

1

BitTorrent for the Less Privileged

Umair Waheed Khan and Umar Saif

LUMS Computer Science Department, Lahore, Pakistan
{umair.waheed, umar}@lums.edu.pk

ABSTRACT

BitTorrent is a hugely popular peer-to-peer file sharing system.

In countries where broadband Internet is widespread,

BitTorrent accounts for as much as 70% of the overall Internet

traffic. In contrast, in developing countries, BitTorrent is almost

unusable on the typically low bandwidth dialup connections.

In this paper, we present a BitTorrent client called BitMate

that is designed to enhance the performance of hosts with low-

bandwidth connections. Importantly, BitMate enhances the

performance of low-bandwidth nodes without cheating,

circumventing the fairness policy of BitTorrent or adversely

affecting the performance of other peers. In fact, BitMate drives

its performance by scrupulously implementing the fairness

philosophy of BitTorrent.

BitMate outperforms vanilla BitTorrent by as much as 70%

in download performance, while at the same time improving

upload contribution by as much as 1000%! BitMate also

outperforms strategic clients like BitTyrant in low-bandwidth

conditions by as much as 60% in download performance.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network

Architecture and Design

General Terms
Design, Experimentation, Measurement

1 INTRODUCTION

BitTorrent [5] is a hugely popular peer-to-peer file exchange

protocol. In countries where broadband Internet is widespread,

BitTorrent accounts for as much as 30-50% of the overall

Internet traffic [1]. In contrast, in developing countries,

BitTorrent is almost unusable on the typically low bandwidth

dialup connections and accounts for less than 10% of the

overall traffic [1].

At first, this may appear surprising since BitTorrent is

often blamed for enhancing the performance of low-bandwidth

clients at the expense of higher bandwidth nodes [2]. On the

contrary, we found that BitTorrent has disproportionately poor

performance for low-bandwidth peers. Figure 1 shows that the

performance of a BitTorrent client deteriorates sharply, almost

in a step-like function, as its bandwidth is reduced from 200

kilobytes/sec to 5 kilobytes/sec. If the bandwidth of a client is

in the bottom percentile of a swarm, its download rate becomes

almost negligible..

.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Hotnets’11, November 14-15, 2011,
Cambridge, MA, USA. Copyright 2011 ACM 978-1-4503-1059-8/11/11..$10.00.

Ostensibly, a low-bandwidth peer does not perform

well because it cannot download at a high bandwidth from

other peers. An immediate temptation, therefore, is to somehow

increase the bandwidth a low-bandwidth peer uses for

download. One possible solution is to minimize the bandwidth

a peer dedicates to uploading to other peers. Strategic clients

like BitThief [3] and BitTyrant [2] achieve this by minimizing

their upload contribution to other peers.

However, strategic clients not only contradict fairness

in BitTorrent, surprisingly they also do not perform well in low-

bandwidth conditions. In fact, we found that clients that do not

upload at all, such as BitThief [3], perform even worse than

vanilla BitTorrent in low-bandwidth conditions. In this paper,

we advocate a diametrically opposite strategy for improving the

performance of low-bandwidth clients. We show that in low-

bandwidth conditions, an honest client, that strives to maximize

its upload contribution, performs significantly better than both

vanilla BitTorrent and strategic clients designed to minimize

their upload contribution.

 This paper makes three key contributions:

1. In contrast to a large body of recent work that argues that

low-bandwidth clients benefit by an unfair strategic behavior

that minimizes their upload contribution, we demonstrate

that there is no incentive for low-bandwidth clients to cheat

since they actually perform better by enhancing their upload

contribution.

2. Our analysis shows that low-bandwidth clients fail to fairly

utilize their download bandwidth even when there are other

peers in the swarm that can offer them good download

performance.

3. Based on our analysis, we present a BitTorrent client called

BitMate that is designed to enhance the performance of hosts

with low-bandwidth connections by maximizing it upload

Figure 1: Performance of a BitTorrent client deteriorates as its bandwidth is

reduced. As the bandwidth is reduced, Total downloaded data falls sharply,

while more data is downloaded via Optimistic downloads instead of

Reciprocal Downloads (Rec. Download) from other peers.

