
A Self-Tuning Analog Proportional-Integral-Derivative (PID) Controller

Varun Aggarwal, Meng Mao and Una-May O’Reilly
Adaptive Hardware Group

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

varunag@csail.mit.edu, mao@mit.edu and unamay@csail.mit.edu

Abstract

We present a framework for a low power self-tuning ana-
log proportional-integral-derivative controller. By using a
model-free tuning method, it overcomes problems associ-
ated with reconfigurable analog arrays. In comparison to
a self-tuning digital PID controller, it combines the advan-
tages of low power, no quantization noise, high bandwidth
and high speed. Our prototype hardware uses a commer-
cially available field programmable analog array and Par-
ticle Swarm Optimization as the tuning method. We devel-
oped a scheme to correct the variance in measurement. We
show that a self-tuned controller can outperform a hand-
tuned solution and demonstrate adaptability to plant drift.

1 Introduction

Proportional-Integral-Derivative (PID) control has been
used successfully for regulating processes in industry for
more than 60 years. Today, digital self-tuning PID con-
trollers are ubiquitous in the industry. These controllers au-
tomatically set gain values (i.e. parameters) according to
the process (alternatively, plant) and may optionally require
inputs from a human designer.

The parameter settings of a PID controller for optimal
control of a plant depend on the plant’s behavior. There-
fore, information about the plant is required to tune the PID
controller. The tuning methods fall into two broad cate-
gories: online model-free methods and methods that build
a model of the plant. The former tune the PID controller in
loop with the given plant using an optimization algorithm
such as steepest descent or Newton’s method to minimize
some cost function [12, 14], for instance, error between the
input and output . The second approach builds a model of
the plant and accordingly decides the parameters of the con-
troller by using a deterministic approach or an optimization

method [16, 3, 5]. A comprehensive review of these meth-
ods is given in [14].

The hardware used for PID controllers has evolved from
pneumatic configurations in the 1940’s, electrical devices
in the 1960’s to the current microprocessor-based controller
technology. Observation indicates that analog electronic
PID controllers have never been in widespread use. This
is despite the fact that most processes that are controlled are
analog. Instead of a strictly analog controller, digital signal
processor (DSP) based PID controllers are used. These em-
ploy analog-to-digital converters (ADCs) at their input and
digital-to-analog converters (DACs) at their output to inter-
face with the plant. An analog controller combines several
advantages over a digital controller which can be summa-
rized as follows.

1. An analog system provides larger bandwidth, higher
speed and eliminates quantization noise.

2. An analog controller must use a reconfigurable analog
array instead of a DSP. The power consumption of a
DSP halves every 18 months, as postulated by Gene’s
Law [7]. It is shown in [11], that using a reconfigurable
analog array can decrease power consumed by five or-
ders of magnitude as compared to a DSP, implying by
Gene’s Law a 20 year leap in power reduction.

3. High performance data converters are required for a
DSP-based controller. The performance of the con-
verter in terms of its speed, conversion precision and
noise greatly influences the fidelity of the controller.
An analog controller eliminates the need for ADCs
and DACs, thus saving power, space and cost. As the
power of the DSP is reduced, the power consumption
of the data-converters will dominate, thus their elimi-
nation is very advantageous.

Besides conventional considerations, reduced power con-
sumption would also be very useful for controllers used on
spaceships, on mobile, autonomous robots, or similar appli-
cations.

Why aren’t analog PID controllers designed and used
despite these advantages? The answer to this question is
the unavailability of electronically-reconfigurable, reliable
and precise analog arrays. The controller must be recon-
figurable because the PID parameters have to be tuned ac-
cording to the plant. The precision and range of the recon-
figurable system must provide sufficient flexibility to im-
plement PID control for a variety of plants. The difference
between the the actual and predicted behavior of the array
is another problem.

Electronically reconfigurable analog devices called Field
Programmable Analog Arrays (FPAA) are a fairly re-
cent phenomenon as compared to their digital counterparts
called Field Programmable Gate Arrays (FPGAs) which are
widely used in industry and academia. FPAAs started ap-
pearing in literature in the late 1980’s and the first commer-
cial offering was as recent as 1996 [17]. Due to the non-
trivial effect of parasitics and increased die area, FPAAs are
still not in widespread use nor are they an active research
area. However, the results of this contribution suggest that
the current designs of FPAAs are mature enough to imple-
ment a self-tuning analog PID controller. Anadigm already
offers a manually tunable PID control block on their FPAA
and other analog PID controllers are also available [13].

