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ABSTRACT
We have acquired panelist data that provides hedonic (lik-
ing) ratings for a set of 40 flavors each composed of the same
7 ingredients at different concentration levels. Our goal is
to use this data to predict other flavors, composed of the
same ingredients in new combinations, which the panelist
will like. We describe how we first employ Pareto-Genetic
Programming (GP) to generate a surrogate for the human
panelist from the 40 observations. This surrogate, in fact
an ensemble of GP symbolic regression models, can pre-
dict liking scores for flavors outside the observations and
provide a confidence in the prediction. We then employ
a multi-objective particle swarm optimization (MOPSO) to
design a well and consistently liked flavor suite for a panelist.
The MOPSO identifies flavors that are well liked (high lik-
ing score), and consistently-liked (of maximum confidence).
Further, we generate flavors that are well and consistently
liked by a cluster of panelists, by giving the MOPSO slightly
different objectives.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

General Terms
Algorithms, Design, Experimentation

Keywords
sensory evaluation, genetic programming, ensemble learn-
ing, particle swarm optimization
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1. INTRODUCTION
Givaudan Flavors Corporation is a world renowned fra-

grance and flavor company that employs a large team of
flavorists to design flavors for clients in the food industry.
Its flavor design process can be long and might involve many
experts from diverse specialities such as sensory science and
food chemistry. They have extensive expertise in under-
standing how particular ingredients relate to hedonic re-
sponse, how multiple ingredients interact, and the complex-
ity of flavor composition. To figure out the ingredient driv-
ing hedonic response (positively or negatively) in a mixture
of ingredients, Givaudan uses designed experiments to de-
fine a small set of mixtures that are (see Figure 1) evaluated
by a panel of consumers. Each panelist is asked how much
they like the flavor, ranging from “like extremely” to “dis-
like extremely” with 9 distinctions. The responses and their
corresponding numeric scores in the dataset are shown in
Table 1.
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Figure 1: Hedonic evaluation system for flavors.

In this contribution, our goal is to use the data of this
consumer evaluation study and attempt to optimally de-
termine a set of flavors any panelist (or group of panelists
with common flavor preferences) would highly like. Techni-
cally there are two broad challenges. First, there are only
40 flavor samples while a flavor has 7 dimensions (each a
different ingredient) with significant range in concentration
levels of each ingredient (some range between [0 200], while
others range between [0-20]). In this respect the data is
sparse. Secondly, the sampled flavors are chosen via design
of experiment methodology so they are regularly spaced (al-



though sparsely) at extreme and center points of the in-
gredient ranges of principally important ingredients. How-
ever, we are advised by Givaudan that very interesting non-
linear variable relationships could exist in between the sam-
ples due to non-linear ingredient interactions and ingredient-
concentration-hedonic response relations. This information
indicates that, as we proceed, we should always recognize
the inherent uncertainty when interpolating from the obser-
vations.

Table 1: Category anchoring of the 9 point hedonic
scale

Panelist Hedonic Rating Liking Score
Like Extremely 9
Like Very Much 8
Like Moderately 7

Like Slightly 6
Neither Like Nor Dislike 5

Dislike Slightly 4
Dislike Moderately 3
Dislike Very Much 2
Dislike Extremely 1

We proceed as follows: Section 2 presents related work.
Section 3 overviews the two-step process to find consistently
well liked flavors. Section 4 covers the first step by describing
model ensemble derivation using ParetoGP and our meth-
ods to derive a prediction and the model’s confidence in it
for un-observed flavors. Section 5 presents the multi objec-
tive particle swarm optimization algorithm (MOPSO) that
is used to optimize the flavors by searching through the key
volumes. Section 6 presents and analyzes experimental re-
sults. Section 7 summarizes and mentions future work.

2. RELATED WORK
The field of sensory science is broad and encompasses psy-

chophysics, food chemistry and consumer psychology. See
[11] for a modest overview of sensory evaluation practices.
Within sensory science, the study of hedonic response is ac-
tively pursued because of its commercial and societal impli-
cations. Hedonic study has protocol issues: how to identify a
reliable panelist, how to assemble a panel, what questions to
pose and what responses should be admitted [2, 7]. Conven-
tional data analysis uses multivariate techniques [3]. Some
research in hedonics has focused on inter panelist differences,
e.g. [9]. One recent study involving machine learning and
sensory evaluation studied the reliability of wine flavor cat-
egorization by experts based upon aroma [4].

