multiple levels of abstraction: we begin by describing them
in their most concrete form. In a discrete domain, we can
define the operators in a STRIPS-style form:

F(Al,...,An) = V:
exists: By,..., By
pre: ¢17' . a¢m
sideEffects: v, ...,
prim: 7
cost: ¢
where F'(Ay, ..., A,) =V is the target fluent, the A; and V

are variables or constants, the B; are variables, the ¢; and 1);
are fluents whose arguments are constants or variables that
occur as As or Bs, 7 is a primitive action, and c is a positive
real cost. This is an operator schema that stands for a whole
family of ground operators, for all possible assignments of
constant values in the domain to variables in the target fluent
or in the exists list. The semantics of the operator description
is that, if the primitive action 7 is executed in any world
state s in which all of the ¢ fluents hold, then the resulting

world state will be the same as s, except that any fluent
mentioned as the target fluent or a side effect will have the
value specified by those fluents.

To operate in infinite domains, we augment the standard
operator descriptions with the following features:

Suggesters, which are procedures that map current start
and goal states, and bindings of other variables, to restricted
domains for existential variables. This significantly decreases
the branching factor and increases the likelihood that se-
rialization will succeed, by making intelligent choices of
bindings for free variables. A given set of suggesters is
applicable to any domain described by the same set of
geometric operators and general robot type, e.g. an arm on
a mobile base.

Procedural operator definitions, which map variable bind-
ings into lists of preconditions, side effects, new bindings,
and costs. These allow us to call the suggesters flexibly,
depending on which variables are bound, and to generate
lists of preconditions and side-effects whose length varies
depending on the situation.

Inferential attachments, which are two types of proce-
dures attached to fluents. The entails attachment of fluent
¢ computes whether ¢ logically entails another fluent ¢'.
In goal regression, when applying an operation to a goal
g, the goal fluent and any side effect fluents are always
removed from g; in addition, we remove any fluents in g
that are entailed by the goal fluent or one of the side effects.
The contradicts attachment of fluent ¢ computes whether ¢
logically contradicts another fluent ¢’. In goal regression,
if any of the condition or side-effect fluents contract a
fluent in the goal, then the operation is not considered. Non-
deterministic side effects, which model abstract actions with
non-deterministic effects by setting the value of side-effect
fluents to be None, indicating that the resulting value is
unknown.

Following are operator descriptions used in our example
domain. The numbers preceding the preconditions refer to
the abstraction level; some irrelevant preconditions have been
omitted for clarity. The descriptions refer to goal, which is
the current regression subgoal in the planning process to
which this operator is being applied and to start which is
the current world state at the time this particular planning
problem is being solved, which is not necessarily the initial
state for the entire planning and execution problem.

The pick operation results in the robot holding object O:

Holding() = O:
define: T's = {T : ClearX(T,X) € goal NO ¢ X}
exists: L € {Location(O, start),
SuggestParking(O, Ts, start)}
P € SuggestPaths(O, L, home, start)
pre: 0. Holding() = nothing
0. In(O, L) = True
2. ClearX (sweptVol(P),[0]) = True
sideEffects: VL'.In(O, L) = False
prim: Pick(O)
Other variables that determine the behavior of this opera-

tion are L, which is the location of O when it is to be picked
up, and P, which is a path that the robot can traverse from a
pose in which it is grasping the object, back to its home
location. The preconditions to this operation are that the
robot not be holding anything, that O be in location L, and
that the swept volume of path P be clear of all objects except
O. Once these preconditions are satisfied, then the primitive
pick operation can be planned in detail and executed by the
fully geometric part of the planner.

The main subtlety here is in picking values of L and
P. A standard symbolic planner enumerates all possible
values of free variables, and then rules out instantiations later
if they conflict with other aspects of the current planning
goal. Because these variables both have infinite domains
in our setting, we cannot enumerate them. Instead, we use
procedures to suggest values that are likely to (a) not conflict
with the current planning goal and (b) ensure that the
preconditions of the operation can be effectively serialized
and that this operation serializes well with other operations.