0 

10 

20 

30 

40 

50 

0 50 100 150 200 

D
o
w

n
lo

ad
 (

k
il

o
b
y
te

s/
se

c)

Upload Bandwidth (kilobytes/sec)

Total Optimistic Rec. Download

2

contribution. Importantly, BitMate enhances the performance

of low-bandwidth nodes without cheating, circumventing the

fairness policy of BitTorrent or adversely affecting the

performance of other peers. BitMate outperforms vanilla

BitTorrent by as much as 70% in download performance,

while at the same time improving upload contribution by as

much as 1000%! BitMate also outperforms strategic clients

like BitTyrant in low-bandwidth conditions by as much as

60% in download performance.

 In this paper we present the first large-scale evaluation of

BitTorrent in low-bandwidth conditions. As a point of reference

to define a low-bandwidth client, we measured the average

upload bandwidths of 6045 unique IPs from the Indian sub-

continent using a modified BitTorrent client. The results of the

experiments are shown in Figure 2, with the average upload

bandwidth of a BitTorrent client in the Indian sub-continent to

be 4.21 kilobytes/sec. With recent studies reporting the average

bandwidth of a BitTorrent client to be close to 100

kilobytes/sec, clients in the developing-world invariably find

themselves at the bottom of the pack in a swarm.

In the experimental evaluation presented in this paper, we

use synthetic swarms using private torrents on the Planetlab

testbed [4]. In our experiments, we used over 130

geographically diverse nodes on PlanetLab. All of our

experiments were conducted over a period of 18 months, in the

naturally diverse networks conditions of BitTorrent. Other than

parameterizing our clients with our target upload and download

bandwidths, we do not impose any restrictions on the naturally

diverse conditions of Planetlab. For each experiment, we use

between 55-130 randomly chosen nodes from Planetlab.

We have made our BitMate client available publicly,

including source code. At the time of writing the paper, BitMate

has been downloaded by more than 25,000 people from over

173 countries.

2 PLIGHT OF A LOW BANDWIDTH PEER

In the fair tit-for-tat world of BitTorrent [5], a low-

bandwidth client does not have sufficient bandwidth to

participate in the p2p system as a first-class citizen. With its

paltry upload capacity, a low-bandwidth client rarely offers

upload at a speed that earns it a right to download from another

peer later. As a result, a low-bandwidth client is repeatedly

snubbed by higher bandwidth peers when attempting to

download a file and mostly relies on occasional benevolence

(through optimistic unchoking) by other peers to make progress.

Figure 1 shows the increasing percentage of data downloaded

unfairly by a client as its bandwidth is decreased. As the

bandwidth of a node is reduced, its primary mechanism for

download shifts from (fair) reciprocal unchokes to gratuitous

downloads due to optimistic unchokes from other peers.

Figure 3 illustrates this point further by plotting the

percentage of times a client appears in the unchoke list of other

peers in its swarm. In this experiment, we divide up the swarm

in 5 groups of leechers with similar upload and download

bandwidth, ranging between 5 kilobytes to 200 kilobytes. In our

experiment, Group 1 nodes have the lowest bandwidth (5

kilobytes/sec), followed by Group 2 nodes (20 kilobytes/sec)

with higher bandwidth, Group 3 with 100 kilobytes/sec, Group

4 with bandwidth of 150 kilobytes/sec and group 5 with 200

kilobytes/sec. The results show that the chances of a client

earning a reciprocal unchoke by another peer falls sharply as its

bandwidth is reduced within its swarm. Importantly, this sharp

decline happens despite the composition of the swarm in our

experiments: every group in the swarm (denoted on the X-axis)

comprises an equal number of nodes with the same bandwidth,

giving everyone an equal chance to form tit-for-tat relationships

within its group. The reason for this sharp decline is captured in

figure 4.

