
Practical Experience with Adaptive Service Access

Umar Saif
umar@mit.edu

Justin Mazzola Paluska
jmp@mit.edu

Vijay Praful Chauhan
chauhan@stanford.edu

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139 U.S.A.

The dynamically changing nature of the emerging networked environments war-
rants a computing model in which resources are dynamically discovered and op-
portunistically utilized to maintain continuity of service. This paper describes the
design and implementation of Lightweight Adaptive Network Sockets (LANS) for
accessing services in such a dynamically changing networkedenvironment. A LANS
socket takes a high-level description of a service and opportunistically connects to
the best provider of the service in the changing environmentof the application.
LANS builds on the architectural philosophy of Service-oriented Network Sockets
(SoNS)[13], in that it integrates a service-oriented abstraction with the operating
system socket interface and provides adaptive service access at the end-host session
layer. However, our experience with SoNS led to three key improvements for the
LANS architecture. 1) The LANS session layer reduces the computation and com-
munication overhead resulting from the SoNS end-to-end architecture. 2) LANS is
designed to offer richer semantics for resource selection and allocation to enable
better utiltization of resources in shared pervasive environments. 3) Applications in
LANS can control the opportunistic behavior of the system to avoid perfunctory re-
connections. Our experiments show that LANS running on an iPAQ consumes 40%
less power, requires less than 1% of the network traffic, and is far less processor
hungry than the original version of SoNS — without compromising performance
and offering richer semantics for adaptive service access.

I. Introduction

Recent years have seen a growing interest in perva-
sive computing environments [4, 5]. Peppered with
wireless, mobile and embedded devices, such envi-
ronments are characterized by a degree of dynamism
not common in traditional distributed systems. Ap-
plications in such a dynamic environment must cope
with mobility of devices, rapid fluctuations in wireless
interconnects and frequent, typically abrupt, changes
in available resources. A fundamental problem high-
lighted by such emerging environments is how to sat-
isfy and sustain an application’s service requirements
in the face of continuous changes in available re-
sources. In such an environment, resources available
to satisfy a service request depend heavily on the de-
tails of the runtime environment, and may be impossi-
ble to anticipate prior to the service request. Further-
more, the extent of an application-level function may

go beyond the availability of any specific resource,
while the suitability of a resource to satisfy the appli-
cation service requirements could change during the
lifetime of the application. An application in such a
system, therefore, cannot be programmed to depend
on a predetermined set of resources to access a ser-
vice. Rather, resources must be dynamically discov-
ered and opportunistically utilized to sustain the ap-
plication’s service requirements in its changing envi-
ronment.

Typically, an application in such a diverse and dy-
namic environment can only provide an approximate
description of the service it expects from its environ-
ment, while the underlying system must provide ac-
cess to the most appropriate service provider. Such a
system must be able to continuously adapt to changes
in user locations and needs, respond both to com-
ponent failures and newly available resources, and
maintain continuity of service as the set of available

Mobile Computing and Communications Review, January 2005 1

resources changes. The task of accessing the best
provider of a service often entails a certain degree
of planning involving continuous (re-)evaluation of
available alternatives, as well as heuristic compro-
mises to best address the application’s requirement us-
ing imperfect resources in its changing environment.

In the past, the functionality required for adaptive
service access had to be implemented as part of the
application. Hence every application must be bur-
dened with the additional chore of continuously dis-
covering the available resources, evaluating and com-
paring their suitability, and opportunistically access-
ing the resource that best matches its requirements.
With the increasingly dynamic nature of emerging
networked environments, it is clearly desirable to of-
fer such adaptive service access as part of the un-
derlying communication primitives for accessing net-
worked services.

The rest of this paper is organized as follows. In
section II we review two adaptive service access sys-
tems, Intentional Naming System (INS)[7] and SoNS.
Next, in Section III, we outline the lessons we learned
from using these systems as part of Project Oxygen
[12]. Sections IV and IV.B describe an extended ver-
sion of SoNS that addresses the shortcomings of pre-
vious systems. Section V evaluates our new architec-
ture. In section VI we summarize related work, and
finally in section VII we conclude the paper.

II. Approaches to Adaptive Service
Access

A system for providing adaptive service must encom-
pass the following three principal mechanisms:

Service-oriented Communication An application
must be able express its requirements in terms of
the service it expects rather than a specific server
it must access to use the service.

Resource Discovery and SelectionGiven a service
description, the system must be able to dynam-
ically discover the available resources, evaluate
their suitability against application requirements,
and connect the application to the resource that
best satisfies the service requirements.

Opportunistic Access To maintain a continuity of
service in a dynamically changing networked
environments, the system must be able to op-
portunistically access the best available service
provider. For this, the system must continuously
monitor the environment for better alternatives,
and reconnect the application if a better alterna-
tive becomes available.

These mechanisms can be embedded at different
layers of system design. In this section we report
on our experience with two different architectural
approaches to providing system-level adaptive ser-
vice access: Intentional Naming System (INS)[7] and
Service-oriented Network Sockets (SoNS)[13].

The Intentional Naming System integrates all three
mechanisms required for adaptive service access with
datagram routing at the network layer. It does this
using an overlay network of Intentional Name Re-
solvers (INRs). A service joins the network by com-
municating its description with an INR. In turn, the
INR informs the rest of the overlay network of the
new service. Applications communicate with network
services usingintentional datagrams. Each inten-
tional datagramis marked with a service description,
while the the overlay of INRs route the datagrams to
the service-provider most closely matching the data-
gram’s service description. Adaptive service access
follows naturally: as service-providers come-up or
disappear, the INS overlay simply forwards the data-
grams to the best matching service-provider at any
given time.

The key strength of a network-layer approach like
INS is its simplicity: an applications simply tags its
packets with the description of the desired service,
while the routing layer hides the complexity of deliv-
ering it to the best available service-provider.

