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Abstract. We describe a data mining framework that derives panelist
information from sparse flavour survey data. One component of the
framework executes genetic programming ensemble based symbolic re-
gression. Its evolved models for each panelist provide a second component
with all plausible and uncorrelated explanations of how a panelist rates
flavours. The second component bootstraps the data using an ensemble
selected from the evolved models, forms a probability density function
for each panelist and clusters the panelists into segments that are easy
to please, neutral, and hard to please.
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1 Introduction

Givaudan Flavours, a leading fragrance and flavour corporation, is currently try-
ing to integrate evolutionary computation techniques into its design of flavours.
In one step of its design process, Givaudan conducts a hedonic survey which
presents aromas of flavours to a small panel of targeted consumers and queries
how much each flavour is liked. Each panelist is asked to sniff roughly 50 flavours.

To best exploit the restricted sample size, Givaudan flavourists first reduce
the ingredients they experimentally vary in the flavours to the most important
ones. Then they use experimental design to define a set that statistically provides
them with the most information about responses to the entire design space.

The specificity of sensory evaluation data is such, that “the panelist to pan-
elist differences are simply too great to ignore as just an inconvenience of the
scientific quest,” [1], because “taste and smell, the chemical senses, are prime
examples of inter-panelist differences, especially in terms of the hedonic tone (lik-
ing/disliking),” [1]. Givaudan employs reliable statistical techniques that regress
a single model from the survey data. This model describes how much the panel,
as an aggregate, likes any flavour in the space. But since the differences in the
liking preferences of the panelists are significant, Givaudan is also using several



proprietary methods to deal with the variation in the panel and is interested in
alternative techniques.

A goal of our interaction with Givaudan is to generate innovative informa-
tion about the different panelists and their liking-based responses by developing
techniques that will eventually help Givaudan design even better flavours. Here
we describe how Genetic Programming (GP) can be used to model sensory eval-
uation data without suppressing the variation that comes from humans having
different flavour preferences. We also describe how GP enables a knowledge min-
ing framework, see Figure 1, that meaningfully segments (i.e. clusters) the panel.
With an exemplar Givaudan dataset, we identify the panelists who are ”easy to
please”, i.e. that frequently respond with high liking to flavours, ”hard to please”
and ”neutral”. This is, in general, challenging because the survey data is sparse.
In this particular dataset there are only 40 flavours in the seven-dimensional
sample set and 69 panelist responses per flavour.
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Fig. 1. Knowledge mining framework for sparse sensory data with a focus on panel
segmentation. Read clockwise. The top portion is repeated for each panelist

We proceed as follows: Section 2 introduces our flavour-liking data set. Sec-
tion 3 discusses why GP model ensembles are well suited for this problem domain
and briefly cites related work. Section 4 outlines the 5 steps of our method. Sec-
tion 5 describes Steps 1 and 2, the ensemble derivation starting from ParetoGP.
Section 6 presents Steps 3-5 – how the probability density functions and clusters
that ultimately answer the questions are derived from this ensemble, and our
experimental results. Section 7 concludes and mentions future work.

2 The Givaudan Flavour Liking Data Set

In this data set, flavour space consists of seven ingredients called keys, ki. A
flavour in the flavour space is a mixture by volume of these seven ingredients



and the j th flavour is denoted by k
(b)

. 69 panelists sniff 40 different flavours
and select a rating that is translated to its liking score, LS per Figure 2(a).
Figure 2(b) illustrates the variation in the liking preferences of 69 panelists for
the first ten flavours (for each flavour a histogram of 69 likling scores is depicted
using 9 bins). Table 1 gives the notation for different variables used in this paper.
Givaudan may pre-process these scores to adjust them for how different panelists
use the range of the response scale. We scale all key data to the same range in
this study.

LS Rating

9 Extremely Like 

8 Like Very Much

7 Like Moderately

6 Like Slightly

5 Neither Like Nor Dislike 

4 Dislike Slightly 

3 Dislike Moderately

2 Dislike Very Much

1 Dislike Extremely

(a) (b)

Fig. 2. (a)Category anchoring of the 9 point hedonic scale (b) Liking score frequency
for 10 different flavours over all 69 panelists shows preference variance.