Figure 4 shows the number of reciprocal unchokes received

by each group in our experiments. The tit-for-tat fairness policy

of BitTorrent should cause peers to interact with others in their

own group more frequently, resulting in tight clusters within

each group. Earlier studies of BitTorrent have specifically

highlighted the presence of such clusters [6]. However, in our

experiments, we observe that while high-bandwidth nodes form

mutually beneficial clusters, low-bandwidth clients do not

receive any noticeable reciprocal unchokes, even from peers

within their own group (the results shown in figure 6 are

normalized to offset the difference in bandwidth across peer

groups; the normalization discounts the fact that high

bandwidth clients naturally unchoke more peers).

Figure 4 highlights the key result from our experiments:

even when there are bandwidth-matched peers in a swarm, low-

bandwidth nodes fail to establish mutually beneficial tit-for-tat

relationships with them. Instead, they waste most of their

goodwill in attempting to upload to and download from high-

Figure 2: Average download bandwidth of peers in the Indian subcontinent. Figure 3: Percentile of time spent by a peer group in the unchokee list of other

 nodes in the swarm. Bandwidth ranges between 5 kilobytes/sec

 (group 1) to 200 kilobytes/sec (group 5).

4.21 

83% 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  10  20  30  40  50  60  70 

P
er

ce
n
ti

le

Download Bandwidth (kilobytes/sec)

6.94%

73.79%

86.92%

100.00%

100.00%

0

0.2

0.4

0.6

0.8

1

1.2

A B C D E

P
er

ce
n
ti

le
 o

f
ti

m
e

u
n
ch

o
k
ed

1 2 3 4 5

Groups

3

bandwidth peers, which do not reciprocate. This is because a

BitTorrent client avoids low-bandwidth peers when

downloading a piece to achieve good performance; in each

round, a client unchokes the top N peers that have afforded it the

best download bandwidth in the recent past. In other words,

when given a choice of peers that have the piece a BitTorrent

client needs, it always downloads from the peer that offers it the

best download bandwidth. This greedy peer selection is

designed to enable a BitTorrent client to efficiently utilize its

download capacity.

However, as a flip-side of this greedy peer selection policy,

most of the slots in the top N unchoke list of a low-bandwidth

node go “wasted” since high-bandwidth unchoked peers do not

receive an upload rate from it that merits it a place in their

unchoke list. We call this wasted goodwill. Ironically, due to the

wasted goodwill, low-bandwidth peers also overlook other low-

bandwidth peers and hence fail to form mutually beneficial

connections with anyone in the swarm (as shown in figure 4).

3 BITMATE: DESIGN AND EVALUATION

Based on our analysis of low-bandwidth peers in

BitTorrnet, we designed BitMate, that achieves good

performance by enabling better sharing between bandwidth-

matched low-bandwidth peers.

A traditional BitTorrent client uses two principal

mechanisms to establish peer-to-peer relationships with other

clients: (1) Reciprocal unchokes, and (2) Optimistic unchokes.

The former underpins the tit-for-tat fairness mechanism while

the latter is used for exploration of the swarm to discover peers

with which fair tit-for-tat relationships can be established.

Previous work on BitTorrent [7][6][2] has focused on changing

the tit-for-tat reciprocity of BitTorrent to either enhance its

performance or make it more robust against free-riding clients.

However, these approaches impact the fairness of BitTorrent

and often mandate universal adoption by all the peers to be

effective.

BitMate neither changes reciprocity nor mandates universal

adoption to be effective. Instead, BitMate focuses on

minimizing the wasted goodwill of low bandwidth clients. To

accomplish this, BitMate modifies the optimistic unchoking

policy of BitTorrent to make it more meaningful for low-

bandwidth clients.

