
Opportunistic File-associations for Mobile Operating Systems

Umar Saif
LUMS Computer Science Department1

umar@lums.edu.pk

1 This work was done while the author was at the MIT Computer Science and AI Laboratory (CSAIL)

Abstract

This paper presents the design and implementation of
Opportunistic file-associations, designed to decouple
the storage and handling of user files in a mobile
device. A file with an Opportunistic file-association is
not limited to a local application environment on a
mobile device. Rather, the runtime environment
supporting Opportunistic file associations causes a user
file to be opened at the most appropriate device in the
environment of the user.

1 Introduction

In conventional operating systems, such as MS
Windows, a file may be associated with an application,
typically called its file association. The file association
specifies the application that is launched by the
operating system when a user opens the file for reading,
writing or executing the contents of the file. For
instance, a multimedia-file may be associated with a
media player, a text file may be associated with a text
editor and a compressed archive may be associated with
an archiving application.

Traditionally, this model has served well in
simplifying the user interaction with the operating
system – a user simply “double-clicks” on the desired
file and an appropriate application environment is
automatically provided by the operating system.
However, in traditional operating systems, while there
is no restriction on whether the file is stored locally or
fetched from a remote file server, the application
launched by the operating system is local to the device
on which the user attempts to access the file. This is
often overly limiting for mobile devices that are
typically resource-constrained and offer only limited
I/O facilities. Therefore, it is neither always possible
nor desirable to launch a local application for reading,
writing or executing a user file. For instance, a typical
handheld device such as a Compaq iPAQ may be

augmented with a few
Gigabytes of Flash memory
and a wireless network
interface, but it has limited
computing resources and
battery life, lacks a proper
keyboard and offers only a
small display and low-
power speakers. Thus, such
a mobile device may hold a

user’s pictures, documents and music, it is not ideal for
viewing a PDF file, editing a Powerpoint presentation
or playing a high-quality video-stream. For instance,
most applications in the Microsoft Office suite for
Pocket PC (Pocket Office) lack a number of editing
features, such as styles, tables, annotations, footnotes,
headers and footers, necessitating the use of the full-
blown desktop versions to generate nontrivial
documents.

Our experience with Oxygen computing
environments [1] has shown us that it is often possible
to improve the quality of such applications by utilizing
the computing resources in the environment of the user,
such as a desktop or a laptop computer. In this paper,
we propose Opportunistic File-Associations (OFAs) as
a mechanism for decoupling the storage and handling of
user files in a mobile device. A file with an
Opportunistic-file-association is not limited to a local
application environment on a mobile device. Rather, the
runtime environment supporting Opportunistic file
associations causes a file to be “opened” at the most
appropriate device in the environment of the user. Any
subsequent changes in the environment of the user may
revise the file-association, cause the handling of the file
to be moved back to the mobile device, or suspend the
operation on the file until a time a suitable resource
becomes available in the environment of the user.
 To put our work in context, the OFA runtime
enables a computing model that is exactly opposite to
the one afforded by systems such as the Coda File
System [2]; while previous systems like Coda enable

files stored on a remote server to be accessed and
modified at a mobile client, OFA runtime environment
enables files stored at a mobile client to be opened,
modified and executed on a remote server, albeit
opportunistically. We believe that such a computing
model will become increasingly important with the
widespread use of “pluggable” memory, such as
Compact Flash (CF), MMC and SDM, and wireless-
equipped mobile devices, such as Compaq iPAQ. With
our system, users will be able to keep all their important
data “handy”, stored in a memory card plugged into
their PDA, while automatically taking advantage of
nearby hosts to view and modify that data. Similarly,
Opportunistic File-associations complement the popular
“synching” applications, which synchronize the data
stored on a mobile device with the primary copy on the
user’s desktop. The OFA runtime environment, on the
other hand, opportunistically copies data from a user’s
mobile device to a nearby host and synchronizes
updates to the data at the remote host with the primary
copy on the mobile device.