However, this simplicity is also a major weakness
of the INS approach. Since the logic for selecting the
best match for the application is hidden in the rout-
ing infrastructure, an application has little control over
what gets accessed. Worse, the INS approach of inte-
grating resource discovery with datagram routing in-
herently lacks session-semantics; since each datagram
is routed independently, two successive datagrams can
be routed—transparently to the application—to two
different service-providers.. This lack of session-
semantics precludes a large body of mobile appli-
cations, including typicalcontext-awareapplications
like “follow-me-video”, and, can lead to thrashing
between service-providers in the presence of charac-
teristic fluctuations in a wireless network. From a
performance point of view, the approach of resolv-
ing service-descriptions in the critical path of mes-
sage delivery is orders of magnitude slower than tradi-
tional IP-based routing (10

3 datagrams/second in INS
vs 10

8 packets/second for typical IP routing). More-
over, tagging each packet with a textual representation
of the service-description wastes precious bandwidth
in a wireless network. Finally, even with a robust fault
detection and recovery mechanism, it is often cum-

2 Mobile Computing and Communications Review, January 2005

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Remote Video
SoNS

Local Video
SoNS

Local Video

A
ve

ra
ge

 P
ow

er
 [W

]

Power Consumption

Network Card
CPU

Figure 1: Power Consumption in Watts for
“follow-me-video” application. The overhead of
SoNS results in approximately 50% more power
to be consumed when the video is playing locally,
while resulting in a net loss of power even when
the video is offloaded to an external display (and
the iPAQ screen is shutoff)

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

C
um

ul
at

iv
e

F
ra

m
es

 D
ro

pp
ed

Time [s]

Frame Loss Difference from Unloaded System

Unloaded
SONS (5 devices)

SONS (15 devices)

Figure 2: The number of frames dropped by a
media player (playing an MPEG of the Matrix 2
trailer) on an iPAQ using SoNS. The crosstalk of
SoNS with the media player becomes more no-
ticeable as the number of matching display de-
vices is increased from 5 to 15.

bersome to setup and maintain an overlay of resolvers
required for INS’ correct operation.

In our previous work, we propose Service-oriented
Network Sockets (SoNS) [13] for accessing services
in a dynamically changing networked environment.
Instead of employing a content-based routing over-
lay like INS, SoNS is an end-host system, interposed
at the session-binding layer. SoNS extends the tra-
ditional operating system socket interface to offer
session-oriented semantics. An AFSONS socket is
connect()ed by an application by providing an abstract
description of the desiredservice(rather than the net-
work address of a specificserver). Subsequently, the
SoNS session layer opportunistically accesses the best
available service-provider by continuously discover-
ing the available resources, evaluating their suitabil-
ity against application’s service requirements and (re-
)reconnecting the application session to the resource
that best satisfies the service description. We refer
to this periodic discover-evaluate-rebind cycle as the
adaptive session loop.

Unlike content-based routing approaches, SoNS
defines an end-to-end architecture [14], and conse-
quently offers applications more control over the ses-
sion rebinding semantics. SoNS permits an applica-
tion to configure thecontextwithin which the applica-
tion is interested in finding the service-providers, the
agility with which the system should probe the envi-
ronment for better alternatives, and a measure ofhys-
teresisthat specifies for how long a better alternative
must be available before the system considers rebind-
ing. Finally, an application can register acallback

that is invoked by the SoNS session-layer to notify the
application about a potential rebinding. The applica-
tion can use the callback to prepare for rebinding its
network session or to even reject the rebinding all to-
gether. It is noteworthy, however, that all of these pa-
rameters are optional, specified using thesetsockopt
interface. Therefore, simpler applications may con-
figure only a subset of these parameters, or even leave
them unspecified, causing the system to use default
values.

Since SoNS addresses the dynamism of a mobile
environment at the end-host session-binding layer, it
does not require a special routing framework, does
not introduce the cost of resolving service descrip-
tions in the critical path of the application and does
not require every network message to carry the de-
scription of the required service. Importantly, unlike a
routing-based system like INS in which fault-recovery
happens in the critical path of service access—even if
one of the routing nodes malfunctions, the application
cannot access the service-provider until the INS over-
lay re-computes its routing spanning tree—the end-
to-end architecture of SoNS does not require any ad-
ditional mechanism to setup and maintain other hosts
in the system for accessing a service-provider.

III. Lessons Learned

Though the session-oriented end-to-end architecture
of SoNS has several advantages over content-based
routing approaches, our experience with adaptive ap-
plications led us to reconsider a number of design

Mobile Computing and Communications Review, January 2005 3

choices in SoNS. In this section, we present the key
insights that emerged from our experience of using
SoNS as part of Project Oxygen[12].

End-to-end session-semantics may cause a large
overhead in a mobile environment. Our experi-
ence revealed that SoNS’s combination of an end-to-
end design and an application-customizable session-
layer architecture leads to an unacceptably high over-
head both at the client and the service-providers em-
bedded in a pervasive computing environment.

To illustrate by example, consider the overhead of
SoNS for a popular context-aware application in our
environment: “follow-me-video”. This application,
intended for devices like portable DVD players, redi-
rects the video-stream playing at a mobile device to a
large nearby display for improving the viewing quality
of the video and to save resources on a mobile device.
However, while SoNS makes it extremely simple to
write such an application, we found that running an
adaptive session loop on a low-end mobile host not
only results in significantly more consumption of bat-
tery power (Figure 1), but also may start interfering
with the application itself (Figure 2).

Furthermore, while SoNS’ adaptive session loop
can be customized to suit the application-level session
semantics, treating every application session indepen-
dently at each client often results in redundant discov-
ery messages. For instance, five applications wishing
to access thecolored printer on the 6th floor, will each
generate five different probes everyAGILITYseconds
for the same printer, resulting in increased overhead
for service-providers.

