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ABSTRACT
This paper presents a novel approach for knowledge min-
ing from a sparse and repeated measures dataset. Genetic
programming based symbolic regression is employed to gen-
erate multiple models that provide alternate explanations of
the data. This set of models, called an ensemble, is gener-
ated for each of the repeated measures separately. These
multiple ensembles are then utilized to generate informa-
tion about, (a) which variables are important in each en-
semble, (b) cluster the ensembles into different groups that
have similar variables that drive their response variable, and
(c) measure sensitivity of response with respect to the im-
portant variables. We apply our methodology to a sensory
science dataset. The data contains hedonic evaluations (lik-
ing scores), assigned by a diverse set of human testers, for
a small set of flavors composed from seven ingredients. Our
approach: (1) identifies the important ingredients that drive
the liking score of a panelist and (2) segments the panelists
into groups that are driven by the same ingredient, and (3)
enables flavor scientists to perform the sensitivity analysis
of liking scores relative to changes in the levels of important
ingredients.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—algorithms

General Terms
Algorithms, Design, Experimentation
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1. INTRODUCTION
Variable selection is a process of identifying influential

variables (attributes) that are discriminative and are nec-
essary to describe a real or a simulated system and its per-
formance characteristics. Understanding the relative impor-
tance of variables makes a design problem tractable by re-
ducing the dimensionality of the original problem. It short-
ens the design time by facilitating insights and improves the
generalization power of models. These factors usually drive
the product costs down.

In this paper, we consider variable selection in datasets
that are sparse and contain repeated measures because they
present unique challenges for variable selection. Consider
a set of explanatory variables x = {x1 . . . xn}, a response
variable y and an unknown function F that relates x to y.
Sparsity implies that very few data samples that explain
F are available relative to the number of the explanatory
variables, i.e. n. The dataset contains repeated measures, if
the same samples are passed to different measuring functions
(or responses) that are denoted as Fs for s = 1 . . . l. If there
is large variance for 1 sample’s responses, this implies that
there is no one single model for the entire dataset and one
has to build a model for each Fs(x) measuring function.

In this paper, we adopt an ensemble based symbolic re-
gression approach to provide multiple unbiased explanations
of the input-output relationships in the data. There are sev-
eral known advantages of symbolic regression over paramet-
ric regression. For example, symbolic regression can handle
dependent and correlated variables and automatically dis-
cover various appropriate and diverse models. However, the
multiple model generating capability of genetic programming
(GP) is the strongest argument for using symbolic regression
on sparse data sets. To our surprise it is often ignored (or
taken for granted) and a GP with single-objective fitness



driven selection, and a single best-of-the run final solution
(see [?, ?, ?, ?] among others) is used.

In this paper, we exploit the multiple model generating
capability of evolution. We employ a robust approach using
ParetoGP which is symbolic regression via GP implemented
with archiving (elite-based selection with elite preservation),
two-objective selection and other defining features [?]. Pare-
toGP yields the aggregated final archive of multiple indepen-
dent runs. We call this a model set, M and generate these
model sets for each subset of data samples corresponding
to a measuring function Fs(x). When repeated for all the
measuring functions, symbolic regression creates rich sets of
model ensembles.

We exploit this model set to propose two methods for
calculating variable importance. Using the importance in-
formation, we further mine the data to conduct sensitivity
analysis and identify similarity among measuring functions
(or model sets).

We present our results empirically on a dataset from the
area of sensory science provided by Givaudan Flavors Cor-
poration, an international flavor and fragrance design com-
pany. In its data, flavors are mixtures of seven edible in-
gredients that enhance the perception of food products by
impacting taste and smell pathways. The data, derived via
design of experiments, contains 40 different flavors evalu-
ated by 69 human panelists. Givaudan’s urge to continually
improve has driven its flavor scientists to seek new methods
that will provide alternate answers regarding relevant ingre-
dients within a flavor that drive liking. This has been our
primary motivation for this work.