In this paper, we propose a paradigm for the design of
a self-tuning analog PID controller. In Section 2 we dis-
cuss how this framework circumvents the limitation associ-
ated with analog PID controllers and how it compares with
a DSP microprocessor-based controller. In Section 3 we de-
scribe in detail our working prototype. In Section 4 we ex-
perimentally evaluate our prototype. Finally, in Section 5,
we summarize and indicate future directions of work.

2 Framework for a Self-Tuning Analog PID
Controller

A mixed analog-digital control system is shown in Fig-
ure 1. It uses a DSP-based controller together with in-loop
data converters. When the system is self-tunable, it employs
a variety of methods and includes additional components
such as another microprocessor and data converters.

Our framework for a self-tuning analog PID controller is
shown in Figure 2. It uses a reconfigurable analog block as
the controller and a microprocessor to run the tuning algo-
rithm. The switches are used to put the system into control
or tuning mode. In control mode, the FPAA takes the user
input and controls the plant accordingly. In the self-tuning
mode, the input is generated by a function generator con-
trolled by the microprocessor. The system uses a model-free
method, i.e. on the microprocessor it executes an optimiza-
tion algorithm that minimizes a cost function defined on the
characteristics of the closed-loop system. To get data for
optimization, a 2-channel ADC is used to digitize and send

the input and output signal to the processor.

DSP
Processor

Plant-

ADC
(cheap)

REF sig.
Generator

OPTIONAL
Microprocessor

running
Tuning Algorithm

Input
Output

ADC
(precise)

DAC
(precise)

Controller + Tuner (Optional)

e(t)

Strobe

Figure 1. Conventional self-tuning DSP-
based PID controller model.

Reconfigurable
Analog PID

Controller
Plant-

ADC
(cheap)

REF sig.
Generator

Microprocessor
running

tuning algorithm

Input
Output

REF SIGNAL GEN

e(t)

Strobe

Figure 2. Proposed self-tuning analog PID
controller model.

The model for this self-tuning analog PID has several ad-
vantages over the digital PID system. As already discussed,
the reconfigurable analog block is much more power ef-
ficient than the DSP controller. Unlike digital PID con-
trollers, it does not need fast and accurate (thus, high power)
in-loop data converters. The only ADC required for the
self-tuning analog PID is for data collection for automatic
tuning (outside the control loop). It can be slow and low
precision (hence, low power). Once the tuning is done, the
ADC and microprocessor are shut down so they do not con-
sume power during the control mode. The analog circuit
combines the traditional advantage of larger bandwidth, no
quantization noise and higher speed. Figure 3 shows how
the cost function can be implemented as an analog circuit
(illustrated for squared error, can also use the error signal,
e(t), directly) to further relax the speed requirements on an
ADC and eliminate one of them.

In tuning methods that model the plant and calculate pa-
rameter values accordingly, a potential problem is that the
FPAA can not realize the calculated values or does so in-
accurately. However, in model-free methods, optimization
proceeds by directly instantiating test pointsin-situ on the
FPAA and measuring cost function value. Any inaccuracy

Reconfigurable
Analog PID

Controller
Plant-

ADC
(cheap)

Microprocessor
running

Tuning Algorithm

Input

Output
-

∫x2dxCost
Function

REF sig.
Generator

REF SIGNAL GEN

e(t)

Strobe

Figure 3. Self-tuning analog PID controller
model with cost function integrated into ana-
log hardware.

in FPAA calibration is implicit in the cost function evalua-
tion. This eliminates calibration and potentially unachiev-
able component value goals for the FPAA. Search proceeds
within the available range and precision. The PID circuit
on the Anadigm FPAA has a wide range for parameters (see
Section 3). Other FPAAs could support different ranges,
and a custom analog PID chip can even be designed to ac-
commodate a large range. In SIM960 [13] an industrial ana-
log PID controller, the ranges are as high as10−1 to 103

(proportional gain),10−1s−1 to 105s−1 (integral gain) and
10−7s to 1s (derivative gain).