When unchoking a peer optimistically, a BitTorrent client is

optimistic that the unchoked peer will select the client for

downloading a piece and will in turn unchoke the client in

reciprocation. Unfortunately, as explained before, optimistic

unchokes of a low-bandwidth client towards a high-bandwidth

peer mostly go in vain; due to its low upload bandwidth, an

optimistic unchoke by a low-bandwidth node fails to earn it a

place in the top N reciprocal unchoke list of a high bandwidth

peer. Therefore, instead of wasting optimistic unchokes on high

bandwidth peers, a BitMate client optimistically unchokes

those peers that have a similar low-bandwidth. As a result, a

BitMate client invests its scarce upload bandwidth on peers that

are most likely to reciprocate. We call this realistically

optimistic unchoking (ROU). At the same time, BitMate leaves

the tit-for-tat reciprocal unchoke policy untouched to uphold

the fairness of BitTorrent. This leads to both increased

performance and fairness since low-bandwidth clients can

quickly form mutually beneficial peer-to-peer connections.

Figure 5 gives the performance gain due to this

scheme (BandwidthMatched), outperforming the default client

by up to 30-40% times in download performance. Figure 5 also

shows that BitMate uploads as much as twice compared to

vanilla BitTorrent (UP-BM vs UP-Default).

The effectiveness of ROU depends on estimating the

bandwidth of other peers to find low-bandwidth peers. BitMate

uses a surprisingly simple mechanism to find other peers with

matching bandwidth: instead of directly measuring and

reporting bandwidth, a BitMate client simply matches the

frequency of its own HAVE messages with other peers in its

swarm. Clients with a similar frequency of HAVE messages,

generated by a BitTorrent client to announce the download of a

new piece, are good candidates for forming mutually beneficial

peer-to-peer relationships.

3.1 Enhanced Clustering

ROU can improve performance if the low-bandwidth clients

in a swarm possess pieces that are of mutual interest. If low-

bandwidth nodes do not have mutually distinct pieces of a file,

Figure 4: Number of times peers in each group unchoke each other, averaged Figure 5: BitMate’s ROU enhances both its download performance

over all runs. Darker regions represent higher number of mutual unchokes and upload contribution.

within a group. Low-bandwidth nodes (group 1, 2, 3) do not form mutually

beneficial clusters.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

C
D
F

Upload/Download (kilobytes/sec)

Default BandwidthMatched

UP‐Def UP‐BM

4

ROU’s impact is limited. Unfortunately, due to their limited

download bandwidth, low-bandwidth nodes generally have less

data than higher bandwidth nodes in a swarm. Additionally, the

rarest-block-first policy of BitTorrent often causes low-

bandwidth peers to compete for the same (rarer) block stored at

high-bandwidth peers.

Therefore, instead of competing with each other to

download the blocks from high-bandwidth peers, BitMate

clients download distinct blocks of a file from high bandwidth

peers. This improves performance since low-bandwidth clients

download from (reluctant) high-bandwidth peers only when

necessary. This also improves fairness since it minimizes the

data gratuitously downloaded by low-bandwidth clients from

higher bandwidth peers -- instead encouraging mutually

beneficial tit-for-tat connections between matching low-

bandwidth peers.

BitMate does not introduce any additional messages to

enable enhanced clustering between low-bandwidth clients.

Instead, BitMate clients simply consult their log of HAVE

messages, much like vanilla BitTorrent, before requesting a peer

to download data. However, unlike a vanilla BitTorrent client

which prefers to download a piece from the peer with the

highest upload bandwidth, a BitMate client prefers to download

from a bandwidth-matched peer if one has the required block. In

essence, this causes BitMate clients to form a cluster, in which

they try to make the best use of any opportunity to download

from high-bandwidth peers (by downloading non-overlapping

blocks) and then share this data over more stable tit-for-tat

connections within the cluster.

Figure 6 illustrates the enhanced clustering between low-

bandwidth BitMate with ROU and enhanced clustering

optimizations (compare with figure 4). Enhanced data sharing

accentuates the positive impact of ROU, resulting in better

performance and fairness compared to vanilla BitTorrent. Figure

7 shows the improved download performance of BitMate after

the enhanced clustering optimization (along with ROU),

denoted as “disjoint piece”.