The rest of the paper is organized as follows. Section 2
presents the salient features of our sensory evaluation dataset
and the challenges in modeling sparse and repeated mea-
sures data. Section 3 provides an overview of our approach.
Section 4 presents the ParetoGP technique used to generate
the ensemble of models. Section 5 presents our knowledge
mining approach to derive variable importance from the en-
sembles. Section 6 and 7 present sensitivity analysis and
clustering approach based on the variable importance de-
rived in section 5. Section 8 presents the results on the
empirical study we performed in the area of sensory science.
Section 9 concludes our study.

2. DATA FEATURES, CHALLENGES
Our challenging dataset has been presented to us by Gi-

vaudan Flavors Corporation. Each flavor is a mixture of
seven ingredients by concentration levels (unnormalized and
unscaled), called keys that are denoted as k1, . . . , k7. The
maximum concentration levels for k1, . . . , k7 are (130, 80, 50,
20, 20, 20, 200) respectively. A total of 40 flavors are exper-
imentally designed by combining keys at three levels each,
corresponding to their zero, mean, and the maximum con-
centration. Care has been taken such that no two flavors
have more than three similar keys. Notice that the number
of combinations are very low compared to the total number
of combinations that are possible even when only 3 levels
are used for each key, which is 37 = 2187. In reality, these
levels can vary in fine-grained discrete intervals in between
0 and the maximum range.

An important feature of this data besides sparsity is mul-
tiple responses per sample. Each of the 40 flavors is rated
by 69 panelists from panel P = {P (1), . . . , P (69)}. They cre-
ate 40 × 69 ratings, which we will call liking scores. The
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Figure 1: Variation in the liking scores assigned by
all panelists to a given flavor over all 40 flavors. Box
boundaries correspond to the interquartile range of
69 liking scores per flavor.

panelists rate the flavors on an integer hedonic scale from 1
(‘dislike extremely’ ) to 9 (‘like extremely’ ) via a neutral 5
(‘neither like nor dislike’ ). This data presents us the vari-
ety of challenges envisioned for sparse and repeated datasets.
First due to the fact that same samples are presented to dif-
ferent panelists, we have the different response values for the
same inputs. In Figure 1 we demonstrate the variation in
the raw liking scores per flavor. Note, that the variation in
the liking is wide for all flavors and covers the entire range of
liking score, i.e., 1-9. In other words, the differences in the
liking preferences of the panel are too high to ignore, and av-
eraging them per flavor will heavily reduce the information
content in the data.

The goal of the paper, in the sensory science context, is
to select variables that drive liking scores of panelists, and
to understand the direction of the driving, i.e. the analysis
of the changes in the liking scores caused by changes in the
concentration of the keys (sensitivity analysis).

The conventional approach in flavor science is to explain
the dependence between the key levels and the liking scores
of the entire panel by an empirical model. This model is con-
structed to approximate the average assigned liking score per
flavor, and is usually a low-order polynomial obtained by lin-
ear regression. Variable importance information is obtained
from the analysis of model parameters. Variable sensitivity
is studied based on predictions of the model.

We argue that one needs to build a model per panelist,
extract as much information about the panelist from this
model and then combine this information when necessary.
However, due to the sparsity of data, it is hard to build
models that are reliable (have good predicting capabilities
on unobserved points) and robust (less error prone on ob-
served points), i.e. models of high accuracy and no over-
fitting. This is our challenge in this paper and we approach
this problem systematically using ensemble based symbolic
regression.

3. OUR APPROACH
Our approach to solve the problem is presented in the

Figure 2. In the figure we show three distinct steps. (a)
First ParetoGP generates multiple models for a single pan-
elist and these multiple models, that form an archive, are
used to derive variable importance vectors. (b) Correla-
tion analysis is performed on variable importance vectors
for multiple measuring functions and the functions are clus-
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Figure 2: Overview of our knowledge mining approach using ensemble based symbolic regression. (a) An
archive of models is generated via multiple runs of ParetoGP. The archive is then analyzed for variable
importances. (b) The variable importance information along with the archive of models is used for perform-
ing sensitivity analysis. (c) The variable importance for multiple measuring functions is used to perform
correlation analysis and cluster them.

tered into groups that have similar influential variables.(c)
Finally, the variable importance vectors are then used to an-
alyze the sensitivity of the response variable with respect to
most influential variables.

