
Challenges for Communication Decision-Making in
Sequential Human-Robot Collaborative Tasks

Vaibhav V. Unhelkar
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
unhelkar@csail.mit.edu

X. Jessie Yang
University of Michigan

Ann-Arbor, Michigan 48109
xijyang@umich.edu

Julie A. Shah
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
julie a shah@csail.mit.edu

Abstract—Effective communication between teammates is crit-
ical to the success of collaboration, including human-robot
collaboration. For enabling human robot communication, several
modalities are actively being researched — such as, text, speech,
visual signals, and legible motion. The design of these modalities
is necessary to achieve effective communication; however, it is
not sufficient. Communication typically requires both the human
and robot to expend resources; and too much or too little
communication has the potential to adversely affect task perfor-
mance. Here, we focus on the complementary but relatively less
explored problem of decision-making for communication — i.e.,
deciding if and when to use an available communication modality
during human-robot collaborative tasks. We briefly discuss the
modeling and algorithmic challenges for communication decision-
making in human-robot and human-agent teams. The article
concludes with an overview of our past and on-going research
in developing algorithms for communication decision-making in
sequential human-robot collaborative tasks.

I. INTRODUCTION

Communication is an important aspect of collaboration.
Prior research has demonstrated the need and utility of ef-
fective communication for successful collaboration in human-
robot teams [15, 17, 33]. For several human-robot collab-
orative scenarios, communication is essential — such as,
answering a user query, or tutoring students [30]. In others
(e.g., collaborative manufacturing and disaster response) it aids
in sharing observations regarding the environment [39], and
making inferences regarding teammates [40].

Indeed, there has been significant interest in communication
for human-robot interaction (HRI) [1, 6, 20]. Several modal-
ities for human robot communications are actively being re-
searched — including natural language [23, 36], visual signals
[3], and robot motion [10, 21, 35]. Design of these modali-
ties is important for achieving human-robot communication.
However, we posit that to achieve effective communication
a robot teammate additionally needs the capability to decide
if and when to use its communication modality. We refer to
this complementary but relatively less explored problem as
decision-making for communication in sequential tasks.

The key motivation for our focus on the problem of com-
munication decision-making is the observation that communi-
cation incurs costs, i.e., it typically requires both the sender
and the receiver to expend resources, which might otherwise
be used for improving their collaborative task performance.
This results in a trade-off between the cost and benefit of

a communication. The challenge of communication decision-
making is to resolve this trade-off during execution-time to
achieve effective communication in a human-robot team.

Our vision is to develop general decision-making algorithms
that work across tasks and communication modality — similar
to existing decision-making paradigms in robotics such as
motion and task planning. This would allow for using commu-
nication decision-making across robots, and allow for bench-
marking different approaches. Here, we discuss the modeling
and algorithmic challenges arising in the problem of decision-
making for communication in human-robot teams. We also
mention relevant research on communication in human teams,
multi-robot teams and human-robot teams, while noting that
our objective is not to provide an exhaustive survey. We
conclude with an overview of our past and on-going research
in developing algorithms for communication decision-making
in sequential human-robot collaborative tasks.

II. RESEARCH CHALLENGES

Decision-making for communication in sequential tasks for
human-robot teams presents several modeling and algorithmic
challenges, primarily arising due to

• challenges in quantifying cost of communication,
• challenges in modeling human teammates,
• difficulty in estimating benefit of communication,
• inherent decentralized nature of multi-agent tasks, and
• the need for execution-time communication decisions.

Next, we describe a few of these research challenges. We note
that these challenges span across any communication modality
available to the robot.

1) Communication cost: To weigh the cost and benefit of its
communication, the robot will need to model communication
costs. For multi-robot teams these costs are primarily restricted
to physical quantities, such as, power and energy. In contrast,
for human teams these costs also include difficult-to-model
cognitive variables, such as, limited attention of humans which
impacts their ability to process and incorporate communicated
information. Communicating too often may lead to informa-
tion overload [4, 28] or even humans ignoring communications
from the robot [11, 26]. Research in interruption management
and human team communication provides examples of chal-
lenges arising in modeling these costs and attempts to develop
corresponding computational models [18, 22].



2) Estimating human state, plan and belief: To assess the
benefits of its communications, the robot will need to estimate
the state, plan and belief of its teammates [7, 13]. These
inferences are challenging — since, the robot might not have
full observability of teammate’s states/actions. Further, the
agents might have access to only an inaccurate model of their
(potentially dynamic) environment prior to task execution.