Our current work builds on our experience with
Service-oriented Network Sockets (SoNS) [3] and
Lightweight Adaptive Network Sockets (LANS) [4],
designed to opportunistically connect a stream-oriented
application to resources in its environment.
Opportunistic File-associations define a complementary
architecture for mutable files and do not require any
changes to the application code; by provisioning
opportunistic resource utilization at the file-association
level, rather than the network-socket level, the OFA
runtime environment automatically affords
compatibility with legacy applications such as MS
Word.

2 System Overview

Figure 1 show the architecture of the OFA runtime
environment. The runtime environment comprises of
four modules: a) OFA File-manager, b) Resource
discovery module, c) User-activity-monitor and
synchronization module and d) Streaming server and
client. Below we describe each of these components in
more detail.

The OFA runtime environment is designed as a
user-space process and does not require any changes to

the underlying operating system. On the client-side,
OFA-runtime is designed as a simple, portable file-
manager that exports an interface similar to Windows
File Explorer. Using the OFA file-manager, a user can
browse the files stored on a mobile client and choose a
file to be opened by the OFA runtime environment.
The OFA runtime environment extracts the extension
(type) of a chosen file to discover a suitable host for
opening the file. Matching hosts are discovered by the
OFA extensible discovery module, modeled after the
framework in SoNS [3]. Matching hosts are prioritized
based on the device’s computing and I/O capability e.g.
display size, keyboard, mouse, processor speed, current
load and available memory. These attributes and their
importance in determining a suitable match is
configurable by the user (as part of a special
configuration file ofa_config.conf) and may be
customized for each file extension.

Once invoked, the discovery module also starts
periodically probing the environment for changes in
available hosts and invokes the runtime system if there
is a change in the user environment. If a change in user
environment is detected by the system, it updates the
file-manager’s list of candidate hosts for each open file.
This list may also be viewed by the user at any time to
manually select an alternative host/application, causing
the system to migrate the session to the new host. A
user may also configure the system to automatically
migrate a session if a newly discovered host matches a
pre-specified criteria (explained later).

The OFA runtime environment employs rsync, a
diff-based efficient file-synchronization framework, for
replicating and synchronizing user files on remote
devices. Large multimedia files, however, are streamed
to the remote computer by starting a streaming server
on the mobile device in response to the file-open event
rather than incurring the cost of copying a large file
over the network.

Fault-tolerance in our system is achieved by
periodically monitoring the health of the remote host
used for opening a user-file. If a remote host fails to
respond to a health probe, the runtime environment
migrates the session to another device in the
environment of the user. If an appropriate device cannot
be found in the environment of the user, the runtime
environment fails-over to the mobile device. For file-
types that cannot be opened on the mobile device, and
hence do not have a local file-association, the OFA
runtime environment simply saves the current state of
the file and suspends the session for a later time. The
OFA runtime environment employs SSL to protect
against eavesdropping of user data over the network.

Below we briefly discuss the key architectural
considerations for the OFA runtime environment.

Operating System

Streaming
Support

Extensible Resource
Discovery Module

OFA File Manager
Activity-monitor and

Synchronization
Module

Fig. 1. OFA Runtime Environment

2.1 Layer of Abstraction

As part of Project Oxygen, we have experimented with
two different approaches for accessing resources in the
environment of a mobile device: Intentional Naming
System (INS) [5], Service-oriented Network Sockets
SoNS (and LANS) [3][4]. Both these approaches
integrate resource discovery and remote access with the
underlying communication primitives; INS’s late-
binding architecture combines dynamic resource access
with the network routing layer, while SoNS (and
LANS) provides opportunistic service access at the
network-socket layer.