“Best-match” is not always the best match in a
shared environment In SoNS, an application ex-
presses its service requirements as a set of constraints
on the properties required in an ideal resource, while
the system attempts to satisfy the request with the re-
source that best satisfies those constraints. For in-
stance, an application wishing to access a display with
a size larger than 15 inches (size≥ 15) is connected to
the largest available display which is at least 15 inches
in size. Similarly, an application wishing to access a
printer with a print-queue of less than 4 is given access
to the least loaded printer which has at most 4 items
in its print-queue. Once an application has access to
a resource, it cannot be reclaimed to satisfy another
application until the first application disconnects from
it (assuming the resource cannot be multiplexed be-
tween applications).

While these simple semantics were adequate for
our early prototype applications, the use of SoNS in a
growing body of applications in shared spaces quickly
forced us to reconsider the resource selection and allo-
cation policy. To illustrate the problem with the SoNS
approach, as well as with INS and other related sys-
tems, consider a simple scenario in which two appli-
cations want to access a display in an environment
equipped two displays of size 17 and 28 inch respec-
tively. The first application invokes SoNS with a ser-
vice request of “size≤ 15” and, assuming that both
the displays are available, the application is provided
access to the 28 inch display. Shortly after, the second
application requests for a display of size larger than
25 inches. Given the resource selection and alloca-
tion policy of SoNS, the second request will fail even
though the available resources could satisfy both the
applications. Clearly, as more devices use opportunis-
tic service access, such a greedy approach to service
allocation leads to an increasingly poor utilization of
shared resources.

Opportunistic access may cause perfunctory re-
connections SoNS is designed to automate the task
of opportunistically accessing resources that best
match application requirements. A downside of this
automation is that such a system may cause new a
service-provider to be chosen even when the marginal
benefit of the new selection is imperceptible to the ap-
plication; SoNS simply triggers a rebinding when the
score assigned to a new resource is better than that
of the current resource for a consecutive HYSTERE-
SIS number of probes. As a result, we frequently
found ourselves putting extra code in the application-
callback to calculate the improvement afforded by ev-
ery new selection. This not only introduces addi-
tional complexity in the application, but also leads to
many suggested resources being rejected, resulting in
wasted computation.

IV. Extending SoNS

In this paper we present the design and implemen-
tation of an extended version of SoNS. This ver-
sion, called Lightweight Adaptive Network Sockets
(LANS), improves SoNS in four key dimensions:

1. LANS reduces the overhead at a mobile client by
using a replicated server framework while still
preserving the session-oriented semantics and ro-
bustness of SoNS.

2. LANS extends the simple “best-match” seman-
tics of resource selection and allocation to im-

4 Mobile Computing and Communications Review, January 2005

prove the utilization of shared resources in a
pervasive environment. In addition to a simple
“best” match, LANS offers two flavors of “less-
than-best” matching: “barely-sufficient” match-
ing for a conservative allocation of shared re-
sources between competing applications, and
“best-but-loaned” mode in which the system can
dynamically reallocate the available resources
to satisfy cooperating applications in a shared
space.

3. LANS provides an application greater control
over the opportunistic behavior of the system;
unlike SoNS, LANS can be configured by an
application to rebind only when a new service-
provider exceeds the application’s perceived cost
of rebinding.

4. LANS collates similar application requests to
amortize the overhead of periodic discovery,
while still permitting individual applications to
tailor the semantics of session rebinding.

IV.A. LANS Server Framework

To reduce the overhead of SoNS, without comprimis-
ing application-level end-to-end semantics, we choose
a very practical and simple approach in LANS: instead
of having every client independently execute a peri-
odic discover-evaluate-rebind cycle, LANS offloads
the adaptive session loop to sharedLANS serversin
the environment of the client. However, even with
this simple, and seemingly conventional approach, the
LANS system architecture must address several inter-
esting challenges to preserve the robust, end-to-end
semantics of SoNS.

RobustnessA key strength of SoNS is that each
client is embedded with complete functionality
required to provide adaptive service access. To
maintain the same level of robustness, LANS
must be robust against the failure of LANS
servers running the application request.

Scalability In order to support a large number of po-
tentially diverse application requests, each con-
figured with its own session-semantics, a shared
server framework must be scalable and permit lo-
calized discovery and monitoring of resources.

Relativity Though a client can offload the discovery
and evaluation of service-specific attributes to a
server, some attributes are only meaningful when
computed end-to-end, such as network-sensitive
or location-based attributes.

Like SoNS, LANS is interposed at the end-host ses-
sion layer. However, in order to minimize the load on

a mobile client, the LANS session layer can offload
the overhead of running the adaptive session loop to
a LANS server. The LANS server, in turn, calls the
client with a rebinding suggestion only when it dis-
covers a resource matching the application require-
ments.

At the same time, even with this server-based op-
timization, LANS preserves the robustness of SoNS.
Each LANS client is supported by a replicated set of
servers, while the request-handover protocol between
the client and the server framework is designed to be
fail-safe. Fail-safety in LANS is provided by a two-
tier failover protocol: failure of a LANS server causes
the application request to automatically failover to
another suitable server, while, more importantly, in
an environment in which no suitable server can be
used to handover the application request, the system
fails-over to the client itself, operating similarly to
SoNS to maintain a continuity of service. In other
words, LANS is optimized to save resources on a mo-
bile client by taking advantage of a replicated server
framework, but the correct operation of the system is
not dependent on the availability of external servers.

In order to define a scalable, localized discovery
model, each LANS Server is associated with a dis-
covery context, which is matched against the con-
text specified in the application request when select-
ing an appropriate server for offloading the request. A
server’s context may be specified either manually or
auto-configured by a geographic location system.

Finally, the LANS evaluation framework makes
a distinction between resource-specific attributes,
e.g. [service-type= Display, Size≥15 inches], and
network-sensitive attributes, e.g. [latency< 200 ms].
Resource-specific attributes are passed to a LANS
server, while attributes that are only meaningful when
computed end-to-end are computed at the client.

Enhanced Application Control LANS defines two
additional socket options to permit greater application
control over the selection and rebinding to resources.
The first option, SONICE, configures the system for
less-than-best matching in shared spaces, while the
second option, SOIBT (if-better-than), permits the
application to specify the degree of improvement it
perceives worthwhile for migrating a session to a new
resource.