In terms of related work, researchers primarily from the
evolvable hardware community have designed self-tuning
and fault tolerant analog controllers. In [9], an evolutionary
algorithm is used to invent a new controller topology on an
Field Programmable Transistor Array (FPTA). It uses fewer
components than a PI controller but results in worse per-
formance. In [10], the plant is modeled and subsequently a
controller topology for it is evolved on the FPTA. The FPTA
platform is not reliable due to performance drifts with time
[19]. Other approaches include evolution of fuzzy logic
controller topologies on an FPAA [6] and tuning of an arti-
ficial neural network on an FPAA to control robotic motion
[4]. The controller in [4] is not self-tuning: a human evalu-
ates the objective and must intervene when the mobile robot
falls down during its tuning. None of the approaches pro-
pose or build a self-tuning robust analog PID controller.

This summarizes our framework for a self-tuning analog
PID controller. This framework has several advantages over
the digital PID controller and also solves the problems as-
sociated with an FPAA. It may be extended to other tuning
methods and controlling strategies. These strategies such as
a Smith controller or fuzzy controllers have matured in the
domain of digital PID controllers.

3 Our Prototype

In [19], we motivated GRACE (Generative Robust Ana-
log Circuit Exploration), a system where an FPAA based

circuit could be automatically designed and sized by an in-
telligent algorithm running on a PC. Figure 4 illustrates the
use of GRACE as a reconfigurable controller for a plant.
The FPAA and the plant form a closed loop system. The
algorithm runs on a PC to tune the controller given a cost
function. It generates a reference signal which is converted
to an analog signal by an ADC (part of the Data Acquisi-
tion Card (DAQ)) and sent as the input to the closed loop
system. The reference signal and the output of the closed
loop system are digitized and received by the algorithm.
The algorithm optimizes a cost function defined on these
two signals. It reconfigures the FPAA and re-evaluates the
cost function to facilitate the optimization process.

EHW@CSAIL

Controller

ConfigurationEvolutionary

Algorithm

-

PLANT

Configured

Controller

FPAA

SRAM

V
in

Vout

Vreft

D
A
Q

serial

Figure 4. The GRACE System

GRACE uses the Anadigm AN221E04 FPAA, which
uses switched capacitor technology to implement analog
circuits. The FPAA can instantiate different analog blocks
such as differentiators, integrators, summers and difference
amplifiers which can be connected to form different circuits.
The parameter values such as differentiation or integration
constant and amplification gains are also programmable.
This chip supports I/O range of0 to 3.8V in differential
mode.

On the AN221E04, we instantiated a PID controller
(with an offset corrector) whose topology is shown in Fig-
ure 5.

∫

V

SUMDIFF

REF

-

+

FEEDBACK

D

+

+

OUTPUT

B4

SUMDIFF

+
B1

B2

B3

-

Offset

Delay

E(s)

O(s)

Figure 5. PID controller topology

The topology has the following transfer function:

O(s) = [KP +
KI

s
+ KDs]E(s) + Offset (1)

KP = (G2 −G ∗G3) (2)

KI = K ∗G1 (3)

KD = (G ∗G3)/fc (4)

Offset = 3V ∗G4 (5)

K: gain of integration block (B2)

G: gain of delay block (B3)

G1, G2, G3, G4: The gains of summer block (B4) in order,
top to bottom.

fc: Frequency of clock for switched capacitor system

The frequency,fc acts like a knob to control the range
of the different gain values. It influencesKD explicitly and
has a substantial effect on the value of the integrator con-
stant. The range of gains (equivalentlyfc) may be estimated
by the open loop response of the system. These gains for the
instantiated PID circuit are tuned by the algorithm running
on the PC to minimize a cost function. The cost function we
use is the squared magnitude error between the reference
and the output signal. Thus, GRACE with a PID controller
instantiated on the FPAA is a prototype of our framework
for a self-tuning analog PID controller.

The achievable values ofKP andKI are interdependent
as is clear in Equations 3 and 4. The range of gain val-
ues associated with a given block in the AN221E04 are also
coupled. For instance setting the value ofG1 in the sum-
mer block to 0.1 changes the maximum value ofG2, G3

andG4 of the gains anywhere from81 to 25.5. These non-
intuitive interdependences make manual tuning of the con-
troller very difficult. They also makes it difficult to pursue a
method that calculates the PID coefficients offline because
the constraints on the values are unpredictable.