3 Related Work

Because our data is sparse, it is not justifiable to presume that there is solely one
model that explains a panelist’s preferences. Thus presuming any structure for a
model (which parametric regression requires) is tenuous. Model over-fitting must
also be avoided. This makes the non-parametric, symbolic regression modeling
capability of GP desirable. GP symbolic regression is also population-based and
can be run over the data multiple times with different random seeds to generate
multiple, diverse models. Complexity control and interval arithmetics can be
used to mitigate data over-fitting. Symbolic regression works without a priori
assumptions of model structure (except primitive selection).

However, with a few exceptions, GP symbolic regression has been focused on
obtaining the most accurate single model from multiple runs. In Section 5, we
will describe ParetoGP [2] as one means of explicitly refocusing GP symbolic
regression so it generates a robust set of models. The idea of using ensembles for
improved generalization of the response prediction is by far not new in regres-
sion. It has been extensively used in neural networks (e.g., [3–7]), and even more



Table 1. Problem Specific Variable Description

Variable Notation Details

flavour Space F The design space of ingredient mixtures

Keys ki i ∈ {1...7}
flavour k A mixture of 7 keys, k = {k1, ...k7}

A specific flavour k
(b)

A specific flavour denoted by superscript b

Panelist sn n ∈ {1..69}
Set of Panelists S S = {s1, s2, ....s69}

Observed flavours Fo Fo = {k(1)....k(40)}
Bootstrapped flavours FB FB = {k(1)......k(10,000)}

Likability Function fs(k
(j)

) = LS Relationship between a k
(b)

and LS

lsd p(LS|s) Liking score density function for a panelist s

Cumulative density Px(LS ≥ x|s) Probability of Liking score ≥ x
Panelist Cluster Sc A subset of S, c ∈ {E,N,H}

Model m Model m for Panelist s

Prediction ys,b,m Model m’s prediction for a k
(b)

Model Ensemble Ωs All models in the ensemble

Prediction Set Y
s,b

Y
s,b

= ∀m ∈ Ωs {ys,b,m}
Set of Liking Scores s Y

s
Y

s
= ∀b ∈ FB {Y

s,b}

extensively in boosting and machine learning in general (albeit, mostly for classi-
fication). See [8–14] for examples. [7] presented the idea of using disagreement of
ensemble models for quantifying the ambiguity of ensemble prediction for neural
networks, but the approach has not been adapted to symbolic regression.

4 Panel Data Mining Steps

Our GP ensemble-based ”knowledge mining” method has five steps:

1. Generate a diverse model set for each panelist from the sparse samples.
2. Thoughtfully select an ensemble of models meeting accuracy and complex-

ity limits to admit generalization and avoid overfitting and a correlation
threshold to avoid redundancy.

3. Use all models of the ensemble to generate multiple predictions for many
unseen inputs.

4. With minor trimming of the extremes and attention to the discrete nature
of liking scores, fit the predictions to a Weibull distribution.

5. Cluster based on the Weibull distribution’s probability mass.

It is significant to note that these steps respect the importance of avoiding
premature elimination of any plausible information because the data is sparse.
The ensemble provides all valid values of the random variable when it is presented



with new inputs. This extracts maximum possible information about the random
variable, which supports more robust density estimation.

We proceed in Section 5 to detail how we assemble a symbolic regression
ensemble, i.e. Steps 1 and 2. In Section 6, we detail Steps 3 through 5.

5 A Symbolic Regression Ensemble

ParetoGP Select  Models
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Fig. 3. Ensemble based symbolic regression

Traditionally symbolic regression has been designed for generating a single
model. Researchers have focused on evolving the model that best approximates
the data and identifies hidden relationships between variables. They have de-
veloped multiple competent approaches to over-fitting. There are a number of
demonstrably effective procedures for selecting the final model from the GP
system. Machine learning techniques such as cross validation and bagging have
been integrated. Multiple ways of controlling expression complexity are effective.
See [15] for a thorough justification of the above assessment.

Modelers who must provide all and any explanations for the data are not well
served by this emphasis upon a single model. Any algorithm variation of symbolic
regression, even one that proceeds with attention to avoiding over-fitting, is as
fragile as a parametric model with respect to the accuracy of its predictions and
the confidence it places in those predictions if it outputs one model. The risks
are maximal when the best-of-the-run model is selected from the GP system
as the solution. Our opinion is supported by the evidence in [16] which shows
that symbolic regression performed with complexity control, interval arithmetic,
and linear scaling still produces over-fitted best-error-of-the-run models that
frequently have extrapolation pathologies.