To avoid immediate conflicts, we look in the current goal,
to find “taboo” regions T's that must be kept clear, and then
consider two different bindings of variable L: either it is the
object’s location in the current true world state, or it is a
“parking” place, suggested to be not overlapping with the
taboo regions, nor with other objects in the starting state.
To guarantee that the robot can move to the object at that
location and pick it up, we find a path from the robot’s
home location to L. Each of our operations guarantees that
there is a free path for the robot to move to and from its
home location: this condition guarantees that the robot will
not destroy serializability by blocking itself in, but it does
not constrain the geometric planner, when it is called in the
now to generate the robot’s actual path, to go through the
home location. Note that the taboo regions are only taboos
for placing objects: they must be kept free, but the robot may
take paths that move through them. The place operation is
very similar:

In(O,R) = True:

define: T's = {T": ClearX(T,X) € goal N\O ¢ X}

exists: P € SuggestPaths(O, R, home, start)

pre: 1. Holding() = O

2. ClearX (sweptVol(P),[0]) = True

sideEffects: Holding() = nothing

prim: Place(R)
The operator for clearing a region has no primitive action.
It is a definition of what it means for a region to be clear,
articulated in the preconditions. The preconditions require
that each object X that is in the domain, but not the list of
exceptions, not overlap with R.

ClearX (R, Os) = True:

pre: 1. VX € Objects — Os : Overlaps(X, R) = False
prim: none
The operator that causes an object O not to overlap a region
R is also definitional, with no primitive action. It requires O
to be in a location L that does not overlap the region R and

that L be kept clear of other objects; it suggests values of
location L that do not conflict with regions that are required
to be clear, as well as with locations of objects in the starting
configuration.

Overlaps(O, R) = False:

define: Ts = {T : ClearX(T,X) € goal A\O ¢ X} U{R}

exists: L = SuggestParking(O,T's, start)

pre: 1. In(O, L) = True, ClearX (L, [O]) = True

prim: none
Finally, we have a simple operator to make an object clean,
which requires that the object be located in the washer in
order for running the washer to make it clean.

Clean(0O) = True:

pre: 1. In(O, WASHER)
prim: Wash()

Hierarchy Inspired by Sacerdoti’s [10] approach to con-
structing a planning hierarchy, we specify a hierarchy by
postponing consideration of some or all preconditions of
an operator. Each precondition in an operator definition is
labeled with a level of abstraction. Increasingly detailed
levels of abstraction are determined by requiring increasingly
higher-numbered conditions.

Consider an operator description with target fluent r:

pre: pi,...,pn

prim: o
By postponing precondition p,,, we effectively create a new
operator description:

pre: pi,...,Pn—1

prim: achieve p,, maintaining pi,...,Pn—1; O
It is not generally true that this new operator description
will hold in the original domain. There are two potential
problems. First, it may not be possible to make p, true
without undoing pi,...,pn—1. In this case, the planner
will achieve pq,....,p, in whatever way it can, and then
execute o and r will be achieved; the potential problem is
suboptimality, in that wasted work will have been done to
achieve conditions that will have to be undone.

Second, the side-effects of the abstracted operator will
generally be different from the side-effects of the single
primitive, because the process of achieving p,, may have
additional effects. Our formalism for describing abstracted
versions of the operators allows different side effects to be
specified at different levels of abstraction. To model the
inability of the plan at the abstract level to determine which
particular realization of an abstract plan step will take place,
we allow side effects to be non-deterministic and extend our
planning algorithm to compute pre-images appropriately.

The degree to which abstract operators can be serialized
depends on how the domain is formalized. For example, if
it is important that the object not be regrasped as part of the
Place operation, it is possible to ’expose’ the choice of grasp
at a higher level of abstraction in the formalization, and pass
it down to both the Pick and Place operations to achieve the
desired coordination. If at attempt at serializing operations
at an abstract level fails, then the planning problem is

addressed again with no abstraction, and solved with no
further attempts at serialization.

V. ALGORITHMS

Interleaved planning and execution A relatively
standard regression-planning algorithm, based on an A*
search that works backward from the goal, generating
sub-goals that are the weakest precondition of the goal
under each applicable action, is used to solve single
planning sub-problems. The architecture can be thought
of as doing a depth-first traversal of a planning tree, and
is implemented as a recursive algorithm, as shown below.
The planning and execution system is invoked by calling
HPN(currentState, goal, operators, absLevel, world),
where currentState is a description of the current state
of world; goal is a conjunction of fluents describing a set
of goal states; operators is a set of hierarchical operator
descriptions; absLevel specifies, for any ground fluent,
the number of times it has served as a plan step in the
HPN call stack above it; and world is an actual robot or a
simulator in which primitive actions can be executed. In this
paper world is a geometric motion planner coupled with an
execution capability.