However, our experience with SoNS and LANS
has shown us that a wide-range of simpler applications,
such as “open this document for editing on the closest
desktop, if one is available”, have three unique
requirements not suitably addressed by an “intelligent”
messaging layer. First, such scenarios typically involve
shrink-wrapped, legacy applications, such as MS Word,
that cannot be modified to use a new messaging API.
Second, beyond initial discovery and selection of a
suitable resource in the environment of the user, such
applications typically do not require an aggressive re-
binding of the application-sessions. Finally, such a
system must ensure consistency of data if the user edits
the contents of the file on a remote device. The
approach presented in this paper addresses this class of
applications.

By interposing a redirection layer at the file-
association level, the OFA runtime-environment
“works-around” an existing application; instead of
requiring an application like MS-Word to be re-written
using an “intelligent” messaging layer, the OFA
runtime layer simply moves the user data to an
appropriate remote device, uses an existing application
to open the file and provides a mechanism for
maintaining consistency between the mobile device
user data.

2.2 Automation vs. User-control

Perhaps the most controversial, and arguably the
most interesting, aspect of our research is “automation”;
the goal of our research is to reduce the tedium of
manual discovery, configuration and maintenance of
services in a pervasive computing environment.
Opportunistic file-associations, as well as our previous
two systems, SoNS [3] and LANS [4], are designed to
automate the process of spontaneous discovery and
utilization of devices that become available in the
environment of a peripatetic user.

However, such automation is inherently in tension
with user-control; though there is some clear advantage

in automating the task of discovering available hosts
and making “reasonable” choices for offloading user-
files, it is also important for users, on the other hand, to
have sufficient control over the system to avoid
“unpleasant surprises”.

We believe that the practicality of such a system
depends on striking a balance between automation and
user-control. The rule-of-thumb we followed in our
design was to err on the side of caution when
automating; by default the system simply aids in the
manual selection of remote hosts for opening files.
However, the system also exposes a number of control
parameters that may be configured to specify the degree
of automation by the system.

In its default behavior, the OFA runtime
environment periodically discovers available hosts (and
matching applications) and maintains a list of matching
hosts/applications for each file-type. A user can view
this list via the OFA file-manager and manually select
the host/application for opening a file. Selection of a
(new) host/application for an already open file causes
the file to be moved to the new host.

In some circumstances, this process may be
automated without adversely affecting the usability of
the system. For instance, if a user repeatedly offloads
PDF files on his PDA to his laptop for viewing, the
system may automatically perform this operation next
time a user wishes to open a PDF file on his mobile
device.

Our system implements such automation using
location-based “historical hints”. When a user first
wishes to open a file, the system simply prompts the
user with the option of opening the file either locally or
remotely and presents her with a list of matching
hosts/application. In turn, the system stores the user
selection as the default file-association for that location.
When the user next wishes to open the file at the same
location, the system automatically chooses the
previously selected host as the default option. If a
previously selected remote host is not available, the
system, based on the knowledge that the user preferred
to open the file remotely, automatically offloads the file
to the best available similar host/application, if one is
available. (If a user is dissatisfied with the default
choice, she can bring up the OFA selection-menu and
select another resource, causing the file to be moved to
that resource while updating the default file-association
for next invocation). By indexing default file-
associations by location (by for instance using an
indoor location system), our architecture permits
multiple defaults to be set, for instance one for the
user’s home and one for her office. This simple scheme
has obvious appeal. For example, the OFA runtime
environment automates the task of a user who keeps her
pictures on her iPAQ CF-card but prefers to view them

on her office desktop when she is in her office. At the
same time, such a scheme avoids a scenario where a
user’s music, stored on her portable MP3 player, is
automatically streamed to her laptop even when she
prefers to listen to the music on the headphones
connected to her MP3 player.

The practicality of our approach also depends
critically on contextualizing the process of automatic
host selection and utilization with respect to the user; a
user must be able to specify the context within which
the system establishes file-associations to offload files.
Such specification of user context is important to avoid
scenarios in which, for instance, the system offloads a
user file to the desktop in his office when he opens the
file in his car.