4. PARETOGP SYMBOLIC REGRESSION
Learning from sensory data is a perfect example of an

application where the model does not exist. To gain predic-
tion robustness on this sparse data, we use ensemble-based
Pareto GP. The ensemble, also known as model set, M con-
tains diverse but high-quality models, which are constrained
to approximate all training data samples well (high-quality)
and are also constrained to diverge in predictions on unob-
served data samples (diverse). When a sufficient number of
models are generated, all of them can be used to determine
both the prediction (by unification of their predictions) and
the disagreement at an arbitrary point of the original vari-
able space. ParetoGP used here is a tree-based GP. An ex-
periment consists of multiple independent runs called repli-
cates. In a single run the algorithm performs the following
operations:

1. Initialize models: The following primitives are used
for tree-based individuals of the maximal arity of four:
{+,−, ∗, /, inverse, power(x, const), square, ln, exp}.
The list of variables, which in our case are seven keys
and real constants from [−5, 5] are used as terminals.
We rescaled our inputs variables to the range {0 . . . 2}.

2. Perform multi objective evaluation: The mod-
els are evaluated under two objectives. The first one,
model error, is defined as 1 − R2, where R is a corre-
lation coefficient between scaled predicted and scaled
observed response. The second objective, model com-
plexity, is defined as the sum of all subtrees of the
tree-based genome of the GP individual. The goal is
to minimize both error and complexity.

3. Archive the best models and update: An archive
of individuals is created separately from the popula-
tion and an elite-preservation strategy is employed. At
generation t + 1, the archive, which is the elite set of
best individuals discovered so far, gets updated. Its
size is limited to ArchiveSize by selecting the least-
dominated individuals from the union of Archive(t)
and Population(t + 1) in the objective space of model
error and model complexity.

4. Vary the models: During each iteration, a new pop-
ulation is created using archive mutations and crossovers.
In crossovers, parents are either both sampled from the
archive, or one parent sampled from the archive, and
one from the population (in both cases using Pareto
tournament selection). This archive-based selection
preserves genotypic diversity of individuals. The new
individual is generated by using a sub-tree crossover
with rate 0.9, and sub-tree mutation with rate 0.1. Ev-
ery 10 generations, the population gets re-initialized to
provide diversity and avoid inbreeding.

Other parameters for the ParetoGP are given in Table 1. A
run is executed for a time interval and using all the obser-
vations because using complexity as a second objective and
collecting multiple solutions in accuracy-complexity trade-
off space eliminates any requirement for an arbitrary max-
imum generation or cross-validation that would make the
training data even more sparse. Some evolved models will
“over-fit” but they can rationally be pruned post-hoc when
the model set is finalized to be used for prediction. The
time interval we chose is equivalent to 280 generations. In-
terval arithmetic is used to prune individuals with numer-
ical inconsistencies. Linear scaling is used to enhance the
effectiveness of evolution. At the end of an experiment, the
models in the archives of each run are aggregated into an
archive. The non-dominated solutions in this archive form
the super Pareto front. This is illustrated in Figure 3.
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Figure 3: An exemplar ParetoGP simulation on the sparse data (a) Results from multiple runs of ParetoGP.
Pareto fronts from each run show the trade-offs between model error (1 − R2) and model complexity. (b) A
super Pareto front is generated by aggregating the Pareto fronts from multiple runs. The super Pareto front
has 37 models.

Table 1: ParetoGP experimental parameters
Parameters Comments

# replicates 5 unless stated otherwise
# generations 310

population size 1000
archive size 100

fitness 1−R2

complexity expressional complexity
crossover rate 0.9

subtree mutation rate 0.1
population tournament 5

archive tournament 5

5. VARIABLE SELECTION
Most non-evolutionary modeling methods are vulnerable

to producing solutions that contain insignificant inputs. This
results in a fast deterioration of prediction performance of
final solutions as more irrelevant variables in the data are
considered in the model.