3. FLAVOR OPTIMIZATION OVERVIEW
We proceed in two steps, using notation defined in Table 2

and according to Figure 2: Our first step, (see Section 4) is to
model the panelist in terms of a liking score function of 7 in-
gredient concentration levels. This function must be capable
of expressing a non-linear relationship between liking score
and ingredient levels. In consideration of this and the inher-
ent uncertainty between observation points, we use Pare-
toGP[10, 5, 12]. ParetoGP is a robust genetic programming
symbolic regression technique that generates an ensemble of
multiple models aggregated from multiple runs. Symbolic

regression is a non-parametric modeling technique without
restrictions on variable correlation. ParetoGP’s model en-
semble provides collectively diverse and plausible explana-
tions of a response. Each model is sufficiently accurate with
respect to its observations but differs from the others with
respect to its responses on unobserved points. As in conven-
tional GP ParetoGP’s models do not presume any model
structure a priori and are selected to be robust to over-
fitting. Their structure and generality arises from evolution-
ary interaction between accuracy and complexity objectives.
We provide technical details of ParetoGP in Section 4.

Our intent is to use this ensemble as a surrogate for the
panelist in Step 2. When we want to “know” how much the
panelist would like a (unobserved) flavor, we feed the flavor’s
ingredient levels into each model of the ensemble and receive
a prediction. The issue then is how to fuse the predictions
from the multiple models. In fact, “fusing” (or combining)
the multiple predictions from an ensemble is an open area of
research. In this contribution we choose a median-average
method for its robustness (see [12]), also defined in section
4.1. We additionally exploit the ensemble to derive another
piece of valuable information: model confidence, expressed
locally, for a specific prediction. We experiment with two
confidence measures: inter-decile range and entropy. These
are explained in detail in Sections 4.1 and 4.2.

In our second step, detailed in Section 5, we use a multi-
objective particle swarm optimization (MOPSO) algorithm
to find a Pareto front of flavors that are both highly and
consistently liked according to the model ensemble of the
panelist. The objectives of the MOPSO are to maximize
liking (as a score) while minimizing the uncertainty of the
prediction. When a group of panelists is considered for fla-
vor optimization, modeling will generate a set of model en-
sembles. The fused predictions from these ensembles must
themselves be combined. In this case, we combine by slight
modification of the objectives. The first objective expresses
the goal of maximizing the mean of panelists’ liking scores
weighted by prediction confidence. The second objective is
based on a measure we call consistency which is intended to
assure minimum variance among the panelists’ liking scores.
More details are provided in Section 5.2.

4. ENSEMBLE MODELING
We wish to first derive multiple liking score models based

on ingredient concentration levels, then specify a means of
combining their predictions and providing a confidence mea-
sure. For this we use ParetoGP. ParetoGP iterates over 3
steps for a user specified time duration after initialization.

Initialization consists of generating symbolic regression
models in the form of executable expressions (represented
as parse trees) using a set of basic functions or operators that
have one or two arguments. We use {+,−, /, ∗, log, exp, power}
as functions here in addition to the explanatory variables for
our problem, {k1, k2, k3, . . . , k7} which are ingredient con-
centration levels that in the modeling context we call “keys”.
[Step 1] Model evaluation: The models are evaluated under
two criteria, (a) accuracy and (b) complexity. A correlation

metric between the model prediction L̂S and the actual val-
ues of the LS for the known set of flavors, Fo, is defined
as

R(L̂S, LS) =
cov(L̂S, LS)

std(L̂S)std(LS)
(1)
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Figure 2: Evolutionary optimization of flavors for a panelist.

Variable Notation Details
Observed Flavor space Fo The flavors from the dataset

Ingredients or Keys ki i ∈ {1...7}
Flavor k A mixture of 7 ingredients, k = {k1, ...k7}

Panelist sn n ∈ {1..69}
Liking score function fs(k

(j)
) = LS Relationship between a k

(j)
and LS

Model m Model m for Panelist s

Prediction ys,m,j Model m’s prediction for a k
(j)

Model Ensemble Ωs All models in the ensemble

Prediction Set Y
s

Y
s
= ∀m ∈ Ωs {ys,m,j}

Table 2: Problem Notation

Using (1) for scaled LS and L̂S we define error as

E = 1−R2 (2)