In case of multi-agent systems, a common approach is to
assume existence of a joint policy from prior coordination,
or that all agents are employing similar (potentially decen-
tralized) algorithms to generate local policies [25]. These
assumptions are typically not valid when a robot is reasoning
regarding its human teammate(s) [9, 27, 37]. Recent research
in algorithmic HRI provides successful examples of employing
(variants of) inverse reinforcement learning to estimate hu-
man’s reward/cost function, and then use it to estimate human
plans during collaboration [24, 32] in scenarios where accurate
environment models are available.

In addition, the robot will also need to estimate the impact of
the communication on the state, plan and belief of the human
teammate. We refer to this as estimating the reception state
of the communication. In multi-agent teams this estimation is
often resolved by implementing a pre-specified behavior upon
receipt of a communication — such as, a Bayesian update to
the belief, or generating a novel plan [31, 42]. However, for
human teammates the behavior upon receiving communication
might vary based on their workload, perceived utility of
robot communication, among other factors [2]. Further, in
collaborative tasks, impact of communication on human’s plan
and belief will additionally depend on the human’s estimate
of robot’s behavior - which might not necessarily be known
and/or accurate.

3) Execution-time communication decisions: Lastly, com-
munication decision-making will need to be performed in
execution-time with limited computational time. In contrast
to planning robot actions in collaborative scenarios, where
robot action space is known a priori and action policies can
be computed offline, the possible communications that an
agent can make varies during execution. Further, in scenarios
with inaccurate environment models an agent might receive
observations which it cannot anticipate prior to execution
but might benefit from sharing them with its teammate. This
necessitates the design of novel representations and algorithms
for communication decision-making.

In multi-agent systems, several variants of dec-POMDP
models [25] and algorithms have been developed that explicitly
model communication [14, 29, 34] and reason about communi-
cation decisions [31, 41, 42] in cases where accurate environ-
ment models are available. However, these approaches assume
agents using identical (potentially decentralized) decision-
making, which typically does not extend to human-robot
teams. In human-agent teamwork, Kamar et al. [19] extend
the SharedPlans formalism [16] using Probabilistic recipe
trees to efficiently represent joint plans for communication
decision-making ; however, this assumes full observability and
resolution of challenges described in II-2.

III. DECISION-MAKING FOR COMMUNICATION

Despite the challenges described in Sec. II for communica-
tion decision-making, human teams are capable of achieving
coordination via communications even within time critical and
safety critical scenarios. Studies of human team coordination
indicate significant differences between communication strate-
gies employed by well performing teams vis-á-vis teams that
achieve low task performance [5]. Further, successful teams
exhibit anticipatory communication strategies [8, 12, 33]. This
suggests that by developing algorithms that allow robots to
anticipate and respond to communication needs of its human
teammate(s), while respecting the cost and benefit trade-off of
communications, one can achieve effective communication in
human-robot teams. We conclude with a brief description of
our effort towards developing such algorithms.

1) Multi-agent teams in deterministic, unknown environ-
ments: As a pre-cursor to developing algorithms for human-
robot teams, we have explored communication decision-
making in multi-agent teams motivated by challenges of
human-robot teams. Specifically, we assume that each agent
independently plans its actions and further this planning
mechanism might differ across agents; this modeling choice is
motivated by the fact that in human-robot teams, human and
robot agents could use different action planning approaches.
In this first step, we restrict our focus to static domains with
deterministic action outcomes and assume common knowledge
of the planning mechanism (but not the plan) of each agent.
However, we consider that agents do not have complete knowl-
edge of the environment prior to execution (i.e., unknown
environment), thus making offline communication decision-
making infeasible and highlighting the challenge II-3.

Our algorithm, ConTaCT, makes execution-time commu-
nication decisions, and as compared to a baseline approach
results in comparable task performance while reducing the
number of communications. The details of the task model,
agent model and communication algorithm are available in
[38]. The performance of ConTaCT is especially desirable for
human-robot teams, in which excessive communications from
a robot risk affecting human’s task performance or leading to
human teammates altogether ignoring robot communications.

2) Human-robot teams in unknown environments: We are
currently extending the above approach for human-robot
teams, by developing solutions to resolve uncertainty in human
plans (see II-2), along with the need to make communication
decisions in execution time, and with partial observability of
human state (see II-3). This is motivated by the fact that not
only human planner might be different from that of the robot,
but also might not be accurately known to the robot. Towards
this we have designed an experiment scenario motivated by
applications in collaborative manufacturing, where human and
robot need to operate in a shared environment to perform
a sequential assembly task. We believe that by developing
these solutions for communication decision-making in human-
robot teams, there is potential to improve team fluency, task
performance, and transparency of robot behavior, which is a
precursor to explainable AI.
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