3.2 Enhanced Sharing

ROU and enhanced clustering depend on the ability of a

client to efficiently upload data. However, since BitTorrent

clients exchange data at the granularity of a piece, typically

between 256-512 kilobytes/sec, low-bandwidth clients often

struggle to put together a piece that they can share with other

peers. This is because a low-bandwidth client is frequently

choked by other peers before it has a chance to complete the

download of a piece. Due to the data discarded by these ‘pre-

mature’ chokes, a client may end up downloading (at least some

fraction of) the same piece multiple times. Such downloads,

therefore, not only waste the download bandwidth of a choked

node, they also exacerbate the degree of free-riding by low-

bandwidth clients.

BitMate is designed to avoid redundant downloads that

result due to the asynchronous architecture of BitTorrent.

BitMate avoids redundant downloads by promptly sending a

CANCEL request to a peer that chokes it. Traditionally, the

CANCEL request is used only in the end game mode when a

client aggressively requests a piece from all the peers in the

swarm to avoid the last-block-problem. BitMate, on the other

hand, promptly sends a CANCEL request as soon as a peer

chokes it. This both conserves its download bandwidth, by

avoiding redundant download, and improves fairness by

preventing download from peers that have choked the client.
Still, even with the optimization to avoid redundant downloads,

low-bandwidth nodes, due to their bandwidth, take a long time

to string together an entire piece. This hampers the ability of a

low-bandwidth client to share data. Reducing the size of the

piece is not possible since piece size is dictated by the publisher

and smaller piece size substantially increases the size of the

.torrent metafile.

BitMate implements pipelined uploads to enable a low-

bandwidth client to start sharing data without assembling a

complete piece. In pipelined uploads, BitMate clients share data

at the granularity of individual ‘blocks’, which make up a

‘piece’ in BitTorrent. The reason an individual block is not used

as a unit of exchange in BitTorrent is because the integrity of an

individual block cannot be verified in BitTorrent; integrity

checks can only be performed at the level of a piece by

Figure 6: Low-bandwidth nodes (Groups 1, 2) cluster better due to ROU and Figure 7: BitMate’s download performance with ROU, Enhanced

 Enhanced Clustering. Clustering (Disjoint Piece) and Enhanced Sharing (Complete).

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

C
D
F

Upload/Download (kilobytes/sec)

Default BandwidthMatched

Disjoint Piece Complete

5

comparing the checksum of the piece with the one stored in the

.torrent file.
In order to aggressively upload blocks, BitMate clients start

sharing blocks as soon as they download them (without waiting

for a piece to be completed downloaded). To implement this,

BitMate clients implement an additional message,

HAVE_BLOCK, which they generate to announce the

availability of a new block. This message is sent only to other

BitMate peers having low bandwidth, to both avoid

compatibility issues with other clients and to strengthen the

clustering behavior of low-bandwidth BitMate clients. The

performance and fairness gain due to aggressive block-level

sharing easily offsets the rare chance of downloading a

corrupted block. Still, BitMate clients, when publishing a file,

also generate a Merkle Torrent, as proposed by BEP 30 [9], to

enable flexible block-level sharing and integrity verification

with other compatible clients. Traditional torrents are also

generated to maintain compatibility with other clients. Figure 7

shows the improvement in the performance of low-bandwidth

BitMate clients due to all three optimizations (denoted as

‘complete’): ROU, disjoint pieces and pipelined uploads.

BitMate outperforms vanilla BitTorrent by 70% in download

performance.
Figure 8 shows a comparison of upload contribution of

BitMate with vanilla BitTorret. BitMate contributes 1000%

more compared to vanilla BitTorrent.

4 COMPARISON WITH STRATEGIC

CLIENTS

The optimizations implemented by BitMate result in a

scrupulously honest client that contributes more than vanilla

BitTorrent while improving its download bandwidth.

However, while we expected BitMate to perform better than

vanilla BitTorrent, we were surprised to note that BitMate

significantly outperforms strategic clients as well. In our

comparison of BitMate with BitThief[3] and BitTyrant[2], we

found that BitMate outperforms BitThief by a factor of 5 and

BitTyrant by a factor of 3 in our target bandwidth of 5

kilobytes/sec.