The OFA runtime environment permits a user to
specify a context for each file-type. Context may be
specified as a network address or location of the
looked-up host. For example, the current
implementation uses the SCOPE parameter of an SLP
(IETF Service Location Protocol) network query to set
the context of discovery. It is also possible to use a
location system such as the MIT Cricket Location
System to set the location of discovered resources, or
use the Bluetooth Service Discovery Protocol (SDP) to
constrain host discovery to a small radius around the
mobile device. We are currently exploring mechanisms
for more fine-grained and precise specification of
context, such as the use of pointing devices like the
WorldCursor [13].

An alternative to our approach could be to export
the file-system on the mobile device such that a user
can browse it from a remote host and manually select
the file to be opened at the remote host. While this
approach circumvents the problem of contextualization,
it requires manual intervention from a user. Such
manual intervention is justifiable only in some
circumstances, for instance when a user intends to edit
the selected file after opening it. In most other
scenarios, such as streaming applications like follow-
me-video, controlled automation is still preferable.

In addition to context, the OFA runtime exposes
three more parameters that can be configured to control
the behavior of the system. 1) Agility: An application
can specify the agility with which the system must react
to changes in the system by specifying the frequency of
discovery probes generated by the system. The agility is
specified as the interval between successive probes,
stated in seconds. 2) Hysteresis: An application can
keep the system from reacting to transient changes, not
of interest to the application, by specifying a value for
hysteresis. The hysteresis is stated in terms of the
number of probes for which an application requires the
properties of the resources in its context to be consistent
before the OFA runtime-environment switches over to

the better alternative. This protects the system against
thrashing under the fluctuating characteristics of a
mobile system. 3) Utility: An application can configure
the OFA runtime environment to avoid perfunctory
migration of a user-session by specifying the degree of
improvement that must result from a session-rebinding
before the system moves the user-file to another host.
The degree of improvement, k, is specified as a
percentage improvement over a previous choice, e.g.
10%.

A user may set these parameters by updating the
entries in a special OFA configuration file,
OFA_runtime.opts. The OFA runtime environment
reads this file at boot-up and configures its discovery
and session-rebinding parameters accordingly.

Finally, as a rule-of-thumb, the OFA runtime
environment avoids offloading and migration of files
when the file is being modifies by a user. To implement
this, our system employs a user activity monitor and
moves the file only when the user has been idle for N
seconds (N is configurable by the user).

We are currently using our initial implementation
to gather experience with real user studies.

2.3 Data Consistency

When we first set out to design the runtime
environment for our system, we planned to use an
activity-based (also called an operation-based) file
synchronization scheme [7] to synchronize a file
offloaded to a remote host with the local copy on the
mobile device.

However, an activity-based synchronization
scheme involves recording the editing operations on the
remote device and playing them back locally to
reproduce the modified file. In our case, the “pocket-
version” on a handheld mobile device often lacks
editing features available on the desktop-variants,
making it impractical to reproduce the edits on the
handheld device. Therefore, we simply use rsync, a
popular application-independent “diff-based”
synchronization protocol, which compares a running-
hash of non-overlapping chunks of file replicas to
exchange modified file chunks over the network. We
are, however, currently exploring hybrid approaches
that can exploit both activity-based and diff-based
synchronization to reduce the size of updates
transferred over the network.

By default, the OFA runtime environment
provides the standard close-to-open consistency, in
which the contents of the remote file are saved after the
file is closed for editing (and updates are ensured to
appear in a subsequent file-open). Additionally, to
protect against device failures, the OFA runtime
environment periodically synchronizes the contents of

the remote copy with the local file. The frequency of
synchronization, specified in seconds, may be set by the
user in the ofa_config.conf configuration file.