The second evaluation metric for a model is its complexity.
Complexity of a model is evaluated as the number of nodes
in all the subtrees of a given tree.
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Figure 3: A “Super” Pareto front aggregating mul-
tiple ParetoGP runs

[Step 2] Model selection and archiving: When no a priori
information about the problem is known, ParetoGP fosters
a trade-off between model complexity and model accuracy
to prevent premature and inaccurate decisions about the
model. The accuracy and complexity metrics are used as
two minimization objectives. ParetoGP evolves a set of so-
lutions approximating the true Pareto front, which is the
set of optimal trade-off (a.k.a. non-dominated) points in
the two objective space. It employs the population and an
archive to robustly identify the front.

[Step 3] Model update: Parents are drawn from the archive
and population with tournament selection that uses rank of
the front as its comparative measure. Ties are broken ran-
domly. The current population is updated by conventional
subtree mutation and crossover of the selected parents [6] .

ParetoGP aggregates and sorts each run’s Pareto front
into a “super” Pareto front and other non-dominated solu-
tions. These solutions for 1 panelist are shown in Figure 3
which also indicates the regions where the models can be
considered to overfit and underfit the data. From this set,
an engineer down selects by choosing models within an ac-
curacy and complexity range. These are further weeded to
eliminate models with correlated prediction error, ρ, on a
test set of inputs which consists of observations or arbitrary
samples. In the following subsections, we present methods
to derive prediction and confidence from these predictions.

4.1 Combining Multiple Predictions
Considering the predictions generated by the ensemble,

Y
s
, our next goal is to fuse them into a prediction for the

liking score. We use the following method:
Median-Average The median prediction and its two neigh-
bors in the prediction space are identified and averaged.

4.2 Confidence Measures
We present two different methods to provide a measure of

confidence in our final prediction derived above.
Inter-Decile Range: This is the inverse of the differ-
ence between the 80th and 20th percentile of predictions
in Y

s
. Given Y

s
consisting of the predictions {y1,..., ym},

the sorted vector (in ascending order) of Y
s

is given by
{v1, ....vm}. The index for the pth percentile in this new
vector is given by

n =
p

100
(m− 1) + 1, (3)



where p is the percentile value in percentage, m is the total
number of predictions. The value at this index is approxi-
mated using

vp =


v1, for l = 1

vN , for l = N

vk + d(vl+1 − vl), for 1 < l < N,

(4)

where d is the decimal component of n and l is the integer
component of n. The confidence is given by

CI(k
(j)

) =
1

v80 − v20
(5)

Entropy In this method the discrete probability mass func-
tion is formed for the liking score predictions, in Y

s
, that

are approximated to nearest integer value, and the entropy
[1] is evaluated using

H = −
9∑

i=1

p(ai)log(p(ai)) (6)

where p(ai) is the probability mass generated from the pre-
dictions for the liking score values a = {1, 2, ...9}. Higher
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Figure 4: Discrete probability mass of predictions
for cases of (a) maximum entropy - low confidence
and (b) low entropy - high confidence

entropy implies higher random behavior. Figure 4 illustrates
the properties of the entropy based confidence placement.
It shows two different scenarios of the predictions. In the
first scenario, the predictions in the Y

s
are equally divided

among the different values on the rating scale, giving each
a probability of 1/9. In the second scenario, only three val-
ues are chosen by the predictions, i.e. 7 (1/9), 8 (1/9) and
9(7/9). The entropy is higher for the first scenario indicat-
ing random nature of the predictions. In fact the entropy is
maximally bounded by this number. Higher entropy implies
lower confidence. In the second scenario, due to the spiky
characteristic of the discrete probability mass function, the
entropy is lower and implies high confidence because many
predictions converge to the same rating. Thus we define
confidence as

CE(k
(j)

) = 1−H (7)

5. MOPSO FLAVOR OPTIMIZATION
Using our models derived with ParetoGP, we now use a

multi-objective particle swarm optimization detailed in Al-
gorithm 1 and [8] to identify flavors that maximize the liking
score function for (a) a single panelist, (b) a cluster of pan-
elists. The algorithm uses the same velocity update and
position update functions as in the classical particle swarm.

The algorithm differs in the way the pbest is updated. In
presence of multiple objectives the algorithm evolves solu-
tions towards the Pareto front. In our problem, a candidate
solution is the concentration levels of the keys (a.k.a. in-
gredients) that compose a flavor. Specifically the swarm is
defined as {ki1, ki2....ki7}, where subscript i represents the
particle number and each particle has 7 keys.