We also run the experiments comparing BitMate with

vanilla BitTorrent, BitThief and BitTyrant when the

instrumented client is not in the lowest bandwidth group. In

these experiments, we set the bandwidth of the instrumented

clients at 20 kilobytes/sec (group 2 in our experiments). Even in

this condition, BitMate outperforms BitThief by a factor of 3

and BitTyrant by as much as 60% on average (shown in figure

9).

The reason for these results is simple. Strategic clients are

designed to minimize upload contribution. Since a low-

bandwidth client is already struggling to find a place in the

(reciprocal) unchoke list of other peers, further minimizing the

upload contribution of a client makes the situation worse. In

fact, on average, BitTyrant and BitThief perform even worse

than vanilla BitTorrent for both 5 kilobytes/sec and 20

kilobytes/sec. For 5 kilobytes/sec, BitTyrant ends up

contributing more than vanilla BitTorrent in its attempt to find

the “sweet spot” for reciprocation, but still performs worse than

both BitMate and vanilla bittorrent in download performance

(upload contributions shown in figure 10).

5 RELATED WORK

A large body of work has analyzed, modeled and evaluated

the performance, fairness and robustness of BitTorrent since

Cohen’s [5] seminal paper. Our work differs from previous

work in one fundamental way: while the majority of previous

work argues that BitTorrent is susceptible to free-riding by low-

bandwidth nodes at the expense of high-bandwidth clients [2],

we present a detailed evaluation to show that low-bandwidth

Figure 8: Comparison of upload contribution of BitMate (UP-Bitmate) Figure 9: Comparison of BitMate with strategic clients with 20 kilobytes/sec

 and default BitTorrent. (group 2).

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

C
D
F

Upload/Download (kilobytes/sec)

UP-Def UP-Bitmate

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D

F

Download Rate (kilobytes/sec)

BitMate Default BitTyrant BitThief

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D

F

Upload Rate (kilobytes/sec)

BitMate Default BitThief BitTyrant

Figure 10: Upload contribution of BitMate compared with

strategic clients.

 BitTyrant

 BitThief

6

peers have no incentive to cheat. Instead a low-bandwidth client

performs better if it uploads more. Our analysis also shows that

BitTorrent’s greedy peer selection policy, which favors higher

bandwidth peers in a swarm, is actually unfair to low-bandwidth

peers.

Recent models of BitTorrent, such as BitTyrant [2] argue

that high-bandwidth nodes suffer due to their long convergence

time to find matching peers, while low-bandwidth nodes utilize

their bandwidth more efficiently [2]. In contrast, BitMate drives

its performance by scrupulously implementing the fairness

philosophy of BitTorrent.

Qiu and Srikant [11] presented a specific study of

BitTorrent’s rate-based TFT strategy, concluding that even in

the presence of clients that upload at a reduced rate, the system

converges to a Nash equilibrium where all peers upload at their

capacity. Our experimental analysis, on the other hand,

emphasizes that BitTorrent’s incentive mechanism does not lead

to an equilibrium, but instead behaves like a winner-takes-all

auctions [7] in which low-bandwidth clients seldom win a bid.

A detailed simulation study of BitTorrent is presented by

Bharambe et al. [10]. Though focused on high bandwidth

clients, they propose two strategies to improve the fairness of

BitTorrent by (i) matching peers with similar bandwidth, and (ii)

enforcing tit-for-tat at the block level. BitMate implements a

bandwidth-matching strategy and reports improvements in

fairness as well as performance for low-bandwidth nodes.

The practicality of our approach makes it different from

previous studies that propose schemes that are either not

compatible with BitTorrent [7][10] or lack general appeal [2][3]

(such as strategic clients that cheat to improve the performance

of a peer at the expense of everyone else). Our approach,

therefore, is fundamentally different from approaches that

demonstrate performance improvement via Sybil attacks [12],

uploading garbage data and expanding swarm size [3].