HPN(currentState, goal, operators, absLevel, world):
if holds(goal, currentState):
return TRUE
else p = PLAN(currentState, goal, operators, absLevel)
for (0;,9;) in p
if prim(o;):
currentState = world.execute(o;)
else HPN(currentState, g;, operators,
NEXTLEVEL(absLevel, 0;), world)

The PLAN procedure is called with the current state,
the goal, a set of operators, and an abstraction level. It
returns a list ((01,91), ---, (On, gn)) Where the o; are operator
instances, g, = goal, g; is the weakest precondition of g;;
under 0,1, and start € gg. We use goal regression because
it computes, for each plan step, the weakest conjunctive
subgoal that can serve as the target for the planning problems
at the next level down. In our implementation, absLevel is
a dictionary, mapping ground fluents to numeric abstraction
levels. Whenever we descend, recursively, to address a new
planning problem, the NEXTLEVEL procedure increments the
abstraction level associated with that fluent.

Suggesters The operator definitions in our domain use
two suggesters: SuggestPaths and SuggestParking. These
suggesters are constructed using some additional suggesters:
SuggestGrasps, SuggestPoses and SuggestPathsTo.

SuggestGrasps(O): finds grasps for O (gripper poses
relative to O) with sufficient overlap of the fingers and an
available approach configuration of the robot.

SuggestPoses(O, R, Taboos): finds a set of poses for
O where it is completely inside region R, there is no
collision with taboo regions, and there is some valid grasp
(as per SuggestGrasps) for the object in that pose. The

implementation generates poses in the region and discard
those that fail that grasping accessibility tests.

SuggestPathsTo(O, R): finds paths for O from the
robot’s home pose to some pose within region R (as per
suggestPoses). A motion planner lazily builds a 4-dof
visibility-graph; x,y translation constraints are represented
as C-space polygons for discrete ranges of z and 6. Links
in the visibility graph represent either pure x,y translation,
z offset or 6 offset. In the examples in this paper, it was
constrained to do translation only and to return a single path.

SuggestParking(O, Taboos, start): find an “out of the
way” location for O that does not overlap any of the
regions in Taboos. The implementation currently is simply
SuggestPoses in some designated parking regions; the park-
ing places are not pre-specified; they are suggested using
some criteria that tends to pack them near the edges of the
specified region.

The actual motion planning in the base domain can be
done by any motion planner that can plan paths between
specified robot configurations. Our implementation uses an
RRT-based planner.

VI. CORRECTNESS

Because HPN is a combined planning and execution
system, the standard notions of correctness and completeness
from planning do not apply directly. Our correctness criterion
is that, if a goal state was reachable from the starting state
under some sequence of operations, that HPN will eventually
cause the system to reach a goal state.

If we were in a discrete domain, using every instantiation
of the operator schemas and did not introduce any hierarchi-
cal planning levels, then it is clear that the regression planner
would produce a correct plan if one exists and it would be
executed step by step. So, we need to examine the effects of
hierarchy and of operating in infinite domains on the ability
of HPN to achieve feasible goals.

Hierarchy Given a hierarchy of operator descriptions for
each target fluent, in a finite domain, we can construct an
overall hierarchy of planning domain descriptions (PDDs),
as follows. Let F be the set of all ground instances of all
fluents that can be the target of an operator in any of the
PDDs, and let H be a mapping from F into integers selecting
the level of abstraction of that fluent’s operator. We specify
a partial ordering on abstraction levels as follows: H; >
‘Ho, that is, H; is more concrete than Ho, iff (1) for all
fluents f € F, H1(f) > Ha(f) and (2) there exists a fluent
f € F for which Hi(f) > Ha(f). We define H* to be
the abstraction level that maps each fluent to its completely
concrete operator and Hy to be the abstraction level that
maps each fluent to its most abstract operator.

A state s has static connectivity in a domain, if all states s;
that are reachable from s are also reachable from any s, that
is reachable from s. That is, any choice of action is ultimately
‘reversible’ in the sense that it can be undone through a
sequence of actions. A domain has static connectivity if all
of its states do.

Theorem: If (1) the PDD specified by operators ops at
abstraction level H* is a complete and correct formalization
of the primitive actions of domain w, (2) start has static
connectivity in that domain, and (3) G is reachable from
start, then executing HPN(start, G, ops, H,, w) will cause
world w to be in a state s € G.

Proof: On each recursive call to HPN, the absLevel
argument is increased for one fluent; it will eventually be
completely concrete for all fluents, causing a correct plan
made of primitive actions to be constructed and executed.

The very last invocation of PLAN is on the goal G at
abstraction level H* in some state s that was reached after
taking some sequence of actions previously selected by the
HPN procedure. Under the static connectivity assumption,
start is reachable from s, and so, there is a plan from s
to G if there was one from start to G. This plan will be
constructed and then executed by HPN, driving w into a
state in G.