Algorithm 1 Multi objective particle swarm optimizer for
flavor optimization

(kid): d⇐ key index, i⇐ particle index, k ⇐ Key;

ki ⇐ particle, Pi ⇐ pbest, N ⇐ number of particles
1. Initialize the particles, k randomly in the search space
with in the range for each key, [li, ui]
2. Initialize Pi to be the same, ∀i
3. Initialize parameters of PSO, ω = 0.8, ψ1 = 1, ψ2 = 1
4. Evaluate objective function (o1) and objective function

(o2) for the given k
5. Randomly initialize the ’gbest’, g
for t = 1 to maxiter do

for i = 1 to N do
for r = 1 to d do
V

(t+1)
ir = ωV

(t)
ir +ψ1(P

(t)
ir −k

(t)
ir )U [0, 1] +ψ1(P

(t)
gr −

k
(t)
ir )U [0, 1]

k
(t+1)
ir = k

(t)
ir + V

(t+1)
ir

end for
end for
for i = 1 to number of N do

Evaluate o1 and o2 for ki
end for
Update the P with the non-dominated solutions
Identify the ’gbest’, g = 5 ∗ U [0, 1]
Store the pbest vector for iteration t
t← t+ 1

end for
6. Output P

(t)

5.1 Objectives for single panelist optimization
To find optimal flavors for a single panelist, our objectives

are (1) maximize fused liking score prediction (2) maximize
the confidence. In Section 6, we examine optimizing with
the two objectives using the median average fusing method
and each of the two confidence measures: inter-decile range:
Case A, and entropy: Case B.

5.2 Objective design for a cluster of panelists
To identify flavors that are well-liked across the panelists,

the first objective is to maximize the mean of the predicted
liking scores of different panelists where each liking score
prediction is weighted by its confidence:

LSc =

∑N
s=1 CsLSs∑N

s=1 Cs

(8)

Cs is the confidence of the sth panelist’s prediction derived
from Y

s
, and LSs is the liking score derived from Y

s
. The

confidence and liking score can be estimated using any of
the two methods described in Section 4.1 and 4.2.

We define a second measure called consistency that helps
in two scenarios to, (a) counter the case in which the mean is

driven by a few panelists that like a particular k
(j)

, and (b)
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Figure 5: Flavor optimization achieved by Multi Objective particle swarm optimization (a) Pareto front plots
for 6 panelists obtained for Case A; (b) Pareto front plots for 6 panelists for Case B

push the flavors to the design space where they are mostly
liked. The measure is derived using the LSs derived from
the Y

s
. The measure is given by

V =

√√√√ 1

N

N∑
s=1

(LSc
s − LSc)2, (9)

where LSc is the mean of the liking score prediction of mul-
tiple panelists. Equation 9 simply evaluates the standard
deviation of the liking scores generated by the multiple pan-
elists. The second objective is to minimize the variability
among the liking scores defined by ( 9).
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Figure 6: Progress of MOPSO as a function of iter-
ations for the single panelist problem.

6. EXPERIMENTS
Experimental Parameters ParetoGP is run 6 times with
a population size of 500 where each run executes for 600
seconds. Subtree crossover probability is 0.9 and mutation

probability = 0.1. We select models from the super Pareto
front and its dominated models that have accuracy better
than 0.5 and complexity less than 400. We set the correla-
tion threshold to ρ = 0.92. The MOPSO has a swarm size of
100 and iterates 1000 times. The cognitive and social learn-
ing rates are: ψ1 = 1.0 and ψ2 = 1.0. Inertia is controlled
by ω = 0.8.

6.1 Results and Discussion for Single Panelist
We experimented with 6 different panelists (each of whom

rated the same 40 flavors) and named the panelists A, B, C,
D, E, F. Table 3 gives the number of models ParetoGP iden-
tifies after run aggregation, how many of them are selected
into the ensemble and how many optimized flavors lie on
the Pareto front after completion of the MOPSO. The en-
semble selection methods reduced the number of models by
approximately 60%. The MOPSO identifies approximately
100 flavors for panelists B, C, D and F on respective Pareto
fronts.