Symbolic regression can handle dependent and correlated variables and au-
tomatically perform feature selection. It is capable of producing hundreds of



candidate models that explain sparse data via diverse mathematical structure
and parameters. But the combined information of these multiple models has
been conventionally ignored. In our framework, we exploit rather than ignore
them. During a typical run, GP symbolic regression explores numerous models.
We capture the combined explanatory content of fitness-selected models, and
pool as many explanations as we can from whatever little data we have.

An explicit implementation of this strategy, such as ParetoGP, must embed
operators and evaluation methods into the GP algorithm to specifically aggre-
gate a rich model set after combining multiple runs. The set will support deriv-
ing an ensemble of high-quality but diverse models. Within an ensemble, each
model must approximate all training data samples well – high quality. As an en-
semble, the models must collectively diverge in their predictions on unobserved
data samples –diverse. If a GP symbolic regression system can yield a sufficient
quantity of “strong learners” as its solution set, all of them can and should be
used to determine both a prediction, and the ensemble disagreement (lack of
confidence) at any arbitrary point of the original variable space. In contrast to
boosting methods that are intended to improve the prediction accuracy through
a combination of weak learners into an ensemble, this ensemble derivation pro-
cess has the intent of improving prediction robustness and estimating reliability
of predictions.

5.1 Model set Generation

All experiments of this paper use the ParetoGP algorithm which has been specif-
ically designed to meet the goals of ensemble modeling. Any other GP system
designed for the same goals would suffice. ParetoGP consists of the tree-based GP
with multi-objective model selection optimizing the trade-off between a model’s
training error and expressional complexity; an elite-preservation strategy (also
known as archiving), interval arithmetic, linear scaling and Pareto tournaments
for selecting crossover pairs. In each iteration of the algorithm, it tries to closely
approximate the (true) Pareto curve trade-offs between accuracy and complex-
ity. It supports a practical rule-of-thumb: “use as many independent GP runs as
the computational budget allows”, by providing an interface where only the bud-
get has to be stated to control the length of a run. It also has explicit diversity
preservation mechanisms and efficiently supports a sufficiently large population
size. The training error used in experiments is 1− R2, where R is a correlation
coefficient of the scaled model prediction and the scaled observed response. The
expressional complexity of models is defined as the total sum of nodes in all
subtrees of the tree-based model genome. The following primitives are used for
gp trees of maximal arity of four: {+,−, ∗, /, inverse, square, exp, ln}. Variables
x1 − x7 corresponding to seven keys and constants from the range [−5, 5] are
used as terminals. ParetoGP is executed for 6 independent runs per panelist data
before the models from runs are aggregated and combined. The population size
equals 500, the archive size is 100. Crossover rate is 0.9, and sub-tree mutation
rate is 0.1. ParetoGP collects all models on the Pareto front of each run and
for information purposes identifies a “super” Pareto front from among them. All



models move forward to ensemble selection. We now have to make a decision
about which models will be used to form an ensemble.

5.2 Ensemble Model Selection

In [17], the authors describe an approach to selecting the models which form an
ensemble: collect models that differ according to complexity, prediction accuracy
and specific predictions. Complexity can be measured by examining some quan-
tity associated with the GP expression tree or by considering how non-linear the
expression is. Accuracy is the conventional error measure between actual and
predicted observations. Specific predictions are considered to assess correlations
and eliminate correlated models. Generally, each ensemble combines:

– A “box” of non-dominated and dominated models in the dual objective space
of model prediction error and model complexity.

– A set of models with uncorrelated prediction errors on a designated test set
of inputs. Here a model is selected based on a metric which expresses how
its error vector correlates with other models’ error vector. The correlation
must not exceed a value of ρ. The input samples used to compute prediction
errors can belong to the training set, test set (if available), or be arbitrarily
sampled from the observed region.

The actual ρ and box thresholds for the ensemble selection depend on the
problem domain’s goals. For this knowledge mining framework, where the next
step is to model a probability density function of a liking score, all plausible
explanations of the data are desired to acknowledge the variation we expect to see
in human preferences. The box thresholds are accuracy = 0.5 and expressional
complexity < 400. This generates models with sufficient generality (since we
allowed accuracy as low as 0.5) and restricts any models with unreasonably
high complexity with no obvious improvement in accuracy. We chose a value of
ρ = 0.92 to weed out correlated models. A set of models selected after applying
the criteria above is called the ensemble, Ωs.