Our prototype is similar in principle to the model of Fig-
ure 2 but has some architectural differences. It runs the op-
timization algorithm on a PC rather than a microcontroller
card. The reference signal is generated digitally and con-
verted to an analog signal. This is equivalent to generat-
ing the signal through a function generator circuit, which is
strobed (activated) by the algorithm.

3.1 Optimization method: Particle Swarm Opti-
mization

Though steepest descent and Newton’s methods have
been used for tuning of digital PID controllers [14], these
methods are not guaranteed to find a global optimum, and
the calculation of a Hessian (required for gradient methods)

is computationally expensive. The Hessian calculation are
also sensitive to variations in data from a closed loop sys-
tem and numerical errors. We used Particle Swarm Opti-
mization (PSO) [15] because it does not require gradient in-
formation or calculation of gradients. PSO was reportedly
able to find the global optima for the extremely non-linear
Schaffer f6 function and train a 13-dimensional neural net-
work [15].

PSO begins with a swarm of particles as the initial pop-
ulation. Each particle has a position and a velocity. The
position of the particle encodes the solution of the problem.
The velocity of the particle represents the value added to the
position of the particle to find its position in the next gen-
eration. The algorithm updates the position and velocity of
all particles in each generation, until the algorithm finds an
optimum. The velocity of all particles is initially zero and
is updated according to the best local position (best fitness)
the particle has come across in its lifetime (all generations
so far) and the best position any particle in the whole swarm
has ever come across.
Particle Representation and Initialization: The gains,
K, G, G1, G2, G3 andG4 are transformed to a new space
by a log mapping given in Equation 6.

K : kmin = .001, kmax = 8.1
G : kmin = .01, kmax = 81

G1, G2, G3, G4 : kmin = .01, kmax = 81

p =
ln[1 + (ee − 1) ∗ (k−kmin)

(kmax−kmin)]

e
(6)

k =
e(ep) − 1
ee − 1

∗ (kmax − kmin) + kmin (7)

As discussed previously, the range for each gain is not
fixed and the ranges are interdependent. We used the max-
imum possible unconstrained range for each variable as its
range in the algorithm. Whenever the value of the gain falls
out of the range, it is automatically set to the maximum or
minimum realizable value. The transformation maps all
gains to a range of 0 to 1 in the transformed space and
gives each decade of the gain value a uniform representa-
tion. The position of the particle is 6-dimensional with each
dimension representing a transformed value of the gain. To
configure the FPAA and evaluate the cost functions, the par-
ticle is converted back to circuit gains by reverse-mapping
(Equation 7). The initial population is sampled from a uni-
form distribution between 0 and 1 for each dimension.
Update Equations: We incorporate an inertial weight into

the PSO update equations to balance local and global search
[18]. The velocity (v) and position (p) update equations
used for each particle in each generation are:

v = w ∗ v + c1 ∗ r1 ∗ (pp − p(i)) + c2 ∗ r2 ∗ (pg − p(i))

p = p + v

wherepp andpg are the best particle position and the best
swarm position,w is the inertial weight,c1 andc2 are pa-
rameters set to 2 andr1 andr2 are uniform random vari-
ables in the range [0,1].

A higher value ofw favors global search while a lower
value implies local search. We linearly decrease the value of
w over the generations (by a rateratew per gen.) to favor
global search in initial generations and local search in the
later generations.

After an update, if a particle’s position in any dimension
becomes less than 0 or more than 1, it is set to 0 or 1 respec-
tively. Likewise, the maximum velocity in any dimension is
limited to between -1 and 1.
Fitness FunctionThe fitness function for PSO is equiva-

lent to the cost function discussed so far. We used the nega-
tive of average squared error between the reference signal
and the output signal as the fitness function to be maxi-
mized. The reference signal is shown in Figure 6. It con-
sists of two square envelopes with amplitude0.75 V and
0.375 V , and a short duration impulse. The duration of
each envelope is informed by the open-loop response of the
system and shall be discussed in Section 4. The reference
signal and the output signal are sampled at120 kHz.

0 0.0083 0.0167 0.025 0.0333 0.0417 0.05
−0.25

0

0.25

0.5

0.75

1

time (s)

volt
age

 (V)

Figure 6. Reference Signal.