Table 3: One panelist: models and optimized flavors

Panelist GP Models Ensemble Case A Case B
A 109 35 62 15
B 100 41 100 2
C 92 41 100 14
D 145 67 100 2
E 234 85 86 24
F 223 83 100 26

Case A: Prediction by Median-average, Confidence
by Inter-Decile Range Figure 5(a) shows the Pareto curves
for each of the 6 panelists. Each Pareto front in this set has
unique properties. For example, E has very low variance in
liking score but high variance in confidence. B on the other
hand has comparatively low variance in the confidence, but
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Figure 7: Variability of different key values on the pareto front solutions for panelists, B, C, D, F (a) Panelist
B (b) Panelist C (c) Panelist D (d) Panelist F

spreads across the liking score range. F has a Pareto front
that is spread proportionately in both confidence and liking
score. D varies significantly in liking score, but also achieves
a liking score of 9 with a high confidence ≈ 2.0. C performs
similar to D but could only achieve the liking score of 9 with
very low confidence. Flavors on A’s Pareto front have the
highest confidence of all, but could only achieve a maximum
liking score of ≈ 7.

To analyze the range of flavors on the Pareto front, we cre-
ate box plots for the 7 key concentration levels of 4 panelists
(B, C, D, F) in Figure 7. In these plots, on each box, the line
close to the center of the box is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers.

These box plots show the range of each key, within which
the liking of a panelist lies. The plot also shows that different
panelists differ in the key ranges where there liking lies.

Since we were attempting to maximize the liking score, for
some keys, we observe that the range of their variance was
very narrow, implying that panelists liking score is sensitive
to this range of concentration levels. For example, for key 2
the range is between [0.8 − 0.85] for all the panelists. Also
for each panelist the variation for this key is very narrow
indicating the sensitivity of liking score for this key.

We further observe, panelists C, F have very high variance

for key 7, indicating that these panelists are less sensitive to
this key’s level. In other words, varying this key does not
lower their liking score significantly.

Figure 6 shows the progress of MOPSO as a function of
iterations for the panelist E. The higher the curve the better
the solution is. One can see, that MOPSO starts with 2
solutions on the front and slowly fills up solutions with better
confidence measure as iterations progress. Our goal is to
approach towards the right top corner, i.e., solutions with
high liking score and high confidence.

Case B: Prediction by Median-average, Confidence
by Entropy Plots (a) and (b) of Figure 5 contrast results
from the optimization when it employs the two different con-
fidence measures. In Figure 5(b) the y-axis is, by definition,
bound at 1.0. A liking score with confidence of 1 (entropy of
0) implies that the model predictions for this flavor (when
rounded to nearest integer) all agreed. We can observe that
this liking score is generally between 7 and 7.5 for panelists
E, A, F, at 8 for B and D, and at 6 for C. Notice that the
range of solutions that appear in Case A with liking score
less than 6 but confidence of [6 . . . 12] do not appear in this
case . This is because a lower interdecile range is equivalent
to lower entropy (≈ 0) and such points are dominated by the
points that have higher liking score but equal entropy, i.e.
0. Thus this method bounds the pareto front plots to higher
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Figure 8: Comparison of variability of normalized key values on the pareto front solutions for panelists, C
and F for the Cases A and B. I- Inter-Decile Range, E- Entropy. (a) Panelist C (b) Panelist F

range of liking scores. We examined the key variance of C
and F. We noticed higher variance in the keys compared to
the previous case. This is shown in Figure 8.

Discussion One is tempted to seek a conclusion from
these experiments as to whether expressing confidence with
inter-decile range or entropy is preferable. We believe, in
general, this must be determined on an application basis
when the results are passed to a human engineer. In our
context of flavor optimization, an expert flavorist wishes to
inspect many different flavors and gain insight by comparing
them while considering ingredient hedonic knowledge and in-
tegrating knowledge of other flavor-oriented factors such as
cost and chemical robustness during food preparation, etc.
Thus, aggregating the results of Cases A and B and iden-
tifying all significantly distinguishable flavors is desirable.
For this identification we provide Figure 8. For all flavors
on each case’s Pareto front, it provides box plots of normal-
ized concentration level for each key. We observe that using
confidence as measured by entropy provides more diverse
exploration for all keys. Figure 11 visualizes the absolute
distance (using normalized key differences) between the 5
flavors with highest liking score identified by the Pareto front
of each case. Each entry shows this distance value and, it
shows a bar with progressively increasing grey scale for each
entry. We observe that the entropy flavors are very similar
to each other while the IDR flavors differ slightly. We ob-
serve that the flavors identified in Case A are different (by
this metric) than those of Case B.