6 Modeling a Panelist’s Propensity to Like

With methods that support refocusing GP based symbolic regression to derive a
rich and diverse set of models and the methods [17] that select an ensemble, our
GP system becomes a competent cornerstone in our knowledge mining frame-
work. The framework can next use the ensemble, Ωs designed for a panelist s to
answer the question: ”How likely is a panelist to answer with a liking score/rating
higher than X?”. The answer to this question allows us to categorize panelists
as: (1) Easy to Please, (2) Hard to Please, (3) Neutral. We accomplish this by
modeling the probability density function given by p(LS|s) for a panelist s. To
describe our methodology, we rely upon the notations in Table 1.

Density estimation poses a critical challenge in machine learning, especially
with sparse data. Even if we assume that we have finite support for the density



function and it is discrete, i.e. LS = {1, 2, ...8, 9}, we need sample sizes of the
order of ”supra-polynomial” in the cardinality of support [18]. In addition, if
the decision variables are inter-dependent, as they are here, estimating a condi-
tional distribution increases the computational complexity. Most of the research
in density estimation has focused on identifying non-parametric methods to esti-
mate distribution of the data. Research on estimation of density from very small
sample sizes is limited [18,19].

Figure 4 presents the steps taken to form this liking score probability density
model. We first generate 10,000 untested flavours We use the model ensemble

Ωs, which gives us a set of predictions Y
s,b

.For each untested flavour we get a
set of predictions (not just one), which plausibly represents all possible liking
scores the panelist would give. We use these to construct the lsd, liking score
density function, for an individual panelist.
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Fig. 4. Bootstrapping the Data and Deriving the Liking Score Probability Density
Model

6.1 Deriving Predictions by Bootstrapping the Data

To generate the bootstrapped data of liking scores for the FB = {k(1)......k(10,000)}
we follow the steps described in Algorithm 1.

Algorithm 1 Bootstrapping the LS data for Panelist s

Generate 10,000 flavours randomly, i.e., Fb = {k1....k10,000} (we use a fixed uniform
lattice in the experiments, same for all panelists)

for (k
b ∈ Fb ∀b) do

(i)Collect all the predictions from Model Ensemble, Ωs: Y
s,b

(ii) Sort the vector Y
s,b

(iii) Remove the bottom and top 10% of Y
s,b

and call this vector R
s,j

(iv) Append R
s,j

to Y
s

end for
Fit the Y

s
to a Weibull distribution. See Section 6.2



6.2 Parametric Estimation of the Liking Score Density Function

We use a parametric Weibull distribution to estimate p(LS|s). The two parame-
ters for the Weibull distribution, λ and r are called scale and shape respectively.
A Weibull distribution is an adaptive distribution that can be made equivalent to
an Exponential, Gaussian or Rayleigh distributions as its shape and scale param-
eters are varied. For our problem this is a helpful capability as a panelist’s liking
score follows any one of the three distributions. The derived Weibull distribution
is:

p(LS;λ, r|s) =

{
r
λ (LSλ )r−1e−(LSλ )r if LS ≥ 0

0 if LS < 0.
(1)

In addition to steps taken in Section 6.1, we map the bootstrapped data to a
range of the support of Weibull and the hedonic rating scale i.e., [1, 9]. There are
some predictions in the Y

s
which are below 1 or are above 9. We remove 80% of

these predictions as outliers. We assign a liking score of 1 for the remaining 20%
of predictions that are less than ’1’ in the prediction set. We similarly assign
the liking score of ’9’ for the ones that are above 9. We use these 20% in Y

s
to

capture the scores corresponding to the ”extremely dislike” and ”extremely like”
condition. Each plot line of Figures 6 (b), (c) and (d) is a lsd.