Infinite domain: Because our domains are infinite, we
cannot consider all instantiations of the operations. Our
current implementation of suggesters only considers a small
number of possible instantiations of the operations. We
could recover the relatively weak properties of probabilistic
completeness by having the suggesters be generators of an
infinite stream of samples, and managing the search as a
non-deterministic program over those streams.

VII. EMPIRICAL RESULTS

We have applied the HPN method to several different
configurations of objects in the simple domain of figure 1.
In addition, we constructed a larger ’household’ domain
with 6 connected rooms, a ’vacuum’, a 'mop’, and several
randomly placed ’junk’ objects. In the household domain,
we wish to make the floors of all the rooms clean, which
requires vacuuming and mopping them (by putting the mop
or vacuum in the room and executing a non-geometric
operation) and also moving any junk that might be in the
room into the closet. This larger domain requires addition of
operations for mopping and vacuuming as well as for moving
between rooms of the house.

In each of these domains, we ran the HPN algorithm; we
report the number of plans that were made (Num), the length
of the longest of these plans (Longest), the total number
of steps executed (Steps). In these particular problems,
the plans produced have no or few redundant steps. The
planner uses a non-deterministic implementation of priority
queue, so different executions of the algorithm make different
serialization decisions, generating slight variations in the
number and length of subplans; the numbers shown here are
a representative example.

Domain Num | Longest | Steps
swap 22 4 8
wash 14 4 13
wash all 26 6 22
clean house 89 4 36
clean and tidy | 169 7 65

The swap problem involves interchanging the locations of
two blocks. It is the classic example of non-serializable goals;
it also requires careful geometric planning. The hierarchy
does not really help, but the planner still finds an answer. The
rest of the domains require a mix of geometric and symbolic
reasoning, including moving objects to locations that aren’t
specified in the goal (temporarily out of the way, or into a
closet). To the best of our understanding, none of the existing
mixed task and motion planners could solve these problems.

Generally speaking, the search process is exponential in
the length of the plan. What we can see is that the hierarchy
is having a huge impact, especially in the larger "household’
domains, allowing us to solve many small problems instead
of a single large one, which would be completely impractical
for most of these problems.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has outlined a general strategy for hierarchical
planning and execution for task and motion planning. It
has the potential for dramatic speedups, but relies on good
domain-dependent choices in selecting a hierarchical formal-
ization and in suggesting a small set of plausible values
from an infinite set of operator bindings. We hope to be
able to apply learning algorithms to improve these choices
over time. The HPN architecture is very well suited to re-
planning approaches to stochastic domains; based on the
outcome of executing a primitive, a decision could be made
to re-plan at any level above that step. We will apply the
replanning approach to uncertainty in outcomes, and extend
the approach to apply to belief spaces in partially observable
domains.

REFERENCES

[1]1 R. E. Korf, “Real-time heuristic search: First results,” in AAAI, 1987.
[2] T. Lozano-Perez, J. Jones, and E. Mazer, “Handey: a robot system that
recognizes, plans and manipulates,” in /CRA, 1987.
[3] R. Alami, J.-P. Laumond, and T.Siméon, “Two manipulation planning
algorithms,” in WAFR, 1994.
[4] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” IJRR, vol. 29, pp. 897-915, 2010.
[5] M. Stilman and J. J. Kuffner, “Planning among movable obstacles with
artificial constraints,” in WAFR, 2006.
[6] M. Stilman, J.-U. Schamburek, J. J. Kuffner, and T. Asfour, “Manip-
ulation planning among movable obstacles,” in ICRA, 2007.
[71 S. Kambhampati, M. R. Cutkosky, M. Tenenbaum, and S. H. Lee,
“Combining specialized reasoners and general purpose planners: A
case study,” in AAAI, 1991, pp. 199-205.
[8] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” IJRR, vol. 28, 2009.
[9] E. Plaku and G. Hager, “Sampling-based motion planning with sym-
bolic, geometric, and differential constraints,” in /CRA, 2010.
[10] E. Sacerdoti, “Planning in a hierarchy of abstraction spaces,” Artificial
Intelligence, 1974.
[11] B. Marthi, S. Russell, and J. Wolfe, “Angelic semantics for high-level
actions,” in ICAPS, 2007.
[12] R. P. Goldman, “A semantics for HTN methods,” in ICAPS, 2009.
[13] I. Nourbakhsh, “Using abstraction to interleave planning and execu-
tion,” in Third Biannual World Automation Congress, 1998.
[14] B. Marthi, S. Russell, and J. Wolfe, “Combined task and motion
planning for mobile manipulation.” in /CAPS, 2010.