A conventional approach to identify the true dimension-
ality of the problem is to perform a principal component
analysis or a factor analysis. The former reduces the prob-
lem dimensionality to a smaller number of meta-variables
which are linear combinations of the original variables. The
latter extracts the latent dimensionality of the problem by
determining the number of factors that contain the same
information as the matrix of mutual correlations of data
variables. The potential problem of these approaches (in
analysis of non-linear systems) is that they only take into
account mutual correlations between variables, and hence
miss the relevance of non-linear combinations of inputs to
the response. As well, they do not select important vari-
ables from the original set, but create new variables in the
new reduced set. They forfeit multicollinearity (which is
most often present in real measurements). Finally, they are
sensitive to outliers.

One of the unique capabilities of genetic programming is
its built-in power to select significant variables and gradu-
ally omit the variables that are not relevant while evolving
models. Variable selection based on genetic programming
has been exploited in various applications where the signif-
icant inputs are generally unknown (for examples see [?, ?,
?, ?, ?, ?, ?]).

In this paper we consider two methods of variable presence
analysis for the multiple models generated using ParetoGP.
We also consider how relative variable importance can be
calculated. Note that these methods could also be used on
the population of solutions at the end of a standard GP run.

The methods generate a variable importance vector, V :

Definition 1. A variable importance vector is a vector
V = {I1, I2, . . . In} of the importance of all explanatory
variables {x1, x2, . . . xn}, in percents, arranged in the same
order as the explanatory variables. The importances are rel-
ative if

Pn
k=1 Ik = 100.

5.1 Presence-weighted variable importance
This method analyzes variable presence rates in a subset of

modelsM from the ensemble archive and considers variables
relevant if they have a high presence rate. The aggregated
importance of the variable xi, i = 1 . . . , d computed on the
basis of best models M̃ = {Mj}, j = 1, . . . , m is

I(PW )
i (xi,M̃) =

mX
j=1

δ(xi, Mj)

m
, (1)

where δ(xi, Mj) is zero if xi is not present in model Mj ,
and one otherwise. This aggregated variable importance
provides a robust estimation of relevance if M̃ is hand se-
lected for high-quality (i.e., fitness and complexity) from an
experiment-archive derived from many independent runs.

The second variable importance metric resolves the prob-
lem of hand selecting M by eliminating the need for it.

5.2 Fitness-weighted variable importance



Fitness-weighted variable importance is calculated using
all models (in the archive or in both archive and popula-
tion) (see [?]). It first uniformly distributes the fitness of
each model over all variables present in it, thus assigning a
variable a score per each model it is present in. Then, it sums
up the scores over all models, M = {Mj , j = 1, . . . , m}.

I(FW )
i (xi,M) =

mX
j=1

fitness(Mj)Pd
i=1 δ(ki, Mj)

δ(ki, Mj), (2)

Since the fitness of a model is uniformly distributed over
all its variables, this creates an explicit bias towards vari-
ables occurring in lower dimensional solutions. Thus, the
overall aggregated scores of irrelevant variables (only present
in over-fitting solutions) is much smaller than the overall
score of relevant variables.

We use normalized fitness-weighted variable importances
defined as

I(NFW )
i (xi,M) =

I(FW )
i (xi,M)P

i I
(FW )
i (ki,M)

· 100%. (3)

6. VARIABLE SENSITIVITY ANALYSIS
The variable importance vector enables a means of sen-

sitivity analysis which supports efficient exploration of the
design space to observe the response variable under selected
conditions of the explanatory variables. Consider an ex-
planatory variable set consisting of n variables where each
variable can be explored in r discrete step sizes. The total
number of design exploration samples is nr which is gener-
ally intractable.

To alleviate this, the variable importance vector can be
used. The distribution of the percentages in the variable
importance vector informs the choice of downsizing the sam-
pling. The effects of q influential variables, where q << n
can be explored while the non-influential n − q variables
are clamped to a finite set of combinations, c << (n− q)r.
The q influential variables can be exhaustively sampled over
qg. For each sample, the predicted response of the predic-
tive model ensemble is calculated using a median-average
method [?]. The predictive model ensemble is derived by
boxing the ensemble-archive. See [?] for more details. These
predictions for the q most relevant variables can subsequently
be visualized to observe the measuring function’s sensitivity
under the clamped conditions. The values of q, c and g are
selected based on the needs of the modeling application. It
is sensible to also reduce g as the importance ranking of an
influential variable decreases. This supports coarser grained
sampling in dimensions where variable importance is less
and higher grained sampling where it is higher.