6.3 Clustering Panelists by Propensity to Like
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Fig. 5. Clustering the Panelists

Having estimated the data generated from the models for 10,000 flavours

in FB = {k(1)......k(10,000)} using the methods described in Section 6.2, we can
classify the panelists into three different categories (see Figure 5). We divide the
liking score range [1..9] into three regions as shown in Figure 6. The panelists
are then classified by identifying the region in which the majority (more than
50%) of their probability mass lies (see Algorithm 2). This is accomplished by
evaluating the cumulative distribution in each of these regions using:

P(l1,l2](LS;λ, r|s) = e−( l1λ )
r

− e−( l2λ )
r

. (2)



Algorithm 2 Clustering the Panelists

for ∀s ∈ {S} do
1. Calculate Pl1,l2 using estimated (λs, rs) for (l1, l2] → (1, 3.5], (3.5, 6.5] and
(6.5, 9.5]
2. Assign the panelist s, to the cluster corresponding to the region where he/she
has maximum cumulative density
s← s+ 1

end for

6.4 Results on All Panelists

We applied our methodology to the dataset of 66 panelists who can be individ-
ually modeled with adequate accuracy. The first cluster is the ”hard to please”
panelists. We have 23 panelists in this cluster which is approximately 34.8% of
the panel. These panelists have most of their liking scores concentrated between
1-3.5 range. We call these ”hard-to-please” since low liking scores might imply
that they are very choosy in their liking.

The second cluster is the cluster of ”neutral panelists”. These panelists rarely
choose the liking scores which are extremely like or extremely dislike. For most
of the sampled flavours they choose somewhere in between and hence the name
neutral. There are 31 panelists in this cluster which is 47% of the total panel.

The final cluster of panelists is the ”easy to please” panelists. This cluster of
panelists reports a high liking for most of the flavours presented to them or may
report moderate dislike of some. They rarely report ”extremely dislike”. There
are 12 panelists in this cluster which is close to 18% of the total panel.

7 Conclusions and Future Work

This contribution described an ensemble-based symbolic regression approach for
knowledge mining from a very small sample of survey measurements. It is only
a first small step towards GP-driven flavour optimization and also demonstrates
the effectiveness of GP for sparse data modeling. Our goal was to model behav-
ior of panelists who rate flavours. Our methodology postpones decision making
regarding a model, a prediction, and a decision boundary until the very end. In
Step 1 ParetoGP generates a rich set of models consisting of the multiple plau-
sible explanations for the data from multiple run aggregation of its best models.
In Step 2 these are filtered into an efficient and capable ensemble and no valid
explanation is eliminated. In Step 3 all the models are consulted, and with mi-
nor trimming, their predictions are fit to a probability density function. Finally,
in Step 4, when macro-level behaviour has emerged and more is known about
the panelists, decision boundaries can be rationally imposed on this probability
space to allow their segmentation. Our approach allowed us to robustly identify
segments in the panel based on the liking preferences. We conjecture from our
results that there are similar potential benefits across any sparse, repeated mea-



0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Liking score

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y

Weibull Distribution of Liking Score

Easy to 
Please

Neutral

Hard to 
Please 

Outliers

(a)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8, 
10, 

12, 
14, 
15, 

17, 
19, 
20, 

23, 
25, 
28, 

29, 
32, 
40, 

42, 
44, 

53, 

54, 
59, 

62, 

64, 
66, 
67

Panelists:

Probability Density Function of Liking Scores of Similar Panelists

Liking Score

P
ro

ba
bi

lit
y 

D
en

si
ty

(b)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1, 

2, 

3, 

4, 
5, 

6, 
7, 

11, 

13, 
18, 

22, 

24, 
26, 

30, 

31, 
33, 

34, 

35, 
36, 

37, 

38, 
41, 

45, 

49, 

50, 

51, 

52, 

57, 
61, 

63, 

65

Panelists:

Probability Density Function of Liking Scores of Similar Panelists

Liking Score

P
ro

ba
bi

lit
y 

D
en

si
ty

(c)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9, 
21, 

27, 
43, 
46, 

47, 
48, 
55, 

56, 
58, 
68, 

69

Panelists:

Probability Density Function of Liking Scores of Similar Panelists

Liking Score

P
ro

ba
bi

lit
y 

D
en

si
ty

(d)

Fig. 6. Liking Score Density Models: (a)Decision regions for evaluating cumulative
distribution, (b) Hard to please panelists (c) Neutral Panelists (d) Easy to Please
Panelists

sure dataset. We will focus our efforts in the future on the theory and practice
of efficient techniques for ensemble derivation in the context of GP.
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