3.2 Handling System Measurement Errors

It was observed that for an optimized circuit with a given
set of gain values, multiple fitness evaluations yielded dif-
ferent results. This can be attributed to the noise and mea-
surement errors present in the system. The distribution of
fitness for a fit circuit showed two peaks, similar to a mix-
ture of two gaussian distributions. Figure 7 shows this dis-
tribution (as a histogram with bin width8.59e−5) for a high
fitness test circuit evaluated 1000 times. One sees that max-
imum weight in the distribution is around peak A, while
there is an outlier distribution centered at peak B, which
represents a higher fitness value. This is likely because of
a time synchronization error between the reference and the
output signal. For a fit circuit, it causes a relatively large
error in measured fitness and is the likely cause of the ob-
served outlier distribution.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
x 10−3

0

50

100

150

200

250

300

350

400

measured fitness

nu
mb

er
 of

 sa
mp

les

A. MLE

B.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
x 10−3

0

50

100

150

200

250

300

350

400

measured fitness

nu
mb

er
 of

 sa
mp

les

MLE

Figure 7. Single sample (left) and 7-sample
fitness distribution (right) for a fit circuit.

Without correction, a single sample of fitness for an
evolved circuit could indicate that a circuit is fitter than it
truly is. To avoid this misleading information, we sample
the circuit’s fitness a number of times instead of just once.
We use the median of the sampled values rather than the
mean, since the mean has the inherent error caused due to
presence of a mixture of two distributions. To derive the
sample size, we considered the maximum likelihood esti-
mate (MLE) of the fitness for a randomly selected fit circuit
as the actual fitness (−3.88e−3, see Figure 7). All fitness
samples deviating by more than 5% of this value are con-
sidered undesired samples, which include samples coming
from the outlier distribution and otherwise highly variant
samples. For 1000 fitness samples, the number of undesired
samples was 374 and the number of undesired samples hav-
ing better fitness than the MLE was 135. This indicates a
probability of 0.374 of sampling an undesired fitness value
and a probability of .135 for when we would believe that the
circuit is significantly fitter than it really is. The distribution
estimate of the fitness value as the median of 7 samples is
shown in Figure 7. It can be seen that the number of outliers
have decreased by a large extent, while the MLE of fitness
remains the same. The probability of undesirable samples is
0.06 and of undesirable samples with better fitness is 0.01.
Comparing the 7-sampled distribution to the original, it is
clear that the 1% of misleading samples in the 7-sample dis-
tribution are likely to be closer to the MLE than those from
the unmodified distribution.

Sampling each circuit 7 times for fitness evaluation will
make the algorithm very slow. Therefore, we modified PSO
fitness evaluation in the following way: For each genera-
tion, first the global best circuit is sampled 7 times, and the
median is assigned as its fitness. Whenever a circuit is be-
ing compared to the global best, it is evaluated just once.
If the measured fitness is better than the current global best
fitness, or if it is only 5% worse than the current global best,
we then take 6 more samples of the circuit’s fitness and
compare the median of these 7 samples against the global
best fitness. If the circuit is better than the global best,
we update the global best, and save the estimated fitness
as its fitness. This technique minimize both the chances of

a fit circuit being ignored, and of an unfit circuit becom-
ing the global best. In practice, the modified PSO algo-
rithm requires 2.5 times the number of fitness evaluations
performed by the original, which is must lower than in case
of evaluating each particle 7 times.

4 Experiments and Discussion

We developed and tested our prototype controller and
its self-tuning algorithm with a hardware setup consisting
of a plant which underwent modifications between Experi-
ments 1 and 2. In Experiment 1, we hand tune a controller
and compare it to our prototype’s optimized controller for
Plant 1. In Experiment 2, we modify Plant 1 to Plant 2 so
that it is no longer stable. We then evolve solutions both
from a random population and from a population seeded
with the evolved solution from Experiment 1. Of interest
is whether and how often evolution found solutions better
than the hand-tuned one and how quickly the PSO found
solutions.
Hardware Setup We set up a closed loop system con-
sisting of the reconfigurable PID controller (FPAA) and a
second-order plant. The schematic of Plant 1 is shown in
Figure 8 and its transfer function in Equation 8.