Less-than-best Resource Selection:LANS sup-
ports two less-than-best resource selection
mechanisms depending on whether the system
is operating in failover or server-assist mode. In
server-assist mode, the server acts as the shared

Mobile Computing and Communications Review, January 2005 5

arbitrator between competing applications.
The SONICE option puts LANS in “best-but-
loaned” mode, which is satisfied by connecting
the application to the best available resource but
with the possibility of a subsequent downgrade
to accommodate a new request. In this mode,
therefore, an SONICE application can poten-
tially end up using the best available resource if
no other application makes a conflicting request.
In failover mode, however, since there is no
shared arbitrator for resource-allocation, the
system to must operate in a more conservative
fashion. A SONICE request in failover mode,
called “barely-sufficient-matching”, is satisfied
by simply connecting the application to the
resource which barely satisfies its requirements,
leaving better alternatives to be potentially used
by more stringent applications later on. It is
worth noting that since the SONICE option
is satisfied by the least-acceptable resource, it
in fact does not require subsequent probing for
better alternatives. Neither is this conservative
mode satisfied by opportunistically accessing
poorer matches. Rather, the application is simply
connected to the least-acceptable resource at the
time of the request, while a rebinding is triggered
only if the originally selected resource becomes
unavailable. The SONICE option, therefore,
also makes the other socket options irrelevant
in the failover mode i.e. SOCONTEXT,
SO HYSTERESIS, SOAGILITY.

Utility-based Resource Rebinding: In order to
avoid perfunctory reconnections, an application
using LANS uses the SOIBT option to specify
the factor of improvement that must result from
a connection-rebinding before the system in-
vokes the application-callback with a rebinding
suggestion. The factor of improvement, k, is
specified as a floating-point number, e.g. 2.5,
while the rebinding is suggested if and only if
the following test evaluates to true:

scorenew ≥

i+h∑

n=i

scoren

h
∗ k

where h is the HYSTERESIS value for the
socket.

When configured with the SOIBT option, the
LANS parser/worker module suggests a rebind-
ing only when a new resource achieves the high-
est score for the HYSTERESIS number of probe

Operating System

Resource
Discovery
Framework

Discovery
Protocols

Connection Migration Module

Client-Parser/
Worker

Network-attribute
Evaluator

Network
Probe

Socket Structure

Client-Evaluator

Scoring Policy

Query Filter

Server-Proxy

Server
Locator

Server
Dispatch/Monit

or

Socket Interface

Figure 3: LANS client architecture.

cycles and its score is an improvement over the
current selection by at least the factor specified
in the SOIBT option.

IV.B. LANS System Architecture

Figure 3 shows the architecture of a LANS client.
Like SoNS, LANS exports the OS socket interface for
configuring and establishing a service-oriented net-
work session. However, unlike SoNS, a LANS client
has the option of handing-over the service specifica-
tion to a nearby LANS server instead of handling it
locally.

The LANS client architecture comprises of two
blocks of functionality. The block demarcated by
a white border in the figure (comprising of Client-
Parser/Worker, Client-Evaluator and a Resource Dis-
covery Framework) encapsulates the functionality that
is only invoked when a LANS server is not avail-
able, causing the system to failover to the client itself
and operate similarly to SoNS. This block is hence-
forth referred to as thefailover block. All other com-
ponents in the system (including the Server Loca-
tor, Server Proxy, Network-attribute Evaluator and the
Connection-migration module) are used in the rou-
tine operation of the system. When a LANS server
is available, the Server-proxy module is responsible
for offloading the process of discovering, monitoring
and comparing the available service-providers to the
server.

Below we detail the LANS client-server interac-
tion. Since the LANS failover block is same as SoNS,
albeit with support for “barely-sufficient” and “utility-
based” resource selection mentioned above, it is not
described further in the paper.

IV.B.1. Server-assisted Mode

When the Server-locator module finds a LANS server,
the socket-wrapper passes the request to the Server-
proxy with the address of the LANS server returned
by the server-locator module. Once invoked, the

6 Mobile Computing and Communications Review, January 2005

server-proxy establishes a long-lived TCP connec-
tion with the specified LANS server and sends a
SERVERREQUEST message to the client, contain-
ing the resource-specific constraints from the service
description, application-supplied session-rebinding
parameters, and the maximum number of initial
matches,N , to be returned by the server. The rea-
son for requesting a list of topN matches, dubbed
the n-best-list, instead of simply the most suitable re-
source, is to provide sufficient choice to the client-
side network-attribute evaluator for making a selec-
tion based on the application’s network constraints;N

is simply set to 1 when the application request does
not include any network-sensitive attributes.

In the background, the LANS server continuously
monitors the client environment, and notifies the
Server-proxy if a better alternative becomes avail-
able. On receiving such a notification by the Server,
the Server-proxy triggers the cycle to evaluate the
network-attributes of the suggested resource. Finally,
if the newly suggested resource satisfies the network-
sensitive constraints, the Server-proxy requests the
connection-migration module to reconnect the under-
lying socket to the suggested resource (after seek-
ing permission from the application by invoking the
application-callback), and informs the Server that its
suggestion was accepted. The Server-proxy could
also deny a rebinding suggestion if the network-
attributes of the suggested resource do not satisfy the
application-constraints or the application prefers not
to have its session rebound to another resource.

LANS network-attribute evaluator is based on
an extensible design, permitting “network-probes”
to be added at runtime e.g. addprobe(“latency”,
/usr/sbin/ping). Subsequent application requests are
then matched against the list of registered network-
probes, while network-attributes are removed from the
request and computed at the client – without requiring
any special notation on the application’s part to iden-
tify the network-attributes in its request.

The LANS server-locator module keeps track of
the available servers, triggering a switch over to the
server-assisted or the fail-over mode depending on the
availability of a LANS server. In order to minimize
the overhead of LANS server discovery, and to speed-
up server failover (described later) the server-locator
module maintains a cache of discovered servers, in-
dexed by their context.