While periodic synchronization protects against
failure of remote hosts, the OFA runtime environment
also provides protection against failure of a mobile
device, as well as temporary network disconnection
between the mobile client and the remote host. To
ensure that the data on a mobile client is eventually
made consistent with the latest edited copy, despite a
sudden failure of the mobile client, the OFA runtime
environment maintains a persistent log of currently
open OFA sessions. This log is checked by the system
at boot-up and if an open session in the log is found, the
OFA runtime environment automatically contacts the
corresponding remote host and makes the local-copy
up-to-date by running rsync.

3 Implementation and Evaluation

Our current prototype implementation is written in
Python version 2.3. The OFA file-manager is written
using python bindings for the Gtk+ toolkit. The entire
client-side system was written in less than 400 lines of
code. User-activity is monitored by interfacing with the
OS Window Manager and is currently implemented
only for WinCE version 3.0 running on iPAQ
PocketPC. We ported rsync (with SSH) to WinCE for
file-synchronization. We implemented a simple
resource discovery protocol similar to INS [5]; resource
descriptions are stored as flat ASCII-encoded attribute-
value lists which are periodically discovered over UDP.
The suitability of available resources is evaluated by
assigning each resource a score based on its attribute-
values, akin to SoNS [3]. Our current implementation
for WinCE 3.0 does not actually modify a file-
association stored in the Windows registry, rather the
OFA file-manager maintains its own default file-
associations and consults the registry only for accessing
the local file-association. The interaction between an
OFA client and server is carried over a long-lived TCP
connection, while device failures are detected by setting

the TCP KEEP_ALIVE probing period equal to the
agility parameter specified by the user.

3.1 Evaluation

We evaluate the performance of our architecture
using two different experiments. First we measure the
efficiency of our implementation by measuring the
latency introduced by the OFA runtime environment in
the critical path of opening a file i.e. time between a
user selects a file and it is opened on a remote host.
Second, we measure the overhead of our system by
comparing its memory footprint and CPU load with
pocket versions of MS Word and Excel. Our
experiments were conducted on a Compaq iPAQ
(Pocket PC), H3800, equipped with a SA1110 ARM
processor (clocked at 206 MHz) and embedded with 64
MB RAM and 32 MB Flash ROM. We use a single-slot
expansion-sleeve to connect to an Orinoco Silver
802.11b PCMCIA card to the iPAQ. The server is a 2.4
Ghz Intel machine with 256 MB of RAM running
WinXP. For our experiments, we stopped all
background processes on WinXP. The client and the
server were both configured to transfer data at 11
Mb/sec using the same 802.11b access point. Each
experiment was run 5 times on WinCE 3.0 and averages
were plotted.

Figure 2 shows the time it takes to open a file
using the OFA runtime environment. In order to isolate
the performance of our system from network and server
latency of resource discovery, we use a cached in-
memory table of available resources that is consulted by
the discovery module when the user “clicks” on a file
using the OFA file-manager.

CPU Load Comparison for MS Excel

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Time

%
 C

P
U

Local

OFA

Memory Footprint Comparison

7

7.5

8

8.5

9

9.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Time

M
e
m

o
ry

 f
o

o
tp

ri
n

t
M

B

Word + Excel

Excel

OFA

Fig. 2. Latency of file-open with OFA

Fig.3.a,b Overhead of OFA runtime environment

Figure 2 shows a system-initialization time of
450msec (null-sized file-transfer) plus the network
latency of copying the file over the network, with an
average latency of around 500msec for a 500KB file.
This time includes launching MS Excel on the target
remote host.
 Besides the qualitative improvement afforded by
OFA’s opportunistic file-offloading mechanism, our
system also saves resources on the mobile device.
Figure 3a and 3b compare the overhead of running the
OFA runtime environment with the resource
consumption of MS Word and MS Excel on a Windows
CE device. For this comparison, we use a commercial
benchmarking tool, Pocket PC Test Suite 2.0 (from Sbp
software), to generate simulated screen taps and
keyboard events on the mobile device and replicate the
same workload on a remote device. The graphs
compare the resource consumption of editing a file
locally as opposed to making edits remotely with the
OFA runtime environment running in the background.
The periodic peaks in the OFA resource consumption
represent discovery probes, while the memory footprint
and CPU load of OFA at the end of the test represents
the cost of synchronizing the remote copy with the local
file. On average, the OFA runtime environment
consumes less than 50% of the CPU time compared to
an application like MS Word and has a peak memory
footprint of less than 1.2 MB.