0.1u

+ +

4.7K

R3

C1

-

C2

R1

1.5K

Input
Output

+

R2

0.1u

-

R4
1K

-

R6

R5

1K

1K

4.7K

Figure 8. Experimental plant

O(s) =
2.2128e7

s2 + 6667.9s + 4.527e6
(8)

Plant 1 has a gain of4.7, natural frequency2.1275 kHz
and a damping ratio of1.567. In open loop, the plant shows
no oscillations (since damping ratio is greater than 1). It
has a steady state error of3.7 and a rise time (equivalent to
settling time) of4.125 ms for 5% accuracy.

We calculated the PID coefficients of the system us-
ing open loop Ziegler Nichols method [20]. The system
was excited by a step function and calculations were done
on the output waveform. This yieldedKP = 5.4235,
KI = 0.0061/us andKD = 4.101e−2ms. The system had
a DC offset and when we tried to cancel it by configuring

the offset block, the ZN-coefficients fell out of the FPAA
coefficient range. This shows how a method which models
the system, calculates the PID coefficients and instantiates
them on the reconfigurable array fails miserably. Never-
theless, the ZN coefficients gave an indication of the range
of optimal coefficients. We chosefc as 100 kHz which
yielded the following ranges forKp, KI andKD as fol-
lows:

KP : (0. . . 56)

KI : (0.000102. . . 656)/us

KD: (1.02e-5 . . . 0.8)ms

It should be noted here, that though these ranges are in-
terdependent, the ranges given above depict the best case
scenario. The ZN coefficients could be achieved in this
range, if there was no offset in the system.1

As a baseline for comparing PSO solutions, we manually
tuned a solution for the plant to use. Hand-tuning is frustrat-
ing and time consuming due to the interdependent ranges
for the PID coefficients. The hand-tuned solution coeffi-
cients wereKP = 15, KI = 0.0005/us, KD = 0.36 ms,
and a DC offset of+1.5 V .2

PSO Details: The parameters used for PSO are shown in
Table 1. We did 20 runs of PSO for each plant.

Parameter Value
Initial w 0.9
Ratew 0.2 per 30 gens
Swarm size 40
Max. Generations 30

Table 1. PSO parameters

The duration of both square envelopes in the reference
signal were set to8.33 ms which is large enough to allow
the open loop system to settle. This duration may be deter-
mined according to the desired specification (or indirectly,
the open loop system characteristics) of the system.
Experimental Results: For Experiment 1, the average fit-
ness of the optimal solution (Avg BF), the Best of Run solu-
tion (BOR) Fitness, average generations to converge (GC)
and the average number of circuit evaluations are tabulated

1An fc of 100 kHz for switched-capacitor implies sampling of the
input at100 kHz. This is acceptable since the plant has a cut-off fre-
quency of2.5 kHz, which removes all high frequency components. A
further precaution could be to use the anti-alias filters at the FPAA input
cells provided in the AN221E04.

2Throughout the experiments, the instantiated values for offset were
unusual and don’t make sense. We presume this is due to FPAA calibration
error.

in Table 2. GC represents the average number of genera-
tions after which the PID controller did not show an im-
provement of more than 5%. The average number of cir-
cuit evaluations was tallied from generation 0 to the genera-
tion when the algorithm converged. Standard deviations are
shown in parentheses.

Avg BF −3.545e−3 (5.23e−4)
BOR Fitness −3.165e−3

GC 12.65 (7.27)
Avg Evaluations 1224.40 (777.90)

Table 2. Experiment 1 Results

Out of 20 runs, 16 runs performed better than the hand-
tuned solution. The BOR circuit has the following gains
(realized on the FPAA): K:0.001/us G: 9.45 G1: 0.333
G2: 6.67G3: 0.333G4: 81. This results in PID coefficients
asKP = 17.9685, KI = 0.000333/us, KD = 0.6303 ms,
and a DC offset of+1.0 V . The BOR fitness was−3.17e−3

as compared to−3.70e−3 that of the hand-tuned solution,
a 14.3% error reduction. The time response of the hand-
tuned and the BOR controller for a step input are shown
in Figure 9. The hand-tuned and the BOR solution were
also compared on a different reference signal which con-
tained a triangular wave followed by a sine-wave. The time
response of the two solutions for the tip of the triangular
wave is shown in Figure 10. The squared error of BOR is
3.544e−5 is an order of magnitude better than that of hand-
tuned solution (3.4746e−4). This shows that the solution of
PSO is not specifically tuned to the reference signal used
for fitness evaluation, but is a generic solution. The statis-
tics imply that the probability that the PSO solution is worse
than the hand-tuned solution is 0.2. If we do three runs and
take the best solution, this probability goes down to 0.008,
which is as low as 1 in 125 times.