IV.B.2. Fail-safe Request-handover

The LANS server proxy is responsible for offload-
ing an application request to a LANS server. To ac-

complish this, the LANS server-proxy forwards the
resource-specific constraints to the LANS server re-
turned by the server-locator, monitors the health of
the server, and provides automatic failover between
servers if the currently employed server becomes un-
available.

The key architectural consideration in the LANS
failover architecture is the allocation of responsibil-
ity between the client and the servers. In a system
where the onus of failover is placed on the servers, like
the IETF Reliable Server Pooling architecture [15], a
server failure causes another server to automatically
and transparently take over the responsibilities of the
failed server. However, in this scheme, every server
must typically be instrumented with the protocols
and mechanism for detecting a failed server, electing
an appropriate replacement for the failed server, and
transparently migrating the client session to the new
server.

However, keeping with the end-to-end architectural
semantics of our approach, server-failover in LANS is
provided by the client. This not only provisions the se-
mantics for migrating application-state where the ap-
plication itself resides – at the client – it avoids the
complexity associated with server coordination and
election by using a simple mechanism in the client’s
server-proxy module. The client-side server-proxy
provides failover by simply monitoring the health of
the currently employed server and migrating the ap-
plication service-request to another suitable server if
the current server fails to respond to a health probe.
Since the discovery of an alternative server typically
comes for free from the server-locator cache, the over-
head of providing failover in this case is simply the
cost of periodic health probes from the client to the
server. Importantly, since this end-to-end architecture
exposes a server fault to the client, rather than hiding
it in the intermediary server pool, it naturally enables
client-failover to handle the case when an alternative
server is not available to take-over the application ser-
vice request.

The server-proxy leverages TCP keepalive
(SO KEEPALIVE timer) with the LANS server to
enable periodic health probing. The overhead of
periodic probing is fine-tuned to suit the application
requirements by carefully choosing the probing
interval of the keepalive. Specifically, the probing
interval is set to a value slightly less than theAGILITY
parameter specified by the application; the agility
parameter specifies the time-window within which
the application wishes the system to react to changes
in the specified context, and, therefore, implicitly

Mobile Computing and Communications Review, January 2005 7

Server-locator
Server-proxy

TCP keep_alive

3. Server-failover
 [service, parameters,
resource]

1. Server-failover
[failed-server]

4. Rebind-suggest
 [Resource]

2. New-server

LANS Client

Failover
block

Figure 4: LANS Failover Protocol.

provides a measure of how quickly the system must
be able to fail-over to an alternative server to hide the
fault from the application.

Figure 4 sketches the LANS failover protocol.
Failover is triggered when a LANS server fails to
respond to a health-probe, causing the server-proxy
to inform the server-locator about the failure. The
server-locator purges the failed server from its records
and returns another server from the same context, if
one is available. If an alternative server is available,
the server-proxy establishes a TCP keepalive con-
nection with it and sends it a SERVER-FAILOVER
request, including in the request the description of
the required service, the currently employed server,
and the application-specified rebinding parameters.
When invoked with a SERVER-FAILOVER request,
the server starts a thread to discover, evaluate and
compare the available alternatives, and may, at some
later stage, suggest a rebinding if a better alterna-
tive becomes available. The SERVER-FAILOVER re-
quest however, unlike a routine SERVER-REQUEST,
simply resumes the ongoing application-request at
the new server by comparing the available alterna-
tives with the currently used resource instead of start-
ing anew by returning an n-best-list of matching re-
sources.

If a server is not available for migrating the appli-
cation request, the server-proxy triggers the failover-
block in the client to handle the request locally. In this
case, in addition to including the service-description,
rebinding-parameters, and the currently used resource
in the failover-request, the server-proxy also sends
the socketdescriptor of the underlying socket to per-
mit rebinding by the failover-block. In this case,
the parser/worker module in the failover-block must
parse the query in a constraint tree, and repeatedly
invoke the resource-discovery and client-side eval-

Operating System

Resource
Discovery
Framework

Query-parser/
Driver

Peer-update Module

Resource Assignment
Repository Evaluator

Figure 5: LANS Server Architecture

uation modules to discover, evaluate and compare
the suitability of available resources. If a better re-
source becomes available, the failover-block invokes
the application-callback and triggers a rebinding of
the application-session.

Importantly, recovery in LANS does not happen
in the critical path of service-access. Applications
continue to access the current service-provider while
the failover happens in the background. Furthermore,
given that application-suppliedagility parameter is
used as an upper-bound on how quickly the system
must failover, the failover in LANS is designed to be
transparent to the application.

IV.C. LANS Server Architecture

Figure 5 shows the LANS Server architecture. LANS
server architecture extends SoNS’s modular architec-
ture by adding functionality for maintaining and dis-
seminating the resource-to-application bindings for
the “best-but-loaned” mode. Additionally, a LANS
server can collate application-requests based on simi-
larity in order to reduce the overhead of periodic dis-
covery on available service-providers.

A LANS Sever is embedded with five modules:

1. The Query-parser/Diver module responsible for
receiving an application request, parsing the ser-
vice description in a constraint tree, and driving
the whole system by periodically executing the
adaptive discovery loop;

2. The resource discovery module defined by an ex-
tensible discovery framework, permitting vari-
ous discovery protocols like SLP[10], INS, and
SSDS[6] to be dynamically plugged in for dis-
covering networked resources;

3. The evaluator module that assigns scores to the
available resources based on their attribute val-
ues;

4. The resource-assignment-repository (RAP) that
keeps track of the resources assignments to dif-
ferent applications, and finally;

8 Mobile Computing and Communications Review, January 2005

5. The peer-update module responsible for dissemi-
nating information stored in RAP to other servers
in the same context.