4 Related Work

Our work shares elements with a wealth of mobile
computing architectures. We share our motivation with
network messaging architectures such as INS[5],
SoNS[3], LANS[4] and MSOCKS [8], remote
execution engines such as 4.2 BSD rexec and Spectra
[9] and mobile-agent architectures such as TACOMA
[10] and Hive[11]. Conceptually, an Opportunistic-File-
Association is akin to a distributed object reference, for
instance, as proposed in Obliq [12].

Opportunistic File Associations enable a
computing model that is exactly opposite to the one
afforded by network file systems such as NFS and Coda
[2]. Similarly, Opportunistic-File-Associations
complement the popular “synching” applications, which
synchronize the data stored on a mobile device with the
primary copy on the user’s desktop.

5 Summary and Future Work

In this paper, we propose dynamically-assigned,
Opportunistic File-Associations (OFAs) as a
mechanism for decoupling the storage and handling of
user files in a mobile device. A file with an

Opportunistic-file-association is not limited to the
resource-constrained local application environment on a
mobile device. Rather, the runtime environment
supporting Opportunistic file associations causes a user
file to be opened at the most appropriate device in the
environment of the user.

Security is an important area that our current
system does not address. Our approach warrants
attention to several security concerns. For one, only
authenticated devices must be allowed to discover and
offload a file to a remote host. Conversely, a client must
be able to offload a file only to a trusted server. Threats
of malicious code and denial of service attacks also
raise serious concerns for offloading files. On shared
servers, privacy of previously offloaded files is also an
important issue. Eavesdropping of user data when
offloading files, as well possible connection-hijacking
by malicious servers must be prevented by our system.
We are currently working on a comprehensive security
architecture for our system.

References

[1] Project Oxygen, MIT CSAIL.
http://www.oxygen.csail.mit.edu
[2] J. J. Kistler et al. Disconnected operation in the coda file
system, 13th ACM Symposium on Operating Systems Principles,
1991.
[3] U. Saif, J. M. Paluska, Service-oriented Network Sockets,
USENIX Int. Conference on Mobile Systems, Applications and
Services, MobiSys 2003.
[4] U. Saif et al, Practical Experience with Adaptive Service
Access, ACM Mobile Computing and Communication Review
(MC2R), Vol 9 Issue 1, 2005
[5] William Adjie-Winoto, et al. The Design and Implementation
of an Intentional Naming System. Symposium on Operating
Systems Principles, December 1999.
[6] S. Czerwinski et al, An Architecture for a Secure Service
Discovery Service, Proceedings of ACM/IEEE International
Conference on Mobile Computing and Networking
(MobiCom'99)
[7] Tae Young Chang et al, Mimic: raw activity shipping for file
synchronization in mobile file systems, 2nd international
conference on Mobile systems, applications, and services, 2004.
[8] D. Maltz and P. Bhagwat. MSOCKS: An architecture for
transport layer mobility. IEEE INFOCOM '98
[9] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned
remote execution for pervasive computing. In HotOS-VIII
[10] D. Johansen et al , Operating System Support for Mobile
Agents, Fifth IEEE Workshop Hot Topics in Operating Systems,
1995
[11] N. Minar et al. Hive: Distributed agents for networking
things, ASA/MA'99
[12] L. Cardelli. A Language with Distributed Scope. Computing
Systems, 8(1):27--59, 1995.
[13] Andrew Wilson, Hubert Pham: Pointing in Intelligent
Environments with the WorldCursor. INTERACT 2003