6.2 Panelist Cluster Results and Discussion
We experimented with 1 cluster of panelists selected for

similar flavor preferences. In this experiment each ensemble
computes confidence with the entropy measure. Figure 9
shows the iterative progress of the MOPSO. In the first few
iterations there are only a few solutions on the Pareto front.
The front then moves up and rightward and the algorithm
identifies flavors with higher liking scores,(6 . . . 6.5), that
are lower in variance before finally identifying flavors with
confidence-weighted liking scores ranging from [5.5 . . . 7] which
have low variance (higher inverse of variance). Figure 10

shows the box plots for the flavors on the Pareto front. The
plots demonstrate the variance in key values among these
flavors is very low for all the keys, although the liking score
varies from [5.8 . . . 7.0].
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Figure 9: MOPSO progress for cluster optimization

Discussion While a liking score of 6 and above is only
in the “slightly-like” and “moderately-like” hedonic range,
it is understandable that more highly liked flavors cannot
be identified because multiple panelists remain “individual”
even when they are clustered by similar flavor preference.
This is still consistent with the expectation that similar fla-
vors will have a range of liking scores because of the pan-
elists’ preferential similarities. It appears that limiting the
concentration to a certain range for all the keys is neces-
sary to arrive at a reasonable consensus. Overall the results
reflect the challenges in working with hedonic-based panel
aggregates.

7. SUMMARY AND FUTURE WORK
In this paper, we presented an approach to model a liking

score function for consumers employed for sensory evalua-
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Figure 10: Variability of key values for the flavors
on the Pareto front for the cluster of panelists.

Flavor 1 2 3 4 5 6 7 8 9 10

1 0 0.17 0.28 0.14 0.08 0.13 0.065 0.07 0.07 0.01

2 0.1529 0 0.1 0.03 0.08 0.3 0.23 0.24 0.24 0.15

3 0.28 0.1 0 0.13 0.19 0.41 0.34 0.35 0.35 0.26

4 0.14 0.03 0.13 0 0.05 0.27 0.2 0.21 0.21 0.12

5 0.08 0.08 0.19 0.05 0 0.22 0.15 0.16 0.16 0.07

6 0.13 0.3 0.41 0.27 0.22 0 0.07 0.06 0.06 0.15

7 0.06 0.23 0.34 0.2 0.15 0.07 0 0.01 0.008 0.08

8 0.07 0.24 0.35 0.21 0.16 0.06 0.01 0 0.001 0.09

9 0.07 0.24 0.35 0.21 0.16 0.06 0.008 0.001 0 0.08

10 0.01 0.15 0.26 0.12 0.07 0.15 0.08 0.09 0.08 0

Case A Case B 

Figure 11: A map of the normalized absolute dis-
tances between 10 flavors. 5 from Case A and and
5 from Case B. Each entry is the distance between
flavor i and flavor j. The length of the gray bar
is indicative of the distance. The diagonal is zero
distance

tion. A GP based symbolic regression methodology was used
to generate all plausible models that explain the given data.
From these plausible models, a subset was selected that best
represent the liking score function for the human expert. We
thus formed a bank of liking score functions, that are diverse
and that explain as many as possible behavior that the hu-
man expert can exhibit when a previously unseen flavor is
presented. We then integrated these banks of liking score
functions per panelist into two multi objective algorithms
that identify the flavors that maximize (a) a panelist’s lik-
ing score, or (b) a group of panelists’ liking scores. We used
a particle swarm optimization algorithm for this. We ob-
served that for an individual panelist, the method identified
flavors with key concentration levels in narrow ranges rela-
tive to input ranges. These flavors also differed from panelist
to panelist even though they all have predicted liking scores
between [5.5 . . . 8]. For multiple panelists grouped together,
we get flavors with very minute changes in the key ranges.

We plan to work further on distinguishing differences among
optimized flavors. If flavor difference is considered from the
perspective of perception rather than concentration level,

difference is very complex. Often a concentration level is
perceptually invisible until a threshold is reached. Then
perception is non-linear and it finally “flattens” at a percep-
tual saturation threshold. This work will be integrated with
our related studies in aggregating panelists by preference of
flavors and by propensity to express specific ranges of liking
scores.
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