7. MODEL CLUSTERING
For datasets consisting of repeated measures, i.e. when

the same input variables are passed through different mea-
suring functions (e.g., different people), we form a model en-
semble for each measuring function and then extract variable
importance vectors for each of them. We are next interested
in how similar one measuring function is to another. This is
equivalent to identifying people driven by the same key and,
in sensory evaluation, is called segmentation. Segmentation
enables design strategies for multiple, similar people and is
highly useful.

We use the variable importance vector as the basis of sim-
ilarity. Consider a model set denoted by Ms for a measur-
ing function Fs and the corresponding variable importance
vector as Vs. We compute pairwise correlation between each
pair of vectors and construct a correlation matrix defined by
C. The entry Cij in this matrix is the Pearson correlation
coefficient between variable importance vectors of model set,
i and j given by

Cij =

Pn
k=1(V

k
i − V̄i)(V̄j

k − V̄j)

(n− 1)sVisVj

, (4)

where sVi , sVj are sample standard deviations for Vi and
Vj . We then apply a threshold θ to the matrix entries to
determine clusters of model sets. A cluster is identified when
all the pair-wise correlations exceed θ.

8. KNOWLEDGE MINING WITH GP
We now apply our methods to Givaudan’s data per its

description in Section 2. We proceed by running an experi-
ment over each panelist’s data and constructing variable im-
portance vectors for each. We next correlate these variable
importance vectors to cluster the panelists into groups. Fi-
nally, we conduct sensitivity analysis on group’s model sets
which identifies panelist segments. Panelists in a segment
are generally influenced in the same way by the variables
(keys) and these variables generate hedonic responses that
move in the same (direct or inverse) direction.

8.1 Modeling using ParetoGP
To confirm our intuition that modeling the panel as an

aggregate will disrespect important inter-panelist differences
and will be inaccurate, we preliminarily run a ParetoGP ex-
periment to generate models for the entire panel altogether.
With 69 panelists in the panel and 40 flavors for each pan-
elist, there are 40 × 69 data points. We denote this model
set (or ensemble-archive) as MF . The best GP models we
can evolve with this data are poor. Five independent runs of
1000 generations each only minimize errors to 1−R2 = 0.91
(with optimal error value 0.0 and the worst value 1.0). Try-
ing other parameter settings and increasing the length of the
GP runs does not improve the model set quality.

To respect the differences among different panel members,
we separately model each panelist with 40 data points. The
results of these 69 experiments on individual panelists are
significantly better than on the entire panel both with re-
spect to the area under Pareto fronts in the objective space
and the lowest error. We denote the model set for panelist s
as Ms. We evaluate the normalized area under the Pareto
curve metric for all the 69 panelists and analyze these 69
values to see if our results are consistent. The mean of the
normalized area under curve is 20.257% (with the ideal best
value of 0%) with a standard deviation of 6.81%. The dis-
tribution has a positive skew (0.35) indicating that most of
the numbers are on the left of the mean. The area under the
curve for the ensemble MF generated for all the panelists
together is 91.5% (with the worst theoretical value of 100%
if no models are generated at all).

8.2 Variable Selection
Next we compute the normalized fitness-based variable

importances for both MF and each of the 69 panelist’s Ms.
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As an example, we present a thorough analysis of variable
selection for panelist P(3).

ForMF ensemble constructed using full data, the variable
importance vector is

V (k) = (48, 30, 0, 1, 5, 0, 16)T (5)

Its values imply that the most relevant ingredients explain-
ing the overall liking scores of the panel are k1, k2 and k7,
while ingredients k3 − k6 are of minor importance.