6 CONCLUSION

This paper makes three key contributions:

1. In contrast to a large body of recent work that argues that

low-bandwidth clients benefit by strategic behavior, we

demonstrate that there is no incentive for low-bandwidth

clients to cheat since they actually perform better by

enhancing their upload contribution.

2. Our analysis shows that low-bandwidth clients fail to

fairly utilize their download bandwidth even when there

are other peers in the swarm that can offer them good

download performance.

3. Based on our analysis, we present a BitTorrent client

called BitMate that is designed to enhance the

performance of hosts with low-bandwidth connections by

maximizing its upload contribution.

Overall, a low-bandwidth BitMate client prefers stable,

bandwidth-matched peers over the greedy strategy of vanilla

BitTorrent. Instead of wasting optimistic unchokes on high

bandwidth peers, a BitMate client optimistically unchokes

those peers that have a similar low-bandwidth. As a result, a

BitMate client invests its scarce upload bandwidth on peers that

are most likely to reciprocate. At the same time, BitMate leaves

the tit-for-tat reciprocal unchoke policy untouched to uphold

the fairness of BitTorrent. This leads to both increased

performance and fairness since low-bandwidth clients can

quickly form mutually beneficial peer-to-peer connections.

BitMate outperforms vanilla BitTorrent by as much as

70% in download performance, while at the same time

improving upload contribution by an order of magnitude.

BitMate also outperforms strategic clients like BitTyrant in

low-bandwidth conditions by as much as 60% in download

performance.

7 ACKNOWLEDGEMENTS

We would like to thank Omar Salman, Amina Khalid, Muneeb

Waseem and Ghulam Murtaza for the initial experimental work

that led to the design of BitMate.

8 REFERENCES

[1] Umar Saif, Ahsan Latif, Shakeel Farooq Butt, and Nabeel

Farooq Butt, “Poor man's broadband: peer-to-peer dialup

networking “ In ACM SIGCOMM CCR, vol. 37, no. 5, October

2007

[2] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind

Krishnamurthy, Arun Venkataramani, “Do incentives build

robustness in BitTorrent?” 4th USENIX Symposium on

Networked Systems Design & Implementation (NSDI 2007)

[3] Thomas Locher, Patrick Moor, Stefan Schmid, Roger

Wattenhofer, “Free Riding in BitTorrent is Cheap”5th

Workshop on Hot Topics in Networks (HotNets-V),

November 2006

[4] B Chun, D Culler, T Roscoe, A Bavier, “Planetlab: an

overlay testbed for broad-coverage services”, in ACM

SIGCOMM 2003
[5] B Cohen, “Incentives build robustness in BitTorrent”,

Workshop on Economics of Peer-to-Peer systems, 2003
[6] Arnaud Legout, Nikitas Liogkas, Eddie Kohler, and Lixia

Zhang. 2007. “Clustering and sharing incentives in BitTorrent

systems” In Proceedings of the 2007 ACM SIGMETRICS

[7] Dave Levin, Katrina LaCurts, Neil Spring, Bobby

Bhattacharjee , “BitTorrent is an Auction: Analyzing and

Improving BitTorrent's Incentives”, ACM SIGCOMM 2008

[8] Ningning Hu, Li Erran Li, Zhuoqing Morley Mao, Peter

Steenkiste, Jia Wang, “Locating Internet Bottlenecks:

Algorithms, Measurements, and Implications” , ACM

SIGCOMM 2004

[9] BEP 30: Merkle hash torrent extension

[10] Bharambe et al. “Analyzing and Improving a BitTorrent

Networks Performance Mechanisms”, 25th IEEE

International Conference on Computer Communications

(INFOCOM 2006)

[11] Dongyu Qiu and R. Srikant, “Modeling and performance

analysis of BitTorrent-like peer-to-peer networks”, ACM

SIGCOMM CCR. 34, 4 (August 2004)

[12] Liogkas et al., “Exploiting BitTorrent For Fun (But Not

Profit”, 5th International Workshop on Peer-to-Peer Systems

(IPTPS 2006)