8 8.5 9 9.5

x 10
−3

0

0.25

0.5

0.75

1

time (s)

vo
lta

ge
 (V

)

input
best solution
handtuned solution

Figure 9. Time response of hand-tuned and
evolved controllers, Experiment 1.

In Experiment 2, we did a preliminary study regarding
adaptability of the PID controller. In this scenario, Plant 1
drifts (to Plant 2’s configuration). The controller must adapt

0.011 0.0115 0.012 0.0125 0.013 0.0135 0.014 0.0145 0.015
0.5

0.75

time (s)

vo
lta

ge
 (

V
)

input
best solution
handtuned solution

Figure 10. Time response of hand-tuned and
evolved controllers on a new test signal, Ex-
periment 1.

the PID coefficients for Plant 1 to suit Plant 2 via another
self-tuning. Plant 2 has a gain of 6.912, natural frequency
1.0637 KHz and a damping ratio of0.47. In open loop,
Plant 2 shows oscillations and a steady state error of5.712,
settling time of6.60 ms and a rise time of1.942 ms for 5%
accuracy. We assume that the original controller uses BOR
solution for Plant 1. Upon switching to Plant 2, the error
more than doubles, increasing from3.165e−3 to 6.797e−3.
We tested two strategies to tune the controller. The first
strategy was to rerun PSO, while the second was to run PSO
with the initial population seeded with the BOR solution for
Plant 1 (similar to [8]). We believed that the second strategy
would take less time to adapt.

We did 20 runs for each strategy with all parameters the
same as earlier experiments. The fitness values of the BOR
solutions for Strategy 1 and Strategy 2 were−5.727e−3

and−5.700e−3, respectively. This implied improvements
of 15.7% and 16.1% over the solution of Plant 1. The aver-
age number of generations to converge for Strategies 1 and
2 were 17.6 and 5.65, respectively, meaning Strategy 2 was
67.9% faster. All solutions from Strategy 2 improved the
BOR solution by more than 10%, while 60% of solutions
from Strategy 1 did so. This shows that the plant can be
re-adapted to a new plant more efficiently by running PSO
with the BOR solution inserted in the initial population.

5 Summary and Future Work

We have presented a framework for a self-tuning analog
PID controller. It overcomes traditional problems associ-
ated with FPAAs such as poor characterization and limited
or coupled component parameter ranges. The framework
overcomes these by using a model-free tuning method. It
combines the advantages of low power, no quantization
noise, high bandwidth and high speed in comparison to a
self-tuning digital PID controller.

We implemented a prototype of this PID controller us-
ing a state-of-art commercially available FPAA, Anadigm’s
AN221E04 and used Particle Swarm Optimization as the

tuning method. We developed a scheme to correct the
variance in measurement and incorporated it into PSO. We
showed that a self-tuned controller can outperform a hand-
tuned solution. The optimization algorithm worked well de-
spite the system offset and coupled ranges for different gain
values.

Our future work will be directed toward both our proto-
type and framework. In terms of our prototype, we would
like to incorporate search for the best ranges of gains (i.e.
fc) into our software so the search can be informed by
closed loop characteristics. This would improve upon our
manual method of finding ZN coefficients which must be
done in open loop and which does not support adaptation
of a highly varying plant. We also plan to gauge the effect
of using less precise ADCs with cost function evaluation in
hardware. Finally, we are also investigating how topologi-
cal search can facilitate better ranges for the PID coefficient
values.

In terms of our framework, one issue we want to address
is the limitations of our current prototype in which we em-
ploy a very versatile FPAA at the unfortunate cost of power
consumption. We would like to design a custom made chip
which is a re-tunable PID controller. This requires only
variation in component values rather than both values and
interconnections (which lead to high area, power and signal
distortion). There are several continuous-time low power
FPAA designs in the literature, and a PID chip design could
be based on one of these architectures. For instance, a
continuous-time OTA (operational transconductance ampli-
fier) based PID controller could be designed, where varying
the coefficients shall require only varying the bias currents.
Such a chip together with a DSP processor running the tun-
ing algorithm controlling a real plant would be the final test
of our framework. Adaptive controllers would be very use-
ful in a mobile robotic system with a small power budget.
Figuring out when and how the robotic system can strobe
the processor to go back into tuning mode is an open ques-
tion. Perhaps some configuration of the internal sensors of
the robot or polling of an error threshold will work. Finally,
we would like to extend our framework to use other con-
trol strategies such as Smith controllers or fuzzy controllers
and tuning methods such as those based on relays and phase
locked loops.