Figure 4 illustrates modeling results for P(3). Plot 4(a)
shows the ensemble-archive with the ensemble-Pareto front
colored red. For evaluation purposes we repeat 50 variable
selection experiments and examine the variance in their vari-
able importances for both methods (presence and fitness

weighted) in plots 4(b) and 4(c). Plot 4(b) shows I(PW )

values in percentages. Plot 4(c) shows normalized I(FW )

values. It appears from plot 4(c) that using fitness weight-
ing provides better discrimination between variables than
presence weighting. A two-sided Wilcoxon-Mann-Whitney
rank tests confirms that the differences among the fitness-
weighted importances for all keys are statistically significant
with p-values ranging between 10−16 and 10−4 for 95% con-
fidence. The results also indicated that I(FW ) metric from
only five independent ParetoGP runs generates reliable and
reproducible rankings of the input variables.

Plots 4(b) and (c) also indicate that the liking preferences

of panelist P (3) are driven by all keys in the flavors because
all interquartile ranges of importances are above 50% for
presence-weighted and above 5% in the normalized fitness-
weighted importance. The differences among the relative
fitness-weighted importances are small, but their ranking is
clear. The ranking is (in decreasing order): k1, k7, k2, k4,
k6, k5, k3. These variable importances, for one panelist, are
markedly different from those derived for the panel overall.

Computing with each panelist P (s)’s model set, Ms, we
aggregate the 69 vectors of normalized fitness-weighted im-
portances into a table of 69 rows, with their elements re-
flecting the relative importance of seven keys for predicting
the liking scores of each panelist. Figure 5 shows large
variation between the individual variable importances. The
median provides a very ‘coarse grained’ look at the panel
with less loss of information about panelist differences than

when all panelists are modeled altogether. It is:

V(1,...69,Median)(k) = (18, 15, 13, 17, 12, 19, 15)T (6)

In contrast to the variable importance vector of Equation 5,
it reveals that all variables are relevant for predicting the
response. This contradiction highlights again the inappro-
priateness of compiling the data of 69 panelists all together.

Key1 Key2 Key3 Key4 Key5 Key6 Key7
0
5
10
15
20
25

Figure 5: Normalized fitness-weighted variable im-
portances for all panelists (each box-plot consists of
69 importance values).

8.3 Segmentation of panelists
The combined fitness-weighted importance profiles depicted

in Figure 5 clearly indicate that importance vectors are dif-
ferent, and therefore the models of individual panelist’s lik-
ings contain different sets of inputs. We now work to cluster
similar panelists (or model sets) into groups on the basis of
variable importance. This will answer which panelists’ lik-
ing is driven by the same keys. After this, we will segment a
group using variable sensitivity analysis to identify panelists
driven in the same direction by the same key.

8.3.1 Clustering to Form Groups
To find which panelists’ liking is driven by the same keys,

we compute pair-wise correlations between importance vec-
tors Vi and Vj . By selecting pairs with correlations exceed-
ing a threshold θ = 0.90, we identify groups of panelists with
similar variable importance vectors1. There are five groups
of panelists with high pair-wise correlations of importances
between all members in a group. Fitness-weighted variable

1The choice of the θ threshold is highly influential in the
subsequent conclusions. We discuss this in Section 8.4.
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Figure 6: Examples of clustering panelists into
groups with similar variable importance informa-
tion. The box plots show the variance in the variable
importance within the group for each key. Compare
with Figure 5.

importances of two groups are illustrated in Figure 6. No-
tice the high consistency in variable importance vectors per
group, and the clear differences among the two groups. All
the variables except k5 are required to predict the individ-
ual liking scores of Group 1 consisting of panelists 6, 9, 16
and 20. All variables except k3 are required for Group 2
consisting of panelists 28, 32, 44, 48, 51 and 64.

8.3.2 Group Sensitivity Analysis for Segmentation
We now perform sensitivity analysis to understand whether

a key has direct or inverse relation with the liking score. By
doing this we can identify panelists, for whom both the ith
key is the most important variable, but one might hate it
as its concentration increases and the other might like it.
We use Group 1 and Group 2 as our exemplars. In Fig-
ure 7 we plot the individual ensemble predictions (median
of predictions of ensemble members) of all panelists in the
group for varying volume levels of k1, while all other levels
are clamped to their maximum. The step size in varying k1

is domain related. The spread in ensemble predictions in
Figure 7 justifies once again the differences in the panelists.
In Group 1 one segment of panelists {6, 16} have monotoni-
cally increasing predicted liking scores for increasing levels of
k1 , another segment, {9, 20} shows decreasing liking scores
as k1 is varied in the interval [0, 130]. In Group 2 the liking
score increases for all the panelists as k1 is increased.