IV.C.1. Resource-reclaim

The LANS server architecture provides adaptive ac-
cess much like the client failover block, except from
one important addition to support the SONICE op-
tion. When requested to satisfy an application request
with the SONICE option, a LANS server in fact sat-
isfies the application request by proactively connect-
ing it to the best possible resource—just as it would
without the SONICE option. However, an applica-
tion which sets the SONICE option could be subse-
quently requested to rebind to a less satisfactory re-
source to accommodate a new incoming request.

Though this optimistic approach resorts to a less-
than-best resource allocation only when there is a
conflict in application requests, it requires additional
mechanism to dynamically re-allocate resources to
satisfy a new request. To this end, the LANS server ar-
chitecture includes two additional components: 1) the
resource-assignment repository (RAP) to maintain a
list of the resource-to-application bindings for all the
application requests being handled in the SONICE
mode, and 2) the peer-update module to periodically
multicast the state stored in the RAP module to the
RAP modules embedded in other servers in the same
context. Given this information, when a server is in-
voked with a request, it also includes the “loaned”
resources in the RAP module in its search for the
top N matches for the application request. However,
such matches are treated as a special case in two im-
portant ways: 1) Since a connection to “loaned” re-
source incurs an additional cost of rebinding an ex-
isting application to an alternative resource, matches
from the RAP module are appended at the bottom of
the list returned to the client, and 2) matches from
the RAP module are returned with a special flag to
indicate that a request to establish a connection with
such a resource must go through the server, so that the
server can interpose the required arbitration to handle
the request. Furthermore, it is noteworthy that a re-
quest to establish connection with a “loaned” resource
requires the server to find an alternative match for
the victim application before it sends a RESOURCE-
RECLAIM request to the respective client’s server-
proxy. In a näıve implementation, this would entail
a new search for the victim application in the critical
path of the incoming application request—effectively
doubling the cost of handling an SONICE request.
LANS avoids this cost by a simple, and almost co-

incidental, optimization: since the LANS evaluation
scheme is based on continuously evaluating and com-
paring the resources that match an application re-
quest, we store this periodically updated list of can-
didates as part of the RAP module. Subsequently,
an incoming request that requires a resource-reclaim
causes this pre-computed list of candidate choices (al-
beit the top choice which is to be taken away from
the application) to be sent to the victim application in
a RESOURCE-RECLAIM message, triggering a re-
binding to accommodate the new application. Note
that since the SONICE request is handled much like
regular requests in the server-assist mode, in that bet-
ter alternatives are sought opportunistically, the vic-
tim application could be upgraded to its top choice if
it becomes available at a later stage.

IV.D. Collation of Application Requests

In order to reduce the overhead of periodic discov-
ery at service-providers, a LANS server can amortiz-
ing the cost of discovery for similar requests. This
optimization is based on the fact that an application-
specific discover-evaluate-and-rebind cycle for, say,
application A can in fact take advantage by a simi-
lar cycle for application B, as long as two conditions
hold: 1) B’s service request is a subset of the A’s ser-
vice request, and 2) A’s probing frequency,agility, is
less than that of B. Based on this observation, a LANS
server collates requests as follows:

1. If an incoming request is a subset of an exist-
ing request, and its agility parameter is greater
than the existing request, mark this request as a
“subset-request”and use the n-best-list from the
existing request to answer its periodic queries.

2. If an incoming request (A) is a subset of an ex-
isting request, but its agility parameter is more
stringent than that of an existing request (B),
start a “dummy-request”, C, with B’s service de-
scription and A’s agility. Mark both A and B as
“subset-request” of C.

V. Implementation and Evaluation

With its server-based optimizations, LANS is de-
signed to reduce the overhead of proactive discovery
and evaluation at a mobile client. Furthermore, since
a LANS client can offload the task of network discov-
ery and evaluation to a LANS server, the LANS archi-
tecture unhinges the performance of the system from
the limited computation power available on a mobile

Mobile Computing and Communications Review, January 2005 9

client. Below we present a series of experimental re-
sults to evaluate these claims.

Our evaluation is focused on two sets of experi-
ments.

1. Comparison of the overhead of LANS and SoNS
on a mobile client. We compare the overhead
in power consumption,CPU usage, and network
traffic.

2. Performance of the LANS server architecture for
establishing and reconnecting the client connec-
tions.

The extended version of SoNS is implemented in
Java so that it can be used across multiple platforms
e.g. WinCE, Familiar Linux. For the purpose of
comparison with the original version of SoNS (im-
plemented in C), we also implemented a version of
the LANS client in C for Familiar Linux. The C im-
plementation includes the code required for basic re-
source discovery and evaluation using a LANS server;
it does not include the code for fail-over. This was suf-
ficient to permit a (language-independent) comparison
of LANS and SoNS running on HP iPAQs.

V.A. Client Overhead

We compare the overhead of both systems using our
running example, “offload-and-follow-me” video ap-
plication. For this purpose, we setup our experiment
on two HP H3600/H3700/H3800-series iPAQs with
Familiar Linux 7.2-unstable, PCMCIA sleeves, and
Orinoco Silver 802.11b wireless networking cards.
We installed MPlayer 0.90, and both SoNS and
LANS clients on the iPAQ. MPlayer was used to play
a 320x176 MPEG version of the Matrix Reloaded
movie trailer1. We chose this MPEG because it con-
tains many action scenes, and as such, is a challenge
for the iPAQ to decode. The iPAQ was connected to
our lab network through a NATted Orinico RG-1100
Wireless Access Point. NATting the access point al-
lowed us to control the traffic that the iPAQ saw and
helped stabilize variation in our measurements. Our
tests are the result of continual measurement over the
duration of the 150s-long Matrix video clip.

We ran 5 tests:

1. Local Video with no adaptive service layer run-
ning.

2. Local Video with SoNS running in the back-
ground looking for better displays. The probe
period was set to 1s and hysteresis was set to 3.

1Available from http://www.pocketmovies.net/detail277.html

Figure 6: Our experimental setup for measuring the
power consumed by an iPAQ and the wireless network
card.