References

[1] 5th NASA / DoD Workshop on Evolvable Hardware (EH
2003), 9-11 July 2002, Chicago, IL, USA. IEEE Computer
Society, 2003.

[2] 7th NASA / DoD Workshop on Evolvable Hardware (EH
2005). IEEE Computer Society, 2005.

[3] K. J. Astrom and T. Hagglund. U.S. patent no. 4549123,
method and an apparatus in tuning a pid regulator, 1985.

[4] D. Berenson, N. Estevez, and H. Lipson. Hardware evolu-
tion of analog circuits for in-situ robotic fault-recovery. In
Evolvable Hardware[2], pages 12–19.

[5] J. Crowe and M. Johnson. Frequency domain versus time
domain methods in system identification.IEE Proc., Control
Theory Appl., 147(2):196–204, 2000.

[6] J. L. M. do Amaral, J. F. M. do Amaral, C. C. Santini,
R. Tanscheit, M. B. R. Vellasco, M. A. C. Pacheco, and
A. Mesquita. Evolvable building blocks for analog fuzzy
logic controllers. InEvolvable Hardware[1], pages 101–
110.

[7] G. Frantz. Digital signal processor trends.IEEE-MICRO,
20(6):52–59, Nov./Dec. 2000.

[8] G. W. Greenwood, E. Ramsden, and S. Ahmed. An em-
pirical comparison of evolutionary algorithms for evolvable
hardware. InEvolvable Hardware[1], pages 59–66.

[9] D. A. Gwaltney and M. I. Ferguson. Intrinsic hardware evo-
lution for the design and reconfiguration of analog speed
controllers for a dc motor. InEvolvable Hardware[1], pages
81–90.

[10] D. A. Gwaltney and M. I. Ferguson. Enabling the on-line
intrinsic evolution of analog controllers. InEvolvable Hard-
ware[2], pages 3–11.

[11] T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson. De-
veloping large scale field programmable analog arrays for
rapid prototyping.International Journal of Embedded Sys-
tems, 2004.

[12] H. Hjalmarsson and T. Birkeland. Iterative feedback tuning
of linear time-invariant mimo systems. In37th IEEE Con-
ference on Decision and Control, pages 3893–3898, 1998.

[13] S. R. S. Inc. Sim 960 - 100 khz analog pid controller.
http://www.thinksrs.com/downloads/PDFs/Catalog/SIM960c.pdf.

[14] M. A. Johnson and M. H. Moradi.PID Control. Springer
Science+Business Media, 2005.

[15] J. Kennedy and R. Eberhart. Particle swarm optimization.
In Proceedings of the Fourth IEEE International Conference
on Neural Networks. IEEE Press, 1995.

[16] L. Ljung and K. Glover. A process identifier and its applica-
tion to industrial control.Automatica, 17(1):71–86, 1981.

[17] D. Marsh. Programmable analogue ics challenge spiceand-
breadboard designs.EDN Europe, pages 30–36, October
2001.

[18] Y. Shi and R. C. Eberhart. Empirical study of particle swarm
optimization. In P. J. Angeline, Z. Michalewicz, M. Schoe-
nauer, X. Yao, and A. Zalzala, editors,Proceedings of the
Congress on Evolutionary Computation, volume 3, pages
1945–1950, Mayflower Hotel, Washington D.C., USA, 6-9
July 1999. IEEE Press.

[19] M. A. Terry, J. Marcus, M. Farrell, V. Aggarwal, and U. M.
O’Reilly. Grace: Generative robust analog circuit explo-
ration. Accepted in 9th European Conference on Genetic
Programming, EVO-Workshops, EVOHOT track, 2006.

[20] J. G. Ziegler and N. B. Nichols. Optimum settings for auto-
matic controllers.Trans. A.S.M.E., 64:759–765, 1942.