8.4 Discussion
There are many choices in this knowledge mining process:

e.g. what data to aggregate and thresholds such as θ. They
should, in general, be made by an expert on the system be-
ing modeled. A choice could depend on exogenous goals like
market targeting. For example, Givaudan could decide to
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Figure 7: Comparison of sensitivity of liking of pan-
elists within Group 1 (top) and Group 2 (bottom)
based upon varying the levels of key k1 while k3,
k5 − k7 clamped to their maximum, and k2 and k4

clamped to zero.

use average ratings of the panel. This would allow them to
design flavors that maximize the liking scores according to
this information. In this example, strong inter-panelist dif-
ferences contra-indicate this approach. We observe that all
variables are important for modeling the liking score of the
entire panel and that there exist fundamental differences in
the driving variables among individual panelists. This im-
plies that an approach of designing flavors for the entire
panel is likely to generate designs that will be suited to a
broad population with a lesser degree of liking. Alterna-
tively, if it is affordable to segment the panel into multi-
ple segments and design flavors that satisfy these smaller
segments, each resulting design would have higher likability
inside a segment but less suitability across the broad popu-
lation.

The advantage of our approach is that all analysis de-
cisions are postponed until the moment when the decision
trade-offs become clear to the domain expert. To under-
stand the trade-offs, the domain experts have access to effi-
cient sensitivity analysis methods which will allow them to
finally identify the directions in which the liking scores of
panelists are steered by important keys.

9. SUMMARY AND FUTURE WORK
In summary, we have presented an approach to variable

selection and sensitivity analysis using genetic programming



model ensembles. While the variable selection via genetic
programming is by far not new, we believe the presented
study to be of interest to the GP community for the following
reasons:

1. It is effective on sparse data such as that from the sen-
sory evaluation domain and the application area of flavor
and fragrance design. We address the sparseness of the data
by creating ensemble archives of Pareto genetic program-
ming experiments that furnish the model sets for variable
important analysis that can be driven by presence or fitness
weighting. The standard GP-approach for variable selec-
tion, which analyses variable presence in a successful solu-
tion, does not work in this context because the single GP
solutions are very inadequate and their variable importance
statistics are not reliable.

2. It is effective on data, such as sensory evaluation data,
where the variation in response values for the same input
values (i.e. repeated measures) is extremely high. Our ap-
proach consists in modeling the repeated measurement func-
tions (i.e. panelists) independently. This avoids the problem
of disrespecting relevant variances in the responses per sam-
ple. Our approach retrieves reliable variable importance in-
formation from developed models, and then combines these
variable importances for the entire panel to obtain robust-
ness.

3. We demonstrate a new means of knowledge mining with
GP methods by conducting data analysis in the space of vari-
able importances. In this new space, we observe the evidence
that the response and explanatory variable relationship dif-
fers among measurement functions (e.g. panelists) and ex-
ploit rather than inaccurately average the differences. The
information of variable importance facilitates model similar-
ity clustering on this basis and efficient sensitivity analysis.

We are enthusiastic about the results, primarily because
they confirm that genetic programming symbolic regression
methodology has evolved into a mature field capable of rou-
tinely solving real-world problems. In this case study, ge-
netic programming allowed us to decompose a seemingly
unsolvable problem (few samples with multiple responses of
high variation) into a sequence of solvable problems gener-
ating insights at each step.

The most exciting feature of the study is its efficiency -
the complete analysis when automated takes a night (or a
lot less if multiple cores are available). This, in combination
with flavor optimization (see [?]) opens up opportunities
for new on-line protocols of flavor design, generating new
insights in days instead of months. Additionally, panel seg-
mentation, derived on the basis of liking being influenced
by the same ingredients in the same direction, will allow a
clearer understanding of the hedonic responses to a product
suite. When affordable, it may enable the development of
products for particular segments leading to higher consumer
satisfaction.
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