3. Local Video with LANS running in server-assist
mode. We set the keep-alive probe to 60s.

4. Remote Video with SoNS running with the same
parameters as above.

5. Remote Video with LANS running, with
keepalive set to 60s.

We set the number of available display devices to be
between 5 and 15.

Local Video tests involved playing the trailer with
MPlayer. Remote video tests stream off the video to
an external display, with LANS or SoNS running in
the background to look for better alternatives. For
the local test, the iPAQ’s LCD screen must be suf-
ficiently lit up with backlight, consuming significant
battery power. We shut off the backlight of the iPAQ’s
LCD when the video is streamed to a remote display.

V.A.1. Power Consumption

Since LCD backlight power consumption is constant
for both SoNS and LANS, the key difference between
the power consumption of the two is the usage of the
wireless network card. SoNS uses OpenSLP[11], a
peer-to-peer discovery model. It transmits a service
discovery message every AGILITY number of sec-
onds, and then collects the replies from matching re-
sources until the next probe. As a consequence, the
network card must be powered-up at all times, either
sending or receiving data. Informal tests showed that
enabling power-management on our network card for
SoNS increased the latency to send and receive traffic
by a factor of 10 to 30. On the other hand LANS in
server-assist mode only relies on getting an occasional
event from a LANS server, permitting the wireless
network card to aggressively utilize its power-save
mode. In our experiments we configure the power-
save mode to be 0.1 (wake-up every 100 ms).

10 Mobile Computing and Communications Review, January 2005

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Remote Video
LANS

Remote Video
SoNS

Local Video
LANS

Local Video
SoNS

Local Video

A
ve

ra
ge

 P
ow

er
 [W

]

Power Consumption

Network Card
CPU

Figure 7: Power Consumption in Watts for the
follow-me-video application.

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

F
ra

m
es

 D
ro

pp
ed

Time [s]

Cumulative Frames Lost

None
LANS
SONS

Figure 8: Cumulative number of dropped frames
for the follow-me-video application.

We measured power consumption using a specially
modified iPAQ and PC Card Sleeve. We removed the
batteries from both so that an Agilent Variable Power
Supply is the only power source. To measure total
power consumption, we measured the voltage across
and current though a precision resistor placed between
the power supply and the iPAQ. Similarly, to mea-
sure network card power consumption we inserted the
same precision resistor between the power supply and
the network card using a Sycard PC card extender.
Figure 6 shows the lab bench used for evaluation.

Figure 7 shows power consumption for each of the
5 tests. LANS does significantly better than the local-
only version of SoNS. This is due mostly to the net-
work card’s ability to enter low power mode. Criti-
cally, LANS also makes offloading the iPAQs video
to a bigger screen profitable from both a quality of
service stand-point and a power consumption stand-
point, while SoNS is only marginally better in the
power consumption compared to the Local Video with
no adaptive service.

V.A.2. CPU Usage

As mentioned in Section 2, SoNS consumed so much
processor time that it interfered with the MPlayer
on the iPAQ. Figure 8 shows the number of frames
dropped when iPAQ is not running an adaptive ser-
vice layer, when the iPAQ is running SoNS with local
discovery, and when it is running LANS with a server
framework. LANS offloads resource discovery to a
server pool and, as a consequence, has a negligible
effect on the performance of the video player. In the
graph, steep slopes indicate a large number of dropped
frames. Typically, this happens during actions scenes.
SoNS tends to drop more frames for a longer period
of time as compared to server-assisted LANS. Hence,

our server-based optimizations, improve the quality of
service (by streaming the video to a larger display)
without adversely affecting the performance of the
system when no external displays are available.

V.A.3. Network Traffic

Figure 9 shows a comparison of network traffic gen-
erated by both systems when the video is playing lo-
cally. SoNS deals with devices directly and generates
significantly more network traffic than when it is in
server mode. Worse, the overhead of network traffic
for SoNS is proportional to the richness of the envi-
ronment; if there are more devices, then SoNS must
deal with each device individually. When using a
server, however, LANS, generates a constant amount
of traffic since the servers deal with the individual de-
vices.

V.B. Performance of LANS Server
Framework

The second set of experiments evaluate the perfor-
mance of the LANS server architecture, measured
on a Pentium III with 256MB of RAM running
GNU/Linux 2.4. This is the same test bed as used in
the SoNS evaluation in [13]. Figure 10(a) shows the
time it takes to satisfy a connect() call from a LANS
client using a LANS server as a function of the num-
ber of constraints in the service request. We use an in-
memory resource discovery protocol to isolate LANS
from network latency. Figure 10(b) shows the cost
of rebinding an existing connection; the time elapsed
from when a call torun query()method returns—with
matching resources on the network—and when LANS
invokes the application-callback to notify the presence
of a better alternative (given the hysteresis seman-
tics). This latency again increases only linearly with

Mobile Computing and Communications Review, January 2005 11

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160

K
B

/s

Time [s]

Client Network Traffic

SONS (5 devices)
SONS (15 devices)

LANS

RX Bytes TX Bytes
SoNS (5 Devices) 150829 152094
SoNS (15 Devices) 406148 353182

LANS 2037 1395

Figure 9: Network traffic for the follow-me-video application.

the number of constraints (both for nested and non-
nested constraints). Even with its Java-based server-
side implementation, LANS performance is compara-
ble to SoNS and more importantly, is unhinged from
the limited processors in a mobile client.

VI. Related Work

LANS is designed to leverage dynamic resource dis-
covery protocols to provide opportunistic access. As
opposed to the white-pages style lookup offered by
systems like DNS that simply resolve a resource name
to its network address, dynamic resource discovery
systems do not require a priori knowledge of some
unique identifier of the resource, like its network ad-
dress, and hence can be used to dynamically discover
and utilize resources as they become available in a
pervasive system. In addition to the classical exam-
ples like Grapevine[1] and X.500 [2], a range of in-
dustrial standards like Microsoft’ UPnP resource dis-
covery protocol (SSDP) [8], IBM’s T-Spaces, and
IETF’s Service Location Protocol [10], and experi-
mental systems like MIT’s INS and Berkeley’s SSDS
[6] have emerged over the last few years. LANS, like
SoNS, is designed such that different discovery pro-
tocols can be added to its resource discovery module,
possibly via a simple wrapper function to covert the
SoNS attribute list to the specific format used by a dis-
covery protocol, e.g. XML (used by Berkeley’ SSDS).

SoNS provides an alternative to content-based rout-
ing systems like INS’ late binding architecture and the
Information Bus [3] which provide adaptive service
access by permitting an application to send messages
without specifying the network address of the recipi-
ent, and route the messages to the appropriate server
by looking at the content of each network message
and matching that with the properties of the avail-
able servers. Where such systems offer an alterna-

tive to our approach, they inherently lack application-
level session semantics, do not offer a clean interface
for configuring the application-specific policy for re-
source comparison and session-rebinding, introduce
the overhead of resolving service descriptions within
the critical path of every message delivery, and, by
defining their own routing framework, do not lever-
age the support for QoS offered by the underlying net-
work.

SoNS’s use of a server framework for shedding load
from a resource-constrained mobile device is com-
parable to traditional proxy-based mobile architec-
ture. However, the SoNS client-server architecture is
unique in its attention to robustness and scalability,
and in its special treatment of network-sensitive vs.
resource-specific attributes in a service request.

As opposed to the previous related systems that
match a service request with the “best” possible avail-
able resource, SoNS introduces the concept of utility-
based resource selection and rebinding for opportunis-
tic service access. This approach is influenced by
economy-based resource sharing systems, as well as
AI-based reasoning systems like [9]. However, while
systems like MetaGlue [9] propose to use general-
purpose constraint satisfaction engines over complex
utility functions, SoNS evaluator is designed to be
simple and responsive to changes in the system.

VII. Conclusion

In this paper we report on our experience with two
different systems for offering adaptive service ac-
cess, Service-oriented network sockets, and the Inten-
tional Naming System. We conclude that though the
session-oriented semantics offered by SoNS are im-
perative for most pervasive application, its purely end-
to-end architecture results in an unacceptable com-
putation and communication overhead at resource-

12 Mobile Computing and Communications Review, January 2005

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

T
im

e
[m

s]

Number of Constraints

Connect Latency

(a) Latency for a connect() socket call.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8

T
im

e
[m

s]

Number of Constraints

Hysteresis Latency

(b) Latency incurred on rebinding.

Figure 10: Performance of the SoNS server framework.

constrained mobile clients. Furthermore, the greedy
“best” match policy offered SoNS and INS typically
leads to a poor utilization of resources in shared
spaces. Finally, the simple semantics of resource re-
binding implemented by SoNS and INS, often lead to
perfunctory reconnections, which may be counterpro-
ductive for the application function.

Based on our experience, we present the design
and implementation of Lightweight Adaptive Net-
work Sockets (LANS) for accessing services in a dy-
namically changing networked environment. LANS
is an improvement over previous systems in three key
dimensions: 1) The LANS session layer offloads the
process of discovering, monitoring, evaluating and
comparing the available resources to nearby LANS
servers, reducing the computation and communication
load on a mobile client while still maintaining session
semantics. 2) LANS is designed to offer richer se-
mantics of resource selection and allocation to max-
imize the utility of available resources; in addition
to a simple “best” match, LANS supports “barely-
sufficient” matching, as well as dynamic reallocation
of resources to satisfy competing applications in a
shared space. 3) LANS permits an application to con-
trol the opportunistic behavior of the system by giving
applications increased control over when they are no-
tified about better resources. Our experimental results
show that, with its server-based optimizations, LANS
achieves better performance, consumes less battery,
and has lower network overhead than SoNS.

References

[1] Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D.
Schroeder. Grapevine: An exercise in distributed computing.
Comm. ACM, 24(4):260–274, April 1982.

[2] CCITT. The directory—overview of concepts, models and services,,
December 1988. X.500 series recommendations, Geneva, Switzer-
land.

[3] B. Oki et al. The information bus (r) - an architecture for extensible
distributed systems. InProc. ACM SOSP, pages 58–78, 1993.

[4] Christopher K. Hess et. al. Building applications for ubiquitous
computing environments. InInternational Conference on Perva-
sive Computing (Pervasive 2002), pages 16–29, Zurich, Switzer-
land, August 2002.

[5] M. Esler et. al. Next century challenges: Data-centric networking
for invisible computing: The portolano project at the university of
washington. InProceedings of Mobicom 99, 1999.

[6] S. Czerwinski et al. An architecture for a secure servicediscovery
service. InProc. of MobiCom-99, pages 24–35, August 1999.

[7] William Adjie-Winoto et al. The design and implementationof an
intentional naming system. InProc. 17th ACM SOSP, Kiawah Is-
land, SC, December 1999.

[8] UPnP Forum. Universal plug and play. http://www.upnp.org.

[9] Krzysztof Gajos. Rascal—a resource manager for multi agent sys-
tems in smart spaces. InProceedings of CEEMAS 2001, 2001.

[10] Erik Guttman. Service location protocol: Automatic discovery of ip
network services.IEEE Internet Computing Journal, 3(4), 1999.

[11] Openslp. http://www.openslp.org/.

[12] Project oxygen. http://oxygen.csail.mit.edu.

[13] Umar Saif and Justin Mazzola Paluska. Service-orientednetwork
sockets. InProceedings of the USENIX Annual Conference on Mo-
bile Systems, Applications, and Services: MobiSys 2003, 2003.

[14] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in
system design.ACM Transactions in Computer Systems, 2(4):277–
288, November 1984.

[15] M. Tuexen, Q. Xie, R. Stewart, M. Shore, L. Ong, J. Loughney, and
M. Stillman. Architecture for reliable server pooling. RFC3237,
January 2002.

Mobile Computing and Communications Review, January 2005 13

